Vol. 32, No. 2, 1970

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 304: 1  2
Vol. 303: 1  2
Vol. 302: 1  2
Vol. 301: 1  2
Vol. 300: 1  2
Vol. 299: 1  2
Vol. 298: 1  2
Vol. 297: 1  2
Online Archive
Volume:
Issue:
     
The Journal
Editorial Board
Subscriptions
Officers
Special Issues
Submission Guidelines
Submission Form
Contacts
ISSN: 1945-5844 (e-only)
ISSN: 0030-8730 (print)
Author Index
To Appear
 
Other MSP Journals
Diagonal submatrices of matrix maps

Alfred Esperanza Tong

Vol. 32 (1970), No. 2, 551–559
Abstract

The first question answered in this paper is; if A;λ μ is a linear operator between sequence spaces, with a matrix representation (aij), does it follow that the associated diagonal matrix (aijδjj) maps λ into μ? An affirmative answer is given if λ is a normal (or monotone) sequence space and μ is a perfect sequence space.

Morever, if λ,μ are normed sequence spaces, under what conditions will the following inequality hold for all matrix maps (aij) from λ to μ : (αij)(aijδij) (where ∥⋅∥ denotes the operator sup norm)?

We apply our answer to the first problem to give another proof for a theorem of S. Mazur.

Mathematical Subject Classification
Primary: 47.10
Milestones
Received: 18 February 1969
Published: 1 February 1970
Authors
Alfred Esperanza Tong