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We show in that the space of involutions of the 3-sphere
whose fixed point sets are 2-spheres is pathwise and locally
pathwise connected. From Smith theory it is known that these
involutions are orientation reversing. The fixed point sets
need not be tame 2-spheres; Bing and others have many ex-
amples of involutions of the 3-sphere whose fixed point sets
are wild 2-spheres.

In order to prove the connectivity theorem (§ 6) just mentioned
we develop an approximation theory for involutions of the 3-sphere in
§'s 3, 4. Some of the results there are interesting in their own right.
Corollary 3.1 states that involutions which fix wild 2-spheres can be
approximated by involutions which fix tame 2-spheres. Theorem 4.6
states that if an involution g fixing a 2-sphere R approximates an
involution / fixing a 2-sphere S very closely then R approximates S.
We also make use of Theorem 5.2, a modified version of the Alexander
deformation theorem, which states that if the boundary of a 3-cell C
in the 3-sphere approximates a given 2-sphere very closely then very
small homeomorphisms of C onto itself which fix Bd (C) can be deformed
back to the identity by small isotopies of C which fix Bd (C).

NOTATION. Most of our notation conventions are discussed in [12].
We mention a few items here.

With one exception which we note later in this paragraph p denotes
the metric on a metric space. In the case of Euclidean space En and
its subspaces p is given by ρ(x, y) = {Σfa - Vi)ψ2 where x = (xlf •••,&*),
V — (Vi, β >2/n) For spaces X, Y, β^(X, Y) denotes the space of
homeomorphisms of X into Y with the compact open topology. If X
is compact and Y metric 3(f(X, Y) is a metric space with metric d
given by d(f, g) = sup {ρ(f(x)y g(x)) \ x e X}.

An isotopy Ht(a ^ t ^ 6) of a space X into itself is a continuous,
one parameter family of homeomorphisms of X into itself or alternately
a parameterized path in £έ?(X, X). In case X is a metric space we
say Ht is an e-ίsotopy provided the track under Ht of each point x of
X —{Ht(x) 11 G [α, b]}— has diameter less than ε. An ε-set in a metric
space X is a subset of X of diameter less than ε. If xeX then
N(X, x, ε) denotes {yeX\ ρ(x, y) < ε}. If Y Q X then N(X, F, ε)
denotes U {N(X, y,e)\ye Y).

We denote the 3-sphere, the unit sphere in Euclidean 4-space E\
by Σ. We denote by ^" the subspace of 3ί?(Σ, Σ) consisting of those
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involutions of Σ whose fixed point sets are 2-spheres and by <& the
subspace of ^~ consisting of those involutions whose fixed point sets
are tame 2-spheres. If S is a 2-sphere in Σ, ^(S), &(S) denote the
subspaces of ^ & consisting of elements which have S for a fixed
point set. A crumpled cube is a space homeomorphic to the closure
of the bounded component of the complement of a 2-sphere in Ez.

We assume the reader is familiar with the works of Moise and
Bing on the triangulation theorem and Hauptvermutung for 3-manίfolds
[4, 6,17,18,19] as well as some of the elementary consequences of
these works—for example from [17, Corollary to Theorem 1] that tame
2-spheres bound pairs of 3-cells in Σ and that disjoint tame 2-spheres
in Σ cobound annuli.

The following theorem which combines special cases of [12, §9]
and [13, §8] will be applied in several places in this paper:

THEOREM 1.1. Suppose M is a (pwl) 3-manifold without bound-
ary, K is a compact polyhedron with no local cut points, f is a
homeomorphism of K into M, and e > 0.

There is a 3 > 0 such that:
(a) if /o and f are (pwl) homeomorphisms of K onto tame

sets in M with d(f, fe) < δ(e = 0,1), then there is a (pwl) e-isotopy
Ht(0 <£ t <; 1) of M onto itself such that Ho = I (Identity), Ht — I on
M - N(M, f(K), e), and HJ0 = f, and

(b) if K is a 2-sphere and if f0 and f are homeomorphisms of
K onto disjoint tame sets in M so that d(f,fe) < d (e — 0,1), then
there is a homeomorphism g of K x [0,1] into M such that g(x, e) —
fe(x) (xeK,e = 0,1) and p(f(x), g(x, t)) <ε(xeK,te [0,1]).

We wish to thank Dean Montgomery for pointing out certain
elementary facts about equivalences of involutions.

2* Converting isotopies of Σ and crumpled cubes into paths
in ^ Γ Here we introduce an isotopy construction to be used in § 6.
We omit proofs of Lemmas 2.1 and 2.2.

LEMMA 2.1. Suppose f e ^(S) and S bounds crumpled cubes C
and D in Σ.

Then the following statements hold:
(1) If ge J^(S) with g\C= f\C, then g = f,
( 2 ) If h is a homeomorphism of Σ, then hfh~~ι e ^(h(S)), and
(3) Ifgβ J^~(S) and h is a homeomorphism of Σ given by

h\C = gf and h\Ό ~ I, then g = hfhr1.

LEMMA 2.2. Suppose f e ^{S) and Ht(0 <,t<:l) is an isotopy
of Σ.
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Then ht(0 <: t ^ 1) given by ht = HtfHt~
ι is a path in ^ with

htejr(Ht(S))(te [0,1]).

LEMMA 2.3. Suppose f e ̂  and ε > 0.
There is a δ > 0 such that if g e N(J^f, δ) and Ht(0 ^ t ^ 1) is

a δ-isotopy of Σ with HQ = I, then ht(0 ^ ί ^ l ) given by ht = HtgHt~
ι

is a path in N(<βζ f, ε).

Proof. Choose δ < ε/3 so that the image under / of each δ-subset
of Σ has diameter less than ε/3.

Let g and Ht be given as in the hypothesis. For each xeΣ,
t e [0, 1], dia (x U Hγ\x)) < δ so g(x U Hτ\x)) s N(Σ, f(x U Hτ\x)), δ) s
N(Σ, f(x), ε/3 + δ) and

Ht(g(x U Hτ\x))) S JVCΣ, /W, ε/3 + 2δ) s iV(J, /(x), ε) .

T h u s p(f(x), ht(x)) < ε (x e Σ, t e [ 0 , 1 ] ) a n d h t ( 0 ^ t ^ l ) Q N ( ^ 7 f, e).

3. S? is dense in ^ Γ Bing and Wu [3, 9, 22] have shown that
there are uncountably many inequivalent involutions in J^~ — Sf. (See
also [2].) In fact Bing's methods in [9, §2] can be used to show
that ^ — & is dense in ^C We use Bing's approximation theorem
for spheres to show that ?7 is also dense in

THEOREM 3.1. Suppose f e^~(S) and ε > 0.
There is a δ > 0 such that if R is a tame 2-sphere in Σ homeo-

morphically within δ of S, then there is an element g e J^{R) such
that d(f, g) < ε.

Proof. Let εL > 0 be sufRciently small so that ε1 < ε and d(f, fh) < ε
for every ε^homeomorphism h of Σ. Let φ be a homeomorphism of a
polyhedral 2-sphere K onto S. Let ε2 < εx correspond to δ in Theorem
1.1 for the substitution (Σ—>M, K -+K, φ —•/, ε, —>ε). Choose a positive
number 8 < ε2/2 so small that ρ(x, f(x)) < ε2/2 (x e N(Σ, S, 8)).

Let R be a tame 2-sphere homeomorphically within δ of S. There
is a homeomorphism φx of iΓ onto R such that d(^, ̂ ^ < δ. Set ^0 = fφγ.
From the conditions on δ we have c?^, ^0) < ε2/2 so d(φ, φ0) < ε2. From
Theorem 1.1 there is an εrisotopy Ht(0 <J t ^ 1) of Σ such that Ho = I
and if^o = &. That is, HJ\R = 7. Now J2 bounds 3-cells C and 2),
and HJ switches these 3-cells.

Define g by HJ on D and by /Hf1 on C. Clearly # e J^(i2). For
x e D we have p(f(x), HJ(x)) < εx < ε. For a eC we have

by the definition of εx.
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From [10, Th. 1.1] we get:

COROLLARY 3.1. The subspace & is dense in

4* Homeomorphic closeness of fixed point sets*

LEMMA 4.1. Suppose f e ^~(S) and ε > 0.
There is a δ > 0 such that if ge ^{R) with d(f, g) < δ then

(i) R S N(Σ, S, ε), (ii) R separates two points of Σ - N(Σ, S, ε) if and
only if S separates them, and (iii) dia (R) > dia (S) — ε.

Proof. Let S separate Σ into components U and V. Let Yly Zx

be nonempty, compact subsets of U, V such that Σ — N(Σ, S, ε) £ FL U Zt

and for each xeS, N(Σ, x, ε/6) Π Γi Φ 0 , iNΓφ x, ε/6) Π ̂ i ^ 0 . Set
εx = inf {p(x, f(x)) I a; e YL U ̂ } . Choose ε2 > 0 so that

sup {p(x, f{x)) I x G N(Σ, S, ε2)} < εx/4 .

Let Y, Z be compact, connected subsets of U, V such that

(Σ - N(Σ, S, ε2)) ^YΌZ.

Set δ = 1/4 inf {|θ(α?, /(a?)) | a ; e Γ U ^ } .
Let # e ^ ( J ? ) with d(/, ^) < δ. For each a e Γ U ^ /o(a?, g(x)) ^

4δ - δ. Thus R s ^ - ( F U Z) S JV(JS, S, ε2) s JV(-ΣTf S, ε). Now R
bounds crumpled cubes C and D with F g C , and # switches C and
D. Suppose R does not separate Y from Z. Then

7 U ^ g C , ΰ g JSΓ(J?, S, ε2) ,

and p(x, g(x)) < εx/4 + δ < ε2/2 (a?eD). Let c e ^ U ^ i , and let d =
g(c) e D. Then c = ^(ώ), and we have ^(c, ώ) ^ εί — δ ^ 3/4εL because
ceY1\jZ1, but ^(d, c) < εJ2 because d e D. From the contradiction we
conclude that R separates Y from Z. Thus R separates two points
of Σ — N(Σ, S, ε) if and only if S separates them.

Let p, q be points of S such that ρ(p, q) = dia (S), and let y19 y2 e Y,
zu z2e Z be points such that p(p, yγ U «i) < ε/6, p(q, y2 U z2) < ε/6. We
have p(yί9 zx) < ε/3, p(y2, z2) < ε/3. Since R separates Y from J£ there
are points p', qf of R on the shorter segments of the great circles
through y19 zx and y2, z2. We have p(p, pr) < ε/2, ^(g, g') < ε/2 so
dia (R) ^ p(p'f q') > dia (S) - ε.

LEMMA 4.2. Suppose f e c^(S) α^ώ ε > 0.
There is a δ > 0 swcfo ίfeαί if g e J^iR) with d(f, g) < δ, then

every simple closed curve of diameter less than δ on R bounds an
ε-disk on R.
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Proof. We suppose dia (S) > 4ε. Choose et > 0 so that every
5ε rsubset of Σ is contained in the interior of a 3-cell of diameter less
than ε/3. Choose ε2 > 0 so that p(x, f(x)) < e,(x e N(Σ, S, ε2)). Choose
ε3 > 0 so that ε3 < ε2/2 and

ε3 < inf {p(x, f{x)) \x e Σ - N(Σ, S, ε2)} .

Choose δ from Lemma 4.1 for / and ε3 sufficiently small so that every
3δ-subset of Σ is contained in the interior of a 3-cell of diameter less
than ε2/2.

Let g e J^(R) with d(f g) < δ, and let J be a simple closed curve
on R with dia (J) < δ. Use Theorem 3.1 and [10, Th. 1.1] to get a
tame 2-sphere Rr in Σ, a δ-homeomorphism φ of R onto R', and an
element g' e ^(R!) such that d(f g')<δ. From Lemma 4.1, dia (R')>3e.
Use [4, 6, 19] to give Σ a triangulation T in which R' is a polyhedron.
The set J' = φ(J) has diameter less than 3δ and so lies in the interior
of a 3-cell C of diameter less than ε2/2. From [6] we can suppose
that Bd (C) is a polyhedron in T and is in general position with respect
to Rr. Each component of Bd (C) Π B! is a simple closed curve which
we claim bounds an ε/3-disk on R!'.

Let L be a component of Bd (C) Π iϋ'. Now L bounds an ε2/2-disk
D on Bd (C). Let D^ •• , D m denote the closures of the components
of Int (D) - R'. From Lemma 4.1, R! C JSΓ(-£, S, e3) s o ΰ g JNΓCΣ, S, ε2),
/o(a?, g'(x)) < εx + S (x e Z>), and dia (J5 U g'(D)) < ε2 + 2ε, + 2δ < 5εlβ From
the choice of ε1? D U g'(D) is contained in an open 3-cell U of diameter
less than ε/3. Because Int (D) is in general position with respect to
R\ each D{ U Qf{Dd is a surface which bounds a 3-manifold Q; in [7.
Furthermore Qi Π i2' is a surface i^ whose boundary is Bd (A) We
show that L is contained in a disk in iϋ' Γ) U.

Some A> say DΛ, is a disk so ζ^ is a 3-cell and i ^ is a disk.
Either L S F^ or L n ^ = 0 In the first case L bounds a subdisk
of Fk in Rr which has diameter less than ε/3. In the second case
locate an inner most simple closed curve Lά of D Γ\Fk in Fk, cut out
the disk Dkj it bounds in Dy replace that disk by the disk Fkj which
L3 bounds in Fk, and push a neighborhood of Fkj in the adjusted disk
slightly to one side of Rr to obtain a new polyhedral disk D(l) with
boundary L such that Int (D(l)) is in general position with respect to
i?', Int (.D(l)) Π Rτ consists of a proper subcollection of the simple closed
curves of Int (D) Π R', and D(l) U g'(D(l)) g U. After a sufficient
number of repetitions of this process we arrive at a polyhedral disk D(n)
such that D(n) f] R' = Bd (D(w)), Z?(w) U g'(D(n)) bounds a 3-manifold P
in U, and L Q P. But then F(tι) = i2' ΓΊ P is an ε/3-disk, and L bounds
a subdisk of F(n) in R'.

Let ϋΓi, , Kr denote the ε/3-disks on R' which the simple closed
curves on Bd (C) Π Rr bound. Since dia (C (J (U if^)) < e and dia (Rf) >
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3ε, the set Rf — (J K{ is connected, has diameter greater than ε, and
thus does not intersect C. This shows that J ' is contained in one of
the disks K{ and so bounds an ε/3-disk K on R'. Then J bounds the
ε/3 + 2δ < ε-disk φ~\K) on R.

LEMMA 4.3. Suppose f e ^~(S), A is a tame arc in Σ which
pierces S at a point p and otherwise fails to intersect S, and ε > 0.

There is an η > 0 such that if C is a tame S-cell of diameter
less than rj whose interior contains p and which intersects A in an
unknotted arc A! that spans Bd (C), then the following statement is
valid:

There is a δ > 0 such that if ge%?(R) with d(fg)<δ and
R Π Bd (C) is a finite collection of simple closed curves at which R
crosses Bd (C), then R Π A £ Int (A'), there is a component U of R — C
such that each component of R — U is an ε-disk, and exactly one
component of C\{U) Π Bd (C) separates the two endpoints of Bd (Af)
on Bd (C).

Proof. We suppose dia (S) ^ 4ε. Complete A to a tame, unknotted
simple closed curve L in Σ. Let εx < ε be a positive number such that
N(Σ, p, 2ε1) n L g i . Let η correspond to S in Lemma 4.2 for the
substitution / —> /, βi —> e.

Let C be a tame 3-cell with the properties described in the hy-
pothesis of the lemma. Let ε2 > 0 be a number such that

N(Σ, S, 5ε2) n A £ Int (A')

where A' = C Γ) A and N(Σ, p, 5ε2) £ Int (C). Choose ε3 > 0 less than
ε2 so that p(x, f(x)) < ε2 (x e N(Σ, S, es)). Choose ε4 > 0 so that ε4 < ε3

and N(Σ, S, ε4) n A is contained in an arc A" in N(Σ, p, ε3). Choose
δ < ε4 from Lemma 4.1 for /, ε4.

Let g be given as in the hypothesis of the lemma. It follows
from the conditions on rj that each component of R Π Bd (C) bounds
an εΓdisk on R. By throwing away disks contained in the interiors
of others we find mutually exclusive εrdisks Flf , Fm such that each
Bd (Ft) £ Bd (C) and R f] Bd (C) £ U F*- From the conditions on et no
Fi intersects L — A, and from the conditions on δ, R f) A Q Int (A').
Set U = R — \J Fi. Now £7 is connected so either U £ Int (C) or
jy n C = 0 . In the first case dia (R) <2ει + η < Zει < dia (S) — ε.
But from the choice of δ, dia (R) > dia (S) - ε so U Π C = 0 . Because
A pierces S the endpoints of A' lie in different components of Σ — S.
Lemma 4.1 shows that the endpoints of A' also lie in different compo-
nents of Σ — R.

Suppose no Bd (F^ separates the endpoints of A' on Bd (C). From
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[7, Th. 7.3] there is a homeomorphism of Σ onto itself which is the
identity on L — A! and pulls R entirely off C. But this contradicts
the fact that R separates the endpoints of A!. Suppose Bd (Ft) and
Bd (Fj) (i Φ j) both separate the endpoints of A' on Bd(C). Both Bd (Fi)
and Bd (Fj) link L, and both Fi and F5 fail to intersect L — Int (A')
so they both intersect Int (A'). Thus there are distinct components
H and K of R Π C and there is a subarc B of A' with endpoints re H
and s e K so that Int (I?) fails to intersect R. The conditions on 3
show that B £ ^4" £ JV(-£, p, ε3). Furthermore

io(a?, flr(aj)) ̂  <? + ε2 ^ 2e2(x e N(Σ, p, ε3))

so #(A") £ JV^, p, 5ε2) £ Int (C). Now H separates C into components
U and F. Suppose K Q U. Because g switches the 3-cells bounded
by i?, g(B — R) £ V. But this is nonsense for g(s) — s. From the
contradiction we conclude that exactly one Bd (F;) separates the end-
points of A! on Bd(C).

The following lemma is essentially Theorem 6.1 of [11]. It is
obtained by changing Ez to Σ, the disk D to a 2-sphere S, introducing
a triangulation of Σ, and making a few small adjustments in the proof
of the theorem—one of them is pushing the triangulation of Σ keeping
S fixed rather than the other way around.

LEMMA 4.4. Suppose S is a 2-sphere in Σ and ε > 0.
There is a triangulation T of Σ with ί-skeleton Tι and mesh less

than ε, there is a tame Sierpinski curve X on S, and there is an
ε-homeomorphism g of S onto a tame sphere S' so that

(1) each component of S — X has diameter less than ε,
(2) g is the identity on X,
(3) S misses To and S Π Tλ is a finite collection of points in

J(X, S) (the inaccessible points of X in S) where 1-simplexes of T
pierce S,

( 4 ) g(S) is a polyhedron in T which is in general position with
respect to T2, and

(5) g(S) n τ2 - x n τ2 = i(x, s) n τ2.

Following [11] we say, for a 2-sphere S in Σ, a tame Sierpinski
curve X in Sy and a triangulation T of Σ with ί-skeleton Ti and mesh
less than ε, (S, X, T2, ε) has Property Q provided there is an ε-homeo-
morphism g of S onto a tame sphere S' so that the five conditions are
satisfied in the conclusion of Lemma 4.4.

Bing [7] defines a stable graph as a finite, planar graph such that
each homeomorphism between two embeddings of it into 2-spheres can
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be extended to a homeomorphism between the 2-spheres. The following
lemma about stable graphs is similar to Theorem 3.2 of [7].

LEMMA 4.5. Suppose f e ^(S) and ε > 0.
There is a stable graph G = U Bd (A) where Dlf , Dm are ε-

disks filling up S and having mutually exclusive interiors, and there
is a 3 > 0 such that if g e J^iR) with d(f g) < δ, then there is an
e-homeomorphism π of G into R.

Proof. From Lemma 4.4 and [7, §9] it follows as in [12, Lemmas
6.2 and 6.3] that there is a triangulation T of Σ with ί-skeleton Ti9

a tame Sierpinski curve X on S, and an εx > 0 so that (S, X, T2, εx)
has Property Q, and if G' denotes the graph which consists of the
sum of the components of X Π T2 containing points of 2\, then Gf

contains a stable subgraph G = \J Bd (A) where Dlf , Dm are ε/3-disks
filling up S and having mutually exclusive interiors. Let tlf •••,£,-,
denote the arcs which are the closures of the components of G — Z\,
and let p19 , pk, denote the points of G Π TΊ

Let ε2 > 0 be so small that each dia (N(Σ, Dif ε2)) < ε/3. Because
the accessible points of X fail to intersect T2 there is a homeomorphism
λ of G x [-1,1] into T2 so that (1) for each simplex s of T,

λ((Int (s) n G) x [ - 1 , 1]) £ Int (s) ,

(2) λ((G n Γ 1 ) x [ - l , l ] ) n G = G n Γ l f (3) for each A ,

λ(Bd (A) x [-1,1]) S N(Σ, D<,e%) ,

and (4) G_! = λ(G x — 1) and G1 = \(G x 1) lie in different components
of Σ — S. One obtains G_x, G^ satisfying (4) in much the same way
that one finds the piercing arcs in [8, §4]. For each pk set Ak =
X(pk x [-1,1]).

Choose ε3 > 0 so that ε3 < ε2, N(Σ, S, ε3) n (G^ U Gx) = 0 , the sets
iV^, Pfc, ε3) are mutually exclusive, and each N(Σ, pk, ε3) fl Tγ £ Int (Afc).
Choose ε4 < ε3/2 so that it corresponds to η in Lemma 4.3 for / and
ε3/2. For each pk let Ck be a 3-cell of diameter less than ε4 whose
interior contains pk, which is polyhedral in T and in general position
with respect to Γ2, and whose intersection with each simplex s of Γ
is either empty or a cell of the dimension of s. For each Ck let Ak

denote the subarc Ck Π Tλ of Ak. Finally choose δ so that it is subject
to the conditions on d in Lemma 4.1 for / and ε3 and subject to the
conditions on δ in Lemma 4.3 for each substitution (/—•/, Ak —> A,
Ck-+ C, ε3/2 — ε).

Let geJ^iR) with d(f,g) <δ. Use [5, Th. 7] and Theorem 3.1
to find a polyhedral 2-sphere R' in T which is in general position with
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respect to T2 and each Ck so that there is a δ-homeomorphism φ of R
onto R and an involution gf e ^(R!) with d(f, gr) < δ.

From the conditions on δ, ε2, and ε3 we find that (1) (?_! and Gλ

lie in different components of Σ - R', (2) each Ak n R' S Int (A'k), (3)
there is a component Z7 of ϋ?' — U Ck such that each component of
R! — U is an ε3/2-disk — denote these disks by F ^ so that Bd (Fkj) S
Bd (CΛ)—and (4) for each k exactly one Bd(Fkj), say Bd(Fkl), separates
the endpoints of Ak on Bd (Ck).

Following Step 2 in §4 of [7] we define a homeomorphism h of Σ
which is the identity on Cl (17) U (T, - \J Ck) U (Σ - U N(Σ, pkJ ε3)) so
that each fe(FΛi) (i > 1) fails to intersect Tγ and each fe(Int (Fkl)) S
Int (CΛ). We can suppose that h(Rr) is in general position with respect
to T2 and that each h(Fkι) Π 2\ is the single point pk. Because h(R')
separates G_x from d there must be an arc ί$ in each disk X(td x [ — 1,1])
which spans Bd (X(t3 x [ — 1, 1])) and has

Bd (tj) = h(R') Π Bd (λ(ίy x [ - 1 , 1]))

for its endpoints. Define a homeomorphism π' of G into Λ(iϊ') so that
each π'(pk) = pk and each π'(tά) — ίj .

Define the homeomorphism π by π = φ~ιh~ιπf. Each of π', Λ"1, and
ζ "̂1 is an ε/3-homeomorphism so TΓ is an ε-homeomorphism of G into R.

THEOREM 4.6. Suppose f e ^~(S) and ε > 0.
There is a § > 0 such that if ge J^iR) with d(f, g) < δ then

there is an ε-homeomorphism of S onto R.

Proof. We suppose dia (S) > 5ε. Let 3εx < ε/2 correspond to δ
in Lemma 4.2 for / and ε/2. Choose δ from Lemma 4.5 for / and ε1#

Let g e ^{R) with d(f, g) < δ. From Lemma 4.5 there are ε^disks
Dly -- ,Dm which fill up S and have mutually exclusive interiors so
that G = U Bd (A) is a stable graph, and there is an εi-homeomorphism
π of G into R. Since G is stable we can extend TΓ to a homeomorphism
of S onto R which we also call π. Each 7r(Bd(Z)i)) has diameter less
than 3εx so by the choice of εx it bounds an ε/2-disk Ft in R. Suppose
for some Di9 ττ(A) ^ F* Then τr(G) S ^ But dia (G) > 3ε and π \ G
is an εi-homeomorphism so dia (π(G)) > ε > dia (F*). Thus each π{D^ —
Fi and 7Γ is a 3εx + ε/2 < ε-homeomorphism of S onto R.

5* Small deformations of cells Λvhose boundaries approximate
a given sphere* We omit a proof of Lemma 5.1. The proof is straight
forward but involves a tedious pasting together of small isotopies.

LEMMA 5.1. Suppose M is a 3-manifold, F is a compact surface,
f is a homeomorphism of F into M, and ε > 0.
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There is a δ > 0 such that if g is a homeomorphism of F x [0,1]
onto a solid P in M where p(f(x), g(x, t)) < δ (xeF, te [0,1]), and if
h is a δ-homeomorphism of P onto itself which is the identity on
Bd(P), then there is an ε-isotopy Ht(0 ^ t rg 1) of P onto itself such
that Ho = I,Ht\ Bd (P) = I, and HJi = I.

The following theorem is the key to establishing the connectivity-
properties of

THEOREM 5.2. Suppose S is a 2-sphere in Σ and ε > 0.
There is a δ > 0 such that if C is a 3-cell in Σ whose boundary

R is homeomorphically within δ of S, and if h is a δ-homeomorphism
of C onto itself which is the identity on R, then there is an e-isotopy
Ht(0 £t^l) of C onto itself such that Ho = I, Ht\R = I, and Ή.γh = I.

Proof. If S were tame the problem would be relatively easy.
With the help of Theorem 1.1 and Lemma 0 of [15] we could construct
the isotopy essentially as the Alexander isotopy is constructed in [1].
However, in order to deal with 2-spheres which are possibly wild we
have to reach our goal by a devious route.

It is easily seen that an equivalent theorem is obtained if in the
hypothesis Σ is replaced by E*. It is this equivalent version which
we prove. Except for item (5) we suggest that on first reading one
skip the epsilonics which follow in the next paragraph and concentrate
on the geometry in the proof.

Consider then a 2-sphere S in Es and a number ε > 0. We suppose
for convenience that dia (S) > lOε. Let / be a homeomorphism of a
polyhedral 2-sphere K onto S. We obtain in succession seven positive
numbers—ely •••, ε6, and δ.

(1) Conditions on ex: Substitute (E3->M, K-+F, f ~> /, ε/4 -> ε)
in Lemma 5.1 to get sx > 0 corresponding to δ there.

(2) Conditions on ε2: Substitute (E3-+M, K-*K, f -+ /, eL -> ε)
in Theorem 1.1 to get ε2 > 0 corresponding to δ there.

(3 ) Conditions on ε3: Choose ε3 > 0 so that ε3 < ε2/8 and ε^OO.
(4) Conditions on ε4: Choose ε4 > 0 so that every 3ε4-subset of

S is contained in a disk on S of diameter less than es/3.
( 5) A special polyhedral neighborhood M of 5: Use [16] to find

a pwl homeomorphism g of K x [0, 1] onto a polyhedron P in Ez

with boundary components So = g(K x 0) and Sx = g(K x 1) so that
P(g(y> e), f{y)) < ε4 (y e K, e = 0,1) and to find mutually exclusive, poly-
hedral cubes-with-handles Gl9 , Gm1 Kl9 , Kn so that each dia(GJ <
ε4, each dia (iQ < ε4, each Gι Π P is a polyhedral disk on Si, and each
Ki Π P is a polyhedral disk on So and so that Λf = P U (U G<) U (U κd
contains a neighborhood of S in E\ We suppose that SQ £ Int (SJ.
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Let F denote the component of Bd (M) which intersects So, and let
Q denote the polyhedral 3-manifold which F bounds in Int (S).

( 6 ) Conditions on ε5: Choose ε5 less than one fourth the distance
from Q to S and so small that any 2-sphere in E3 which is homeomor-
phically within ε5 of S contains N(E\ Q, 4ε5) in its interior. Theorem
VI 10 of [14] guarantees that the second condition can be met.

( 7 ) Conditions on ε6: Substitute (E3 -+M,Q-~+K,I (Identity) —>
/, ε5—>ε) in Theorem 1.1 to get ε6 corresponding to 8 there.

(8) Conditions on δ: Choose δ < ε6/2.

Now let C, R, and h be given as in the hypothesis of the theorem.
We construct in succession isotopies Hί(0 S t <L 1) (ί = 1, , 4) of C
onto itself such that each Hi — I.

Use [6, 18] together with [15, Lemma 0] to obtain a δ-isotopy HI
which is the identity on Bd (C) so that Hίh is locally pwl on Int (C).
Now Hih I Q is an ε6-homeomorphism so from items (6) and (7) there
is a pwl ε5-isotopy Ht

2 of C which is the identity on Bd (C) such that
HϊHϊh \Q = I.

In each Kζ there are mutually exclusive, polyhedral ε4-disks Di3

spanning Bd(JQ such that the closure of K{ minus thin, disjoint
regular neighborhoods of the A / s is a 3-cell. We can suppose that
the A / s fail to intersect So. Use [5, Th. 7] and the fact that R is
collared in C to find a δ-homeomorphism θ of S onto a polyhedral
2-sphere Rf in Int (C) Π Int (M) which is in general position with respect
to U Di3 . Each component of ^ ( ( U Di3) Π 12') has diameter less than
ε4 + 28 < 3ε4 and so by (4) bounds an ε3/3-disk on S; thus each component
of (U Di3 ) Π R' bounds a disk on Rf of diameter less than ε3/3 + 28 < ε3.
By cutting away some closures of components of (Dί:j — 12')'s, replacing
them by closures of components of {R' — \J Did), and then pushing
these modified disks slightly into Int (Rf) we obtain a new collection
of mutually exclusive, polyhedral 3ε3-disks {Ei3-} in M Π Int (C) which
span F and have the same boundaries as the Di3's. Choose mutually
exclusive regular neighborhoods JV^ of the JEi/s in M Π Int(C) so that
each Ni3 has diameter less than 3ε3 and intersects Bd (M) in a regular
neighborhood of Bd (Ei3) missing So. Then in each Ni3 choose a smallar
regular neighborhood N'i3 of Ei3 so that N-3- Π Bd (Ni3) is a regular
neighborhood of Bd (Ei3) in Int (Ni3- Π Bd (M)).

Now HlHth is a 8 + 8 + ε5 < ε3-homeomorphism so each HlHlh(N'i3)
has diameter less than 5ε3. Pushing each HlH^h(N-3) Π Int (M) slightly
so it is in general position with respect to (J Ni3 and then using [7,
§ 7] (see also [12, Lemma 2.9]) we define a 65ε3-isotopy Jϊ^O ^ t g 1)
of C so that H! I Q U Bd (C) - / and H*HlHϊh | Q U (U Ntf - /.

Consider the 3-manifold T = Cl (C - (Q U (U ^ i ) ) ) Its boundary
components are the 2-spheres R = Bd (C) and 12" which is obtained
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from F by cutting out annuli and replacing them by pairs of disks.
More specifically, for each Ki9 \J3 (N%'3 Π F) is replaced by

Cl ((U Bd (N;S)) - F) .

Each dia (K{ (J (U/ Wi)) < ^ + 2(3ε3) < 7ε3. Define a homeomorphism
/0 of K onto i?" such that fo(y) = g(y, 0)(y £ gι{\J K{)) and for each
Ki9 Mg-'iKi n So)) S Ki U (Ui Wi). We have d(f, f0) < ε4 + 7ε3 < 8ε3 < ε2.
Let f be a homeomorphism of K onto jβ such that d(f, f) < £.

From (2) and the fact that R is collared in C there is a homeo-
morphism ψ of K x [0,1] onto T such that 0(#, β) = fe{y){y e K, e = 0,1)
and ^(^(y, ί), /(?/)) < ε, (7/ e K, t e [0, 1]). Furthermore by (3) H*H*H}h
is an εΓhomeomorphism. Thus by (1) there is an ε/4-isotopy Hί(0 ^
t ^ 1) of C such that H}\C - Int (T) = I and HtHlHlHIK = I.

The promised isotopy Ht is given bγ HQ = I and

< ̂  i/4, i = 1, , 4) .

Each iίt* is an ε/4-isotopy so Ht is an ε-isotopy.

6. Path wise and local pathwise connectivity of J^l

THEOREM 6.1. The space Jf is pathwise and locally pathwise
connected.

Proof. The proof is divided into four parts.
( 1 ) The subspace S7 is locally pathwise connected at each point

of J?C That is, if / e ^ and ε > 0, there is a δ > 0 such that if
g0, gλ e N(^~, /, δ) Π V, then there is a path ht(0 ^ t ^ 1) in N(^~', f, e) Γ)
& with endpoints hQ = g0 and hγ = gγ.

Proof of (1). Let εL correspond to δ in Lemma 2.3 for / and ε.
Let ε2 correspond to δ in Theorem 5.2 for S and εx. Let ε3 < ε2 be a
positive number so small that d(ff2,1) < ε2 for each pair of elements
flf f2e N(J*~, f ε3). Let ε4 correspond to δ in Lemma 2.3 for /, ε3.
Let φ be a homeomorphism of a polyhedral 2-sphere K onto S. Let
ε5 correspond to δ in Theorem 1.1 for the substitution (Σ —>M, K—>K,
φ—*ff s4—>ε). Finally choose δ < ε5 from Theorem 4.6 for / and ε5.

Let g0J g1 e N(^, f δ) Π \<? with g0 e %?(S0) and g, e ^(S,). From

the conditions on δ and ε5 there are homeomorphisms φ0, φ1 of ίΓ onto
SQ, St so that d(^, φe) < εδ (e = 0, 1) and there is an ε4-isotopy Hiφ ^
t £ 1) of ^ such that iϊo1 = / and Hiφ0 = φ,. Define ht(0 ^ ί ^ 1/2)
by ht = H^tgQ{H^t)~\ From Lemmas 2.2 and 2.3, /̂ (O ^ ί ^ 1/2) Q
N(^~, f ε3) n 2^ and hφe ^(SJ. The conditions on ε3 show that
d(hll2gτ\ I) < ε2.

Let Si bound 3-cells C and D in Σ. From Theorem 5.2 there is
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an ^-isotopy Hlφ ^ t ^ 1) of Σ onto itself such that H0

2 = I,Ht

2\D = /,
and Hi \ C = gA^ Define ht(l/2 ^ t ^ 1) by ffLMffi-i)"1. Lemmas
2.1 and 2.3 show that ^(1/2 ^ ί ^ 1) S iV(j^, /, ε) Π ̂ (S,) and ^ =
gx. Thus Λβ(0 ^ t ^ 1) C N(J^, /, e) Π 5f with &0 - #0 and ^ - &.

(2 ) If f ej?~ and ε > 0 ίfeere is α pα£& λt(0 ^ ί ^ 1) in N(^~, f, ε)
such that hx — f and ht e & (t < 1).

Proof of (2). From (1) there is for each j ^ 1 a δ3- such that any
two points in N(^~, f δό) Π 9 can be joined by a path in N{^, /, ε/i) π
^ . We suppose that 8X > δ2 > > δw > . Use Corollary 3.1 to
find for each j an element fs e N(^~, f dj) Π 5 .̂ For each j there is
a path A,(l - 1/j ^ ί ^ 1 - I/O' + 1)) in N(^~, /, ε/i) n ^ such that
h-ud = Λ and &!_!/(,•+!) = /y+1. Because lim/y = / we can set /̂  = /
to get the promised path.

(3) The space ^ is locally pathwise connected.
Proof of (3). Let / e J^~ and ε > 0. Choose δ from (1) for /

and ε.
Let /0, /x 6 NiJ^, f δ). From (2) there are paths ht(0 ^ t ^ 1/4)

and Λt(3/4 ^ ί ^ 1) in NiJ^", /, δ) such that /&0 — /0, ^ = /15 and Λ,1/4,
h3li e ^. Then (1) enables us to define ht(l/A ^ t ^ 3/4) in N(J^, f ε)
so it connects up hUi and Λ3/4.

(4) Tfce space J?~ is pathwise connected.
Proof of (4). In view of (2) it is sufficient to show that & is

pathwise connected.
Let f,ge& with / e gf(S) and ge %?(R). Let T be a tame 2-

sphere in 21 disjoint from both S and R so that Γ bounds a 3-cell JS
containing both S and i?. The pairs (T, S) and (T, R) both bound
annuli and S, iϋ bound 3-cells C, i) in Int (B). Thus there is a homeo-
morphism h oϊ B onto itself which is the identity on Bd (B) and takes
C onto D. From [1] there is an isotopy Ht(0 <^ t <^1) of Σ which is
the identity on Σ - Int (B) so that Ho

λ = I and H}\B = h. From
Lemma 2.2, ht(0 ^ t ^ 1/2) given by ht = H^fiH^)-1 is a path in gf
with K — f and Λ1/2e ^(22).

Use [1] to define an isotopy Ht

2(0 <^ t <Ξ, 1) of Σ onto itself such
that H0

2 = I,H?\Σ-D = I, and H?\D = gh1/2. Define ^(1/2 £ t£ 1)
by /̂ ί = H^hφiHlt^1. As in the proof of (1) /̂  is a path in gf
with hx = g.

The following corollary shows that pseudo isotopies like the one
Bing uses in [3] can be used to obtain all elements of ^ — & from Sf.

COROLLARY 6.1. For each pair of involutions f e ^~, g e
α pseudo isotopy Ht(0 t^t<^ΐ) of Σ such that Ho — I and f =

Proof. Let / e ^~ and g e & be given. From (2) there is an
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element gze& and there is a path ht{l/2 <; t ^ 1) in J^ such that
1̂/2 = #2 and Ai = /. From the proof of (2) we can assume that /^(l/2 <̂

ί g l ) is made up of pieces ht(l - 1/j ^ t ^ 1 - I/O* + 1))) (i = 2, 3, • )
where ht(l - 1/j ^ t ^ 1 - l/(i + 1)) S iSΓ(^r, /, 1/j) Γ) 5?. From the
proof of (1) each piece of ht can be chosen to have the form

H>K-us(Ht)-\l -1/j^t^l- l/(j + 1))

where H/( l - 1/j ^ t ^ 1 - l / ( i + 1)) is a 1/j-isotopy of Σ with iJ/L^ =

I. Define a pseudo isotopy Hl(l/2 ^ t ^ l ) o ί Σ b y the rule i2?/2 = /,

H} = HiHUl5(l - 1 / j ^ t ^ l - I/O* + 1), j = 2, 3, . . ) , and

ίί,1 =lim£Γ ί

1(ί->l) .

Note that Hlhφ(Hi)"1 = lim ht(t -> 1) = / .
By a similar argument we obtain from the proofs of (4) and (1)

an isotopy Hίφ g t ^ 1/2) of 21 such that H$ = 7 and #2 = H1°iig(H1%)-'1.
Define the pseudo isotopy Ht by the rule Ht = Jϊ^O ^ ί ^ 1/2) and
ίί, - H}Hιl%(l/2 ^ ί g l ) . For 1/2 ^ ί < 1 we have
HlHιl2g{HlHll2)^ = H^H})-1 = λ,; thus / =

Both Bob Daverman and the referee suggested the following alter-
native way to obtain JET/: Let S bound crumpled cubes C and Z>.
Split open Σ along S and add S x [ — 1,1] so that Σ is represented as
the sum C U S x [ - 1 , 1] U D. Define g2 = f on C and I?, and set
#2((£, <)) = (χ9 -t) for (a?, t)eS x [-1,1]. A result of Price's [20]
provides a pseudo isotopy Hϊ{l/2 ^t ^1) oί Σ which shrinks the fibers
of S x [ — 1, 1] back to points and transforms g2 to / by the conjugation
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