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LATTICES WITH NO INTERVAL HOMOMORPHISMS
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This paper arose from the following analogous questions:
(1) Does a distributive topological lattice on a continuum admit
sufficiently many continuous lattice homomorphisms onto the
unit interval to separate points, and (2) does a topological semi-
lattice on a continuum admit sufficiently many continuous
semilattice homomorphisms onto the unit interval to separate
points? Earlier investigations of topological lattices and semi-
lattices have provided partial positive solutions. However,
examples of an infinite-dimensional distributive lattice and a
one-dimensional semilattice which admit only trivial homomor-
phisms into the interval are presented in this paper.

A topological lattice consists of a Hausdorff space L together with
a pair of continuous lattice operations A, \V: L x L - L. A topological
semilattice consists of a Hausdorff space S together with a continuous
semilattice operation A: S x S-—S8. In the theory of topological lattices
and semilattices, the following problem, raised by Dyer and Shields in
[8], has received considerable attention: Does a distributive topological
lattice (2 topological semilattice) on a continuum admit sufficiently
many continuous lattice (semilattice) homomorphisms onto the unit in-
terval [0, 1] to separate points?

Anderson [2] has given an affirmative answer for finite-dimensional
lattices; Davies [7] and Strauss [12] have made further contributions
to the problem for the lattice case. The semilattice question has been
answered affirmatively for finite-dimensional semilattices on Peano con-
tinua [11]. The purpose of this paper is to provide examples that
show the answer is not yes in general. We give examples of an in-
finite-dimensional distributive lattice and a one-dimensional semilattice
which admit only trivial homomorphisms into the interval.

Since the idempotents of an abelian topological semigroup form a
semilattice, these examples have ramifications with regard to represen-
tations of such semigroups. In particular, Brown and Friedberg [6]
have a range space for representations (or semicharacters) of a special
class of compact abelian semigroups. These representations separate
points if and only if the homomorphisms of the idempotents into the
interval separate points.

1. Preliminaries. Let S be a (lower) semilattice. If Ac S, we
define
L(A) = {yeS:y <« for some zxec A}
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and
M(A) = {ze S:x < z for some xc A} .

The set A is an ideal if L(A) = A. The set A is convexr if z,zc A
and 2 <y <z imply ye A. The following theorem is a slight modifi-
cation of a theorem of Borrego [3]. It will simplify somewhat show-
ing multiplication is continuous at a later stage.

THEOREM 1.1. Let S be a compact, Hausdorff space which is
algebraically a semilattice. If the graph of the partial order s
closed and the operation A is continuous at all points of the graph,
then S is a topological semilattice.

Proof. Let {x,} and {y,;} be nets converging to x and y respectively.
Let z be a cluster point of the net {x, A y;}. Since (x, A ¥, 2,) clusters
to (z, x), we conclude that z < x. Similarly we conclude z < y; hence
z<x Ay. By continuity of A on the graph, we conclude that
z, N\ (@ A y) converges to & Ay, ¥; A (& A y) converges to z A y, and
hence (x, A ¥s) A Ay converges to * Ay. Thus z Ay < 2 since
2, A Y; clusters to z. Hence z = x Ay. Since x Ay is the only cluster
point, multiplication is continuous.

The next theorem is an unpublished result of D. R. Brown although
apparently other researchers in the area of topological lattices and
semilattices were aware of it independently.

THEOREM 1.2. Let S be a compact topological semilattice. Then
the space S' of all closed ideals, ordered by inclusion, is a compact
distributive topological lattice. The mapping sending s into L(s) is
a topological tsomorphism from S into S'. If S is connected (metriz-
able), then S’ is connected (metrizable).

Proof. The space S’ of closed ideals is known to be a compact
topological semigroup with respect to the operation

A-B={aAb:ac A, be B}

[9, A-7.2]. Since A and B are ideals, A-BCc ANBC(ANB))C A-B.
Hence A-B = ANB. The union of two closed ideals is another such,
and a straightforward argument shows that this operation is continu-
ous. Hence S’ is a compact distributive topological lattice.

The mapping G sending s into L(s) is an isomorphism since

L(sN\t) = L(s)n L(t) .

By continuity of multiplication on the space of all closed subsets, if
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a net s, converges to s, then SAs, converges to SAs. Since L(s) =
S As, the mapping G is continuous and hence a homeomorphism.

If S is connected, then S’ is connected since as a compact lattice
it is generated by G(S). If S is metrie, it is well-known that the
space of closed subsets is metrizable; hence the subset S’ is metrizable.

We now define a series which will be employed in the definition
of the first example. For each positive integer n larger than 1, we set

«, = 1/m2™" where 2" ' <n £ 2™ .

This series may be thought of as dividing the m-th term of the
harmonic series into 2" equal parts. Hence this series is divergent.

ProOPOSITION 1.3. For any &>0, there exists a positive integer
P such that if k= P, then >} ,a, + ¢ > D¢, a,.

Proof. We first note that 3,..a, = 1/mif A = {n: 2" <n < 2"
Choose ¢ and P such that 2/e <q and 2'< P. If k=P, there exists
an unique m such that 2" ' < k < 2™, Then

v‘?‘-‘jz +<m m+1 n=2 m

Since m = ¢, we have 2/m < 2/q < ¢; this completes the proof.

2. Examples with no interval homomorphisms. We first define
some basic building blocks from which we construct our examples.
Let H* denote [0, ], the extended nonnegative reals; H* is a topo-
logical lattice with respect to its natural order. For each positive in-
teger 4, let s(7) be the least integer with the property that 7 < 3:% a,;
such an integer exists since 3, a, is divergent. We set S; = JJ:%
{0, 1}; each S; is a finite lattice with respect to the coordinatewise order
with 0 < 1.

For z e S;, 6(x) will denote the number of zero entries of x. We
define 0,: S; — H* by (i) 0,(x) = o if 6(x) = 0, (il) o,(x) = 7 if 6(x) = 1,
(iii) o;(x) = 0 if 9(z) = s(3), and (iv) o;(x) = ¢ — D% a, for all other
cases.

LEMMA 2.1. Each o; is an order preserving fumction from S;
anto H*. If 7 >¢e>0 are fixed positive numbers, there exists a
positive integer Q such that if 1 = Q, x, y € S;, 0;(x) > 7, 0,(y) > 7, then
o(xNY) >T — ¢

Proof. That each o; is order preserving is a straightforward con-
sequence of its definition.
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Assume that = > ¢ > 0. Choose the P guaranteed by Proposition
1.3 which corresponds to . Choose @ larger than v + 3722, «,.

We suppose that 1 = @, z, y € S, 0;(x) > 7 and 0,(y) > ¢; we denote
x Ay by z. Either 6(z) < 26(x) or 8(z) < 20(y) obtains; we arbitrarily
assume 6(z) < 20(x) (the reason one of the inequalities prevails is that
2 Ay can have at most twice as many zero entries as one of 2 or y).
We note from the definition of ¢, that in all cases 0,(z) =7 — >/ «,
if the summation is interpreted to be 0 for #(z) equal to 0 or 1.

If 4(x) < P, then

(z) 20(x)

9 2P
n n=2 n=2

=2

the last inequality follows from the choice of Q. Hence 6,(2) >7 — ¢
if 6(x) < P.
If P < 6(x), then

d(2) 20(z) f(z)
o,Ry=z1—-> a, =1 — Zanzi—<Zan+s>=ai(x)—e>v:—s.
n=2 n=2 n=2

Hence 0,(z) > v — ¢ for both cases. We now define the first example.
We denote H* x [, S; by K. With coordinatewise order K is a
topological lattice homeomorphic to the Cartesian product of an interval
and the Cantor set.

ExampPLE 1. We define L = {(¢, (z,)2) e K:t < o,(x;) for all i}.
With respect to the order inherited from K, L is a compact, one-
dimensional topological lattice. If A is a subsemilattice of L with
respect to the cap operation and if 1€ A° (where 1 denotes the largest
element of L), then AN x II S)) + @.

Proof. (1) L is compact.

Suppose (t, (x;)) ¢ L. Then ¢t > 0,(x,) for some n. There exists an
open neighborhood U of (¢, (x;)) such that if (s, (v;)) € U, then s > o,(x,)
and ¥, = «,; then s > o,(x,) = 0,(y,) implies (s, (y;)) ¢ L. Hence K\L
is open and L is compact.

(2) L is algebraically a lattice.

With respect to the cup operation, L is a subsemilattice of K. This
follows from the fact each o; is order preserving.

To complete this part, we show that if (s, (x;), (¢, (¥;)) € L, then
(u, (z;)) is a greatest lower bound in L where

u = sAtAinf. {oz;): 1 < ¢}

and z; = x; Ay;. By its definition (%, (z;)) is a lower bound and a member
of L. Let (r, (w;)) be another lower bound for (s, (x;)) and (¢, (y;)) in L.
Then r < sAtand w; < x;A\y; = 2; for each 7; hence o,(w,) £ 0,(z;) for
each 7. Since (r, (w;)) € L, then r < inf {o,(w,): 1 £ 4} < inf {0,(2;): 1 = 4},
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Hence r < u; and thus (u, (z;)) is a ¢glb in L.

(3) L is a topological lattice.

The cup operation is continuous since L is a subsemilattice of K
with respect to this operation. This implies that the partial order on
L has closed graph.

Let = (s, (x;)) and ¥ = (¢, (y,)) be elements of L. To show con-
tinuity of multiplication, we may assume that ¥ < xz by Theorem 1.1.

We first consider the case that 0 < ¢, s < «. For a positive in-
teger Nand ¢ > 0, let W = {(u,z)e L:t — 3e < u <t + 3¢, y;, = z; for
2 < N} be a basic neighborhood of y where 3¢ < t. Let @ be the
positive integer guaranteed by Lemma 2.1 for 7 = ¢t — ¢ and &; we set
M = max {N, @}. We define neighborhoods U and V of x and .y resp. by

U={s,(e))elis—e<gd<s+ea =2z for 1< M} and

V=, bhelit —e<t <t+ &b =y, for 1 < M}.

To complete the proof, we show UAV CW.

Let (¢, (a;)) e U and (¢, (b)) ¢ V and let (u, (2;)) be their greatest

lower bound in L, i.e., z; = a; A'b; for all 7 and

=8 ANtAinf {o;(z):1 < 7} .

We have immediately u < ¢/ < ¢t + 3¢and 2, = a; A b, = &; Ay; = y; for
1 < N since N £ M. Since (¢, (b;)) is an element of ¥V and hence of
L, we have t — ¢ < t' < 0,(b,) for all 4. Similarly since ¢t < s, we have
t—ec<s—e<s <o0a;). If 1 <M, then

t— 2 <1t —e<oub) = oila; \Nb) = 0,(z)
since az/\bl =0 N\Y; =Y; = b, If M <1, then @ < ¢ and

(t—¢) —e<ala; \Nby)
by Lemma 2.1. Hencet — 3¢c <t — 2 < s At Ainf{0,(z): 1 < i} = u.
Thus (u, (z,)) e W.

The case ¢ = 0 is straightforward and omitted. The case that one
or both of ¢ and s are o can be handled by a slight modification of
the above argument.

(4) L is one-dimensional.

This follows from the fact that L is homeomorphic to a closed
subset of the Cartesian product of the Cantor set and unit interval.

(6) If Ais a subsemilattice and 1¢ A°, then AN X [IS)) = @.

Note that (<o, (x;)) where each x; has entries all 1 is an element
of L, and hence is the 1 for L. There exists at 1 a basis of open
sets of the form U = {(r, (x;)) € L: j < r, ; has entries all 1 for 7 < j}
where j is a positive integer. We assume j is chosen so that U c A°.
We define T to be all elements of the form (5 + 1, (x;)) such that =z,
has entries all 1 for ¢+ j + 1 and x,,, has one zero entry. Then T
has s(j + 1) elements. For each element of 7T,
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inf {oy(x;): 1 < 4} = 0544(x;0) =5 + 15

hence T c L and thus TcU. Let (¢, (z)) be the greatest lower bound
in L of T. Since A is a subsemilattice, (¢, (z;)) € A. Since (¢, 2;)e L,
t < 0;..(%;.,) = 0 since z;,, has entries all zero. Hence ¢t = 0.

ExampLE 2. Let I denote all elements of L with first entry zero;
I is an ideal of L with respect to the cap operation. The Rees quotient
S = L/I is a compact, connected one-dimensional metric semilattice
with identity which admits no nontrivial semilattice homomorphisms
into the unit interval.

Proof. 1t is easily verified that the set I = {(0, (x;)) € L} is a closed
ideal of L with respect to the cap operation. Hence S = L/I, the
Rees quotient, is a compact topological semilattice.

Since S is topologically a subset of the cone over the Cantor set,
S is metric and one-dimensional. If (¢, (x;)) € L, then {(r, (W:)):r £ ¢,
y; = «; for all 7} is a connected subset of L which meets I. Hence
in S each element lies in the component of 0; thus S is connected.

Assume that there does exist a nontrivial continuous homomorphism
h from S into [0,1]. Then A1) > h(0). If f denotes the natural
homomorphism from L onto S, then Af is a continuous homomorphism
from L into the unit interval such that hf(I) = h(0). Choose 7 such
that k(1) > » > h(0). Then (hf)~'[r, h(1)] is a neighborhood of 1 in L,
a subsemilattice of L, and misses I. However, no subset of L has
these properties. Hence no nontrivial % -exists.

ExaMpPLE 3. Let S’ denote the set of all closed ideals of S, the
semilattice of Example 2. Then S’ is a compact connected metrizable
distributive topological lattice. With respect to the cap operation, S’
has no nontrivial finite-dimensional homomorphic images; hence, in
particular, S’ admits no nontrivial lattice homomorphisms into the unit
interval.

Proof. By Theorem 1.2 S’ is a compact, connected, metrizable,
distributive topological lattice and the mapping G from S into S’ send-
ing s into L(s) is a topological isomorphism. Since G(0) = 0 and G(1) =
1, S’ admits no nontrivial cap homomorphisms into the unit interval,
because any such composed with G would be a nontrivial homomorphism
from S into the interval.

Suppose that 2 is a continuous cap homomorphism from S’ onto
T, a finite-dimensional topological semilattice. Since S’ is a compact,
connected topological lattice, it is locally connected [1]; hence T is locally
connected. But then, by [11], if T is nontrivial, it possesses nontrivial
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homomorphisms into the interval. The composition would be a non-
trivial homomorphism from S’ into the interval, and we have just
seen such does not exist. Hence T is trivial.

These examples shed some light on the subject of intrinsic topo-
logies in lattices. Birkhoff [4] describes several ways a lattice may
be topologized from its algebraic structure. It has been shown that
in a compact topological lattice which is metrizable the topology of
the lattice agrees with the order topology (see [12] or [10]). Hence
Examples 1 and 3 both have the order topology.

The question has been asked whether the topology of a compact
topological lattice agrees with the interval topology [10]. Strauss [12]
showed that if this is true and if the lattice is distributive, then the
lattice admits nontrivial continuous homomorphisms into the unit in-
terval. Hence the lattice of Example 3 does not have the interval
topology.

It is a pleasure to thank Professors D. R. Brown and R. J. Koch
for their encouragement and Professors John Hildebrant and Bernard
Madison for their patient listening.

BIBLIOGRAPHY

1. L. W. Anderson, On the distributivity and simple connectivity of plane topological
lattices, Trans. Amer. Math. Soc. 91 (1959), 102-112.

2. , The existence of continuous lattice homomorphisms, J. London Math. Soc.
37 (1962), 60-62.

3. G. Birkhoft, Lattice theory, Amer. Math. Soc. Colloquim Publications, 3rd ed., vol
XXV, Amer. Math. Soc., Providence, R. I., 1967.

4, J. T. Borrego, Continuity of the operation of a semilattice, Notices Amer. Math.
Soc. 16 (1969), 171.

5. D. R. Brown, Topological semilattices on the two cell, Pacific J. Math. 15 (1965),
35-46.

6. D. R. Brown and M. Friedberg, A new notion of semicharacters, (to appear).

7. E. B. Davies, The existence of ckaracters on topological lattices, J. London Math.
Soc. 43 (1968), 217-220.

8. E. Dyer and A. S. Shields, Connectivity of topological lattices, Pacific J. Math. 9
(1959), 443-447.

9. K. H. Hofmann and P. S. Mostert, Elements of compact semigroups, Charles E.
Merill Books, Inec., Columbus, Ohio, 1966.

10. J. D. Lawson, Vietoris mappings and embeddings of topological semilattices,
University of Tennessee Dissertation, 1967.

11. , Topological semilattices with small semilattices, (to appear in J. London
Math. Soc.).

12. D. P. Strauss, Topological lattices, Proc. London Math. Soc. 18 (1968), 217-230.

Received April 3, 1969.

LoOUISIANA STATE UNIVERSITY
BATON ROUGE, LOUISIANA






PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. SAMELSON J. DUGUNDJI
Stanford University Department of Mathematics
Stanford, California 94305 University of Southern California

Los Angeles, California 90007
RICHARD PIERCE BASIL GORDON*
University of Washington University of California
Seattle, Washington 98105 Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH B. H. NEUMANN F. WoLE K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA STANFORD UNIVERSITY

CALIFORNIA INSTITUTE OF TECHNOLOGY UNIVERSITY OF TOKYO

UNIVERSITY OF CALIFORNIA UNIVERSITY OF UTAH

MONTANA STATE UNIVERSITY WASHINGTON STATE UNIVERSITY
UNIVERSITY OF NEVADA UNIVERSITY OF WASHINGTON

NEW MEXICO STATE UNIVERSITY * * *

OREGON STATE UNIVERSITY AMERICAN MATHEMATICAL SOCIETY
UNIVERSITY OF OREGON CHEVRON RESEARCH CORPORATION
OSAKA UNIVERSITY TRW SYSTEMS

UNIVERSITY OF SOUTHERN CALIFORNIA NAVAL WEAPONS CENTER

The Supporting Institutions listed above contribute to the cost of publication of this Journal,
but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should
be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Under-
line Greek letters in red, German in green, and script in blue. The first paragraph or two
must be capable of being used separately as a synopsis of the entire paper. The editorial
“we” must not be used in the synopsis, and items of the bibliography should not be cited
there unless absolutely necessary, in which case they must be identified by author and Journal,
rather than by item number. Manuscripts, in duplicate if possible, may be sent to any one of
the four editors. Please classify according to the scheme of Math. Rev. 36, 1539-1546. All
other communications to the editors should be addressed to the managing editor, Richard Arens,
University of California, Los Angeles, California, 90024.

50 reprints are provided free for each article; additional copies may be obtained at cost in
multiples of 50.

The Pacific Journal of Mathematics is published monthly. Effective with Volume 16 the
price per volume (8 numbers) is $8.00; single issues, $8.00. Special price for current issues to
individual faculty members of supporting institutions and to individual members of the American
Mathematical Society: $4.00 per volume; single issues $1.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific
Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION
Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 7-17,
Fujimi 2-chome, Chiyoda-ku, Tokyo, Japan.

* Acting Managing Editor.



Pacific Journal of Mathematics

Vol. 32, No. 2 February, 1970

Harry P. Allen and Joseph Cooley Ferrar, Jordan algebras and exceptional

subalgebras of the exceptional algebra Eg .......................... 283
David Wilmot Barnette and Branko Griinbaum, Preassigning the shape of a

Jace . ... e 299
Robert Francis Craggs, Involutions of the 3-sphere which fix 2-spheres . . . .. 307
David William Dean, Bor-Luh Lin and Ivan Singer, On k-shrinking and

k-boundedly complete bases in Banach spaces ...................... 323
Martin Engert, Finite dimensional translation invariant subspaces . . ... .. .. 333
Kenneth Lewis Fields, On the global dimension of residue rings........... 345
Howard Gorman, The Brandt condition and invertibility of modules. . . ... .. 351
Benjamin Rigler Halpern, A characterization of the circle and interval . . . .. 373
Albert Emerson Hurd, A uniqueness theorem for second order quasilinear

hyperbolic eqUAtioNs ......... ... ..., 415
James Frederick Hurley, Composition series in Chevalley algebras . . ...... 429
Meira Lavie, Disconjugacy of linear differential equations in the complex

AOMAIN . . ... o 435
Jimmie Don Lawson, Lattices with no interval homomorphisms ........... 459
Roger McCann, A classification of center-foci ........................... 467
Evelyn Rupard McMillan, On continuity conditions for functions . . ........ 479

Graciano de Oliveira, A conjecture and some problems on

David L. Parrott and S. K. Wong, On the Higman-Sims si
order44,352,000......... .0t
Jerome L. Paul, Extending homeomorphisms ............
Thomas Benny Rushing, Unknotting unions of cells . . . . ..
Peter Russell, Forms of the affine line and its additive gro
Niel Shilkret, Non-Archimedean Gelfand theory . ........
Alfred Esperanza Tong, Diagonal submatrices of matrix



http://dx.doi.org/10.2140/pjm.1970.32.283
http://dx.doi.org/10.2140/pjm.1970.32.283
http://dx.doi.org/10.2140/pjm.1970.32.299
http://dx.doi.org/10.2140/pjm.1970.32.299
http://dx.doi.org/10.2140/pjm.1970.32.307
http://dx.doi.org/10.2140/pjm.1970.32.323
http://dx.doi.org/10.2140/pjm.1970.32.323
http://dx.doi.org/10.2140/pjm.1970.32.333
http://dx.doi.org/10.2140/pjm.1970.32.345
http://dx.doi.org/10.2140/pjm.1970.32.351
http://dx.doi.org/10.2140/pjm.1970.32.373
http://dx.doi.org/10.2140/pjm.1970.32.415
http://dx.doi.org/10.2140/pjm.1970.32.415
http://dx.doi.org/10.2140/pjm.1970.32.429
http://dx.doi.org/10.2140/pjm.1970.32.435
http://dx.doi.org/10.2140/pjm.1970.32.435
http://dx.doi.org/10.2140/pjm.1970.32.467
http://dx.doi.org/10.2140/pjm.1970.32.479
http://dx.doi.org/10.2140/pjm.1970.32.495
http://dx.doi.org/10.2140/pjm.1970.32.501
http://dx.doi.org/10.2140/pjm.1970.32.501
http://dx.doi.org/10.2140/pjm.1970.32.517
http://dx.doi.org/10.2140/pjm.1970.32.521
http://dx.doi.org/10.2140/pjm.1970.32.527
http://dx.doi.org/10.2140/pjm.1970.32.541
http://dx.doi.org/10.2140/pjm.1970.32.551

	
	
	

