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In a recent paper D. G, Higman and C. C. Sims announced
their construction of a new simple group H,, of order 44,352,000.
The group H,,, is obtained as a rank 3 permutation group of
degree 100 with subdegrees 1,22 and 77; and the stabilizer of
a point is isomorphic to the Mathieu simple group M;,. Shortly
after their announcement of the new simple group, Graham
Higman constructed a simple group of the same order as a
doubly transitive group of degree 176 and with stabilizer of
a point isomorphic to PSU(3,5?).

The purpose of this paper is to show that the two groups
mentioned above are isomorphic, and in faect, that there is ex-
actly one (up to isomorphism) simple group of order 44,352,000,

THEOREM. Let G be a nonabelian simple groun of order 44,352,000.
Then G 1s isomorphic to the Higman-Sims group H,y.

Throughout this paper, G will denote a nonabelian simple group
of order 44,352,000 = 2°.82.5°.7.11. The notation will be standard; see
for instance [13]. Further, a Sylow p-subgroup of G will be denoted
by G,, A, and S, will denote the alternating group and symmetric
group on # letters respectively; and F,, will denote a Frobenius group
of order 20. The word “character” always refers to an irreducible
character of G afforded by an irreducible representation of G in the
complex number field. If the integer » divides the |G| of G, we will
denote this by n||G]|.

In the proof of the theorem, the following results are of funda-
mental importance.

ResuLt 1 (R. Brauer [2], Theorem 11). Let G be a group such
that ] |G|, but p*}/ |G|, p a prime. If the p-block B,(p) contains the
principal character 1, of G, then B,(p) has (p» — 1)/t (irreducible complex)
characters which are p-conjugate only to themselves and one family
of ¢t p-conjugate characters, where ¢ denotes the number of conjugate
classes of elements of order p. Further, the degrees yx,(1) of the
irreducible characters y, of B,(p), satisfy the following congruences:

x:(1) =2, = 0; = =1 (mod p) ,

if y; is p-conjugate only to itself and
=0 (1
%ul) = 7 = % = (= Jmod p),
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if x; belongs to the family of p-conjugate characters If 1, = %, % ---,
Yo+ represent the different families of B,(p), (¢ = (p — 1)/?), then

(1) 1402 + o+ + Ogsiers = 0.

The next result is very well-known. (For a proof, see [8] (2.15),
or any book on group theory).

REsULT 2. Let K, K,, K, be any three conjugate classes of ele-
ments of a finite group G. Let x,¢ K, and let a(x, x,; 2;) be the
number of ordered pairs (¥, x,), 2, € K; and x, € K,, such that x,-2, = ..
Then, if yx, .-+, %, are all the irreducible complex characters of G,
we have

(2) a(x,, ¥ ) | Cy(®,) H Cs(a;) | = l G| Z; X'I‘(xl)xxz(?}i;X@('{v?}) .

Professor D. Wales has communicated the following result to the
authors.

ReEsuLT 3. Let G be a primitive permutation group of degree 100
with stabilizer of a point H isomorphic to the Mathieu simple group
M,, and the orbits of H are of length 1,22 and 77. Then G is isomorphie
to the Higman-Sims simple group of order 44,352,000.

1. Determination of the Sylow p-normalizers for » = 11,7 and
5. In this section, we will determine the Sylow 11-, 7- and 5- normal-
izers. Unfortunately the amount of numerical work required to show
that the Sylow ll-subgroup is self-centralizing is too large to enable
us to present the proof here. However, the methods and results used
are similar to the examples of this kind of work given in [12] and
[14]. In addition to the results given in [12] and [14], we also need
some results of R. Brauer on the defect group of a block (see [3], [4]
and [7], §86, 87, also [5], Theorem 2 and Theorem 3). Thus combining
these methods we are able to show the following result.

LEmMA 1.1. The Sylow 1l-normalizer of G is a Frobenius group
of order 55.

Using equation (1), it is not difficult to show that the number of
conjugate classes of elements of order 7 is one, i.e., | N4(G,): C4(G,) | = 6.
Then, with Lemma 1.1 and more numerical work, we have that
B,(11) n B(7) = {1,3200}, where the numbers in the brackets are the
degrees of the irreducible characters which lie in both the principal
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11-block, B,(11) and the principal 7-block B,(7). If, in equation (2),
we take x, = x, = v, where v is an element of order 7 and =z, is an
element of order 11, then we have that [Cy(v)]||2.3.7. Hence by
Sylow theorems, we have

Lemma 1.2. The Sylow T-normalizer of G is a Frobenius group
of order 42,

We now get the following possibilities for equation (1) for B,(11)
and B,(7):

Possibilities for equation (1) for B,(11):

(I) 1-—3200— 175 + 1750 + 2520 — 896* = 0.

(II) 1 — 3200 — 175 + 1750 + 1750 — 126* = 0.
(In case (I), the two 1l-conjugate characters have the common degree
896 and in case (II), they have the common degree 126).

Possibilities for equation (1) for B,(7):

(A) 1+ 3200 — 825 — 2750 — 1056 + 22 + 1408 = 0.
(B) 1+ 3200 — 825 — 2750 + 22 + 22 + 330 = 0.
(C) 1+ 3200 — 825 — 2750 — 55 + 330 + 99 = 0.
(D) 1 4 3200 — 825 — 3520 — 1056 + 1408 + 792 = 0.

Now let yx, be the (unique) character of G with degree 3200.
Then y, lies in a 5-block B,(5) say, of defect 1. If D is the defect
group of B,(5), then D has order 5 and 0,Cy(D)) = D(see[T]).

Suppose we have case (II) for B,(11). If we put yx,(1) = 175,
2L(1) = xs(1) = 1750, y6(1) = Xe(1) = 126 (3, is the complex conjugate of
Xe)s we see that y(d) = x(d) = 0, x,(d) = —x:(d) and hence y,(d) =
Ys(d) = 1 for any element d in G, d of order 5. Now take d e D, and
since y.(d) = 0, we have yy(d) = —ys(d) = 0(mod 5).

We now use Result 2 and put d = z, = », and take 2, to be an
element of order 11. Since the left-hand side of (2) is nonnegative,
| 1:(d) | < 10, and we get that in all cases, | Cy(d) | | 22.5°. As {d) = D,
we have that 0,(C,(D)) > D, a contradiction. Hence, case (II) for B,(11)
is not possible.

So, throughout the rest of the paper, we are in case (I) for B,(11)
and we put

7,(1) = 8200, 7,(1) = 175, y,(1) = 1750, 7:(1) = 2520

and 74(1) = Fs(1) = 896.
Since all the characters of B,(11) are rational-valued, except ¥,
and ¥, which are rational-valued only on 11-regular elements, we obtain
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a congruence modulo 5 for y(x), x € B,(11) and « any element of order
5., Put # =2, =2, and x, = s, where s is an element of order 11,

and equation (2) becomes
a(x, ; 8) | Co() [
(a@):(s)
G|S> M) LilS)
= 16150

_ @) @) @) (#5(2))?
"'C;I<1 3200 175 2520 896 )

= 20.5%.11(40336 — 243a® — 29v* — 327) ,

where a = y,(x) = —%u(®), ¥ = Ys(®). Note that y,(x) = ye() —1 =7 -1
by the orthogonality relation. Since the left-hand side of the above
formula is nonnegative, we see that

|a] < 15 and so @ = 0, +5, or +10, and if

a=0, 34 <y <36
a==+5, —-34=<v=<31
a= =+10, —24<v<2l.

By the orthogonality relation, 1 4 5a? + v* + (v — 1)? < | Cy() |, and
because (|Cgy(x)]|, 77) = 1, we get the following possibilities for any
element z, of order 5, in G:

(i) a=0,7= _41[06(37)”24'53

(ii) a=0,7v=1,|C4xx)]|2.3.5

(iii) a= +5,v=1,|Csx)]|]2.3.5%

If {(dy = D is the defect group of the 5-block B,(5) (of defect 1)
which contains y,, then y.(d) = @ # 0, and so @ = 5 and |C,(d)| | 2°.3.5%.
As 0,(Cy(Kd>)) = D, it is immediate that Cy(d)/D = A,. It follows now
that C4(G,) = Z(G,), and that G; is nonabelian and by a result of B.
Huppert ([10], S. 8.6), G, is of exponent 5. If Z(G;) = {o)>, where p°* =
1, then | Cy(p) || 2'.5°, and as {0) <{ N4(G;), we have by Sylow theorems
| Nx(Gy) | = 5° or 24.5°. The first possibility is impossible by a theorem
of H. Wielandt ([10],"S. 8.1), and so Ny(G;) = S.G, where S is a 2-
group of order 16. Since Z(S) is a cyclic group of order 4, we have
that N,(<d)) = F,, x A, where F,, is a Frobenius group of order 20,
and so d is conjugate to all its powers.

We shall now proceed to rule out possibilities (B), (C) and (D) for
B,(7). In the cases (B) and (C), we put », = ¢, = d and x, = v, where
V' =1, in equation (2). In both these cases, there are only a small
number of possibilities for the values of the characters in B,(7) on the
element d, and in all cases we get that | C;(d) | < 22.3.5%, a contradiction;
so cases (B) and (C) are not possible for B,(7). Case (D) is immediately
ruled out by summing the squares of the degrees so far determined,
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(noting that the 5-block of defect 1, B,(5) which contains ¥, has the
following degrees: B,(5) = {38200, 175, 825, 1925, 1925}); as this sum is
45, 496, 297 > |G |.

Hence, for the rest of the paper we are in case (A) for B,(7) and
we put B,3) to be the 3-block of defect 1 containing the characters
Y- and y, of degrees 825 and 1056 respectively. Then

B,(3) = {825, 1056, 231} .
Let B,(5) be the 5-block of defect 1 containing y,, ¥s; and y,. Then
B,(5) = {3200, 175, 825, 1925, 1925} .

Further, we put y,(1) = 2750, x,(1) = 22 and x,,(1) = 1408. Then using
Result 2 for «, = , = o and 2z, = v, where {p> = Z(G;) and " =1,
we again get a few possibilities for y(p), x € Bi(7), and this gives that
|Ce(0) | ] 22.5°. Hence C4(p) is precisely of order 4.5° and C,(p) is a
semi-direct product of a cyclic group of order 4 and G;. It follows
immediately that the Sylow 2-subgroup S of N.(G,) is a quasi-dihedral
group of order 16 (i.e., S =<a,b|a®*=1= ¥, bab = a")). Now let
leG\{0), and | #y,q,d, then [ has precisely 80 conjugates in Ny(Gy),
and so Cy(l) N Ny(Kp)) = > x {p>. Summing the character y, on G,
we see that y,(I) =1 and as Cy(0) N Cu(l) =<T> x o), and | Cx(l) | | 2.3.5%,
we have |[Cy(l)| = 5, i.e., Cux(l) = <I> x o). In particular [ ~,d.
The 5-structure of G is now completely determined and we summarize
these results in the following lemma:

LeEmmA 1.8. The group G has precisely 3 conjugate classes of
elements of order 5 with representatives d, 0 and l. A Sylow 5-
subgroup G, of G is nonabelian of exponent 5 and NyHG;) is a semi-
direct product of G, and a quasi-dihedral group of order 16. Also,
Z(G;) = <oy and p has centralizer of order 4.5° |Cy(l)| =5, and
Co(d) =<d) X A;. Finally, N,(&)) is isomorphic to the direct pro-
duct of aFrobenius group of order 20 by A,.

2. The 3-structure. Let {c¢)> be a Sylow 3-subgroup of C,(d).
Then

Culc) N Cy(d) = <d> X <y Ny(Kep) N Cy(d)
= S3 X <d>, NG(<C>) ﬂ NG(<d>) = Ss X on .

It now follows that Cy(c)/<{c)> = S;.E, where E ={1) or E is an
elementary 2-group of order 16, and E <] Cy(c). Since N;(Kc>) > Cg(c),
G, is then elementary abelian; and so Cy(c) = <c¢) x S;-E.

Suppose | E| = 16. Let X denote a Sylow 2-subgroup of N =
Ny({c>), and let G, be a Sylow 2-subgroup (of G) containing X. If
E < G, then | Ny(E): N| =2, and then 2*||N,(<d>)| (by the Frattini
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argument), clearly a contradiction. We may suppose therefore that
Ny (E)=N. As X/E is not elementary, there is an involution
te Z(G,) N E. It then follows that |C.(¢): Cy(¢)| = 2 or 10, but in
either case, {c> < C(0,(Cy(t))). AsCE)NN = E x {c), | Co(Gy) || 2°.3%
Also, if 0, = 0,(Cy(?)), then 0, < E. If <{¢) is a Sylow 3-subgroup of
C(0,), we have a contradiction by the Frattini argument. So a Sylow
3-subgroup G, of C(0,) is of order 9. By the Frattini argument,
51| Cq(t). So Cut) is a soluble group of order 2°.3>. From the structure
of Cs(c), we must have |0,| = 4 but then G, <] C4(t), which contradicts
the fact that | Cy(G;) || 2°.3* We have proved:

LEMMA 2.1, If {c)> is a Sylow 3-subgroup of Cgy(d), then Cy(c) =
> X 8, and Ny(Ked) = S; X S,

Put Ny(<{¢)) = A x B, where A = S; and B= S,. Let m be an
involution in A. Since A is a maximal subgroup of V, where V = 4,
and Cy(d) = {d> x V, it follows that if {\) is a Sylow 3-subgroup of
B, then C,(\) N Cyx(d) = A. We have Cy(r) N No(Kd)) = W x <&, 7,
where W = F,, and {z, 7> is a 4-group. It now follows by Sylow
that | Cy(n) | = 2°.8.5, 2°.8.5 or 2°.3%.5. In the first case, {(x, > <] Cu(n),
which contradicts Cq(d) N Ce(N).

If | Cu(mr) | = 2°.3.5, then 0, = 0,(C(7)) is elementary abelian of order
64 and Cy(m)/0, = S;. (If 0, were nonabelian, then Cy(d) N Cx(N) #= (7).
Let f be an element of order 8 in C4(d) such that fe N,((x, 7)). Now
No(m, ©9) = 0. W, and N(m, o) 2 {f>. Since Coldm, 7)) < Co(m),
we have that 0, = 0,(C¢(<{m, 7)), and hence N4(0,) > Cy(m). However,
from Lemma 1.1 and the fact that 4, has no elements of order 15,
we have that | Ng(0,) | = 2°.8%.5; thus Ng(0,)/0, = {f>-S; where 0,-{f>
is a normal subgroup of N,(0,), again contradicting the structure of
Co(d) N Ca(V).

The order of Cg(m) is thus 2°.8%.5 and it follows that Cu(n)/<{n) =
Aut (4,). Hence Ny(G.)/Cy(G;) is a semi-dihedral group of order 16
and hence all elements of order 3 are conjugate in G.

Let 2z be the unique involution of a Sylow 2-subgroup Z (of order
4) of Cyp) where o) = Z(G;). Since o> #s<{d),z+#sm, and so
| Ca(z) | = 2°.8.5 or 2°.3.5. In the first case C,(2)/Z = S;, but since the
Sylow 2-subgroup of N, (Kp)>) is quasi-dihedral, z € 0*(X), where X is
a Sylow 2-subgroup of C,(2). However as X/Z = D,, where D; is a
dihedral group of order 8, U*X) < Z which gives a contradiction.
Hence |Cy(2)| = 2°.8.5 and if E = 0,(Cy(z)), E is a 2-group of order 64
and Cy(?)/E = S,. Because Cg(0) N Cylc) N Ce(r) = Z-<0), Z < E and
Z <] C4z) = C.

As me V, where Cy(d) =<{d) x Vand V= A, w¢ E,butre V-E,
where V-E/E = A,. In any case, Ny,(<¢)) = A x F, where A = S, and
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F =D, with FNE =7. Thus C.n)-E is a Sylow 2-subgroup of
C = C4(2), and hence |Cy(m)| < 8.
If E is abelian, it is of type (4, 2, 2, 2, 2) and

Colo)NE=Coo)NE=2Z. Also, |Co(m)NUE)| =8,

and as C,(7) = Z, we have a contradiction. Hence FE is nonabelian
and thus E is a central product of two quaternion groups @, and Q.,
and the cyclic group Z of order 4. We have proved:

LEMMA 2.2. The group G has only ond conjugate class of elements
of order 3, Cy(G;) = {n>xG,;, where w is an involution, and Ng(Gs)/
Ci(Gy) ts a semidihedral group of order 16. If z is the tnvolution
i Cy(0), where o) = Z(G;), then C = Cy4(z) is an extension of a
nonabelian 2-group E of order 64, (which is a central product of
two quaternion groups and a cyclic group of order four) by the
symmetric group S; on 5 letters. Finally, Cy(w)/[{z> = Aut (4,).

3. Determination of all degrees of irreducible characters of
G. We are now in a position to apply the exceptional character theory
to the group G with respect to the subgroup H = N,;(c¢>), where ¢
is any element of order 3. As “special classes” (in the sence of Wong
[15]), we take all roots of ¢. As H = S, X S,;, the character table of
H is determined from the character tables of S; and S,. Put H =
A x B, where A= S, and B = S,.

In the above notation, our special classes of H are the conjugate
classes in H with representatives ¢, ¢t, ¢z, cw and cd. As usual, B.(3)
will denote a 3-block of G and b.(3), a 3-block of H. The group H

Character Table of A = Ss

Order | Element 01 02 03
1 1 1 1 2
2 T 1 -1 0
3 c 1 1 -1

Character Table of B = Ss

Order | Element & o Cs G & s &1

1 1 1 4 4 6 5
2 z 1 0 0 -2 1

2 t 1 -1 -2 2 0 -1

4 w 1 -1 0 0 0 1 -1
3 A 1 1 1 1 0 -1 -1
6 it 1 -1 1 —1 0 -1 1
5 d 1 1 -1 -1 1 0 0




508 D. PARROTT AND S. K. WONG

has three 3-blocks:

61(3) = {1115 0,, 0, szy Cs'gzy Cobsy Csy ngzy Coes}

62(3) = {Czy Czﬁzy C2‘93y Cu Cﬂza Cﬁxy Cn C702y C?es}

63(3) - {Cm C:ﬂgy Caas} .
Here 1, = 6,-C,, and 0,(8), b,(3) are the 3-blocks of defect 2 of H; and
b4(3) the unique 3-block of defect 1 of H. We denote by b5.(3)% the

block of G which corresponds to the block b.(3) of H, using Brauer’s
block correspondence (see [4]). By [15], Theorem 6 (or [4], S.2E)

bl(g)” - Bl(g)
62(3)’7 - Bz(g)
by(3)" = B(3) = {825, 1056, 231} ,

where B,(3) is the only other 3-block of defect 2 of G besides the
principal 3-block B,(3). If D denotes the union of special classes of
H, we take the following basis for the module of all generalized
characters of H which vanish on H\D:

P = (1, — §)2

P, = (1, + §)2,

Py = (L — )Y,

p.= L+ )Y,
and

P5 = ‘:52 y
where
X=1,+0,—0,.

Note that ¢, and ¢, are expressed as a linear combination of
irreducible characters occurring only in b,(3). Similarly ¢, and ¢,; and
@, are expressed only as a linear combination of characters occurring
in b,(3), and by(3) respectively. Let @; denote the corresponding induced
characters of ¢ (¢t =1,2, «--, ).

The induced characters ¢}, o5 can be expressed as a linear combi-
nation of the irreducible characters of B,(3) and if y € B,(3), then ¥
appears as a constituent of ¢} or ¢f (see [15], Ths. 7 and 9). Similar
statements can be made for ¢}, @f and B,(3), and @F and By(3).

Finally, if y is any irreducible character of G, let n; = (y, @),
(t=1,2,+.--,5). Then

X(O-) = —“n1C3(U) + nzCa(o) - 7743(:4(0') + n4C7(0)

(3)
+ n,Cy(0), for any ce D .
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Since (pf, ¢f)e¢ = (piy P;)x We have:
(pf, @) = (9, 5) = (pf, F) = (P, ) =6,
(pf, @5) = (o, f) = 3,
(pF, 93) = (o5, @3) = (of, f) = (@, %) =0,
(o5, @) = 3

and (@f, pf) =0 for 1 =1, 2, 3, 4.
Further, by the Frobenius reciprocity law,
(P, 1) = (@3, 1) =1 and (¢, 15) = (9%, 1) = 0.

From these values, it follows that

(4) and
@z* = 1(; + 51X1 + 52X2 + 771Y1 + 772Y2 + 773Y3
where X, and Y, are distinct non-principal irreducible characters of G.

So far, the degrees of 15 irreducible characters of G have been
determined:

X = 1 I L2 A3 X4 As I Xs 7—56 =7 xs X9 |
1 | 3200 | 175 | 1750 | 2520 | 896 | 896 | 825 | 1056 |

X10 X1 ' iz 1 i3 , 14 %15
2750 | 22 | 1408 r 231 [ 1925 | 1925

Using (3) and the fact that (x|, 15) is an integer where G, is
a Sylow 3-subgroup of G, we get y,;(¢c) = 6 and so

PF = Yis+ Xs — Ao -

It follows that y,(cd) = ys(cd) = —ys(ed) = —yulcd) = —y(ed) = 1.
Further, y,(c) =4 and hence, if y,cB,(3) then (pf-y,) = —1 and
(¥, Au) = 0. By obtaining a congruence modulo 9 for the above
characters on the element ¢, we see that if y; e B,(3), then y; occurs
in precisely one of ¢} or ¢f if 1 =2,38,4,6,7, 10,11 and 12; and in
both @f and ¢f if ¢ = 1, 14 and 15, using the block-intersection lemma
of Brauer-Tuan ([6], Lemma 3), and since yx,(¢cd) =1, we have the
following possibilities for B,(3,), B3):

(a) Bi(3) = {1, 3200, 1750, 22, 1408, 2750, - - -},

B,(3) = {175, 896, 896, .-}
(b) Bi(3) = {1, 3200, 175, 1750, 896, 896, 22, 1408, 2750},
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B,(3) = {1925, ---}
(¢) B.(3) = {1, 1750, 896, 896, 2750, 1408, -- -},
B,(3) = {38200, 175, 22, - - -}
(d) B,3) =1, 1750, 896, 896, 2750, 22, -- -},
B,(2) = {3200, 175, 1408, ---}.
Note that y, and y, both lie in the same block, and

(@;k’ XG) = (@z‘v}&)a (7/ = 1: "':4)

as of is rational-valued. Further, y,(cd) = y(cd) = 0 and since both
Ao X0 always lie in B,(3), x. and y,, must be constituents of »;; and
as ye(cd) = y(cd) = 1, y, and y, either both occur in ¢f or both in ¢j.

By summing the squares of the degrees so far determined, any
other irreducible character of G must have degree 77k, where k& < 20.
In particular, if y € B,(3) or By(3), then (k, 3) =1 and k < 20.

Case (b) for B,(3) and B,(3) is immediately ruled out using (4).

In case (c) for B,(3) ahd B,(3), first assume that neither x, nor
¥ appears in @f. Then @F(1) = 3200 — 175 — 22 — 1925 + 847 = 0.
But 847 = 7 x 11* which is not possible. Hence either y,, or ¥,; appears
in @f with nonzero multiplicity and we have:

@) = 1 + 896 + 896 — 1408 — 1925 + 1540 = 0,
Pr(1) = 1 — 1705 + 2750 — 616 — 1925 + 1540 = 0 ,
PF(l) = 3200 — 175 — 22 — 1925 + 8,2, + 8,2, = 0,

and
Pr(1) = —1925 + b2, + 02, + Sk = 0,

where 6, 6, £;(7 = 1,2,3) are equal to +£1 and =z, 2, ¥, ¥ Y5 are
degrees of irreducible characters of G. No matter what values the
z; takes, at least two of the y, take the value 1232 or one of them
takes the value 1540. In any case, the sum of the squares of the
degrees so far determined is greater than |G|.

In case (d) for B,(3) and B,(3), we have;

P*(l) = 1 + 896 + 896 — 22 — 1925 + 154 = 0,
Pi(1) =1 — 1750 + 2750 + 770 — 1925 + 154 = 0 ,

Pr(1) = 3200 — 175 — 1408 — 1925 + 30,2, = 0,
and
@i(l) = —1925 + iaizi + Eslmy@ =0,

in the same notation as above. We may take (¢f, %) = —1, and then
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on the element ¢t of order 6, we get:
XZ(Ct) = _21 X3(Ct) = 2! XB(Ct) = 07 Xu(Ct) = -1

and y,(ct) = 1. Summing over the 5-block of defect 1, B,(5), and
using [1], Corollary 4, we get

—24+0=-2#2+1-1=2,

and a contradiction and so case (a) is the only possibility for B,(3)
and B,(3).
In case (a), we have:

P*(1) =1 + 3200 — 22 — 1408 — 1925 + 154 = 0,
@) =1 — 1750 + 2750 + 770 — 1925 + 154 = 0 ,

(1) = 896 + 896 — 175 — 1925 + 39,2 = 0,
and
Pr(l) = —1925 + 302 + > £y; = 0.«
= =

Thus >2.,0,2; =808 =4 x 77 and >V, k;; = 1617 = 21 X 77, which
gives a number of possibilities for z; and ;. However, if

X €Bx3) UBy3) UBy3), then 9 x 77[x(1).

By summing the squares of degrees and using this fact, we get a
unique decomposition for @} and @;:

@F(1) = 896 + 896 — 175 — 1925 + 154 + 154 =0,
and
@F(1) =770 + 770 + 77 — 1925 + 154 + 154 =0 .

There are now either 2 or 5 irreducible characters left to be
determined (in the first case G would have one irreducible character
of degree 693 and one of degree 1386: while in the second possibility
G would have five irreducible characters of degree 693); and so G has
either 24 or 27 irreducible characters. Using the orthogonality relations
for the element ! of order 5 (see Lemma 1.3) and with centralizer,
Cs(l) of order 25, it follows immediately that G has only 24 irreducible
characters and hence 24 conjugate classes of elements. The character
table of G can now be completed, except for some classes of 2-elements
which have not as yet been determined.

The partially completed character table of G shows that the
characters y, ahd %, vanish on all 2-elements except the involution 7
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(defined in Lemma 2.2). A result of Frobenius and Schur (see [8],
(3.5)) shows that 7 is not the square of any element of order four in G.

4. Completion of proof of theorem. Let z be the central
involution with centralizer C;(z) = C, as in Lemma 2.2. Then C/0,(C) =
S;, and 0,(C) is a central product of two quaternion groups @, and @,
and a cyclic group Z of order four. We may take <c¢) and P = {o>
to be a Sylow 3- and Sylow 5-subgroup of C respectively (for definitions
of {c¢) and {0), see Lemmas 1.3 and 2.1). Let E = 0,(C), then

Cle)NE=CP)NE=Z | NAP)| = 2.5

with N,(P) having as a Sylow 2-subgroup a quasidihedral group of
order 16; and N ({c)) = S, X Ds, where D, is a dihedral group of
order 8. The action of P and <{¢» on & shows that [C:C’| =2 and
hence C'/E = A,. We may suppose that the involution 7 lies in C"\F.
From the structure of Cy(c), if Z = {w), where »* = 1, then Cy(w) = C".
Further, if w is any element of order four in E\Z, then | Cy(u)| = 25
as # must have exactly 30 conjugates in C and as OY(E) = {z).
Similarly, if ¢ is an involution in £ Z, then |C(t)| = 28

So far, we have determined the order of 20 of the 24 conjugate
classes of elements of G. If K, K,, K, and K, denote the remaining
four classes of 2-elements of G, then using the previous lemmas and
summing the order of the conjugate classes so far determined, we
have the following possibilities:

[Ce(x) | [Co(w) | [Colws)| | Cplwy) |

(1) o 2 2 or
(2) 2 2t 2t 2t
(3) 2 2 20 2,

where ;¢ K;, 1 =1, 2, 3, 4.

It now follows that for tc E\Z, t an involution, then ¢ z. If
% is an involution in C’\E, then by Sylow theorems, we may take
xe N(P)Nn C'. However the Sylow 2-subgroup of N,.(P) contains only
two involutions « and a2z which are conjugate in N,(P), and so 2  ;
and hence C'\E has only one class of involutions. A transfer theorem
of J. G. Thompson ([13], Lemma 5.38) now shows that G has precisely
two conjugate classes of involutions with representatives z and 7.

As before, we may take 7 e N, (KO)\ENNKe)). Put N.() =
{c>{m)> x K, where K is a dihedral group of order 8. Denote the
involutions of K by z, 7, 72, 7w~ and tw, where Z = {w) is as above
and Z is the unique cyclic group of order four in K. From the
structure of Cy(c), we may take 7>tz 3y 2 and 7@y tw » T
Further, [{c¢>, E] is an extra-special 2-group of order 32 and we write
[Ke>, E] = Q.Y Q. where @, and @, are quaternion groups of order 8
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and @, Y Q, denotes the central product of @, and Q,. Put @, = {a,, @),
Q. = {a,, aa;, t =1, -+, 4 are elements of order 4) and note that
<7T>’K é NC(QI \I/ Qz)-

As |Cy(w)] £ 8, we may choose the &; in such a way that af =
o', of = o7, af = a,; and of = a,,. Hence Cu(r) is an abelian group
of order 8 and type (4,2), and Cy(n) = Z x {a,, a,). Similarly, as
ceCy(r) and 7€ Ny(Q, Y Q;); and tw » 7w, we get af = a, and & = «,
(again with appropriate choice of the «;). Since 7 is not the square
of any elemement of order four, an easy computation now gives that
OYC (7)) = {wa,a,w>. A result of Gaschutz ([10], S.17.4) shows that
Co(m) = <m)> x Aut (4,).

If we put v = wm, then v is of order four and C,(v) = C, (7).
Certainly, v* = z and as a,7 € C,(v), we have that |C,(v) | = | Cg(v) | = 2%,
The action of @ on E gives that the coset En has precisely eight
elements of order four whose square is 2, and so C’\E contains one
conjugate class of elements of order four (with representative v) whose
square is z. The action of = and ¢ on E shows that C\C’ has no
element of order four whose square is z.

The group G has therefore precisely three conjugate classes of
elements of order four, with representatives w, v and v.

The orthogonality relations enable us to complete the character
table on all but the last three classes of G. It can be shown by an
easy computation that there are no elements of order 16. In any case,
from the orthogonality relations the character y,, of degree 22 vanishes
on the remaining 3 conjugate classes of 2-elements.

We give below only part of the character table of G, namely, the
value of the irreducible character y,, of degree 22 on certain elements.
Note that for any element a2 of order eight, ¥.(x) =0, from the
orthogonality relation.

Element (s) Order X

1
c
cz

S

S N
S

O = B DD OOt W
3]

s 2
<

Using the same notation as above, Cy(7) = (&, a,a,, 2>, an ele-
mentary abelian group of order 8. If we put F = () x Cg(7), then
F is an elementary abelian group of order 16, and further, {F, ¢, 7) <
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Ny(F). Hence F' contains precisely one class of involutions in G (since
Ty2) and [ NJ(F)| =233, as ENF < C. Also, Co(F) = Co(F) = F.

The coset E7 contains precisely 16 involutions, and so, if £ is an
involution in C\C’, then £ » 7 or £ » Tw. Now, let J be any ele-
mentary abelian subgroup of order 16 of C, such that J contains only
involutions conjugate to z. Then |{JN E| =8, and if r£eJ\E, then
k€ C\C’ and hence £ » z. Thus C has precisely one class of elementary
abelian subgroup of order 16 containing only involutions conjugate to
2. The structure of A, gives the following result:

LEMMA 4.1. If F is an elementary abelian subgroup of order 16
in C, and tf all involutions in F are conjugate to z, then Ny(F)\F = S,.

Clearly, z has 15 conjugates in Ny (F'), and so Ny (F') = M is of
index 2 in Ng(F'), and M\F = A,. Since {¢) < M and | Cy(c)-F\F'| =
QYweM. Thus |E:MNE| =2 and there must be an involution
te En M\F N E. Further, |Cy(t)| =4 and as the normalizer of a
Sylow 5-subgroup of M is dihedral of order 10, there must be precisely
one class of involutions in M\F and they are all conjugate to z in G.

If ¢ is an element of order five in M, then N, ({) = {p)<2),
for some involution ¢ in M\F. Since 7 7 2z, # must be conjugate to
lordin G, since if ¢ o, then 2 3 7.

Since ¢ normalizes [e¢, E] N M, and

e, EIN M| =16, [c, E] = EN M.

As [{m,wp N M| =4, and n,w¢ M,<{nw) =<n, o) N M, and {nw):
[e, E]-F/F = D; and is a Sylow 2-subgroup of M/F. Let T/F =
{rnw)+[e, E]-F/F. Since the action of 7, 7 on E has been completely
determined above, the action of T/F on F is now completely determined.
If we regard F as a vector space with basis z, 7, a,«, and a.x,, the
action of T on F is given by:

1 0 0 1 0 0 0
1110 1101
t, = Q02 = , t, = qaa, =
0 0 10 1 010
10 01 0 0 0 1
and
1 0 00
1100
, = TWT =
0 010
0 0 1 1
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where ¢, t, and ¢, are involutions, <{t, t, ¢,> = D, where D is a dihedral

group of order 8 with Z({¢, ¢, t,)) = {t,» and T = {¢t, t, t,)-F. Note

that (4.8, =1t and |Cy(tt)| = 2%, and <ttt,» of order 8 is self-

centralizing in M. As |Cy(t): Cu(tity)| = 4, tit, + w, also if x is any
G

element of order four such that x*c F, then z + w as w¢ M.

The group M has therefore 195 involutionsg(all conjugate to z in
&), 1260 elements of order four, all conjugate in G to either w or w,
720 elements of order eight, 800 elements of order three, 480 elements
of order six and 2, 304 elements of order five. Summing y, over the
group M, we find that (y,, 1), =2. Let U= V-G, be a Sylow 3-
normalizer in M, where V is a cyclic group of order four and G,is a
Sylow 3-subgroup of M. By an easy computation, (), 1); = 4. - Now
take a quaternion group W of order eight, W < Ny (G,), and V < W.
Since C\C’ contains no elements of order four whose square is z, W
contains only elements of order four which are conjugate to w or v. If
L = W-G,, then we find that (y,, 1), =3. Since2 + 3 > 4,{L, M) =
H is a proper subgroup of G, and |H| = 2".%.5.k, where k is an
integer, & > 1. ‘

If Nis a normal subgroup of H and 1 < N < M, then N = F or
N = M. Since H = Ny (F') contradicts the structure of S, | H: M| >
10. From the degrees of the irreducible characters of G, we see that
if G is a subgroup of G with |G: G| < 200, then |G| = 2.3%.5.7.11,
2°.32.5%7 or 2°.5%.7.11; that is |G: G| = 100, 176 or 45 respectively.

The following are therefore the only possibilities for |H|: (a)
27.3:.5% (b) 27.3%.5%.7, (¢) 2.345.11, (d) 27.3%.5.7.11, (e) 28.3%.5.11, (f)
28.82.5.7, (g) 2°.8.5% (h) 2°.8%.5.7.

In the cases (a) to (d), H must be a simple group and a result
of Z. Janko [11], shows that we are in case (d) and then H = M,,.
Cases (f) and (g) can be eliminated by Sylow theorems and the structure
of the Sylow 7- and 1l-normalizers. If we are in case (g), we may
take 2 to be a central involution in H and then N, (F) = Nu(F).
However, now | H: N,(F')| = 10 which contradicts the order of A,.
Finally, suppose we are in case (h). If H; is a Sylow 5-subgroup of
H, then as H is simple by the Frattini argument | Ny(H;) | = 2.5%
This is a contradiction, as no subgroup of order 5° has normalizer
divisible by 16.

We have thus shown that case (d) is the only possibility for the
order of H and so H is isomorphic to the Mathieu simple group M,,.
The degrees of the irreducible characters of G yield the following
result:

LEMMA 4.2. The group G is a primitive permutation group of
degree 100 with stabilizer of a point H isomorphic to the Mathieu



516 D. PARROTT AND S. K. WONG
simple group M, and the orbits of H are of length 1,22 and T7.
With Result 3 and Lemma 4.2, the theorem is proved.

The authors would like to thank Professor D. Wales for his kind
permission to quote Result 3.
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