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The object of this paper is to use the method of product
integration to treat the time dependent evolution equation
u'(t) = A{@)(u(t)), t = 0, where u is a function from [0, ) to
a Banach space S and A4 is a function from [0, ) to the set
of mappings (possibly nonlinear) on S. The basic requirements
made on A are that for each ¢t =0 A(f) is the infinitesimal
generator of a semi-group of nonlinear nonexpansive transfor-
mations on S and a continuity condition on A(¢) as a function
of t.

The product integration method has been used by T. Kato in [5]
to treat evolution equations in which A(¢) is the infinitesimal generator
of a semi-group of linear contraction operators. In [6] Kato treats
the nonlinear evolution equation in which A(¢) is m-monotone and the
Banach space S is uniformly convex. For other investigations of non-
linear evolution equations one should see P. Sobolevski [9], F. Browder
[1], J. Neuberger [8], and J. Dorroh [3].

1. Definitions and theorems. In this section definitions and
theorems will be stated. For examples satisfying the definitions and
theorems below, one should see § 4. Let S denote a real Banach space.

DEFINITION 1.1. The function T from [0, =) to the set of mappings
(possibly nonlinear) on S will be said to be a &~semi-groups of mappings
on S provided that the following are true:

(1) T+ y) = T(x)T(y) for =,y = 0.

(2) T(x) is nonexpansive for x = 0.

(3) If peS and g,(») is defined as T(z)p for * = 0 then g, is
continuous and ¢,(0) = p.

(4) The infinitesimal generator A of T is defined on a dense
subset D, of S (i.e., if pe D,g," (0) exists and Ap = g,"(0)) and if
peD, gt (x) = Ag,(x) for x =0,9,(x) =p + S:Ag,,(u)du for © = 0, g,"
is continuous from the right on [0, ), and || ¢," || iS nonincreasing on
[01 o).

DerFINITION 1.2. The mapping A from a subset of S to S will be
said to be a Z-mapping on S provided that the following are true:
(1) The domain D, of A is dense in S.
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270 G. F. WEBB

(2) A is monotone on S, i.e., if ¢ > 0 and
p,geD, [T —eA)yp— T —eA)qll=]lp—aqll.

(3) A is m-monotone on S, i.e. A is monotone on S and if ¢ >0
then Range (I —¢A) = S.

(4) A is the infinitesimal generator of a “-semi-group of map-
pings on S.

DEFINITION 1.3. Let each of m and » be a nonnegative integer
and for each integer 7 in [m, n] let K; be a mapping from S to S.
If m > n define J[~.K;,=1. If m <n define [[,.K; = K, and if
m+1<j<n define [[/..K; = K,;[[Iz: K;. Define [1;""K; = 17-n Kntmi-
If each of a and b is a nonnegative number then a chain {s;}.”, from
a to b is a nondecreasing or nonincreasing number-sequence such that
s, = a and s,, = b. The norm of {s;}i", is max {| sy — 8. || ¢ € [1, m]}.

DEFINITION 1.4. Let F be a function from [0, ) X [0, «) to the
set of mappings on S. Suppose that pe S, a,b =0, and % is a point
in S such that if ¢ > 0 there exists a chain {s;};”, from a to b such
that if {¢,}3*, is a refinement of {s;}:™, then

Hu’ - ﬁ[lF(tzi—u | tzi - tzi—z!)pH <é€.

Then u is said to be the product integral of F’ from a to b with respect
to » and is denoted by [[:!F(, dl)p.

REMARK 1.1. Let A be a Z*mapping on S and define the function
F from [0, o) x [0, =) to the set of mappings on S by F(u,v) =
(I —vA)~ for w,v =0 (Note that (I — vA)™* exists and has domain S
by virtue of the m-monotonicity of A). The following result in [10]
will be used in the theorems below:

If A is a ““mapping on S, T is the «™-semi-group generated
by A, and F is defined as above, then for pe S and 2 = 0 T(x)p =
LI F(, dI)p.

In this case let T(x) be denoted by exp (xA) for xz = 0.

Let A be a function from [0, =) to the set of mappings on S
such that the following are true:

(I) For each t = 0 A(t) is a &-mapping on S

(II') There is a dense subset D of S such that if ¢ = 0 the do-
main of A(t) is D

(III) A is continuous in the following sense: If a,b =0, M is
a bounded subset of D, and ¢ > 0, there exists ¢ > 0 such that if
u, v € la, b] and |u — v| < 0 then || A(u)z — A(v)z|| < ¢ for each ze M.
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THEOREM 1. Let A satisfy conditions (I), (II) and (III). If pec S
and a,b = 0 the following are true:

(1) If T(u,v) = exp (WAuW)) for u, v=0, then [1¢ T, dI)p exists.

(2) If Lu,v) = I —vAw))™ for u,v =0, then [|!L(, dI)p
exists and [[: L, d)p = [I: T(L, dl)p.

THEOREM 2. Let A satisfy conditions (I), (II) and (III) and define
Ub,a)p =T]. T, dI)p for pe S and a, b= 0. The following are true:

(1) U, a) is nonexpansive for a,b = 0.

(2) U®,e)Ule, a)=Ub, a) for a,b=0 and ce[a, b] and Ula, a) =
I for a = 0.

(38) If peS and a =0 then Ula, t)p s continuous n t

(4) If peS,0=a<t, and U, a)pe D, then 0TU(t, a)p/ot =
AU, a)p and if peS,0<s=<b, and U(s,b)pe D, then

0~ Ul(s, byp/os = — A(s)U(s, b)p .
2. Product integral representations. In this section, Theorems

1 and 2 will be proved. Before proving part (1) of Theorem 1 three
lemmas will be proved each under the hypothesis of Theorem 1.

Lemma 1.1, If peD,a,b=0, and {s;})i" is a chain from a to
b then

M T 182 = s Dp = ) = 35 15 = sl 1Al |-

Proof.

[ Do [ = 52 09 — ]

m

IT T(s2j1y | 825 — S2j2 )0 — jLIﬂ T(ojors | 825 — 82z l)p“

i=

IA

IA

>
=1
21 | T(Szi—1y | 82 — Swo ) — D

’
il

Il

L A ) T, tpat]

| S — Soia ||| Alsn)D || -

1

IA
s

LemMA 1.2. If peD,a,b=0,{s}i" s a chain from a to b, and
{si}, is a sequence in [a, b], then

| L5t I3 = 50D = 2] = 30— s 1 AEDP |-

Proof.
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[T L(sh |5 — 50w — 3]

< SITLL6S 155 — susp — IT L 55— s D
=1 =1 =1
= & [| L(Si, | 825 — Saia )P — D

= ;l | L(si, ‘Szi — Sy 5 |)P
- L(S,:, ‘Szi — Spi_s |)(I - |321' — Spis ‘ A(S:))p ||

=

s

[ S — Sois] “ A(s)p [ .

4

LeEmmA 1.3. If M s a bounded subset of D,a,b=0,v >0, and
€ > 0, there exists 6 > 0 such that of u,ve|a,d],|u —v|<d, 02 <,
and ze M, then || T(w, )z — T(v, 2)z|| < x-¢.

Proof. Let M’ = {17, L(v, S;; — 8y o)z |2€ M,ve|a,b],0 < x <7,
and {s;}i", is a chain from 0 to x}. Let z,€ M, let ze M, let v ¢ [a, b],
let 0 <« <7, and let {s;}™, be a chain from 0 to x. Then,

=llz—=ll.

III L(v, 85; — 83 5)2 — I—I1 L(v, 8;; — 8522,
Further, by Lemma 1.2,

= @- max || A(w)z, || .

welo,z])

m
H L(v, 8y — 8:i-:)2 — 2,
=1

Then, H ]]:n1 L(?), So; — Szi—z)z “ = H R—2 H + H % ” +x-. max,ero,r || A(u)zo H
and so M’ is bounded. There exists d > 0 such that if u,ve]q,b],
|w —v| <0, and ze M’, then || A(u)z — Aw)z|| <e. Thenif 0 <o <7,
ze M, {s;}", is a chain from 0 to z, u, ve]a, b], and |u — v| < 0,

|

ﬁ L(u” Sy — Szi—z)z - ﬁ L(U, Spy — Szi—z)zH

m m i—1
= Z: [T L(w, S:5 — Suj-2) kIll L(v, 83 — $y-2)2
T J 1 ==
m i
— 11 L 50y = 550 11 LG, 50— 5007
J=etl k=1
m | i—1
= 21 L(u, 83 — 83.5) II[IL(% Sor = Sap—2)?
q= =

- kfIﬂ L(v, 83 — 851 5)2 1

1—1

= 3L, 50 = 5092

T — (32 — S AW)) kﬂ L0, 80 — $u)2

|
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m
= Zf (S2i — S3i—s)
=

— A(u) kf;[l L(v, 8y — 8p-0)2

|40) [T Lo, 52 — -0

,\

< (Szi - Szi-2)'5

s

1

8
N

Then, since T(u, )z = [1¢ L(u,dI)z and T(v, x)z = [; L(v, dI)z (see
Remark 1.1), || T(u, )z — T(v, 2)2|| < x-&.

Proof of Part (1) of Theorem 1. Let pe D, let a,b =0, and let
€>0. Let M = {TIr, T(rozyy | 79 — Teis )P | @ € [@, b] and {r;}i", is a chain
from a to #}. Then M is a bounded subset of D by Lemma 1.1. There
exists 0 > 0 such that if u,vela,b],|u —v|<0,0=c=<1and zeM,
then || T(u, ®)z — T(v, x)z|| < e-2. Let {s;}i", be a chain from a to b
with norm < min {0, 1} and let {t]}*, be a refinement of {s;}i7, i.e.,
there is an increasing sequence % such that u, = 0, u,, = n, and if
1=i=msy =1, For 1<i=<m let K; = T(s;_,, |8: — Su|) and
let J; = [1%u, 41T (tojy | T2 — to52]). Then,

20—19 |t2~; — by ‘)p - l_]l T(32i~1y l Soi = Saiz |)pH

ng—HKﬂ)
= S| 7, 1 Kep — 1T 7, 11 Koo

Mgﬁm—&gmw

=3l 1 mmww-wwﬁ&p

2L,
— I T lty — b T Ko

S N 1 A T (PR ) .
= I T Ve = s, TL T [t = b [T Ko
gﬁréwﬂmmm—ma>ymmmum—mmump

— Tty [ ey — Ty ‘) ﬂ T(t?.h v 1 tan — tanz]) H K.p

uj—-1t

=20 2 |ty —tyelre=b—al-e.

=1 j=u;__1+1

|

Hence, [I. T(I, dI)p exists. Further, using the fact that D is dense
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in S and T(u, x) is nonexpansive for u, x = 0 one sees that if pe S,
a,b =0, then J]:! T, dl)p exists and thus part (1) of Theorem 1 is
proved.

Before proving part (2) of Theorem 1 three lemmas will be proved
each under the hypothesis of Theorem 1.

LEmMMA 1.4. If p,gqeS,a,c=0, and be|a,c], then the following
are true:

(i) |III: T, dDp — I1. T, dD)q ) = llp — q|l.

(ii) IIs Td, 1) I1: T, dD)p = [1; T, dI)p.

(iii) IfpeDthen||1]. T, d)p —p|| =< |b—al| -max,cr,; || A(w)pl|.

Proof. Parts (i) and (ii) follow from the nonexpansive property
of T(u,x), w, x = 0. Part (iii) follows from Lemma 1.1,

LEMMA 1.5. If M is a bounded subset of D,a,b=0, and ¢ > 0,
there exists o > 0 such that +f u,vela, b], |v—u| <d, welu, v], and
ze M, then

“H; T(I, dD)z — T(w, | v — u 2| < |v — ul-c.

Proof. Let M' = {117 T(Ssi1) |80 — Suz 2|26 M, 2,y € [a, b], {s:}i™
is a chain from y to «#}. Then M’ is a bounded subset of D by Lemma 1.1.
By Lemma 1.3 there exists ¢ > 0 such that if w,vefa,d], |u —v]| <
6,zeM’ and 0<<z<1, then | T, 2z~ Tw,x)z| <x-c. Let
u,vela,b],|v—u| < min{s, 1}, w e [u, v], z € M, and let {s;}i", be a chain
from u to ». Then,

[T T(sucss 150 — 502 — T, [0 — w {)z|i

H T(S5i—1s | 8o — Spis )% — H T(w, | 83 — S5i_s 1)ZH
= Z. T(83;15 I Sy — Spia) J];[l T(Szj—u lszj — S5 |)z

- T(w, Iszi - Szi~2l) ﬁ T(Szj—u | Szj - Sj«z I)Zl,

3

II

= Z ISZL Szi—zl‘s
=

=lv—ule¢.
Thus, ||1I: T, d)z — T(w, |v —u)z|| < |v — u|-e.

LEMMA 1.6. If M is a bounded subset of D,a,b=0, and &> 0,
there exists 0 > 0 such that if u,ve|a,bl,welu,v],|v—u|<o,zeM,
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and {s;}", is a chain from w to v, then

Hﬁ L85y [ 82 — 82i2[)Z — ﬁ L(w, [sx — 321—2‘)z{i =[v—ule.
Proof. An argument similar to the one in Lemma 1.3 proves
Lemma 1.6.

Proof of Part (2) of Theorem 1. Let peD,a,b =0, and ¢ > 0.
Let M ={I]: T, dI)p|x€[a, b]}. Then M is a bounded subset of D
by Lemma 1.4. By Lemmas 1.5 and 1.6 there exists ¢ > 0 such that
if w,vela,bl,welu,v], | —v| <0d,ze M, and {s;}i", is a chain from
% to v, then

ﬁ L(Szi—u Iszi — Syiz |)z - ﬁ L(w’ Iszi — Sgi2 |)ZH § Iv — ul-s/3| b — dl

and || [1: T, dl)z — T(w, |v —u)z|| < |v — u|-€/8|b —a|. Let {r}2,
be a chain from a¢ to b with norm < d. Let {s;}:", be a refinement
of {r;}¥2, such that there exists an increasing sequence % such that
U =0, =m, if L1 qry =s,, and if 1 <1=<q and {t,}i*, is a
refinement of {s;}3“,,, ,, then

I L(ru s |t — tu—a ) [T T, dD)p

k=1

— T |7 = s T T A0 < 17— racal-</31 — al

(Note that if
1242 q T0ucs |75 — 7)) 11 70, dDp

= 11 Lra_,, dI) H T, dD)p = 11 Lira ., dI) H I, dI)p

r2¢—2 T2i
—see Remark 1.1). Let {¢;}*, be a refinement of {s;}", and let v be
an increasing sequence such that »,=0,v, =%, and if 1 <1< m
Sy = t2vi' Then,

ot = Do — T 70 dlyp

ﬁ ﬁ ]._[ L(tzk—n Itzk - tzk—z |)p

1 Ta, dI)p]i

=1 rgi—3
q
=2

%
4:=1

M Lltucss [t — tacsl) 11 T, dD)p

J=u;_+1 k= vj 1+t

— 11 T, dI) H 1, dI)pH

7212
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IA

é‘ *7'% - 7'21'—2"5/311) — CL|

q ug vj
+ 2

=1

L(ra | ta — tus)) 11 T, dD)p

J=uy g+l k:vj__1+1

T 7 = 7 ) 1T T dDp|

q
+ D 7w — Toi 2] €/3|b — a|

-,
-

<¢g.

Thus, [I!L(I, dI)p exists and is [[:7T(, dI)p for pe D. Further,

using the fact that D is dense in S and L(u, x) is nonexpansive for

u, x = 0 one sees that [’ L(I, d)p = [I. T, dI)p for all pe S.
Define U(b, a)p = 11 T, dI)p for pe S and a,b = 0.

Proof of Theorem 2. Parts (1), (2), and (3) of Theorem 2 follow
from Lemma 1.4. Suppose that peS, 0= a <¢, and U, a)pe D.
Let ¢ > 0. There exists 6, > 0 such that if 0 < h < 6,

I A@T@, WU, a)p — AB U, a)p ] < ¢/2

(see Definition 1.1, part (4)). By Lemma 1.5 there exists d, > 0 such
that if 0 < h < 6,|| U + h, t)U(t, a)p — T(t, k) UL, a)p || < h-¢/2. Then,
1f 0 < h < min {5“ 52}7
I A/R)UE + h, a)p — U, a)p) — AR UE, a)p ||
= || /U + R,OU(E, a)p — U(t, a)p) — A@)U(E, a)p ||
< ¢&/2 + {[ A/RUT(E, B U, a)p — Ult, a)p) — AR U(t, a)p ||

h
— ¢+ Hl/hSO[A(t) T(t, w)U(t, a)p — A(t)U(t, a)p]duH <e.
Hence, 07U(t, a)p/ot = A(C)U(t, a)p. Suppose that peS,0 < s < b,
and U(s,bype D. Let e > 0. There exists 6, > 0 such that if 0 < h < 4,

then 0 <s—h and |[A®GS)T(s, H)U(s, b)p — A(s)U(s, b)p|| < ¢/2. By
Lemma 1.5 there exists 6, > 0 such that if 0 < h < 4,

| U(s — h, s)U(s, b)p — T(s, )U(s, b)p || < h-¢/2.
Then, if 0 < h < min {3,, 8,}

11/ =h)(U(s — h, b)p — Uls, b)p) — (—A(s)U(s, b)p) ||
= [ @/R)(U(s — h, 5)U(s, b)p — U(s, b)p) — A(s)U(s, b)p ||
< &/2 + [[A/h)(T(s, U(s, b)p — Uls, b)p) — A(s)U(s, b)p ||

— 2 + Hl/hS:[A(s) T(s, u)U(s, b)p — A(s)Us, b)p]du“ <e.

Hence, 0-U(s, b)p/os = — A(s)U(s, b)p.
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3. Product integral representation in the uniform case. For
Theorem 3 A is required to satisfy, in addition to conditions (I), (II),
(III) of §1, the following:

(IV) For each t = 0 A(¢) has domain all of S.

(V) If 0=<a=b, M is a bounded subset of S, and & > 0, there
exists 6 > 0 such that if wefa,b],z, weM, and ||z — w]|| < d, then

| Au)z — Aww|| <e.

THEOREM 3. Let A satisfy conditions (I)—(V) and define
Mu, v) = (I + vA(u))
Jor u,v=0. IfpeS and a,b =0, then [[. MU, dl)p = U(b, a)p.

Before proving Theorem 3, three lemmas will be proved each under
the hypothesis of Theorem 3.

LeEMMmA 3.1. Let pe Sand let a,b =0. There is a netghborhood
N,,; about p, a positive number v, and a positive number K such
that if e N,;,xz,yela,bl, |y — x| <7, and {s}i™ is a chain from
x to y, then

1;[1 M(Syi_iy | S5 — Saia )Q — (]H =ly— .’L}K .

Proof. There exists a positive number K such that if u € [a, b]
and ge N, then [[A(u)q|| =< K. Let 6 =1/2 and let v = 1/2K. Let
ge N, x,yela, b, |y — 2| <7, {s;}i" a chain fromz toy,1 <j < m —
1, and suppose that I 11171 M5y, | 800 — Si2)q — @ | = |32j — 50|+ K.
Then, 17, M(Ss_1y | Su — Su_z])g€ N,, and so

”ﬁM(sZi_l, | $3 — Suis)q — qH
< [ Mo 52— 5t o

81— 8 -G T M5 85 = 5202 D

= [ Spire — S| K.
LeEmmA 3.2. If pe S and a =0 then U(t, a)p is continuous in t.

Proof. Let peS and a,b=0. In a manner similar to Lemma
3.1 one proves the following: There is a neighborhood N, , about ¢ =
U, a)p,y >0, and K > 0such thatif ze N, ;, z,y€[a,d], |y — x| <",
and {s;}i™ is a chain from « to y then
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E[ (I — | 85 — S35 |A(S3i1))2 — z“ Sly—= [-K .

Let ¢ > 0, let x€[a, b] such that |& — b| < 7, let {s;}*, be a chain
from a to b and £ < m an integer such that s,, = 2 and

|, @)p = 1T Lisus | 50 — 5.2 || < min e, 3
and
k
U@ @p = [T Lsusy L35 = s ]| < e

Then,
|| U, a)p — Ub, a)p||

i=k+1 m
<2+ || IT (— [8u — 8z |A(851)) 1:[1 L(ssi_yy | 85 — Sz |)D

— 1T Loucs 5 — 20

<24+ |b—w|-K.
Then, lim,_, Uz, a)p = U(b, a)p for x € [a, b]. Further, by Lemma 1.4
lim,_, Uz, a)p = U(b, a)p for ¢ [a, b].

LEMMA 3.3. Let pe S and a = 0. There exists a neighborhood
N, ; about p and v > 0 such that the following are true:

(1) If €>0 there exists @ > 0 such that if qe N,s,a <x=a+7,
and {s;}i", is a chain from a to & with norm < «, then

1 Mo 5 — 500 — Ulwr, g | < e

and
(2) If €>0 there exists a>0 such that tf g€ N, ;, max{0,a—7} <
z < a, and {s;}i", ts a chain from a to x with norm < «, then

*b

Proof. By Lemma 3.1 there exists ¢ > 0 and v > 0 such that if
geN,,,a<a=a-+ 7 and {s;}", is a chain from a to x then

T Mo 53¢ = 82)a — Uler, a)g|| <.

m
‘]ji M(S5i—1y Sz — Sp2)q € N, -
7=

Let ¢ > 0. By Lemma 1.5 there exists «, > 0 such that if

wvelg, e+, 0 v—-—u<a,u=w=wv,
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and ge N, ,;,, then || Uw, u)g — T(w,v — u)q|| < (v — u)-¢/2y. There
exists a, > 0 such that if ge N, , u€la,a + 7], and 0 <z < a,, then
|| A(w) T(u, )qg — A(u)q|| < €/2y (Note that
1 T, g = qll = ||| A@) T, Hdt| < @+ A@w)q | = -
% (max || A(t)z ||, te[a, @ + 7], 2€ N,.)) .

Let a = min {«a,, &}, let qe N,,; let a <x < a + v, and let {s;}", be
a chain from a to x with norm < @. Then,

1T M5y 52~ 500 — Ula, )|

1 Msssrr 80— 590 — 1 Ul 5.0

m
=3
1 =

!U(Sziy S5;_s) ﬁ‘M(Szj—u S25 — S2j2)q
i

. l

!T(Szi—ly Sz — Si) Hl M8y 805 — 835-0)9
i i=

it
— M(Syi1y S — S5is) H1 M(Sy5—1y S2j — Szj-2)q
7

<ef2+ 3

it
— M(8s_1s Sz — S3i2) H1 M(sz5_1y 825 — Szj—z)qu
b=

824
0

—2+ 3 S A1) T8y €) T1 M50 85 — 825200

- A(Sz-;—l) ]j M(Szj—n Sgj — Szj—z)q]dt“
jt
<2+ 3 (s — sua)-6/2y <€
A similar argument proves part (2) of the lemma.

Proof of Theorem 3. Let peS and 0 < a < b. Suppose that if
a<x<b[[:M(,dIl)p exists and is U(x, a)p. Let a < x < b, let {s;}i™,
be a chain from a to b, and let j < m such that s,; = . One uses
the inequality

|00, 00 — [T Misiss 50 — 08

< ”U(b, ayp — T M(L dI)pH

+ i 01, anyp — 11 MGsasy 52— 50
+ 1]:[1 M(Szi—n Sos — 32i~2)p

m 7
- M(8gi—1y Soi — S2is) ]_—I1 M(S3i_1y Soi — Szi_s)D
=

=7 +1

|
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and Lemmas 3.1 and 3.2 to show []: M, dI)p exists and is U(b, a)p.
Suppose now that for ¢ <z < b[[: M, dl)p = Uz, a)p. Let b < x,
let {s;}", be a chain from a to x, and let j < m such that s,; = b.
One uses the inequality

U@, ap = I Mesusy 52~ 598
< vt HU®, ayp — U, b) 1] M 5 = 5090

N HU(w, b) 1:1 M(85i1y S0 — S0}

and Lemma 3.3 to show that there exists vy >0 such thatif b <ax<b+ v
then T2 M(I, dI)p exists and is U(x, a)p. Thus, if pe Sand0<a<b
then [1% M, dI)p exists and is U(b, a)p. With a similar argument one
shows that for pe Sand 0 < a < b [[¢ M, d])p exists and is Ul(a, b)p.

m

7
- H M(s3; 1y S2; — Sis) II1 M(Syi_1y S — S255)D
i=

i=g41

4. Examples. In conclusion two examples will be given.

ExampLE 1. Let S be the Hilbert space and let A be densely
defined and m-monotone on S (Definition 1.2). In M. Crandall and A.
Pazy [2] and in T. Kato [6], it is shown that B is the infinitesimal
generator of a Z-semi-group on S (Definition 1.1). Let X be a function
from [0, «) to S such that X is continuous. Define A(t)p = Bp + X(t)
for p € Domain (B) and ¢t = 0. Then A satisfies conditions (I)—(III).

ExampLE 2. Let S be a Banach space and let B be a mapping
from S to S such that B is m-monotone S and uniformly continuous
on bounded subsets of S. In [11] it is shown that B is the infinitesimal
generator of a “™-semi-group of mappings on S. Let C be a continuous
mapping from [0, =) to [0, =), let D be a continuous mapping from
[0, =) to (0, ), and let each of E and F be a continuous mapping
from [0, ) to S. Define A(t)p = C(t)-B(D(t)-p + E(t)) + F(t) for t =0
and pe S. Suppose ¢t = 0,e >0, and p,qe S. Then,

(I —eA®)p — (I — eA@D)q ]|
= /D) || — eCH)DHB)D(b)p + E(t))
— (I = COD®)B)(D(t)g + E)) ||
= (/DN [ (D@)p + L)) — (D(H)g + E@)) ||
=|lp —qll

and so A(t) is monotone for ¢ = 0. Suppose t =0,e >0, and pe S.
Let ¢’ be in S such that (I — eC(t)D()B)q = D(t)p + E(t) + ¢D(t)F(t).
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Let ¢ = (1/D(t))(¢' — E(t)). Then (I —cA(t))g = p and so A(¢) is m-
monotone. Then A satisfies conditions (I)—(V).

REFERENCES

1. F. E. Browder, Nonlinear equations of evolution, Ann. of Math. 80 (1964), 485-523.
2. M. G. Crandall and A, Pazy, Nonlinear semi-groups of contractions and dissipative
sets, J. Functional Analysis, 3 (1969), 376-418.

3. J. R. Dorroh, A class of nonlinear evolution equations in a Banach space (to appear)
4, E. Hille and R. S. Phillips, Functional analysis and semi-groups, rev. ed., Amer.
Math. Soc. Coll. Pub., Vol. XXXI, 1957.

5. T. Kato, Integration of the equation of evolution in a Banach space, J. Math. Soc.
Japan 5 (1958), 208-234.

6. , Nonlinear semi-groups and evolution equations, J. Math. Soc. Japan 19
(1967), 508-520.

7. Y. Komura, Nonlinear semi-groups in Hilbert space, J. Math, Soc. Japan 19 (1967),
493-507.

8. J. W. Neuberger, Product integral formulae for monlinear expansive semi-groups
and non-expansive evolution systems, J. Math. and Mech. (to appear)

9. P. E. Sobolevski, On equations of parabolic type in a Banach space, Trudy Moskov.
Mat. Obsé. 10 (1961), 297-350.

10. G. F. Webb, Represeniation of monlinear nonexpansive semi-groups of transfor-
mations in Banach space, J. Math. and Mech., 19 (1969), 159-170.

11. , Nonlinear evolution equations and product integration in Banach spaces
(to appear)

12. K. Yosida, Functional analysis, Springer Publishing Company, Berlin-Heidelberg-
New York, 1965.

Received May 16, 1969.

VANDERBILT UNIVERSITY






PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. SAMELSON J. DUGUNDII
Stanford University Department of Mathematics
Stanford, California 94305 University of Southern California

Los Angeles, California 90007
RICHARD PIERCE BASIL GORDON*
University of Washington University of California
Seattle, Washington 98105 Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH B. H. NEUMANN F. WoLr K. YosHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA STANFORD UNIVERSITY
CALIFORNIA INSTITUTE OF TECHNOLOGY  UNIVERSITY OF TOKYO

UNIVERSITY OF CALIFORNIA UNIVERSITY OF UTAH

MONTANA STATE UNIVERSITY WASHINGTON STATE UNIVERSITY
UNIVERSITY OF NEVADA UNIVERSITY OF WASHINGTON

NEW MEXICO STATE UNIVERSITY * * *

OREGON STATE UNIVERSITY AMERICAN MATHEMATICAL SOCIETY
UNIVERSITY OF OREGON CHEVRON RESEARCH CORPORATION
OSAKA UNIVERSITY TRW SYSTEMS

UNIVERSITY OF SOUTHERN CALIFORNIA NAVAL WEAPONS CENTER

Printed in Japan by International Academic Printing Co., Ltd., Tokyo, Japan



Pacific Journal of Mathematics

Vol. 32, No. 1 January, 1970

Robert Alexander Adams, Compact Sobolev imbeddings for unbounded

AOMAINS . . ..o 1
Bernhard Amberg, Groups with maximum conditions ..................... 9
Tom M. (Mike) Apostol, Mobius functions of order k ..................... 21
Stefan Bergman, On an initial value problem in the theory of

two-dimensional transonic flow patterns . .................ccuiiia... 29
Geoffrey David Downs Creede, Concerning semi-stratifiable spaces . . . . ... 47
Edmond Dale Dixon, Matric polynomials which are higher

COMMUIALOTS . .« o oot et et e e et e e e e e 55
R. L. Duncan, Some continuity properties of the Schnirelmann density.

P 65
Peter Larkin Duren and Allen Lowell Shields, Coefficient multipliers of HP

and BP spaces ...... ... 69
Hector O. Fattorini, On a class of differential equations for vector-valued

AISTFIDULIONS . . ..o o e 79
Charles Hallahan, Stability theorems for Lie algebras of derivations. . ...... 105
Heinz Helfenstein, Local isometries of flattori........................... 113
Gerald J. Janusz, Some remarks on Clifford’s theorem and the Schur

IRAEX . .o e

Joe W. Jenkins, Symmetry and nonsymmetry in the group
diSCrete roUPS . ... .ot

Herbert Frederick Kreimer, Jr., Outer Galois theory for se
algebras. ......... ..o

D. G. Larman and P. Mani, On visual hulls ..............

R. Robert Laxton, On groups of linear recurrences. 1I. El

Dong Hoon Lee, The adjoint group of Lie groups . . ... ...
James B. Lucke, Commutativity in locally compact rings .
Charles Harris Scanlon, Rings of functions with certain Li

PTOPETLIOS .« oo oo v ettt
Binyamin Schwarz, Totally positive differential systems . .
James McLean Sloss, The bending of space curves into pi

James D. Stafney, Analytic interpolation of certain multip
Patrick Noble Stewart, Semi-simple radical classes. . . ...
Hiroyuki Tachikawa, On left QF —3 rings..............
Glenn Francis Webb, Product integral representation of ti

nonlinear evolution equations in Banach spaces . . ..




	
	
	

