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Let L be a finite dimensional, symmetric algebra with 1
over the quotient field K of an infinite domain R. When L
is quaternion algebra and R is a Prϋfer ring, it is known
that an i?-module contained in L is invertible if and only if
it satisfies a certain relation between it, its dual and its
discriminant [7], We call a symmetric algebra L with this
property a Brandt algebra.

We prove: (i) If R is a Priifer ring, then L is a Brandt
algebra if it is 3-dimensional or if it contains only invertible
modules, (ii) If R is a valuation ring and L is a Brandt
algebra, then any module or its dual is invertible. (iii) If
R Φ K, then L is not a Brandt algebra if it is generated
over K by a single non-cubic element or if it is a matrix
algebra over a symmetric algebra Li with (Lx: K) > 1.

In the late 1920's, a composition of quaternary quadratic forms
with rational coefficients, initially formulated by Brandt [2], was re-
formulated in terms of the multiplication of modules in quaternion
algebras. This reformulation was motivated by, and analogous to,
Dedekind's theory for the composition of binary quadratic forms. In
the binary case, all the modules involved are automatically invertible.
For quaternary algebras, this is not so. Brandt dealt with this pro-
blem by restricting consideration to forms having the same discriminant
and by imposing certain primitivity conditions.

Kaplansky [7], has generalized Brandt's theory to quaternary,
quadratic forms over arbitrary Bezout domains (finitely generated ideals
are principal). Through the use of the bilinear form on quaternion
algebras, he translated Brandt's restriction on forms into a relation
between a module in the algebra, its dual and its discriminant, to
which we referred above. We call this relation the Brandt Condition,
a module which satisfies it a Brandt module and an algebra in which
a module is invertible if and only if it is a Brandt module, a Brandt
algebra.

The purpose of this paper is to begin a classification of all Brandt
algebras. In addition to the results quoted above, we partially settle
the question as to when degenerate quaternion algebras are Brandt
algebras, and give an example of a cubic algebra which is not a Brandt
algebra.
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352 HOWARD GORMAN

I. PRELIMINARIES

1* Modules and their duals* The following notation will be
standard throughout this paper. L will be a finite dimensional, as-
sociative algebra with 1 over the quotient field K of an infinite domain
R. (The assumption that R is infinite is not really restrictive since,
if R is finite then R = K and this case is of no interest.) When we
say that L is a symmetric algebra over K, we mean that there is de-
fined on L a (bilinear) form, denoted by / unless otherwise stated;
that is, there is defined on L a bilinear map

f:L x L->K

which is
( i ) symmetric, i.e., f(a, b) = fφ, a) for all a, b e L,
( i i ) nonsingular, i . e . , f(a, b) — 0 f o r a l l beL i m p l i e s t h a t α = 0,
(iii) invariant, i . e . , f(ab, c) — f(a, be) f o r a l l a,b,ce L .
We shall consider only i?-modules which are contained in L, finite-

ly generated over R and which span L as vector spaces over K. When
we speak of a module, we shall automatically mean one of this type.

A module is called a semi-order if it contains 1 and consists en-
tirely of elements integral over R. A module which is a ring and
which contains R is called an order. We remark that, since orders
are finitely generated as iϋ-modules, they are semi-orders as well.

Via the form /, we can identify L with its dual space by the
homomorphism which sends x to f(x, ) for each x in L. Since / is
nonsingular, this map is one to one, and so, onto as well.

Let A be a module. We define the dual of A, written A*, to be
the set of elements x in L such that f(x, A) g R. Then A# is an iϋ-
module. Since A is finitely generated, some ϋί-multiple of any element
in L is in A#, so, A* spans L over K.

If A is a free module with basis aly , an and dual basis bly , bnr

then it is clear that each b{ is in A*. If z is any element of A\ and
if f(z, a,i) = Ti for each i, then the nonsingularity of / implies that
z — ΣίU rΛ> i e > blf * ,bn is a basis for A* over R. This implies
that the dual of a free module is a module in the sense of this paper.
Further, the same argument applied to A* shows that at, , an is a
basis for Am, i.e., A = An.

2* The norm and discriminant of a module* For every xe L,
we define the norm of x, written N(x), to be the determinant of x
in the right regular representation of L. (We could equally well use
the left representation.)

Using the definition of the norm of an element, we define the
norm of a module as follows. Suppose that A is a module with ge-
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nerators aly , am over R. Let Mi be the matrix of a{ with respect
to some fixed basis of L over K. Let x — Σ£=i χ%a% be an arbitrary
element of A with each xteR. Then

/ m \

N(x) = det ^ Σ χMή = flr(a?x, ••-,»«)

where </(#!, , xw) is a homogeneous polynomial of degree m in
χu m iχm* We define N(A), the norm of A, to be the fractional JS-
ideal generated by the coefficients of g.

We claim that N(A) is independent of the generating set chosen.
For, let bly , bs be another generating set for A and let b^ = ΣΓ=i ^vαi
with each ti5 eR. If zeAy then

«=ΣyA = ΣίΣίo

with each ^ e R. Now, substituting Σ*=i UsVi f ° r ŷ i n S"» f ° r e a c h i>
we get N(z) on the one hand and a homogeneous polynomial ^Oh, , y9)
on the other. Since R is infinite, polynomials which are everywhere
equal are identical, so g1 is the norm polynomial of A with respect to
the generators blf •••, bs. But the coefficients of g1 are iϋ-linear com-
binations of the coefficients of g, so the iϋ-ideal they generate is con-
tained in N(A). Equality follows by symmetry.

Suppose that A is a free module with basis a19 ---,an over R.
We define the discriminant of A, written A{A), to be the determinant
of the matrix (f(aiy α̂  )). It is easy to check that Δ(A) is unique up
to a square of a unit of R. If bιt , bn is a dual basis to αL, , αw,
it is not difficult to check that the matrix (f(biy bj)) is the inverse of
the matrix (f(aif a,)), so that J(A*) = {A(A)γ\

3. The Brandt Condition* We are now in a position to define
the Brandt Condition for a free module. We say that the free module
A satisfies the Brandt Condition if and only if

At this point, a little care must be taken. There are, in general,
many forms on L. If the Brandt Condition were dependent upon the
form, a complex situation would arise concerning the definition of
Brandt modules and the statement of theorems. The following two
lemmas show that the Brandt Condition is independent of the form
chosen. The first lemma was proved for algebras with identity by
Nakayama [8], and was extended to the infinite dimensional case by
Jans [6], again for algebras with 1.

LEMMA 1. Let F be any field and B a finite dimensional, as-



354 HOWARD GORMAN

sociative algebra over F. Let f be a symmetric non-singular, invari-
ant, bilinear form on B. Let g be any symmetric, invariant bilinear
form on B. Then, there exists θ in the centroid of B such that
f(θa, b) = g(a, b) for all a,beB. If B contains an identity, θ is in
the center of B.

Proof. We identify B with its dual space via / as has been already
outlined.

Choose any aeB. Then g(a, ) is a linear functional on B and so,
there is zaeB such that g(a, ) — f(za, ). Define the map Θ:B-+B by
θ:a-+za. We claim that θ is in the centroid of B. It is clearly linear,
so we need only show that it commutes with the right and left mul-
tiplications of B. We give the details for the left multiplications.
Let a, xeB. To show that θ(ax) = aθ(x), it is enough to show that
f(θ(ax) — aθ(x), y) = 0 for every y e B. Now

f(θ(ax), y) = g(ax, y) = g(a, xy) .

Using the invariance and symmetry of / and g, we find that

f(aθ(x), y) = f(ya, θ{x)) = g(a, xy) .

Hence θ is in the centroid.
If leBy then g(l, ) = f(z, ) for z = 0(1). Then, for any a,beB,

we have that

g(a, b) = g(l, ab) = f(z, ab) = f(za, b) .

Since θ is in the centroid, z is in the center and the proof is
complete.

Since, in the above lemma, B is finite dimensional, θ will be a
unit of the centroid if and only if g, as well as /, is nonsingular. For
θ is a nonunit if and only if it annihilates a nonzero x in B. But
this means that g(x, ) is identically zero, i.e., g is singular. That θ"1

is in the centroid follows without difficulty. Therefore, if g( , ) =
f(θ( ), ), we have that /( , ) = gβ-\ ), ). This makes the following
definition symmetrical.

If B is a finite dimensional algebra over a field F, and g and h
are nonsingular bilinear forms on B, we say that g and h are equiva-
lent if there is θ in the centroid of B such that g( , ) == h(θ( ), ).

LEMMA 2. Let L be symmetric under equivalent forms f and g.
Let A be a module. Then A satisfies the Brandt Condition with re-
spect to f if and only if it satisfies the Brandt Condition with re-
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sped to g.

Proof, Write Δf(A) and A*/ for the discriminant and dual with re-
spect to / and do similarly with respect to g. Suppose that f(za, b) =
g(a, b) for all α, beL. Then, Ag_{A) = N(z)J£(A).

Choose t6 L. Then g(t, A)aR if and only if f(zt, A) c R. Since
z is a unit of L, this implies that A\ = z~~ιA). So,

This shows that

Since N(A) is independent of / and g, we have the result.

4* Invertibility of modules* We refer the reader to [4] for
full details of the following discussion.

Let A be a module. Then the elements xe L such that xASA,
and the elements yeL such that AyQA each form a ring containing
R. Further, since A is finitely generated and spans L over K, these
rings span L over K as well. We call these rings the left and right
orders of A, respectively, and write A — PAQ to indicate that P is the
left order of A and that Q is the right order of A. When R is a
Prϋfer ring (nonzero, finitely generated ideals invertible), P and Q are
finitely generated and so are orders in the sense of this paper.

We call the set of x in L such that AxA^A the inverse of A,
written A~\ Again, A"1 spans L over K and will be finitely generat-
ed when R is a Prϋfer ring, so that A~ι is a module in this case.

We say that A is left (right) invertible if and only if A~ιA —
Q{AA~X = P) and invertible if it is both left and right invertible.

5* Brandt modules and localization. When R is a Prϋfer ring,
modules are projective since they are both finitely generated and tor-
sion free, and so they are locally free. With this in mind, we define
a module to be a Brandt module, for a general i2, if and only if AM

satisfies the Brandt Condition as an ϋV-module for each maximal ideal
M of R. (The definition only makes sense for modules which are
locally free.) We shall call L a Brandt algebra if a module contain-
ed in it is invertible if and only if it is a Brandt module.

If A is a free module, we can apply the Brandt Condition to it
directly, and it is worth checking that, in this case, A satisfies the
Brandt Condition if and only if it does so locally.

Let alf , an be a basis for A over R and let M be a maximal
ideal of R. Then a19 , an is a basis for AM as an J?i¥-module, so
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A{A) = A(AM).

Further, (A*)M = {AM)K For, from f(A\ A) S R, we get immedia-
tely that {A*)M S (AMy. Conversely, let x e (AM)* and suppose that
f(x, di) = rjsi for each i with r4 and st in iϋ. Setting s = Σ?=i sί> w e

see that s# e A*; so # G (A*)̂ , and we have equality.
Finally, for any module B, the norm polynomial for BM is the

same as that for B (use the same basis for BM as for B) except that
the domain has been enlarged to RM. So, N(BM) — N{B)M.

Then, the above facts, together with the fact that ideals are equal
if and only if they are equal locally, give the result.

Standard arguments show that the concept of invertibility localizes,
i.e., A is invertible as an ϋJ-module if and only if AM is invertible as
an iϊ^-module for each maximal ideal M of R.

The above discussion implies that we need only deal with the local
situation in determining the connection between invertibility and the
Brandt Condition. In this direction, we note that R is a Prufer ring
if and only if RM is a valuation ring for each maximal ideal M of R.

6* Extending the base ring* Suppose that R is a valuation ring
with maximal ideal M. Then the order of the residue class field R/M
plays a significant role in the discussion which follows. We wish to
show that we can always assume that R/M is infinite. We follow the
technique in [4]

Let R be a valuation ring with maximal ideal M. Define Ro =
R[^]MR[XI where x is an indeterminate which commutes with the ele-
ments of L. Then Ro is the ring of rational functions h(x)/g(x) where
h(x) and g(x) are polynomials with coefficients in R and g(x) has at
least one coefficient a unit of R. Then Ro is also a valuation ring
(any rational function or its reciprocal is in RQ) and has quotient field
K(x). We set Lo — LK(x) and, for any module A, we let Ao = AR0.
Then (Lo: K(x)) = (L: K) and Ao is a finitely generated i?0-module which
spans I/o over K(x). Further R0/MR0 is infinite. We extend the form
/ to Lo in the obvious way, allowing it to commute with the action
of x. We have the following

LEMMA 3. Let R be a valuation ring. Let A be an R-module
and let AQ = AR0. Then A is a Brandt module if and only if Ao is
a Brandt module.

Proof. Let al9 , an be a basis of A over R. Then it is also a
basis for AQ over Ro. Taking discriminants with respect to this basis,
we see that A(A) — A(A0).

We claim that (Ao)* = (A*)Q. For, let b = Σ*L0 hx* be an arbitrary
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element of (A%. (So, each b{ is in AK) Then f(b, A)^RQ, and so,

from the bilinearity of /, /(&, Ao) QRo, i.e., (A*)0S(A0)*. If

c = Σ W e (AoyΣ
t = l

then /(c, A) S JSo> which implies by the transcendency of x, that the

coefficients of c are in A*. Hence, c e (A*)o, and we have equality.
With respect to the basis aly « ,α Λ , the norm polynomial for Ao

is the same as that for A except that the domain has been enlarged
to Ro. So, N(AQ) = N(A)R0. Similarly, N(A*) = N(A*)RQ.

If A is a Brandt module, we have that

( 1 ) N(A*)R0J(A)QN(A)R0,

and the above discussion shows that Ao is also a Brandt module.
Conversely, if Ao is a Brandt module, it satisfies (1) and since x is
transcendental, we get that A is a Brandt module by comparing con-
stant terms in (1). The proof is complete.

We remark that the relevent remarks in the above proof show
also that if B and C are ^-modules, then N(B) = N(C) if and only if
N(BQ) = N(C0).

In [4], we proved that a module A is invertible if and only if Ao

is invertible as an iϋ0-module. This fact and Lemma 3 allow us to
assume, when discussing invertibility, that when R is a valuation ring
with maximal ideal M> then R/M is infinite. We do so. This implies,
again by [4], that when R is a valuation ring, any module A contains
an element of minimal norm (i.e., there is an xeA such that for all
ye A, N(x) divides N(y)) and that B — x~~ιA is a semi-order. (That
an element of minimal norm is invertible is also shown in [4].)

We shall need the following lemma.

LEMMA 4. Let R be a Prufer ring and let A be a semίorder.
Then N(A) = R.

Proof. The hypotheses localize, so we may assume that R is a
valuation ring. Let Ro be the extension of R previously described and
let Ao = AR0. Let N^A) be the i2-ideal generated by the norms of
the elements of A and let JVΊ(A0) be the i?0~ideal generated by the
norms of elements of AQ. Since A is a semi-order N^A) = R.

Let z = h(x)/g(x) be any element of Ao with h{x) — ΣΓ=o 0,%^ with
di^A for each i. Then, a moments reflection shows that the constant
term of N(z) is N(ao)/gn (where n = (L: K)), i.e., the constant terms
of norms of elements of Ao are just norms of elements of A times a unit



358 HOWARD GORMAN

of RQ. Further, NX(A) §Ξ N^AQ) since A £ Ao. This means that
JVΊ(Λ) Π ϊ = ΛΓi(A) = iί. In general, we have that N(A) - #(4,) Π K.
But in [4], we showed that the infinity of the residue class field of Ro

implies that N(A0) = NL(AQ). So, N(A) = i? and we are done.
We remark in passing, that, for any j?-module A, N^A) CJV(A).

This follows once we observe that the norms of elements of A are
linear combinations of the coefficients of the norm polynomial.

We use the extension of the base ring to extract one more fact.
Let A be a module and let ueL. We claim that N(uA) = N(u)N(A).
Extend the base ring. Then we have, in general, that

( 2 ) N^uAo) = NMN^Ao)

But now N and NL are the same on modules. So, by replacing iVx

with N in (2) and intersecting with K, we get the result.

II. THE BRANDT CONDITION AND INVERTIBILITY

7* Invertible modules which are Brandt* We say that a mod-
ule A — PAQ is left (right) principal if there is xe A such that A =
Px(-θoQ). We remark that since A spans L over K, x is a unit of L.
Hence A = x(x~ιPx). It is easy to check that x~ιPx — Q, so that left
principal implies right principal. It is clear that principal modules
are invertible.

We are going to prove that when R is a Priifer ring, modules
which are locally principal are Brandt. (Such modules are, of course,
invertible.) This result is not as special as it may seem, for, there
are many algebras which have the property that modules are inver-
tible if and only if they are locally principal. When R is a Priifer
ring, algebras with an involution (see [7]) and algebras which are
commutative module their radical (see [4]) have this property. Further,
when R is a Dedekind ring and L is either central simple or separa-
ble, ideals of maximal orders are locally principal, (see [1] and [3]
respectively.) With these facts in mind, we begin the development.

We form pairs [A, a], where A is a free module and aeK — {0}.
We define the discriminant of the pair [A, a] to be A(A)ja2 and its
norm to be N(A)/a. We say that the pair is primitive if N(A) = aR.
The theorem will be an easy consequence of the following lemma mo-
dified from Theorem 9 of [5].

LEMMA 5. Let R be a valuation ring. Let A, B and C be mo-
dules with A principal, and suppose that BC^A. Let the pairs
[B, &], [C, c] and [A, be], with b and c nonzero, have the same dis-
criminant and suppose that [A, be] is primitive. Then A is a Brandt
module.
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Proof. From f{BC, A*) <Ξ R, it follows by invariance that

f(B, CA*)SR. Hence, CA*QB* and so, for any teA\ CtQB*. This

gives that Δ(Ct)RQΔ(B*)R which implies that

(3)

Since N(A*) is principal (R is a valuation ring), (3) implies that

( 4 ) N(A*)2A{C) S J(B*)Λ =

Since Δ(B)/b2 = J(C)/c2 - J(A)/5V, we get that z/(J3) = Δ(A)/c2 and
zf(C) = z/(A)/62. Substituting these equalities in (4) and taking square
roots gives that

N(A*)Δ(A) S bcR = N(A) ,

i.e., A is a Brandt module and we are done.

We can now deduce

THEOREM 1. Let R be a Prufer ring with quotient field K. Let
L be a finite dimensional, symmetric algebra with 1 over K with the
property that invertible modules are locally principal. Then every
invertible module is a Brandt module.

Proof. Let A = PAQ be an invertible module. We assume that R
is a valuation ring; so, A is principal. Then the theorem follows from
the lemma by setting B = P, C — A, b = 1 and c = N(A).

In [4], we classified those algebras L which contain only inver-
tible modules when R is a Prufer ring. We list them.

LIST A. (1) Kφ trivial algebra (module sum).
(2) 2-dimensional field extensions of K.
(3) KφK (ring sum).
(4) Algebras of generalized 2x2 triangular matrices, i.e., subal-

gebras of mxm matrices the general element of which has the form

0 bL

where a, be K and Ix and I2 are identity matrices.

In each case, these algebras have an involution (and are commu-
tative module their radical); so they will satisfy the hypotheses of
Theorem 1 if they are symmetric algebras. We deal with each one
separately.
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( i ) K® trivial algebra has a nonsingular form if and only if
the trivial algebra is zero.

(ii) If L is either a 2-dimensional field over K or K@K, choose
a basis 1, u for L over K with u2 = ru + s, r,sG if. Define a bilinear
form / on this basis by

/(I, 1) = 0 and / ( I , w) = 1 .

Insist that it be symmetric and extend it to higher powers of u by
invariance and reduction. For example, we define

f(u, u) = / ( I , u2) = /(I, ru + s) = r.

For convenience, we shall refer to this method of extension as exten-
sion by invariance. Since L is commutative, it involves no contra-
dictions, and gives a nonsingular form. (The discriminant of the forjn
is 1.)

(iii) For generalized 2 x 2 triangular matrices, use the reduced
trace T to define the form, i.e., if M is the matrix appearing in (4),
above, then T(M) = a + b. Then, define the form by f(X, Y) = T(XY)
for any matrices X and Y in the algebra. This gives a nonsingular
form as required.

Now, suppose that L is a symmetric algebra from List A. Then,
since all modules contained in L are invertible (R Priifer), certainly
the Brandt modules are. Conversely, L satisfies the hypotheses of
Theorem 1, so invertible modules are Brandt. Hence, every symmetric
algebra in List A is a Brandt algebra.

8* Three dimensional algebras are Brandt* We are going to
show that when R is a Priifer ring and L is a 3-dimensional algebra
with 1 over K, then L is a Brandt algebra.

First, we remark that we may assume that L is spanned over K
by the powers of a nonquadratic element. For, if this is not the case,
then L is quadratic and it follows as a corollary to the work in [5]
that L is one of the algebras in List A. We assume for the remainder
of this section that L is spanned over K by the powers of a non-
quadratic element.

We may now state the theorem.

THEOREM 2. Let R be a Priifer ring with quotient field K. Let
L be a ^-dimensional algebra with 1 over K. Then L is a Brandt
algebra.

Proof. We proceed by a number of steps.
(a) We assume that L = K[u], where u? = an2 + bu + c, with
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a, b, ce R. Further, we assume that R is a valuation ring with in-
finite residue class field.

(b) We define a form / on the basis of L by

/(I, u2) = 1 and /(I , u) = /(I, 1) = 0 ,

and extend / to all of L by invariance. The discriminant of / with
respect to this basis is 1, so / is nonsingular.

(c) Since L is commutative, invertible modules are principal, and
so, by Theorem 1, invertible modules are Brandt. The rest of the
proof will be devoted to proving the converse.

(d) Let A be a Brandt module. We show that we may assume
that A is a semi-order. Let xe A be an element of minimal norm and
let B be the semi-order x~ιA. It is clear that B is invertible if and
only if A is, so we can assume that A is a semi-order to start with if
we can show that B is a Brandt module.

Now A{B) = A{x~ιA) = N(x)-2J(A). We know also that B% = xAK
For, if zeL, then f(z, A)^R if and only if f(z, xB)QR. Using in-
variance and the fact that x is a unit, we get the result. So, N(B*) =
N(x)N(A*). Finally, N(A) = N(xB) = N(x)R. Then, to show that B
is a Brandt module, we need only substitute for A in terms of B in
the Brandt relation for A.

Therefore, we may assume that A is a semi-order, so that the
Brandt Condition on A becomes

N(A*)J(A)S:R.

To show that A is invertible, it is sufficient (and necessary, see
[4]) to show that it is an order. This we do.

(e) If A is a semi-order, it contains R as a pure submodule and
therefore, as a direct summand (see [4]), so we can include 1 in a
free basis of A over R. Let 1, v19 v2 be such a basis. Since A spans
L over K and R is infinite, A contains an infinite number of nonqua-
dratic elements. Then, it is not hard to show that we can assume
that vx and v2 are, themselves, nonquadratic. Hence v2 is a linear com-
bination of 1, ^ and v\. Since L = JBΓ[vJ, we may as well choose u =
vλ. Hence, we may assume that

A = (1, u, e + fu + gu2)/R ,

with β, / and g in K.
(f) Using the form defined on L, we compute that A{A) = g2.
(g) We compute A*. If

( 5) v = x' + y'v, + £V
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is an arbitrary element of A*, then /(I, v) e R implies that

z' = zeR

f(u, v) e R implies that

y' + az' = y e R

and f(e + /& + gu2, v) e R implies that

x'g + V\f + a>g) + s ' ( e + a f + (a2 + % ) = x e R .

Solving these equations for x\ yf and z* in terms of x, y and z, and
substituting in (5), we find that the general element of A* is of the
form

v = flr-1^ - (/ + ag)y - (e + 6βr)̂ ) + (2/

for arbitrary .τ, 2/ and z in i2.
To compute N(A*), we apply v to the basis 1, u and u2, and find

the determinant polynomial of the matrix thus developed. Below, we
list the coefficients which are relevent. g2 times the coefficient of

(6) x' is flr1.

(7) Ϋ is -Γg-1-2af2-a2fg + bfg + cg2 + abg2.

( 8 ) r is - &g~ι — he2 — aceg + c2g2 .

We are assuming that these are in R by the Brandt Condition.
Further, since A is a semi-order, e + fu + #^2 is integral over R.

We find that e + fu + gu2 satisfies the polynomial

w3 — sLw2 + s2w — s 3 = 0

where

Si = α/ + αV + 26^ + 3e,

s2 = h2g2 — 2acg2 — bf2 - abfg - Scfg + 2aef

+ 2a2eg + Abeg + 3β2 ,

s3 = b2eg2 ~~ 2aceg2 — bef2 — abefg — Scefg + ae2f

+ αV<7 + 2be2g + β3 - 3α2c/^2 + αc/2 - bcfg2

+ /3c + c y + Sa2cf2g .

Since e + fu + gu2 is nonquadratic, sx, s2 and s3 are in R.
(h) For A to be an order it is necessary and sufficient that A2 g A.

Now, A2 is generated over R by the basis of A together with

( 9 ) uz, u(e + fu + #π2) and (e + j % + ^2^2)2 .
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The general element of A has the form

(10) r + et + {s + ft)u + gtu2

for arbitrary r, s and t in iu. Then A is an order if elements r, s
and £ in R can be found so that the elements in (9) have the form
of (10).

Reduce the elements in (9) by the minimal polynomial for u and
equate them to (10) each in turn. Use the linear independence of 1, u
and u2 to get a system of 3 equations in each case and solve these
equations for r, s and t. Then we find that

( i ) u2 € A if and only if

t = g~\ s = -fg-1 and r = -eg-1

are in R;

(ii) u{e + fu + gu2) is in A if and only if

t — fg-\ s = e + bg — af — Z2^"1 and r = c# — αe — efg-1

are in iϋ; and

(iii) {e + /u + ^ 2 ) is in A if and only if
t = f2g-1 + g(a2 + b) + 2β + 2α/

8 - c^2 + abg2 + δ/βr - fg-1 - a2fg - 2af2

r = αcgr2 + 2c/gr — efg-1 — beg — 2aef — e2 — a2eg

are in R.
( i ) Now g~ι is in R by the Brandt Condition. Multiply (7) and

(8) each by g~2. Then the resulting expressions are in R and are seen
to be monic polynomials with coefficients in R for fg-1 and eg"1 re-
spectively. Since R is integrally closed in if, we have that fg'1 and
eg"1 are in R.

The second element in (iii) is just (7) and so, is in R.
A direct calculation shows that p = fg*1 + af — bg — e satisfies

the equation

(11) w3 + s,w2 + s2w + s3eR .

The calculation is straightforward, though tedious, with only one point
worthy of special mention. The term fg~* occurs in pz. Write

(12) / 6<r 3 - (Λ-1)2*/-1 .

Set (7) equal to some element q in R and square both sides. We note
that (fg-1)2 occurs as one of the terms after squaring. We must sub-
stitute for {fg"1)2 from this squared expression into (12) when we
expand (11). By the integral closure of R in K, p is in R.
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Since

Γg-1 + g{tf + b) + 2e + 2af = p + sί ,

this term is also in R.
We have now shown that when the elements of (9) are expressed

as Z-linear combinations of 1, u and e + fu + gu2, the coefficients of
u and e + fu + #i&2 are, in each case, in R. This means that the
coefficients of 1 in these expressions together with the basis for A
generate A2. But A2 is again a semi-order since L is commutative,
so that these coefficients of 1, being integral over R and in K, are
in R.

Hence i 2 g i and the proof of the theorem is complete.

The following theorem applies to Brandt algebras and generalizes
a theorem of Faddeev [3] on 3-dimensional algebras.

THEOREM 3. Let R be a valuation ring. Let L be a symmetric,
finite dimensional algebra with 1 over K, the quotient field of R,
with property that Brandt modules are invertible. Then any module
or its dual is invertible.

Proof. Let A be a module. The divisibility property of valuation
rings implies that either A or A* is a Brandt module, and hence, inver-
tible by hypothesis.

9* Degenerate quaternion algebras* We call the algebra L with
basis 1, u, v, uv over K a degenerate quaternion algebra if uv = — vu,
u2 = 0 and v2 = teK. The theory with regard to these algebras is
incomplete; however, the facts which are known are given below
Since we dealt with 3-dimensional algebras in detail, we allow our-
selves a more condensed exposition here.

(1) ch K Φ 2. Then, there are no forms. (Singularity is the
problem.)

(2) ch K — 2. Let A be a semi-order and R a valuation ring.
Then, A can be given a basis so that z — p' + qu + rv + suv is the
only basis element with nonzero constant term. Since 1 e A, pf — p~\
with peR. Since z is integral over R,

( *) z2 = p~2 + r2t e R .

In the case where (*) implies that p~ι e R, in particular, when t = 0,
A can always be given a basis of the form

(**) A — (1, au + bv + cuv, dv + euv, fuv)\R .
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We shall give the salient facts which prove that a Brandt semi-
order A with basis as in (**) is an order. This proves, in particular,
that if t = 0, then L is a Brandt algebra.

The Brandt Condition on A implies that the following expressions
are in R:

( i ) arΨdr'fk; (ii) arWfk;
(iii) adf-1 + a~ιc2df-ιk + arιb*drιέf-ιk.
The fact the basis is integral over R shows that
(iv) b2keR; (v) d2keR.
The condition that A 2 g i requires us to prove that the following

expressions are in R:
(a) bdk; (b) arιk(cd + be); (c) a^bdr^ed + be);
(d) adf-1 + a-ιc2df~γk + arΦdrWf^k;
(e) ar'bfk; (f) a~Ψd~ιfk.
We argue as follows. We note that (d) and (f) are just (iii) and

(i), respectively. The multiplication of (i) and (ii), and of (iv) and (v),
followed by taking square roots in each case, gives that (e) and (a)
are in R. Finally, we get (b) by multiplying (i) and (ii) and noting
that bkeR (from (iv)); similarly, (c) is obtained by multiplying (i) and
(iii) and noting that bkeR. Hence, we are done.

The general case for ch K = 2 has not yielded to solution. How-
ever, we conjecture that, when R is a valuation ring, it also is a
Brandt algebra and, further, that any quadratic, symmetric algebra
is a Brandt algebra.

Theorem 2 might lead to the conjecture that commutative, cubic
algebras are always Brandt. This is not the case. For, let

L = (1, u, v, uv)jK

be commutative with u2 — v2 — 0 and ch K Φ 2. Then, L is cubic. Let
A be the semi-order (**). In this case, the Brandt Condition implies
only that adf~ι e R. But the demand that A2 £ A requires the ad-
ditional condition that 2α&/~1 e R. This need not follow from the Brandt
Condition; so, L is not a Brandt algebra.

10 • Another norm* There is another norm which can be defin-
ed on modules. It has already appeared in § 6 where it was denoted
by JVΊ For any module A, we defined NX(A) to be the (fractional)
J?-ideal generated by the norms of the elements of A. We have already
used one of its important properties, namely that if B is a semi-order,
then NJβ) = R for any domain R. We showed in [4] that when R
is a valuation ring with infinite residue class field, then iVΊ and N are
the same. It is not difficult to show, in fact, that Nx and N will be
the same if the residue class field of R is at least as large as (L: K).
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If, however, we wish to define the Brandt Condition using Nt

instead of N, and to examine the connection between this new Brandt
Condition and invertibility, we encounter some added difficulties. For,
if R/M is too small, JVΊ does not behave well under extension of the
base ring, so that we cannot automatically assume that R/M is in-
finite. Also, in this case, JVΊ(A) need not be finitely generated. (For
details, see [4].) The upshot of this is that we cannot assume the
existence of an element of minimal norm in JVX(A

#) as we did in Theo-
rem 1, and we cannot reduce to the case of a semi-order as we did
in Theorem 2. However, Theorems 1 and 2 remain valid for Nx as we
show below. The validity depends heavily on the assumption that
invertible modules are locally principal.

We shall continue to call a module Brandt if it satisfies the Brandt
Condition locally with respect to N and shall call it ΛΓi-Brandt if it
satisfies the Brandt Condition locally using JVΊ. The validity of Theo-
rems 1 and 2 for iVrBrandt modules follows as an easy consequence
of Lemmas 6 and 7 respectively.

LEMMA 6. Let R be a valuation ring and let A = PAQ be a prin-
cipal module. Then, if A is Brandt, it is NrBrandt.

Proof. Let A — Px. Since R is a valuation ring, we have that

N(A) = N(x)R = N,(A) .

If A is Brandt, we have that

NX(A*)J(A) S N{A*)Δ{A) s N(A) = NX(A) ,

and we are done.

LEMMA 7. Let R be a valuation ring and let A—PAQ be an NL-
Brandt module. Let L have the property that any module or its
dual is principal. Then A is Brandt.

Proof. We have that

(13)

If A is not Brandt, it is not principal by Theorem 1, so A* is
principal and therefore, a Brandt module. Then

(14) N(A)4(A*) g ΛΓ(A*) ,

the strict inclusion following from the fact that A is not Brandt.
Rearranging (14), we have that
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which contradicts (13) and we are done.

11* Some algebras which are not Brandt* In this section, we
prove that some rather elementary algebras are not Brandt algebras.

THEOREM 4. Let R be a domain with quotient field K such that
R Φ K. Let L be a finite dimensional algebra with 1 over K generat-
ed by a non cubic element. Then L is not a Brandt algebra.

Proof. We shall show that L contains a noninvertible Brandt
module.

Let L = K[z], with z integral over R and suppose that the minimal
polynomial for z is of degree n. We define a form / on L by

/(I, s-1) = 1 and /(I, z*) = 0 , 0£i<n-l,

and extend / to all of L by linearity and invariance. So, / is sym-
metric, invariant and nonsingular. (The discriminant with respect to
the basis 1, z, •• ,^w~1 is 1.) We remark that if L were already a
symmetric algebra under some form g, then we can replace g by / in
what follows since / and g would be equivalent.

Let A be the module

A = (1, kz, ¥z\ tiz\ , Wz*-ι)IR ,

where & is a nonunit of R. We claim that A is Brandt but not inver-
tible.

It is straightforward to check that

A(A) e k6n~10R .

Let p is an arbitrary element of A\ written as a iί-linear com-
bination of the powers of z. Forcing f(p, ) to send each of the above
basis elements of A to R, and solving the resulting equations, we
find that the general element of A* is of the form

Then the determinant of the norm of this element has entries in
. This shows that N(A*)S:k-*nR, and, since M > 3 , we have that

N(A*)A(A) S #-1022 g i g N(A) ,

so A is a Brandt module.
But A is not invertible. For, suppose that q = Σ?^1 V*^ ^ a n

arbitrary element of A~\ with each yi e K. Since l e i , we see that
A~ι £ A, so that each yi9 except perhaps y0, is in kR. From kzqkz e A,
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we get that yok
z is an iϋ-multiple of ¥, so that y0 e kR as well. It

follows that if, for ae A and b e A"1, we express ab as a linear com-
bination of 1, z, , z""1, all the coefficients are in kR. So, if 1 6 AA"1,
then k would be a unit of Ry a contradiction. The proof is complete.

As a corollary, we deduce the next lemma which applies, in par-
ticular, to commutative separable algebras.

LEMMA 8. Suppose that R Φ K, and that L is the product of
algebras Lt, * ,Lm, such that (L: iΓ)>3 and with each L{ generated
over K by a single element. Then L is not a Brandt algebra.

Proof. Let L{ = K[u{] for each i. Let pt{x) be the minimal,
monic polynomial for ui9 and let p(x) = ΐl?=iPi(x).

If k is a nonunit of R, all the powers of k are distinct and so,
altering the u{ by a power of k if necessary, we may assume that if
i Φ j, then Pι{x) and pό{%) have no irreducible factors in common. In
particular, Pi(ud) — 0 if and only if i = j.

Let u — (uly u2, , um) e L. Let q(x) be the minimal, monic poly-
nomial for u. Since p(u) — 0, q(x) divides p(x). On the other hand,
q(μ) = 0 implies that q(Ui) = 0 for each i. So, 2>i(») divides g(a ) for
each i. Since distinct Pι{x) have distinct irreducible factors, this im-
plies that q(x) = p(x). Since deg p(x) — (L:K), L is generated over
K by u. We are done by Theorem 4.

The fact that the module constructed in Theorem 4 satisfies the
Brandt Condition with strict inclusion allows us to deduce the follow-
ing converse to Theorem 3.

LEMMA 9. Let R be a valuation ring with R Φ K. Let L be
generated over K by a noncubic element. Then L contains a module
such that neither it nor its dual is invertίble.

Proof. In Theorem 4, the module A is not invertible and satisfies

(15) N(A*)A{A) £ N(A) .

Since R is a valuation ring, (15) shows that A* cannot be Brandt.
Since L is commutative, invertible modules are Brandt, so A# is not
invertible.

For matrix algebras over symmetric algebras, we have the
following

THEOREM 5. Let R be a domain with quotient field K, such that
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R Φ K. Let Li be a finite dimensional, symmetric algebra with 1
over K with (Lλ: K) = m. Then L — Mn(L^y the nxn matrices over
Lu with n ^ 2, is not a Brandt algebra if n > 2 or m > 1.

Proof. Let wγ = 1, w2, , wm be an integral basis for Lγ over
if, and denote the form on Lι by g. We may assume, further, that
the products WiWs are JMinear combinations of the basis and that
g(Wij Wj) e R for every i and j . Let etj be the matrix with 1 in the
i-th row and the i-th column and zeros elsewhere. We fix the basis

of L over K, with p = 1, , m and q, r = 1, , n.
We define the form / on L by

/(I , wpβ,r) = δίrflr(l, w,)

on this fixed basis, where dqr is the Kronecker d. We extend / to all
of L by invariance (i.e., we define f(x, y) = /(I, icy) for all a;, y in L)
and linearity. Then / is a symmetric, invariant bilinear form. It is
also nonsingular. For, suppose that f(x, ) = 0 for some x e L. Write
x = Σr,.,ί αrs ίwres ί. Then

= Σ a>rvu9(h wrwp) = sf( ̂ , Σ a r y .^ r ) = 0 ,

for every p, u and v. Since ^ is nonsingular, we get that every arvu,
and so x also, is zero.

Let A be the module with basis

where the triple (p, g, r) runs over all possible values except (1, 1, 2),
(1, 2, 1) and (1, 1, 1), and k is a nonunit of iϋ. We shall show that
A is a noninvertible Brandt module if n > 2 or m > 1.

First, the Brandt Condition. Order the basis of A so that the
first four basis elements are 1, ke12, ke2ι and k*e22. Suppose that (auυ)
is the symmetric matrix associated with A(A) in this ordering. Then,
it is straightforward to see that the auv have the following properties.

( i ) aιι~n1 α23 — α32 = k2 and the other auv = 0 if u, v ^ 3;
(ii) auek*R for all j > 3;
(iii) a2j and α3i are in ZΛR for all j > 3;
(iv) a,i, ek'R for i, i > 3.

Then we need only examine the determinant Δ(A) to see that
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A(A) e ¥mn2~uR .

If

z = Σ xrstwrest , each £ r s ί e R ,

is an arbitrary element of A*, we have that / ( I , z)eR implies

Σ ^rSS#(l, wr) e R

f(ke12, z) eR implies

Σ xr21g(l, wr) e k-'B

f(keΆ, z)eR implies

Σ ^12^(1, w r) G fc-1^
r

fik^Wφβij, z)eR implies

Σ Xrjig(Wp, Wr) G Arlff .
r

Let D be the determinant of the matrix of this system of equa-
tion. Then, we get by Cramer's rule that

%rst = Vrst/Dk* ,

for all r, s and t, with τ/rsί G iϋ. If D is a nonunit of R, choose k — D.
In any case, the result of the above calculations is that

So, from

N(A*)Δ(A) C k2mn2-uR

we see that if n > 2 or m > 1, A is a Brandt module.
But A is not invertible. To see this, let q e A"1. Since 1 e A,

we get A^SA; so, q can be writtern as

q = a? + Σ
for a?, # r s ί G K and (r, s, ί) Φ (1, 1, 1), with each xrst in Mϋ. Since

ke21qke12 e A ,

we get that xk2 is an iϋ-multiple of fc3, so xekR as well. Then, if
we choose aeA and 6 G A ~ X and express ab (or δα) as a linear com-
bination of the basis of A, we find that the coefficient of 1 is in kR.
But then, if 1 e AA~λ (or A-1 A) k must be a unit of R, a contradiction,
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and the proof is complete.

COROLLARY. Let L± be a non-Brandt algebra of the form describ-
ed in Theorem 4 or 5. Let L be a product of symmetric algebras
one of the factors of which is Llβ Then L is not a Brandt algebra.
(Again, R Φ K.)

Proof Let Aγ be the module constructed in Theorem 4 or 5.
Choose a module in each other factor of L such that the norm of
each module contains R. Let A be the product of A1 with these other
modules.

The Brandt Condition on A reduces to the product of the Brandt
Conditions on each of the factors of A. Since all of the fractional
ideals involved in this product are finitely generated, it follows from
the fact that N(A!ξ)Δ{Aύξ=ikR, for some nonunit k of R, that k can
be chosen large enough so that

N(A*)Δ(A)SRSN(A) .

But A is invertible if and only if each of its factors is. Since
Aλ is not invertible in Lly we are done.

We remark finally, that, if L is a 3-dimensional field over K, it
follows from the fact that M2(L) = M2(K) ®KL is not a Brandt alge-
bra that the tensor product of Brandt algebras need not be a Brandt
algebra.
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