A CONJECTURE AND SOME PROBLEMS ON PERMANENTS

GRACIANO DE OLIVEIRA
Let $A = [a_{ij}]$ denote an $n \times n$ matrix and let E be the $n \times n$ identity matrix. We will designate by $\det A$ and $\perm A$ the determinant and the permanent of A respectively. The polynomial $\varphi(z) = \det (zE - A)$ plays a fundamental role in matrix theory. Similarly we can consider the polynomial $f(z) = \perm (zE - A)$ which has been object of several studies recently, particularly when A is a doubly stochastic matrix. The aim of the present paper is to give some results on the existence of matrices satisfying certain conditions involving the roots of this polynomial.

Let M_n and \mathcal{M}_n be the regions defined as follows: $z \in M_n$ if and only if there exists a stochastic matrix of order n with z as characteristic root; $(z_1, \ldots, z_n) \in \mathcal{M}_n$ if and only if there exists a stochastic matrix of order n whose n characteristic roots are the complex numbers z_1, \ldots, z_n.

Similarly we define the regions D_n and \mathcal{D}_n respectively when 'stochastic' is replaced by 'doubly stochastic'. M_n was determined by Karpelevič [3] but the determination of the other three regions seems to be a very difficult problem and has not yet been solved (see [7], [8], [9]).

Replacing in the definitions of M_n, \mathcal{M}_n, D_n and \mathcal{D}_n 'characteristic root' by 'root of the polynomial $f(z) = \perm (zE - A)$' we can define four other regions which we shall denote by M^*_n, \mathcal{M}^*_n, D^*_n and \mathcal{D}^*_n respectively. To our knowledge no attempt has been made to determine these regions. Their determination is likely to be a much harder problem than the determination of M_n, \mathcal{M}_n, D_n and \mathcal{D}_n.

Some problems dealing with the characteristic values of a matrix (like some of the problems mentioned in [6]) can be replaced by similar problems dealing with the roots of $f(z) = \perm (zE - A)$.

Examples: (1) find a necessary and sufficient condition for the numbers a_1, \ldots, a_n and z_1, \ldots, z_n to be the principal elements of a symmetric A and the roots of $f(z) = \perm (zE - A)$ respectively; (2) find a necessary and sufficient condition for the numbers $\lambda_1, \ldots, \lambda_n$ and z_1, \ldots, z_n to be the characteristic roots of an $n \times n$ matrix A and the roots of $f(z) = \perm (zE - A)$ respectively. In the sequel we give some results on problems of this nature.

2. Let
\[J_i = \begin{bmatrix} \lambda_i & 1 & 0 \\ & \ddots & \ddots \\ & & 1 \\ 0 & & \lambda_i \end{bmatrix} \text{ (of type } s_i \times s_i), \]

\[X_i = \begin{bmatrix} x_{i1} \\ \vdots \\ x_{is_i} \end{bmatrix}, \quad Y_i = [y'_1, \ldots, y'_{i}] \]

and

\[C = \begin{bmatrix} J_1 & 0 & \cdots & 0 & X_1 \\ 0 & J_2 & \cdots & 0 & X_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & J_m & X_m \\ Y_1 & Y_2 & \cdots & Y_m & q \end{bmatrix} \]

Lemma. If \(C \) is the matrix described above and \(E \) denotes the appropriate identity matrix then

\[
\text{perm} (zE - C) = \sum_{i=1}^{m} \sum_{h=0}^{s_i-1} b_{ih}(z - \lambda_i)^h \prod_{j=1}^{m} (z - \lambda_j)^{s_j} + (z - q) \prod_{j=1}^{m} (z - \lambda_j)^{s_j},
\]

where

\[
b_{ih} = (-1)^{s_i+h+1} \sum_{j=1}^{s_i} y'_j x'_{j+s_i+1-h} \quad (h = 0, \ldots, s_i - 1). \]

Proof. Let

\[C_i = \begin{bmatrix} J_i & 0 & \cdots & 0 & X_i \\ 0 & J_{i+1} & \cdots & 0 & X_{i+1} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & J_m & X_m \\ Y_i & Y_{i+1} & \cdots & Y_m & q \end{bmatrix} \]

Now we expand \(\text{perm} (zE_i - C_i) \) (where \(E_i \) is the identity matrix of the same order as \(C_i \)) in terms of its first \(s_i \) rows. The submatrices contained in these rows with permanent nonnecessarily zero are: \(zE_i - J_i \) (\(E^{(i)} \) denotes the identity matrix of the same order as \(J_i \)) and the submatrices obtained from \(zE^{(i)} - J_i \) by striking out the \(\rho^{th} \) column (\(\rho = 1, \ldots, s_i \)) and bordering on the right hand side with the column \(-X_i\). We denote this submatrix by \(H_\rho \). It is not difficult to see that
\[
\text{perm } H_\rho = \sum_{r=0}^{s_\rho-1} (-1)^{s_\rho+r+1} x_{\rho+r}(z - \lambda_i)^{s_i-r-1}.
\]

Let \(\tilde{H}_\rho \) denote the complementary submatrix of \(H_\rho \) in \(zE_i - C_i \). It can be easily seen that
\[
\text{perm } \tilde{H}_\rho = -y_\rho^i \prod_{j=i+1}^{m} (z - \lambda_j)^{s_j}.
\]

We can now write
\[
\text{perm } (zE_i - C_i) = \sum_{\rho=1}^{s_i} \text{perm } H_\rho \text{ perm } \tilde{H}_\rho
+ \text{perm } (zE_{i+1} - J_i) \text{ perm } (zE_{i+1} - C_{i+1})
= \sum_{\rho=1}^{s_i} \sum_{r=0}^{s_i-\rho} (-1)^{s_i+r+1} y_\rho^i x_{\rho+r}(z - \lambda_i)^{s_i-r-1} \prod_{j=i+1}^{m} (z - \lambda_j)^{s_j}
+ (z - \lambda_i)^{s_i} \text{ perm } (zE_{i+1} - C_{i+1}).
\]

Interchanging the order of the first two sums we get
\[
\text{perm } (zE_i - C_i) = \sum_{\rho=1}^{s_i-1} \sum_{r=1}^{s_i-\rho} (-1)^{s_i+r+1} y_\rho^i x_{\rho+r}(z - \lambda_i)^{s_i-r-1} \prod_{j=i+1}^{m} (z - \lambda_j)^{s_j}
+ (z - \lambda_i)^{s_i} \text{ perm } (zE_{i+1} - C_{i+1})
= \sum_{\rho=1}^{s_i-1} \sum_{r=1}^{s_i-\rho} (-1)^{s_i+r+1} y_\rho^i x_{\rho+r}(z - \lambda_i)^{s_i-r-1} \prod_{j=i+1}^{m} (z - \lambda_j)^{s_j}
+ (z - \lambda_i)^{s_i} \text{ perm } (zE_{i+1} - C_{i+1}).
\]

We now set \(i = 1 \), use induction, and after some manipulation we obtain the formula stated in the lemma.

We proceed to our main result.

Theorem 1. Given any \(n \) complex numbers \(a_1, \ldots, a_n \) and a polynomial \(f(z) = z^n - cz^{n-1} + \cdots \), there exists a square matrix \(A \) of order \(n \) with \(a_1, \ldots, a_n \) as principal elements and such that \(f(z) = \text{perm } (zE - A) \) if and only if \(a_1 + \cdots + a_n = c \). If this condition is satisfied and both \(a_1, \ldots, a_n \) and the coefficients of \(f(z) \) are real, \(A \) can be chosen real.

Proof. We prove first the 'if' part. If we perform a permutation on the rows of a square matrix \(A \) and then the same permutation on its columns, the roots of \(f(z) = \text{perm } (zE - A) \) are not altered. Hence we can, without loss of generality, take the numbers \(a_1, \ldots, a_n \) in any order. Thus we will assume that the first \(s_1 \) numbers from among \(a_1, \ldots, a_{n-1} \) have the common value \(\lambda_1 \), the following \(s_2 \) numbers have the common value \(\lambda_2 \), \ldots, the last \(s_m \) numbers have the common value \(\lambda_m \) and that \(\lambda_i \neq \lambda_j \) for \(i \neq j \). Consider now the matrix \(C \) of the
Lemma with \(q = a_n \) and all the \(x_i = 1 \). We will show that we can choose \(Y_1, \ldots, Y_m \) such that \(\text{perm} (zE - C) = f(z) \).

Let \(g(z) = \prod_{j=1}^n (z - \lambda_j)^{x_j} \). Using the formula of the lemma we can write

\[
\frac{\text{perm} (zE - C)}{g(z)} = \sum_{i=1}^m \sum_{h=0}^{x_i-1} \frac{b_{ih}}{(z - \lambda_i)^{x_i-h}} + z - q.
\]

Let us now resolve \(f(z)/g(z) \) into partial fractions. Bearing in mind that \(f(z) = z^n - (\sum_{i=1}^n a_i)z^{n-1} + \cdots \) we get

\[
\frac{f(z)}{g(z)} = \sum_{i=1}^m \sum_{h=0}^{x_i-1} \frac{d_{ih}}{(z - \lambda_i)^{x_i-h}} + z - q.
\]

Let us take \(b_{ih} = d_{ih} \). With this choice of the \(b_{ih} \) we have \(f(z) = \text{perm} (zE - C) \) as required. Now we compute the \(y_h^i \) by \(b_{ih} = (-1)^{x_i+h+1} \sum_{j=1}^h y_j^i (h = 0, \ldots, s_i - 1; i = 1, \ldots, m) \) which is a system of linear equations, always compatible.

If we suppose the numbers \(a_1, \ldots, a_n \) as well as the coefficients of \(f(z) \) real it follows from (I) that the \(d_{ih} \) and therefore the \(b_{ih} \) are also real. In this case \(C \) can, clearly, be chosen real.

The "only if" part of the theorem is an immediate consequence of the formula

\[
\text{perm} (zE - A) = z^n + \sum_{p=1}^n \sum_{1 \leq i_1 < \cdots < i_p \leq n} (-1)^p \text{perm} A(i_{i_1}, \ldots, i_{i_p}) z^{n-p}
\]

where \(A(i_{i_1}, \ldots, i_{i_p}) \) denotes the principal submatrix of \(A \) contained in the rows \(i_{i_1}, \ldots, i_{i_p} \).

Concerning the problem (1) mentioned in §1 of the present paper, we have been able to prove the following partial result.

Theorem 2. Let \(a_1, \ldots, a_n \) be real numbers and suppose that there exists an index \(i_0 \) such that \(i \neq j; i, j \neq i_0 \) implies \(a_i \neq a_j \). Let \(f(z) = z^n - cz^{n-1} + \cdots \) be a given polynomial with real coefficients such that \(c = \sum_{i=1}^n a_i \).

If \(f(a_j), \prod_{j=0}^n (a_j - a_i) \geq 0 \) \((j = 1, \ldots, n; j \neq i_0)\),

there exists an \(n \times n \) real symmetric matrix \(A \) with \(a_1, \ldots, a_n \) as principal elements and such that \(f(z) = \text{perm} (zE - A) \).

We omit the proof which follows closely the technique used in the proof of the Theorem 1.

3. We denote by \(\Omega_n \) the set of all doubly stochastic matrices of order \(n \). When \(A \in \Omega_n \), \(f(z) = \text{perm} (zE - A) \) enjoys some interesting
properties as for instance: the roots of $f(z)$ lie in or on the boundary of the unit disc $|z| \leq 1$ (see [1] and [4]). For the real roots of $f(z)$ it is known that they lie in the interval $0 < x \leq 1$. We have been led to the following

Conjecture. Let A be an $n \times n$ doubly stochastic irreducible matrix. If n is even, then $f(z) = \text{perm}(zE - A)$ has no real roots; if n is odd, then $f(z) = \text{perm}(zE - A)$ has one and only one real root.

It can be seen by direct computation that the conjecture is true in the following cases:

(a) A is a 2×2 real (not necessarily nonnegative) irreducible matrix all of whose row and column sums are 1.

(b) A is a 3×3 real (not necessarily nonnegative) irreducible symmetric matrix all of whose row and column sums are 1.

(c) A is the $n \times n$ matrix all of whose entries are equal to $1/n$.

I wish to thank the referee for his valuable comments on a previous version of this paper.

References

Received March 19, 1968.

Universidade de Coimbra

Coimbra, Portugal
Harry P. Allen and Joseph Cooley Ferrar, *Jordan algebras and exceptional subalgebras of the exceptional algebra E_6* .. 283
David Wilmot Barnette and Branko Grünbaum, *Preassigning the shape of a face* ... 299
Robert Francis Craggs, *Involutions of the 3-sphere which fix 2-spheres* 307
David William Dean, Bor-Luh Lin and Ivan Singer, *On k-shrinking and k-boundedly complete bases in Banach spaces* 323
Martin Engert, *Finite dimensional translation invariant subspaces* 333
Kenneth Lewis Fields, *On the global dimension of residue rings* 345
Howard Gorman, *The Brandt condition and invertibility of modules* 351
Benjamin Rigler Halpern, *A characterization of the circle and interval* 373
Albert Emerson Hurd, *A uniqueness theorem for second order quasilinear hyperbolic equations* .. 415
James Frederick Hurley, *Composition series in Chevalley algebras* 429
Meira Lavie, *Disconjugacy of linear differential equations in the complex domain* ... 435
Jimmie Don Lawson, *Lattices with no interval homomorphisms* 459
Roger McCann, *A classification of center-foci* 467
Evelyn Rupard McMillan, *On continuity conditions for functions* 479
Graciano de Oliveira, *A conjecture and some problems on permanents* 495
David L. Parrott and S. K. Wong, *On the Higman-Sims simple group of order 44, 352, 000* ... 501
Jerome L. Paul, *Extending homeomorphisms* .. 517
Thomas Benny Rushing, *Unknotting unions of cells* 521
Peter Russell, *Forms of the affine line and its additive group* 527
Niel Shilkret, *Non-Archimedean Gelfand theory* 541
Alfred Esperanza Tong, *Diagonal submatrices of matrix maps* 551