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In this study we exploit as a main tool a polar decompo-
sition for linear functionals on operator algebras, introduced
in 1958 by Sakai, to determine various types of extremal
behavior in the unit spheres of C*-algebras and their duals,
We discuss exposed points and complex extreme points as well
as extreme points,

Throughout this paper M, F, and A will be generic symbols for
a von Neumann algebra, its predual, and a C*-algebra which may
not have a unit, respectively. By a C*-algebra is meant a Banach
*-algebra in which ||z*xz || = ||z |]®? holds for all z. A von Neumann
algebra is a C*-algebra of operators on a Hilbert space which is
closed in the weak operator topology and contains the identity
operator. Each von Neumann algebra M is equivalent (as a Banach
space) to the dual of the Banach space F' of ultra-weakly continuous
( = normal) linear functionals on M. The space F is called the predual
of M (and is unique). References for the preceding facts, as well as
any others to follow concerning C*-algebras and von Neumann
algebras, are the two monographs of Dixmier [3], [4], and the
lecture notes of Sakai [13]. We will denote by w, s, ww, us the
weak operator, strong operator, ultra-weak and ultra-strong topologies
of M respectively, and » refers to the norm topology of a Banach
space. The subscript 1 denotes solid unit sphere S, = {x e S: ||z|| < 1},
the subscript % denotes Hermitian part, ext S is the set of extreme
points of a set S, exp.S is the set of exposed points (relative to 7)
of S (defined in §4), and C-extS is the set of “complex extreme
points” of S (defined in §3). As in [4] P(4) and E(A) denote the
sets of pure states and states respectively of A. We denote the
normal states of M by S(M)(S(M) = Fn EM)). A state is faithful
if it is nonzero on all nonzero positive elements. If A has a unit it
is denoted by 1. If ze A, 2’ denotes 1-z. < (H) will denote the
algebra of all bounded operators on a Hilbert space H.

Sakai’s polar decomposition reads as follows [4, 12. 2. 4]: each f
in F can be written f=u|f|, ie., f(x) = |f|(ux), where |f| is a
positive element of F' with the same norm as f, « is a partial isometry
in M with uu* equal to the support of |f| [3, p. 61]; also |f] = u*f.
In connection with this notation, the following remarks are relevant.
First, a decomposition f = |f|v, |f| = fo* is also valid where |f]| is
a positive element of F' with the same norm as f, v is a partial isometry
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in M with v*v equal to the support of |f|’, and f(x) = | f|(av). We
may refer to this as the “right” polar decomposition of f as opposed
to the “left” polar decomposition described above. Second, if xe M
and fe F, then xf and fxe F where zf(y) = f(zy) and fx(y) = flyx).
Third, a subset I of F is called left invariant if xf belongs to I
whenever f belongs to I and x belongs to M. Note that (xy)f = y(xf).

The following lemma, due to Effros, will be used several times
[4, 12. 2. 3].

LEMMA 1.1. If f belongs to F and p is a projection in M with
A= llpfll, then f = pf.

For each A there is a *-isomorphism 7w (called the universal
representation) of A onto a C*-algebra mw(A) of operators on a Hilbert
space H with the property that A** (the bidual of A) is equivalent
(as a Banach space) to the weak closure of 7(4) [4, 12. 1. 3]. Thus
the bidual A** of any A has the same Banach space structure as an
M, and therefore any A* is an F. It follows that the results below
concerning F' hold automatically for the dual of any C*-algebra.
Only qualitative statements, as opposed to quantitative ones, can be
inferred however, since the latter would probably be couched in terms
of (elements of) A**. Examples of the former are: C-ext Af is the
set of unit vectors in Ay (Theorem 3. 1); ext AF = exp, A} and is
not empty, by Krein-Milman (Proposition 4. 1).

The authors have investigated other types of extremal behavior
in this setting but found their study to be less interesting as regards
applications than the material reported on here.

2. Extreme points. For completeness we recall that an extreme
point of a set K is a point of K which cannot be the midpoint of a
line segment lying in K.

The set ext A, was determined by Kadison [5, Th. 1] when A has
a unit. The modifications necessary to cover the nonunit case were
supplied by Sakai [13, p. 1. 5]. Further discussion appears in Miles
[8]. It results that ext A, is empty unless A has a unit in which
case ext A, consists precisely of the partial isometries v in A such
that (1 — vv*) A1 — v*v) = {0}. We will make use of this result in
the next section.

We now determine the set ext F,. The following result is
partially known.

ProposiTION 2.1. The following are equivalent for an element
fin F:
1) f belongs to ext F ;
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(2) f or —f belongs to ext S(M);

3) f or —f belongs to P(M);

(4) f or —f belongs to S(M) and the support of f is a minimal
projection in M.

Proof. (1) implies (2): Let f = f, — f, where each f; is positive
and normal and 1= || f|| = ||fill + || /2]l [4, 12. 3. 8]. If neither of
Jior fyis 0, then f= [ l[(A/NAI1D) + [ LI(=F/ f:1), which implies
that f is 0. Therefore f or —f is positive, and (2) is immediate.

(2) implies (3): Use the fact that P(M) = ext E(M) and the
decomposition of elements of E(M) into normal and singular parts
[13, p. 1. 75].

(3) implies (4): The left kernel I = {xecM: f(x*x) =0} is a
maximal left ideal [4, 2. 9. 5] which is ultra-weakly closed since f is
normal. If p is a projection in M with I = Mp [3, p. 45] then 9’ is
minimal and is the support of f. Indeed if e < p' then ¢ = p,
Me > Mp, so by maximality either ¢ =1 or ¢ = p, proving the
minimality of p’. On the other hand f(p) = 0 so that the support of
f is dominated by »’. Since 9’ is minimal, it equals the support of f.

(4) implies (2): If f= (g + h)/2 with g,k in S(M) then the
support of g is a nonzero projection dominated by the support of f,
so equal to the support of f. Denoting by e the support of f, the
subalgebra eMe consists of scalar multiples of ¢ which implies that

f=9.

(2) implies (1): If f = (g9 + h)/2 with g, & in F, ,, write g = g, — ¢,
h = h, — hy g; and h; positive normal and 1 = ||g|| = || g.]| + || g:]] =
HRll = 1{lh ] + || k|l. The fact that positive functionals assume their

norm on the unit and some arithmetic imply that g, = h, = 0 and
completes the proof.

We will refer to a state satisfying the conditions of Proposition
2.1 as a normal pure state of A.

THEOREM 2.1 ext F, is the set of functionals f in F such that
£l 18 @ normal pure state.

Theorem 2.1 is a special case of the following theorem.
THEOREM 2.2. If I is a norm closed left-invariant subspace of
F, then ext I, s the set of functionals f in I such that |f]| is a

normal pure state.

Proof. Let h belong to extI, and let A = v|h| be the polar



578 CHARLES A. AKEMANN AND BERNARD RUSSO

decomposition of h. If || is not a pure state of M, let |h| =
(9, + 9,)/2 for distinct states g, and g, of M.

Consider the polars K =1° and J=K° =1°° in M and M*
respectively. Then K is an ultra-weakly closed left ideal in M so
has the form K = Mp for some projection p in M [3, p. 45], and J
is a left-invariant subspace of M *.

Since I is left-invariant, |4 | belongs to I, and so 0 = |A|(p) =
9.(p) = g,(p), which implies that g, and g, belong to J. Also & =
v k| = (vg, + vg9,)/2, and so either h does not belong to ext., or
v9, = vg, = h. We complete this part of the proof by showing that
neither alternative holds. Assuming vg, = vg, = h, we get v*(vg,) =
v*(vg,) = v*h = |h|. By Lemma 1.1 (vw*)g, = ¢, and (vv*)g, = ¢,,
which implies that || = g, = g,, a contradiction. Suppose now that
h is not in extJ,. There is a central projection z in M** such
that F = zM* [13, p. 1. 75]. Thus & = zh = (2(vg,) + 2(vg,))/2 so
that || 2(vg) || = || #(vg,) || = 1. Since z is central,

lvg. Il = lz(vg) || + 1| 2'(vg) II

so 2'(vg,) = 0 and similarly 2/(vg,) = 0. Thus vg, and vg, belong to F
and so vg, = vg, = h.

For the converse let h = v|h| be as described in the statement
of the theorem. If & = (h, + h,)/2, with &; in I,, then

vh = |h| = (0 h, + v*h)/2 .

Since || is pure, it is easily seen to belong to extI, and so
v*h, = v*h, = | h|. Thus wv(w*h) = v(v*h,) =v|k|=h. By Lemma
1.1 2, = (W*v)h, = (V*V)h, = h,.

We indicate some applications of the preceding results.

In [5], extreme points in factors were grouped into equivalence
classes whereby two extreme points (of the unit sphere) are in the
same class if there is some linear or conjugate linear isometry of the
factor mapping one of the extreme points into the other. Due to
the incompleteness of the knowledge of the classes in the II. case,
there is possible confusion in distinguishing between factors of type
I. and II, by their Banach space structure alone. This situation can
be rectified by considering extreme points in the pre-duals of the
factors, since minimal projections exist only in factors of type I.

Because, thanks to the Krein-Milman theorem, dual spaces always
have extreme points in their unit spheres, one can see immediately
that if the bidual of any C*-algebra is a factor, then it is a factor
of type I [4, 12. 5. 5].

In the Y*-algebra approach to quantum mechanics [10], a result
is that for each nonzero projection e¢ in a Y*-algebra there is a o-state



GEOMETRY OF THE UNIT SPHERE OF A C*-ALGEBRA AND ITS DUAL 579

S such that f(e) = 1. Analogously, it is remarked in [10] that a
factor of type I has the property: if ¢ is a nonzero projection then
there is a pure normal state f such that f(e) = 1; whereas no factor
of type II, does have this property. These statements can be sharpened
as follows: a von Neumann algebra has the property in question if
and only if it is atomic, i.e., a product of factors of type I.

If M is a von Neumann algebra with a faithful semi-finite normal
trace ¢, with trace ideal m,, then the map t— ¢, is a linear order
preserving isometric mapping of m, onto a dense subset of F, where
@(z) = p(xt) [3, p. 105]. Using some spectral theory our result
translates into the fact that the set extm,, consists of all partial
isometries in M with initial domain a minimal projection in M. This
fact was used to help determine the isometries of m, in the case of
a factor of type I [11], [12].

3. Complex extreme points. A point ¢ of a subset K of a
complex vector space is a complex extreme point of K if

{t +zy: |2z 21K

for some vector y implies ¥y = 0. Here 2z is a complex number.

This concept was introduced in [16] where it was shown that
the class of complex Banach spaces for which each unit vector is a
complex extreme point (of the unit sphere) is precisely the class for
which the strong form of the maximum modulus theorem holds. It
is also shown in [16] that all I, spaces belong to this class.

THEOREM 3.1. C-ext F', is the set of all unit vectors in F.

Proof. Let f be a unit vector in F' and suppose first that f is
positive. Then f(1) =1, and if f is not a complex extreme point
there is an element % =0 in F such that ||f+2k]|| =1 for all
|z] = 1. Let ¢ be a Hermitian element of M such that i(a) = 0 and
let N be the von Neumann algebra generated by a¢ and 1. Since N
is commutative it is isomorphic to a space L.(S) with pre-dual L.(S)
3, p. 117]. Considering the restrictions of f and 2 to N as elements
of L,(S), the result of Thorp and Whitley implies that % is zero on
N, which is a contradiction.

Now let g be an arbitrary unit vector in F' with polar decompo-
gition g = v|g|. Suppose there is an element h=+0 in F with
g+ 2kl =1forall [z]=1. The |[|g|+z*h| = llv"g + 2h) | <1
and so v*h = 0 by the first paragraph. Set p = v*v. Then ph =0
and pg = v(v*g) =v]|g|=9. Let u, and wu, be unit vectors in M

! See also the dissertation of L. A. Harris, Cornell, 1969.
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satisfying ¢g(u,) =1 and A(u,) = ||#]l. Choose 7, and 7, to satisfy
0<r<r,<1, 7#+2i=1and r, + 7|/ k|| > 1. Then a simple com-
putation implies that |(g + R)(r,pu, + 7.p'u) | = 7, + 7, || k||, and the
norm of r.pu, + 7,p'u, is at most 1. Thus ||¢g + || > 1, a contradiction.

As remarked in [16] it is sufficient in the definition of complex
extreme point to use only the points z = +1, 1.

THEOREM 3.2 C-ext 4, = ext A,.

Proof. The proof is a modification of known arguments. Let x
be a complex extreme point of 4,. We show that x*x is a projection.
Let B be the C*-subalgebra of A generated by z*x. Then B is
isomorphic to the algebra of all continuous functions vanishing at
infinity on some locally compact Hausdorff space. As in [13, p. 1. 2]
choose positive elements %, in B of unit norm such that

lo*ey, — a*x(—0.

If the function representing x*x assumes a value in the open unit
interval then there is a positive element ¢ in B such that x*wzc # 0
and the following three vectors are in the unit sphere: x*x(y, + c¢)%,
¥y, — ¢, x*x(y, + ). It follows that x & x¢ and « =+ txc all lie
in the unit sphere. By definition of complex extreme point xc = 0, a
contradiction, so x*x is a projection.

Now let a be any element of (1 — xx*)A(l — x*x) N A, say
a=b— xx*b — bax*x + xx*br*x (1 is not a unit of 4, just a notational
convenience). Elementary computations show that a*z(a*x)* = 0 and
x*za*a = 0, so that consequently a¢*x = x*a = 0 and ||x*x + a*a|| =
max (|| 2*z ||, ||e*a|]) = 1. Using these facts it follows that = & a and
¢ + 1a lie in the unit sphere, so that « = 0. Thus 2z belongs to
ext A, [8, Th. 1].

Qur results imply that the strong form of the maximum modulus
theorem holds in every F and fails in every A (of dimension larger
than 1). That it fails in some A had been remarked in [2].

Our results also show that no F' can be (linearly) isometric to
any A (of dimension larger than 1). Sakai [14, Corollary 1] had
already shown that no infinite dimensional A can be even topologically
isomorphic to any F.

If F is the pre-dual of a factor of type I, i.e., if F' is the trace
class operators on some Hilbert space H, a proof of Theorem 3.1 can
be given which does not use the commutative case, i.e., the Thorp-
Whitley result. It is based (as is the proof of Thorp and Whitley)
on when equality holds in Minkowski’s inequality (cf. [7, Th. 2. 4]).

4. Exposed points. An exposed point of a convex set K in a
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topological linear space X is a point p of K such that K is supported
at p by a closed hyperplane which intersects K only at p [6]. If ¢
is a locally convex topology on a complex Banach space X (whose
continuous linear functionals are bounded) then a vector z of norm 1
belongs to exp.X, if there is a z-continuous linear functional f on X
such that 1 =||f|| = f(z) > Ref (y) for all y = © in the unit sphere
of X.

For M a von Neumann algebra we have the following rela-
tions: ext M, Dexp, M, D exp,., M, = exp,, M, D exp, M, = exp, M,; the
equalities obtaining since the appropriate topologies have the same
continuous linear functionals [3, p. 40].

THEOREM 4.1. ext M, = exp,, M, if and only if M has a faithful
normal state; otherwise exp,, M, is empty.

Note that a von Neumann algebra has a faithful normal state if
and only if it is countably decomposable |3, p. 61].

LevmmA 4.1, If t belongs to exp,, M, and is semi-unitary, i.e.,
at least one of t*t or tt* is 1, then 1 belongs to exp,., M..

Proof. Since the involution is ww-continuous it is enough to
assume that t*t = 1. Let f be an element of F of norm 1 which
assumes its maximum on M, only at ¢, and write f= v|f|. Then
J@*) = | fl(wv*) =1, so that ¢ = »*. Since ¢*t =1, it ensues that
| /1 assumes its maximum on M, only at 1.

Proof of Theorem 4.1. Let ¢ be an element of exp,, M,. There
is a central projection p in M such that ¢p and 1 — p) are semi-
unitary in M, and M,_, respectfully [8, Th. 2]. By Lemma 4.1, p
and 1 — p are uw-exposed in the unit spheres of M, and M, _,
respectively, which implies by averaging two functionals that 1
belongs to exp,,M,. If f is the element of F which assumes its
maximum on M, only at 1 then f is a faithful normal state; indeed
0<a2=<1and f(x) =0 implies fA —2x) =1, s01 — 2z = 1.

Suppose that M has a faithful normal state, say f, where f(z) =
S (x&,&) with || Fll =2 |&1P =1 [3, p. 54]. Let ¢ belong to ext M,
and suppose for the moment that ¢*¢ = 1. Then the functional ¢ =
t*f assumes its norm only at ¢&. Indeed, g{t) = 1 = ||g || and if g(s) = 1
for some s in the unit sphere, then

1=g(s) = 2u(s5 t8) = T sG] = F&IP =1,

so that (s — ¢)&, = 0 for all . It follows that |s —¢[&=0, f(|s—t|) =
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0 and since f is faithful, |s —t| =0, s —t = 0. The remainder of
the proof follows as in the preceding paragraph by patching.

Using |3, p. 40] it is easily seen that exp, < (H), is empty if H
is infinite dimensional. This fact and Theorem 4.1 yield a quick proof
that the weak and ultra-weak topologies are distinet on <7(H) for
H separable and infinite dimensional (ef. [3, p. 283]). The same is
true of the strong and ultra-strong topologies.

In [6, p. 96] it was shown that the dual of a separable Banach
space has the property: “every w*-compact convex set is the w*-closed
convex hull of its w*-exposed points”. On the other hand, if X is a
Banach space considered as a subspace of its second dual X**, then
it is plain that (exp,.X**) N X, is a subset of exp, X,. It follows
that if A is a C*-algebra with unit, identified with its universal
representation, then exp,, M, N A, Cexp, A, where M is the weak
closure of A. Since it is easy to verify that ext M, N A, = ext A, we
see that if a C*-algebra has a separable dual then ext A, = exp, 4,.

On the other hand if a C*-algebra has a separable dual, then a
faithful state can be easily constructed from a dense sequence in the
state space. Thus the result of the preceding paragraph is also a
consequence of the following theorem.

THEOREM 4.2. ext A, = exp, A, if and only tf A has a faithful
state; otherwise exp, A, 1s empty.

In the case of a commutative A this has been proved by Phelps

[o].

Proof. Let v be an exposed point, say p = v*v, ¢ = vv*, and let
h be a linear functional which assumes its norm 1 only at v. We
may replace A by its universal representation. Let & = u|h| be the
enveloping polar decomposition of & [4, 12. 2. 8]. Then we may
replace u by v* in the sense that ~ = v* |h|. Indeed |h|(x) = (2, &)
for some unit vector &, so that A(x) = (uxg, &). Thus

1 = h(®) = (v, &) = (v&, u*é),

which implies that v&é = w*& and therefore that & = v*|h|.

We now assert that | /| is faithful on p in the sense that pxp =0
whenever | h|((pxp)*(prp)) =0 and x is in A. Indeed, if b= par*parp <1
and | %](b) = 0, then A(v — vb) =1 and |[v(1 — b)]| < 1, hence vb = 0,
so that b = pb = v*vb = (.

Using the “right” polar decomposition shows that there is a
faithful state on ¢ hence on p’ since p + ¢ — pg = 1 implies p’ < q.
It follows that there is a faithful state on A.
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Suppose now that 4 has a faithful state, and that v belongs to
ext A,, say with p = vv*, ¢ = v*v. Let f be a faithful state on p
and ¢ be a faithful state on ¢, and set A = (fo* + v*g)/2. Then
h(v) = 1, and we will show that if A(a) = 1 for a unit vector a, then
a = v. Assuming h(a) = 1 we have flav*) = g(v*a) = 1. Thus, since
f = pfp and ¢g = qgq, flav*p) = 1, so that av*p = p. To see this let
b= (p — av*p)*(p — av*p) and observe that f(b) = 0. Indeed by [4,
2. 1. 5] 0 f(b) = —1 + flpva*av*p) £ —1 + ||va*av|] £ 0 so that
b= pbp =0. Also pav* = p, so that av* = p + p'av*p’. Similarly
v*a = q¢ + ¢v*aq’. Now v*p' =0 = ¢'v*, so av* = p and v¥a = q.
Therefore a(v¥v) = aqg = (av*)v = pv = v, and pa = v similarly. Since
v is extreme, 0 = p'aq¢’ = aq’ — paq = aq’ — vq¢’ = aq’. Thus a =
alg + q') = aq + 0 = v. The proof is complete.

COROLLARY. exp, M, = exp,. M.

Proof. Using Takesaki’s criterion for normality [15, Th. 1], one
sees that M has a faithful state if and only if it has a faithful
normal state.

The corollary should be compared with Theorem 4.3 where
separability is required and in turn suggests the question: if X is a
separable Banach space then does exp, X = exp,.X*?

ProposiTION 4.1. ext F, = exp, F..

Proof. Let h be an extreme point and write A = v|h|, with
p = vv* the support of A. Then h(v*) = 1. Suppose that ¢ belongs
to F, and that g(v*) =1. Then v*g(1) =1 = ||v*g]|, so v*g is a
state {4, 2.1.9] with support dominated by p. Since p is minimal,
v*g = | h|. Therefore, h = v|h| = v(v¥g) = (v*v)g = g by Lemma 1.1.

If A is separable, then by the result of Klee quoted above and
the converse to the Krein-Milman Theorem one knows that each f in
ext AF is the w*-limit of a sequence in exp,. AF. With some effort
this can be improved.

THEOREM 4.3. exp,. A = ext A¥ if A 1s separable and has a
unit.

Proof. Replace A by its universal representation. Let hecext Af
with enveloping polar decomposition & = vf so that f(z) = (x&, &) for
some unit vector ¢ (see the proof of Theorem 4.2). Let {b,} be a

2 No, according to a communication of R. R. Phelps.
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sequence dense in the unit sphere of N, = {z ¢ A: f(x*z) = 0} and set
b=1-—-37 Zﬂnb*b so that f(b) =1, ||| =1, and B¢ = &. Since f is
pure and [lv*&]] = 1] £]] there is a unitary element % in A such that
ué = v*e. For this it suffices to observe that since »* is in the
strong closure of A v*& is a limit of elements a& for ac A and to
apply [4, 2. 8. 3] to the restriction of the identity representation of
A to A&,

Now h(ub) = flvub) = (vubs, &) = (ubé, uf) = (bg, &) = f(b) = 1.
Suppose that ge A and g(ub) = 1. Let g = wp be its enveloping
polar decomposition. Then

1 = g(ub)* = p(wub)® = p((wub'?)b"?} < plwubu*w*)pd) < 1

so that p(d) = 1. It follows that N,C N, and since f is pure that
f=p. Indeed if zeN, then some subsequence b, —u/||x|], so
b3 b, — =*x/l| x| and therefore p(x*x) = lim; p(b;d,;) = 0 since p(b) =
(1) =1. Now 1= g(ub) = p(wub) = f(wub) = (wubé, &) = (u&, w*&) and
thus s = w*s. Finally g¢(x) = p(wz) = flwr) = (wxé, &) = (x&, us) =
(xg, v*8) = (vag, §) = vf(x) = h(x).

COROLLARY. If A 1is separable and has a wunit then P(A) =
exp,: B(A).

For A nonseparable, Theorem 4.3 is false since P(4) may contain
exp,. F(A) properly (take A = C(X) where X has no G, points e.g.,
X = BN — N). On the other hand the following result (whose proof
is essentially that of [1, Th. 1. 1]) is of greater interest: if
feP(A4) N exp,.Af then there is a maximal abelian C*-subalgebra B
of A such that f is a pure state on B and has a unique pure state
extension to A.
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