UNKNOTTING UNIONS OF CELLS

THOMAS BENNY RUSHING
In this note we consider the problem of determining whether the union of cells is nicely embedded in the n-sphere if each of the cells is nicely embedded. This question is related to many embedding problems. For instance, the n-dimensional Annulus Conjecture (now known to be true for $n \neq 4$) is a special case. Cantrell and Lacher have shown that an affirmative answer implies local flatness of certain submanifolds. Also, this question is related to the conjecture that an embedding of a complex into the n-sphere which is locally flat on open simplexes is ε-tame in codimension three.

The problem mentioned above was first investigated by Doyle [9] [10] in the three dimensional case and by Cantrell [2] in high dimensions and later by Lacher [15], Cantrell and Lacher [3][4], Kirby [13], Černavskii [5][6] and the author [17]. Also, Sher [21] has generalized a construction of Debrunner and Fox [8] to obtain counterexamples in certain cases. Since the n-dimensional Annulus Conjecture, $n \neq 4$, is now known to be true [14], only two results of § 7 of [17] remain of interest. First we will prove a strengthened form of one of those results and we greatly simplify the proof by employing the powerful tools now available. In particular we prove the following theorem.

Theorem 1. If D^n_1 and D^n_2 are cells in S^n, $n > 5$, of dimensions m_1 and m_2, respectively, and if $D^n_1 \cap D^n_2 = \partial D^n_1 \cap \partial D^n_2 = D$ is a k-cell (possibly empty), $n - k \geq 4$, which is locally flat in ∂D^n_1, in ∂D^n_2 and in S^n and is such that $D^n_1 - D$ and $D^n_2 - D$ are locally flat, then there is an ambient isotopy e_i of S^n such that $e_i(D^n_1)$ and $e_i(D^n_2)$ are simplexes and $e_i(D^n_1 \cap D^n_2)$ is a face of each.

Remark. If the above theorem is modified by requiring $n - k = 3$, then counterexamples can be constructed for any m_1 and m_2 (see [21]).

Proof of Theorem 1. Every orientation preserving homeomorphism of S^n, $n \geq 5$, is stable [14], hence isotopic to the identity. It will then suffice to construct an orientation preserving homeomorphism e_i satisfying the conclusion of the theorem. By Theorem 5.2 of [1], we may assume that D^n_1 and D^n_2 are locally flat. For $i = 1, 2$, it is easy to construct a homeomorphism $f_i : S^n \to S^n$ such that $f_i(D^n_i, D) = (\Delta^m_i, \Delta^k)$ where Δ^m_i is an m_i-simplex and Δ^k is a k-face. Thus, by using f_i, $i = 1, 2$, and Lemma 3.6 of [18], we can construct locally flat n-cells D^n_i and
D_i^n satisfying the following conditions,

1. $D_i^n \cap D_j^n = \partial D_i^n \cap \partial D_j^n = D$,
2. D is locally flat in ∂D_i^n and ∂D_j^n, and
3. (D_i^n, D_j^n) is a trivial cell pair, $i = 1, 2$.

Let A_i^n and A_j^n be n-simplexes in S^n such that $A_i^n \cap A_j^n = \Delta$ is a k-face of each. We will now construct an orientation preserving homeomorphism h of S^n such that $h((D_i^n, D_j^n, D)) = (A_i^n, A_j^n, \Delta)$. It is easy to obtain an orientation preserving homeomorphism h_1 of S^n such that $h_1((D_i^n, D_j^n, D)) = (A_i^n, D)$. Let A_o be the n-simplex having as vertices the midpoints of the segments which join the vertices of A_i^n with the barycenter of A_i^n. Let $f: I^k \to \Delta$ be a PL-homeomorphism and define $F: P \times I \to A_i^n$ by extending linearly on each segment $\{x\} \times I, x \in I^k$, the map which takes $(x, 0)$ to $f(x)$ and $(x, 1)$ to the midpoint of the segment joining $f(x)$ and the barycenter of A_i^n. Then, $E = F(I^k \times \{1\})$ is a k-face of A_o. Now, by using the Annulus Theorem, it is easy to get an orientation preserving homeomorphism h_2 of S^n such that

1. $h_2((D_i^n, D_j^n, D)) = (A^n, J^n, \Delta)$, and
2. $h_2 \vert \partial A_o \cup E = 1$.

Let A denote $C_1(S^n - (A_o \cup A_i^n))$. Then, the embedding $h_3 F: I^k \times I \to A$ satisfies the hypotheses of Theorem 1 of [19]; hence, by that theorem there is a homeomorphism h_4 of A such that $h_4 \vert \partial A_o \cup \partial A_i^n = 1$ and $h_3 h_2 F: I^k \times I \to A$ is PL. Extend h_4 to all of S^n by way of the identity. Consider the two PL embeddings $F \vert \partial I^k \times I: \partial I^k \times I \to A$ and $h_3 h_2 F \vert \partial I^k \times I: \partial I^k \times I \to A$. These two embeddings clearly satisfy the hypotheses of Theorem 4 of [11]; therefore, by that theorem there is a PL homeomorphism h_5 of A such that $h_5 h_4 h_3 h_2 F = F$ and $h_5 \vert \partial A_o \cup \partial A_i^n = 1$. Extend h_5 to S^n by the identity. Now, the PL embeddings $h_3 h_5 h_3 h_2 F: I^k \times I \to A$ and $F: I^k \times I \to A$ satisfy the hypothesis of Theorem 4 of [11] and so by another application of that theorem we get a PL homeomorphism h_6 of A such that $h_6 h_5 h_3 h_2 F = F$ and $h_6 \vert \partial A_o \cup \partial A_i^n = 1$. Extend, h_6 to S^n by the identity.

Let $p: S^n \to S^n$ be a map such that

1. $p(A_o) = A_i^n$,
2. $p \vert h_i(D_j^n) \cup A_i^n = 1$, and
3. $p \vert S^n - F(I^k \times I)$ is one-to-one, and $p(F([x] \times I)) = F(x, 0)$

for each $x \in I^k$.

It is now easy to check that $h = p h_6 h_5 h_3 h_2 p^{-1} h_4$ is the desired homeomorphism that flattens the pair $D_i^n \cup D_j^n$.

Let A_i^{n-1} be a face of A_i^n of dimension $m_i - 1$ which has A as a face. Let δ_i denote the face of A_i^n dual to A_i^{n-1} and let $\tilde{\delta}_i$ denote the barycenter of δ_i. Now, let A_i^{n-1} be the m_i-simplex $A_i^{n-1} \ast \tilde{\delta}_i$. Then, it is easy to get a homeomorphism $g_i: A_i^n \to A_i^n$ such that $g_i h(D_i^n) = A_i^{n-1}$ and $g_i \vert A = 1$. Furthermore, we may assume that $g_i \vert \partial D_i^n$ is orientation
preserving for if it is not we may follow g_i by an appropriate reflection of \mathcal{A}_i. Let \mathcal{A}_i, $i = 1, 2$, be an annulus pinched at \mathcal{A}, in particular, $\mathcal{A}_i = (\partial \mathcal{A}_i \times I) / \sim$ where $(x, t) \sim (x, 0)$ if $x \in \mathcal{A}$, $t \in I$. Let $C_i: \mathcal{A}_i \to S^n$, $i = 1, 2$, be homeomorphisms satisfying the following conditions:

1. $C_i(\mathcal{A}_i) \subset S^n - (\text{int } \mathcal{A}_i \cup \text{int } \mathcal{A}_i)$,
2. $C_i((x, 1)) = x$ for $x \in \partial \mathcal{A}_i$, and
3. $C_1(\mathcal{A}_1) \cap C_2(\mathcal{A}_2) = \mathcal{A}$.
(Thus, $C_i(\mathcal{A}_i)$ is a certain pinched collar of $\partial \mathcal{A}_i$.)

It follows from [20] that $g_i: \mathcal{A}_i \to \mathcal{A}_i$ can be extended to $\mathcal{A}_i \cup C_i(\mathcal{A}_i)$ such that $g_i | \partial(\mathcal{A}_i \cup C_i(\mathcal{A}_i)) = 1$. Let g be the homeomorphism taking $\bigcup_{i=1,2} (\mathcal{A}_i \cup C_i(\mathcal{A}_i))$ onto itself which is g_i on $\mathcal{A}_i \cup C_i(\mathcal{A}_i)$. Then, g can be extended to S^n by way of the identity and it is clear that $e = gh$ is the desired orientation preserving homeomorphism which flattens the pair $D^{m_1}_i \cup D^{m_2}_i$ since $gh(D^{m_1}_i \cup D^{m_2}_i) = \mathcal{A}_i \cup \mathcal{A}_i$.

Theorem 2. Let $\{\mathcal{A}_i\}$, $i = 1, 2, \ldots, p$ be simplexes such that \mathcal{A}_i is of dimension m_i and such that $\bigcap_{i=1}^p \mathcal{A}_i = \Delta$ is a k-face of each \mathcal{A}_i. Let $f, g: \bigcup_{i=1}^p \mathcal{A}_i \to \text{int } Q^n$ be PL embeddings into the connected n-dimensional PL manifold Q^n, $n \geq m_i + 3$, $i = 1, 2, \ldots, p$. Then, there is a PL isotopy e_γ of Q such that $e_0 = 1$ and $e_\gamma f = g$.

If one can tame certain clusters of cells, then Theorem 2 can be used to unknot them. For instance, the following corollary follows from Theorem 1' of [7].

Corollary. Let $\{\mathcal{A}_i\}$, $i = 1, 2, \ldots, p$ be simplexes in the interior of the connected n-dimensional PL manifold Q^n, $m_i < (2/3)n - 1$, $i = 1, 2, \ldots, p$, such that $\bigcap_{i=1}^p \mathcal{A}_i = \Delta$ is a k-face of each \mathcal{A}_i. Let $f: \bigcup_{i=1}^p \mathcal{A}_i \to \text{int } Q$ be an embedding which is locally flat on the open faces of \mathcal{A}_i, $i = 1, 2, \ldots, p$. Then, there is an isotopy e_γ of Q such that $e_0 = 1$ and $e_\gamma f$ is the inclusion of $\bigcup_{i=1}^p \mathcal{A}_i$ into Q.

Proof of Theorem 2. Let $\{v_j\}_{j=0}^{m_i}$ denote the vertices of \mathcal{A}_i and let $\{v_j\}_{j=0}^{m_i}$ denote the vertices of Δ. Let \mathcal{A}_i^{k-q} be the face of \mathcal{A}_i spanned by the vertices $\{v_j\}_{j=0}^{m_i} - \{v_j\}_{j=k-q+1}^{m_i}$ and let Δ^{k-q} be the face of Δ spanned by $\{v_j\}_{j=0}^{k-q}$. Thus, for $0 \leq q \leq k$, Δ^{k-q} and \mathcal{A}_i^{k-q}, $i = 1, 2, \ldots, p$, are cones over $\Delta^{k-(q+1)}$ and $\mathcal{A}_i^{k-(q+1)}$, $i = 1, 2, \ldots, p$, respectively, with vertex v_{k-q}.

We will work with the following inductive statement.

q-**Inductive Statement.** Let $f, g: \bigcup_{i=1}^p \mathcal{A}_i^{k-q} \to \text{int } Q^n$ (n arbitrary) be PL embeddings. Then, there is a PL isotopy e_γ of Q^n such
that \(e_0 = 1 \) and \(e_1 f = g \).

The case \(q = k + 1 \) can be proved easily by using uniqueness of regular neighborhoods. Now we assume the \((q + 1)\)-inductive statement, where \(0 \leq q \leq k \), and will establish the \(q^{\text{th}} \) inductive statement. Let \(N \) be a regular neighborhood of \(f(\bigcup_{i=1}^{p} A^{m_i-q}) \mod f(\bigcup_{i=1}^{p} A^{m_i-(q+1)}) \) in \(Q \) (see [12]), and let \(N_* \) be a regular neighborhood of \(g(\bigcup_{i=1}^{p} A^{m_i-q}) \mod g(\bigcup_{i=1}^{p} A^{m_i-(q+1)}) \) in \(Q \). Then, there is a PL isotopy \(e_i^* \) of \(Q \) such that \(e_0^* = 1 \) and \(e_1^* f = e_1^* N_* \). But, \(\partial(N_*) \) is a PL \((n-1)\)-sphere and \(e_1^* f \big|_{\bigcup_{i=1}^{p} A^{m_i-(q+1)}} \) and \(g \big|_{\bigcup_{i=1}^{p} A^{m_i-(q+1)}} \) are PL embeddings into \(\partial(N_*) \).

Hence, by the inductive assumption, there is a PL isotopy \(e_i^* \) of \(\partial(N_*) \) such that \(e_0^* = 1 \) and \(e_1^* e_i^* f \big|_{\bigcup_{i=1}^{p} A^{m_i-(q+1)}} = g \big|_{\bigcup_{i=1}^{p} A^{m_i-(q+1)}} \). It is now easy to extend \(e_i^* \) over \(Q \) so that it is the identity at the zero level by using a PL bicollar of \(\partial(N_*) \) in \(Q \). Then,

\[
e_0^* e_1^* f : \bigcup_{i=1}^{p} A^{m_i-q} \rightarrow N_* \quad \text{and} \quad g : \bigcup_{i=1}^{p} A^{m_i-q} \rightarrow N_*
\]

are proper embeddings (in the sense of [16]) which agree on \(\bigcup_{i=1}^{p} A^{m_i-(q+1)} \) and so by Theorem 2 of [16] there is a PL isotopy \(e_i^* \) of \(N_* \) which is the identity on \(\partial(N_*) \) such that \(e_0^* = 1 \) and \(e_1^* e_i^* f = g \). Hence, we can extend \(e_i^* \) to \(Q \) by way of the identity and we see that \(e_i = e_i^* e_i^* \) is the desired isotopy of \(Q \).

REFERENCES

3. J. C. Cantrell and R. C. Lacher, \textit{Some conditions for manifolds to be locally flat} (mimeographed).
6. \textit{———}, \textit{An extension of theorems on \(k \)-stable homeomorphisms and the union of cells} (to appear)
20. ———, *Adjustment of topological concordances* (to appear)

Received April 15, 1969. Partially supported by the National Science Foundation.

UNIVERSITY OF GEORGIA
PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. SAMELSON
Stanford University
Stanford, California 94305

J. DUGUNDJI
Department of Mathematics
University of Southern California
Los Angeles, California 90007

RICHARD PIERCE
University of Washington
Seattle, Washington 98105

BASIL GORDON*
University of California
Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH
B. H. NEUMANN
F. WOLE
K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
STANFORD UNIVERSITY
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF TOKYO
UNIVERSITY OF CALIFORNIA
UNIVERSITY OF UTAH
MONTANA STATE UNIVERSITY
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF NEVADA
UNIVERSITY OF WASHINGTON
NEW MEXICO STATE UNIVERSITY
*
OREGON STATE UNIVERSITY
AMERICAN MATHEMATICAL SOCIETY
UNIVERSITY OF OREGON
CHEVRON RESEARCH CORPORATION
OSAKA UNIVERSITY
TRW SYSTEMS
UNIVERSITY OF SOUTHERN CALIFORNIA
NAVAL WEAPONS CENTER

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. The editorial “we” must not be used in the synopsis, and items of the bibliography should not be cited there unless absolutely necessary, in which case they must be identified by author and Journal, rather than by item number. Manuscripts, in duplicate if possible, may be sent to any one of the four editors. Please classify according to the scheme of Math. Rev. 36, 1539-1546. All other communications to the editors should be addressed to the managing editor, Richard Arens, University of California, Los Angeles, California, 90024.

50 reprints are provided free for each article; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published monthly. Effective with Volume 16 the price per volume (3 numbers) is $8.00; single issues, $3.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $4.00 per volume; single issues $1.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 7-17, Fujimi 2-chome, Chiyoda-ku, Tokyo, Japan.

* Acting Managing Editor.
Harry P. Allen and Joseph Cooley Ferrar, *Jordan algebras and exceptional subalgebras of the exceptional algebra E₆* .. 283
David Wilmot Barnette and Branko Grünbaum, *Preassigning the shape of a face* ... 299
Robert Francis Craggs, *Involutions of the 3-sphere which fix 2-spheres* 307
David William Dean, Bor-Luh Lin and Ivan Singer, *On k-shrinking and k-boundedly complete bases in Banach spaces* 323
Martin Engert, *Finite dimensional translation invariant subspaces* 333
Kenneth Lewis Fields, *On the global dimension of residue rings* 345
Howard Gorman, *The Brandt condition and invertibility of modules* 351
Benjamin Rigler Halpern, *A characterization of the circle and interval* 373
Albert Emerson Hurd, *A uniqueness theorem for second order quasilinear hyperbolic equations* .. 415
James Frederick Hurley, *Composition series in Chevalley algebras* 429
Meira Lavie, *Disconjugacy of linear differential equations in the complex domain* ... 435
Jimmie Don Lawson, *Lattices with no interval homomorphisms* 459
Roger McCann, *A classification of center-foci* 467
Evelyn Rupard McMillan, *On continuity conditions for functions* 479
Graciano de Oliveira, *A conjecture and some problems on permanents* .. 495
David L. Parrott and S. K. Wong, *On the Higman-Sims simple group of order 44, 352, 000* ... 501
Jerome L. Paul, *Extending homeomorphisms* 517
Thomas Benny Rushing, *Unknotting unions of cells* 521
Peter Russell, *Forms of the affine line and its additive group* 527
Niel Shilkret, *Non-Archimedean Gelfand theory* 541
Alfred Esperanza Tong, *Diagonal submatrices of matrix maps* 551