FACTORIZATION OF A SPECIAL POLYNOMIAL OVER A
FINITE FIELD

L. CARLITZ
FACTORIZATION OF A SPECIAL POLYNOMIAL
OVER A FINITE FIELD

L. CARLITZ

Let \(q = p^z \), where \(p \) is a prime and \(z \geq 1 \), and put \(r = q^n \), \(n \geq 1 \). Consider the polynomial

\[
F(x) = x^{2r+1} + x^{r-1} + 1 .
\]

Mills and Zierler proved that, for \(q = 2 \), the degree of every irreducible factor of \(F(x) \) over \(GF(2) \) divides either \(2n \) or \(3n \). We shall show that, for arbitrary \(q \), the degree of every irreducible factor of \(F(x) \) over \(GF(q) \) divides either \(2n \) or \(3n \).

We shall follow the notation of Mills and Zierler [1]. Put

\[
(1.1) \quad K = GF(r) , \quad L = GF(r^2) , \quad M = GF(r^3) .
\]

The identity

\[
(x^{(2r+1)r} + x^{(r-1)r} + 1) - x^{2r-1}(x^{2r+1} + x^{r-1} + 1) = (x^{2r-1} - 1)(x^{2r+1} + 1) - 1
\]

is easily verified. Since

\[
(x^{2r+1} + x^{r-1} + 1)^r = x^{(2r+1)r} + x^{(r-1)r} + 1 ,
\]

it is clear that

\[
(1.2) \quad F^r(x) - x^{2r-1}F(x) = (x^{2r-1} - 1)(x^{2r+1} + 1) - 1 .
\]

Let \(F(\alpha) = 0 \), where \(\alpha \) lies in some finite extension of \(GF(q) \). Then by (1.2)

\[
(\alpha^{2r-1} - 1)(\alpha^{2r+1} + 1) - 1 ,
\]

so that either

\[
(1.3) \quad \alpha^{2r-1} - 1 = 0
\]

or

\[
(1.4) \quad \alpha^{2r+1} + 1 - 1 = 0 .
\]

Clearly (1.4) implies

\[
\alpha^{3r-1} - 1 = 0 .
\]

Hence \(\alpha \) lies in either \(L \) or \(M \).

Assume \(\alpha \in K \). Then \(\alpha^r = \alpha \), so that \(F(\alpha) = 0 \) reduces to
\((1.5) \quad \alpha^3 + 2 = 0. \)

There are now several possibilities. First the case \(p = 2 \) can be ruled out since \(\alpha \neq 0 \). Next if \(p = 3 \), (1.5) reduces to \(\alpha^3 = 1 \), so that \(\alpha = 1 \). If \(p > 3 \) and \(r \equiv 2 \) (mod 3) then again \(\alpha \) is uniquely determined by (1.5) and is in \(GF(p) \). If \(p > 3 \), \(p = 2 \) (mod 3) but \(r \equiv 1 \) (mod 3), then \(\alpha \in K \) if and only if

\((1.6) \quad (-2)^{(r-1)/3} \equiv 1 \) (mod \(p \)).

Since \(p^2 - 1 \mid r - 1 \), it is clear that this condition is satisfied; hence there are three distinct values of \(\alpha \in K \) that satisfy (1.5). Finally if \(p = 1 \) (mod 3), (1.5) will be satisfied with \(\alpha \in K \) if and only if (1.6) holds and again there are three distinct values of \(\alpha \).

There is also a possibility that \(F(x) \) has multiple roots when \(p > 2 \). Since

\[
F'(x) = (2r + 1)x^{2r} + (r - 1)x^{r-2} = x^{2r} - x^{r-2},
\]

it follows that a multiple root must satisfy

\((1.7) \quad \alpha^{r+2} = 1. \)

Then

\[
0 = \alpha^3 F(\alpha) = \alpha^{2r+4} + \alpha^{r+2} + \alpha^3,
\]

so that \(\alpha^3 + 2 = 0 \). On the other hand, combining (1.7) with either (1.3) or (1.4) gives \(\alpha^3 = 1 \). Hence \(p = 3 \), \(\alpha = 1 \). Since \(F''(1) = 2 \) the multiplicity is 2.

To sum up we state the following two theorems.

Theorem 1. The degree of every irreducible factor of

\[
F(x) = x^{2r+1} + x^r - 1
\]

over \(GF(q) \) divides either \(2n \) or \(3n \).

Theorem 2. The only possible irreducible factors of \(F(x) \) of degree dividing \(n \) are determined as follows:

(i) \(p = 3, x - 1 \),

(ii) \(p > 3, r \equiv 2 \) (mod 3), **linear factor**,

(iii) \(p > 3, p = 2 \) (mod 3), \(r \equiv 1 \) (mod 3), \(x^3 + 2 \),

(iv) \(p = 1 \) (mod 3), \((-2)^{(r-1)/3} \equiv 1 \) (mod \(p \)), \(x^3 + 2 \),

(v) \(p = 1 \) (mod 3), \((-2)^{(r-1)/3} \not\equiv 1 \) (mod \(p \)), 1.

\(F(x) \) has multiple roots if and only if \(p = 3 \); when \(p = 3, \alpha = 1 \) is a root of multiplicity 2.
Let $F_0(x)$ denote the product of the irreducible divisors of $F(x)$ over $GF(q)$ of degree dividing n and put $f_0 = \deg F_0(x)$. Then Theorem 2 implies

Theorem 3. We have

(i) $f_0 = 2$,
(ii) $f_0 = 1$,
(iii) $f_0 = 3$,
(iv) $f_0 = 3$,
(v) $f_0 = 0$,

where the cases (i), \ldots, (v) have the same meaning as in Theorem 2. When $p = 2, f_0 = 0$.

2. If α denotes a root of $F(x)$, put

\[(2.1) \quad \beta = \alpha^{2r+1} .\]

Thus

\[\beta + \alpha^{r-1} + 1 = 0 ,\]

so that

\[(2.2) \quad (\beta + 1)^{2r+1} + \beta^{r-1} = 0 .\]

Expanding the left member of (2.2) we get

\[\beta^{2r+1} + \beta^{2r} + 2\beta^{r+1} + 2\beta^r + \beta^{r-1} + \beta + 1 = 0 ;\]

this is the same as

\[(2.3) \quad (\beta^r + \beta^{r-1} + 1)(\beta^{r+1} + \beta + 1) = 0 .\]

Now define

\[G(x) = (x^r + x^{r-1} + 1)(x^{r+1} + x + 1) .\]

It follows that if α is a root of $F(x)$, then α^{2r+1} is a root of $G(x)$.

As in [1], put

\[G_1(x) = x^r + x^{r-1} + 1 , \quad G_2(x) = x^{r+1} + x + 1 ,\]

so that

\[G(x) = G_1(x)G_2(x) .\]

Also it is convenient to put

\[H(x) = x^r + x + 1 .\]

The roots of $H(x)$ are the inverse of the roots of $G_1(x)$.

If $H(\beta) = 0$ then
\[
\beta^r = -\beta - 1, \quad \beta^2 = -\beta^r - 1 = \beta,
\]
so that $\beta \in L$. If we assume $\beta \in K$, so that $\beta^r = \beta$, it follows that $2\beta + 1 = 0$. Thus for $p > 2$, $H(x)$ has a unique root in K (indeed in $GF(p)$). Since $H'(\beta) = 1$ it is clear that $H(x)$ has no multiple root. Thus, except for the root -2, all the roots of $G_1(x)$ lie in L and not in K.

Next if $G_2(\beta) = 0$ we have
\[
\beta^{r+1} = -\beta - 1,
\]
so that
\[
\beta^{r^2 + r + 1} = -\beta(\beta + 1) = -\beta^{r+1} - \beta = 1.
\]
Hence $\beta^{r-1} = 1$, so that $\beta \in M$. If we assume $\beta \in K$ we get
\[
(2.4) \quad \beta^2 + \beta + 1 = 0.
\]
This equation is solvable in K if and only if $p = 3$ or $r = 1$ (mod 3). Thus, except for these cases, the roots of $G_2(x)$ lie in M and not in K. Since
\[
G_2(x) = x^r + 1 = (x + 1)^r,
\]
it follows that $G_2(x)$ has no multiple roots.

This proves

Lemma 1. Except for the root -2 when $p > 2$, all the roots of $G_1(x)$ lie in L and not in K. Except for the root 1 when $p = 3$, all the roots of $G_2(x)$ lie in M and not in K.

We shall now prove

Lemma 2. Let α be a root of $F(x)$ and put $\beta = \alpha^{2r+1}$, so that β is a root of $G(x)$. If β is a root of $G_1(x)$, then $\alpha \in L$; if β is a root of $G_2(x)$, then $\alpha^{2r^2 + r + 1} = 1$ so that $\alpha \in M$.

Proof. By hypothesis
\[
0 = F(\alpha) = \beta + \alpha^{r-1} + 1,
\]
so that
\[
(2.5) \quad \beta = -\alpha^{r-1} - 1.
\]
Assume first that $G_1(\beta) = 0$. Then
so that
\[a^{2(r^2-1)} = 1 \]
and \(\alpha^2 \in L \). But since either \(\alpha \in L \) or \(\alpha \in M \) it follows that \(\alpha \in L \).

Next let \(G_1(\beta) = 0 \). Then by (2.5)
\[\alpha^{r-1} = -\beta - 1 = \beta^{r+1} = \beta^{(r+1)(r+1)} , \]
which gives
\[\alpha^{2(r^2+r+1)} = 1 . \]
This implies \(\alpha^3 \in M \). If \(\alpha \in L \), (2.6) reduces to \(\alpha^{3r+4} = 1 \); this in turn gives
\[\beta^2 = \alpha^{3r+2} = 1 , \]
so that \(B = \pm 1 \). Since \(G_2(\beta) = 0 \) we must have \(p = 3, \beta = 1 \).

3. By Theorem 1 we have
\[F(x) = F_1(x)F_2(x)/F_3(x) \]
where every root of \(F_1(x) \) is in \(L \), every root of \(F_2(x) \) is in \(M \), every root of \(F_3(x) \) is in \(K \).

We shall now prove

Lemma 3. A number \(\alpha \in L \) is a root of \(F_1(x) \) if and only if \(\beta = \alpha^{3r+1} \) is a root of \(G_1(x) \).

Proof. By Lemma 2, if \(\alpha \) is a root of \(F_1(x) \), then \(\beta \) is a root of \(G_1(x) \). Let \(\alpha \in L, \beta = \alpha^{3r+1}, G_1(\beta) = 0 \). Then since \(\alpha^{2r-1} = 1 \) it follows that
\[(\alpha \beta)^{r-1} = (\alpha^{3r+1})^{r-1} = \alpha^{2(r^2-1)} = 1 . \]
Consequently
\[\beta^{r-1}F(\alpha) = \beta^{r-1}(\beta + \alpha^{r-1} + 1) \]
\[= \beta^r + \beta^{r-1} + (\alpha \beta)^{-1} \]
\[= \beta^r + \beta^{r-1} + 1 \]
\[= G_1(\beta) = 0 , \]
so that \(F(\alpha) = 0 \).
Lemma 4. Let α be an element of M such that $\alpha^{r^2+r+1} = 1$. Then α is a root of $F_2(x)$ if and only if $\beta = \alpha^{r+1}$ is a root of $G_3(x)$.

Proof. By Lemma 2, if α is a root of $F_2(x)$, then β is a root of $G_3(x)$. Let $\alpha \in M$, $\alpha^{r^2+r+1} = 1$, $\beta = \alpha^{2r+1}$, $G_3(\beta) = 0$. Since

$$\beta^{r+1} = \alpha^{(r+1)(2r+1)} = \alpha^{2r^2+3r+1} = \alpha^{r-1},$$

we get

$$0 = G_3(\beta) = \beta^{r+1} + \beta + 1 = \alpha^{2r+1} + \alpha^{r-1} + 1 = F(\alpha),$$

so that $F(\alpha) = 0$.

Lemma 5. Let β be a nonzero element of L and let $R(\beta)$ denote the number of elements α in L such that $\alpha^{2r+1} = \beta$. Then

$$R(\beta) = \begin{cases} 1 & (r \equiv 0, 2 \pmod{3}) \\ 3 & (r \equiv 1 \pmod{3}, \beta = \gamma^3, \gamma \in L) \\ 0 & \text{(otherwise)} \end{cases}$$

Proof. Any common divisor of $2r + 1$ and $r^2 - 1$ must divide

$$(2r - 1)(2r + 1) - 4(r^2 - 1) = 3.$$

If $r \equiv 0, 2 \pmod{3}$ then $2r + 1 \equiv 1, 2 \pmod{3}$, so that $(2r + 1, r^2 - 1) = 1$. It follows that the equation $\alpha^{2r+1} = \beta$ has a unique solution $\alpha \in L$. If $r \equiv 1 \pmod{3}$ we have $(2r + 1, r^2 - 1) = 3$; thus the equation $\alpha^{2r+1} = \beta$ is insolvable in L if and only if $\beta = \gamma^3, \gamma \in L$. If $\beta = \gamma^3, \gamma \in L$, there are exactly three solutions; otherwise there are none.

If $r \equiv 0, 2 \pmod{3}$ it follows at once from Lemmas 3 and 5 that there is a one-to-one correspondence between the roots of $F_3(x)$ and of $G_3(x)$. We may therefore state the following.

Theorem 4. Let $r \equiv 0, 2 \pmod{3}$. Then the degree of $F_3(x)$ is equal to r.

If we put $f_1 = \deg F_3(x), f_2 = \deg F_3(x), f_0 = \deg F_5(x)$, then by (3.1) we have

$$f_0 + 2r + 1 = f_1 + f_2.$$

Thus for $r \equiv 0, 2 \pmod{3}, f_2$ can be computed by means of (3.3) and Theorem 3.

4. We shall now determine f_1 when $r \equiv 1 \pmod{3}$. By Lemmas 3 and 5, f_1 is three times the number of roots of $G_3(x)$ that are cubes.
in L. Then, if as above

$$H(x) = x^r + x + 1 ,$$

f_1 is three times the number of roots of $H(x)$ that are cubes in L.

Put $\lambda = \beta^{r+1}$, where $H(\beta) = 0$. Since $\beta^{r^2} = \beta$, it follows that

$$\lambda = \beta^{r^2 + r} = \lambda ,$$

so that $\lambda \in K$. In the next place λ is a cube in K if and only if β is a cube in L. To see this let γ denote a primitive root of L. Then $\beta = \gamma^t$, where t is some integer. If β is a cube in L then $t = 3u$, where u is an integer. Thus

$$\lambda = \beta^{r+1} = \gamma^{3u(r+1)} .$$

Since $\gamma^{r+1} \in K$, it follows that λ is a cube in K. To prove the converse, it is clear first that $\lambda = \gamma^{a(r+1)}$, where a is an integer. If λ is a cube in K it follows that $a = 3b$, where b is an integer. Thus $\lambda = \beta^{r+1}$ becomes

$$\gamma^{3b(r+1)} = \gamma^{t(r+1)} ,$$

so that

$$3b(r + 1) \equiv t(r + 1) \pmod{r^2 - 1} .$$

This implies

$$3b \equiv t \pmod{r - 1} .$$

Since $r \equiv 1 \pmod{3}$ we conclude that $3/t$. The relation $\lambda = \beta^{r+1}$, where $H(\beta) = 0$, is equivalent to

(4.1) $\beta^3 + \beta + \lambda = 0 .$

We have seen above that, except for $\beta = -1/2$, all the roots of $H(\beta) = 0$, are in L and not in K (of course this case occurs only when $p > 2$). Moreover $\beta = -1/2, \lambda = 1/4$ do indeed satisfy (4.1). Also 2 is a cube in L if and only if it is a cube in K, that is, if and only if

(4.2) $2^{(r-1)/3} \equiv 1 \pmod{p} .$

Thus aside from the exceptional case just described we must determine the number of cubes of K that are not of the form $\tau(\tau + 1)$ with τ in K (for convenience we replace λ in (4.1) by its negative). We denote this number by N. If N_0 denotes the number of nonzero cubes of K that are of the form $\tau(\tau + 1)$ with τ in K, it is clear that

(4.3) $N + N_0 = \frac{1}{3}(r - 1) .$

As for f_1, we have
where $E = 1$ when (4.2) is satisfied and $E = 0$ otherwise. The coefficient 6 occurs because for given $\lambda \neq 1/4$ there are two distinct values of β; however when $\lambda = 1/4$ there is a single value of β and hence the coefficient 3.

It remains therefore to evaluate N_0. Clearly $6N_0$ is equal to the number of pairs $x, y \in K$ such that

\[(4.5)\quad x^2 + x = y^3 \neq 0 .\]

Assume first that $p > 2$. Then (4.5) is equivalent to

\[(4.6)\quad z^2 = 4y^3 + 1 , \quad y \neq 0 .\]

Let $\psi(a)$ denote the quadratic character for K, that is

\[\psi(a) = \begin{cases} +1 & (a = b^2 \neq 0, b \in K) \\ 0 & (a = 0) \\ -1 & (\text{otherwise}) . \end{cases}\]

Then the number of solutions of (4.6) is equal to

\[\sum_{\substack{x \in \mathbb{K} \\ y \neq 0}} (1 + \psi(4y^3 + 1)) ,\]

so that

\[(4.7)\quad 6N_0 = r - 2 + \sum_{y \in \mathbb{K}} \psi(4y^3 + 1) ,\]

where now the summation is over all $y \in \mathbb{K}$.

Put

\[J(a) = \sum_{x \in \mathbb{K}} \psi(x^3 + a) \quad (a \in \mathbb{K}) .\]

Then clearly

\[J(ac^3) = \psi(c)J(a) \quad (c \neq 0) ,\]

so that

\[(4.8)\quad J^2(ac^3) = J^2(c) \quad (c \neq 0) .\]

\[\sum_{a} J^2(a) = \sum_{x,y} \sum_{a} \psi((x^3 + a)(y^3 + a))
= \sum_{x^3 = y^3} (r - 1) - \sum_{x^3 \neq y^3} 1
= r \sum_{x^3 = y^3} 1 - \sum_{x,y} 1
= r(3r - 2) - r^3
= 2r(r - 1) ,\]
so that

\[(4.9) \sum_a J^2(a) = 2r(r - 1) .\]

Let \(\gamma\) denote a fixed primitive root of \(K\). Then by (4.8) and (4.9), since \(J(0) = 0\),

\[(4.10) \quad J^2(1) + J^2(\gamma^2) + J^2(\gamma^4) = 6r .\]

On the other hand, since

\[
\sum_{c} J(c^2) = \sum_{c} \psi(x^3 + c^2) = r - 1 - \sum_{c \neq 0} 1 = 0 ,
\]

it follows that

\[(4.11) \quad J(1) + J(\gamma^2) + J(\gamma^4) = 0 .\]

Combining (4.11) with (4.10), we get

\[(4.12) \quad J^2(1) + J(1)J(\gamma^2) + J^2(\gamma^2) = 3r .\]

It is easily seen that \(J(1)\) is an even integer while \(J(\gamma^2), J(\gamma^4)\) are odd. Thus (4.12) implies

\[(4.13) \quad r = A^2 + 3B^2 ,\]

where \(A, B\) are integers defined by

\[(4.14) \quad A = \frac{1}{2} J(1) , \quad B = \frac{1}{6} [J(1) + 2J(\gamma^2)] .\]

It follows from the definition that

\[(4.15) \quad J(1) \equiv 1 \pmod{3} .\]

Hence, by (4.11) and (4.12),

\[(4.16) \quad J(1) \equiv J(\gamma^2) \equiv J(\gamma^4) \equiv 1 \pmod{3} .\]

If \(p \equiv 2 \pmod{3}\) it is clear from (4.13) that \(A = \pm n^{1/2}, B = 0\). Thus, by (4.11), (4.14) and (4.16),

\[(4.17) \quad J(1) = \pm 2n^{1/2} \equiv 1 \pmod{3}\]

and

\[(4.18) \quad J(\gamma^2) = J(\gamma^4) = -\frac{1}{2} J(1) .\]

For \(p \equiv 1 \pmod{3}\), on the other hand, we have the congruence

\[
J(1) \equiv -\left(\frac{3m}{2m}\right)^n \pmod{p} ,
\]
where \(p = 6m + 1 \). Thus \(J(1) \not\equiv 0 \pmod{p} \). Hence \(A^2, B^2 \) in (4.13) are uniquely determined. Then making use of (4.16), \(J(1), J(\gamma^2), J(\gamma^4) \) are uniquely determined.

Returning to (4.7), we have

\[
6N_0 = r - 2 + \psi(2)J(2) .
\]

Thus, by (4.3) and (4.4), we get

\[
f_1 = r - \psi(2)J(2) - 3E .
\]

We may state

THEOREM 5. Let \(p > 2, r \equiv 1 \pmod{3} \). Then the degree of \(F'(x) \) is determined by (4.20), where \(J(2) \) is uniquely determined by (4.13), (4.16), (4.17) and (4.18); \(E = 1 \) when

\[
2^{(r-1)/3} \equiv 1 \pmod{p}
\]

and \(E = 0 \) otherwise.

5. When \(p = 2 \) we have, as above, \(f_1 = 6N \) and

\[
N + N_0 = \frac{1}{3}(r - 1) ;
\]

\(6N_0 \) is equal to the number of pairs \(x, y \in K \) such that

\[
x^2 + x = y^3 \not\equiv 0 .
\]

Now for \(a \in K \) put

\[
t(a) = a + a^2 + a^3 + \cdots + a^{3r-1}
\]

and

\[
e(a) = (-1)^{t(a)} .
\]

Define

\[
L(a) = \sum_{x \in K} e(ax^3) .
\]

It follows from (5.2) that

\[
L(ac^3) = L(a) \quad (c \neq 0) .
\]

Since \(e(a) = e(a^2) \) we have also

\[
L(a) = L(a^3) = L(a^{-1}) \quad (a \neq 0) .
\]

It is easy to show that
\[
\sum_{x \in K} e(ax) = \begin{cases} r & (a = 0) \\ 0 & (a \neq 0) \end{cases} .
\]

Then
\[
\sum_{a \in K} L^i(a) = \sum_{x,y} \sum_a e(a(x^3 + y^3)) = r \sum_{x^3+y^3} 1 = r(3r-2) .
\]

Since \(L(a) = r \), it follows that
\[
(5.5) \quad \sum_{a \neq 0} L^i(a) = 2r(r - 1) .
\]

Let \(\gamma \) denote a fixed primitive root of \(K \). Then, by (5.3) and (5.5),
\[
L^i(1) + L^i(\gamma) + L^i(\gamma^2) = 6r .
\]

In view of (5.4) this reduces to
\[
(5.6) \quad L^i(1) + 2L^i(\gamma) = 6r .
\]

In the next place
\[
\sum_a L(a) = \sum_x \sum_a e(ax^3) = r ,
\]
so that
\[
\sum_{a \neq 0} L(a) = 0 .
\]

By (5.3) and (5.4) this reduces to
\[
(5.7) \quad L(1) + 2L(\gamma) = 0 .
\]

Combining (5.7) with (5.6) we get
\[
L^i(\gamma) = r , \quad L(\gamma) = \pm r^{i/2} .
\]

But it is clear from the definition that
\[
L(a) \equiv 1 \pmod{3}
\]
for all \(a \in K \). Therefore
\[
(5.8) \quad L(\gamma) = L(\gamma^2) = (-2)^{a/2}
\]
and, by (5.7),
\[
(5.9) \quad L(1) = (-2)^{(n+1)/2} .
\]
We now return to (5.1). For fixed \(y \), the number of solutions of (5.1) is equal to

\[
1 + e(y^2) .
\]

It follows that

\[
6N_0 = \sum_{y \neq 0} (1 + e(y^2)) = r - 2 + L(1) .
\]

Then

\[
f_1 = 6N = 6\left[\frac{1}{3} (r - 1) - N_0 \right] = 2(r - 1) - [r - 2 + L(1)] = r - L(1) .
\]

In view of (5.9) this becomes

\[
f_1 = r - (-2)^{(s+2)/2} .
\]

This completes the proof of

Theorem 6. Let \(p = 2, q = 2^s, r = q^s \). Then the degree of \(F_1(x) \) is equal to

\[
2^{ns} - (-2)^{(ns+2)/2} .
\]

The degree of \(F_s(x) \) is determined by

\[
f_0 + 2r + 1 = f_1 + f_s ,
\]

where \(f_s = \deg F_s(x) \) and \(f_0 \) is given by Theorem 3.

We note that when \(s = 1 \), Theorem 6 reduces to Theorem 3 of [1].

Reference

Shair Ahmad, *Dynamical systems of characteristic 0^+* 561
Charles A. Akemann and Bernard Russo, *Geometry of the unit sphere of a C^*-algebra and its dual* .. 575
Philip Bacon, *The compactness of countably compact spaces* 587
Richard Blaine Barrar and Henry Loeb, *On the continuity of the nonlinear Tschebyscheff operator* .. 593
L. Carlitz, *Factorization of a special polynomial over a finite field* 603
Joe Ebeling Cude, *Compact integral domains* .. 615
Frank Rimi DeMeyer, *On automorphisms of separable algebras. II* 621
James B. Derr, *Generalized Sylow tower groups* 633
Raouf Doss, *Some inclusions in multipliers* .. 643
Mary Rodriguez Embry, *The numerical range of an operator* 647
John Froese, *Domain-perturbed problems for ordinary linear differential operators* .. 651
Zdeněk Frolík, *Absolute Borel and Souslin sets* 663
Ronald Owen Fulp, *Tensor and torsion products of semigroups* 685
George Grätzer and J. Płonka, *On the number of polynomials of an idempotent algebra. I* ... 697
Newcomb Greenleaf and Walter Read, *Positive holomorphic differentials on Klein surfaces* .. 711
John Willard Heidel, *Uniqueness, continuation, and nonoscillation for a second order nonlinear differential equation* 715
Leon A. Henkin, *Extending Boolean operations* 723
R. Hirshon, *On hopfian groups* ... 753
Melvin Hochster, *Totally integrally closed rings and extremal spaces* 767
R. Mohanty and B. K. Ray, *On the convergence of a trigonometric integral* .. 781
Michael Rich, *On a class of nodal algebras* .. 787
Emile B. Roth, *Conjugate space representations of Banach spaces* 793
Rolf Schneider, *On the projections of a convex polytope* 799
Bertram Manuel Schreiber, *On the coset ring and strong Ditkin sets* 805
Edgar Lee Stout, *Some remarks on varieties in polydiscs and bounded holomorphic functions* ... 813
James Edward Ward, *Two-groups and Jordan algebras* 821