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A Galois theory for separable projective algebras over a
class of commutative rings more general than Von Neumann
regular rings with includes the full group of algebra auto-
morphisms is presented. Fundamental facts concerning the
group of units and the automorphisms of these algebras are
also given,

A Galois theory for simple algebras over fields which included the
full group of automorphisms was presented by G. Hochschile [5]. After
the work of M. Auslander and O. Goldman [1] and S. Chase, D. K.
Harrison, and A. Rosenberg [3] it was possible to generalize Hochschild’s
theory to semi-local rings with no idempotents other than 0 and 1 [4].
More recent results of Q. Villamayor and D. Zelinsky [14], and H.
Kreimer [8] permit the extension of Hochschild’s theory to a much
broader class of rings than in [4]. The context includes separable
projective algebras over commutative regular rings and is stated ex-
plicitly at the beginning of §3. Theorem 3 and Theorem 5 of §2
have also been obtained by A. Magid and will appear in the Illinois
Journal of Mathematics as part of an article entitled Pierce’s repre-
sentation and separable algebras.

We first state some of the results of [14] without proof. The
Galois theory in [14] is then improved in a special case. Next, in
§2, several basic properties of separable algebras are developed. The
Galois theory which generalizes [4] is presented in § 3. Henceforth R
always is a commutative ring with identity. All rings have identity,
all subrings share the common identity, all modules are unitary, and
all algebra homomorphisms carry identity to identity. Also ® will
mean ®z. A familiarity with the basic properties of separable algebras
is assumed. In particular, we employ a result of Villamayor [10] in
the sequel which asserts that any separable projective R-algebra is
finitely generated as an R-module.

1. We first enumerate, with corresponding nomenclature, several
results in [14]. Let B(R) be the Boolean algebra of idempotents of
the commutative ring R. If e, f € B(R) the Boolean operations are
given by e@ f =e¢+ f — ef and exf = e¢f. Let spec B(R) be the space
of maximal (= prime) ideals in B(R) and call the subsets U, of spec
B(R) defined for each ec B(R) by
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622 F. R. DEMEYER

U. = {p e spec B(R)| e < p}

a base for the open sets of spec B(R). In this topology spec B(R) is a
totally disconnected compact Hausdorff space. If pespec B(R) we let
R, = R/p-R, then R, is a homomorphic image of R. If M is an R-
module then R, ® M = M/pM is denoted M, and the natural image
of aeM in M, is denoted a,. In most of what follows we will use
the compactness of spec B(R) to recover information true at R, for
each p e spec B(R) to information about R.
The next seven results are proved in [14].

(2.7 If M and N are finitely generated projective R-modules the
natural map from Hom, (M, N) to Homg, (M,, N,) denoted f— f, is
an isomorphism.

(2.9) If o and b are elements of the finitely generated R-module
M and a, = b, for one pespec B(R) then a, =5, for all ¢ in some
neighborhood U, of p.

(2.11) If N is a submodule of the finitely generated R-module M
and N, = M, for all pecspec B(R) (R, is flat over R so N,cM,) then
N =M.

(2.12) If S is a finitely generated R-algebra and « is an idempo-
tent in S, for some p e spec B(R), then there is an idempotent v in S
such that », = w.

(2.13) R, has no idempotents other than 0 and 1 for each
p € spec B(R).

(2.14) Suppose S is an R-algebra that is finitely presented as an R-
module, let F' be a finite subset of S and let g be an R,-algebra homo-
morphism of S, which is the identity on F',. Then there is an R-algebra
homomorphism % of S such that % is the identity on F' and %, = g.

(2.17) If S is an R-algebra and J is a finite group of R-algebra
automorphisms of S; then for all pespec B(R), (87), = (S,); where
S’ denotes the fixed ring under J.

Let K be a commutative ring containing R as a subring.

If K is a projective separable R-algebra and if K¢ = R where G
is the group of all R-automorphisms of K, then K is called a normal
separable extension of R with group G. If H is a subset of G, the
closure H of H is the set of all automorphisms g of K such that for
each pespec B(R) and each minimal idempotent f, in K,, f,-9, = fih,
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for some he H. A closed subgroup of G is one equal to its own closure.
Another result from [14] is

LemymA 1. Let K be a mormal separable extension of R with
group G, then the following statements are equivalent.

(1) For each pespec B(R), K, ts a normal separable extension
of R, with group G,.

(2) Homy, (K, K) is generated as a K-module by R-algebra auto-
morphism of K.

(3) R is the fixed ring of some finilte set (equivalently, finite
group) of automorphisms of S.

An example in [14] shows that when K is a normal separable R-
algebra the equivalent conditions of Lemma 1 need not always hold. It
is only in the situation where these conditions hold that the techniques
we employ are effective. As a consequence of Lemma 1 we can restate
Theorem 3.8 of [14].

THEOREM 3.8. Let K be a normal separable R extension of R
with group G, if there is a finite subset J of G with K7 = R then
there is a ome to one correspondence between the set of all separable
subalgebras of K and the set of all subgroups H of G which are the
closure of some finite subgroup of G by H— K.

The result we require is in the situation where every idempotent
in K belongs to B. In this case Theorem 3.8 can be improved.

COROLLARY 2. Let K be a normal separable extension of R with
group G. Assume R is the fized ring of a finite subset of G and
assume every idempotent 1n K belongs to R. Then there is a one-to-
one correspondence between the separable subalgebras of K containing
R and the closed subgroups H of G by H— K. The closed subgroup
H of G is a normal subgroup of G if and only if the corresponding
subalgebra is a normal extension of R with group G/H.

Proof. We apply Theorem 3.8 to give the subgroup-subring cor-
respondence. Assume H is a closed normal subgroup of G, then
G/H acts as a group of automorphisms of K# in the usual way and
(K" = R, Let o be an R-automorphism of K. By hypothesis
on the idempotents in K and Theorem 3.5 of [3] we have for each
p € spec B(R) an automorphism 7, of K, which extends o, on K??. Use
(2.14) to lift 7, to an automorphism 7 on K. Since K# is finitely
generated and projective over R (Proposition 1.5 of [4]), Hom, (K%, K)
is finitely generated over R so there is by (2.9) and (2.7) a neighborhood



624 F. R. DEMEYER

U of p such that for each g e U, 7, restricted to (N¥), is g,. Cover
spec B(R) with such neighborhoods and use compactness of spec B(R)
to obtain a decomposition R = Re, @ -+ P Re, and automorphisms z;
of Ke; with 7; restricted to (K%)e; equal to ¢ on (K%)e,; (since ¢; € R,
o(e;) = t(e;) = ¢;). The automorphism 7 on K constructed from the z;
extends ¢ and is in G so K¥ is a normal separable extension of R
with group G/H. Conversely, assume H is a closed subgroup of G
and K* is a normal separable extension of B. Then by Theorem 2.3
of [3] and (2.17) we know that for each pespec B(R) and each e G

GP(KH)Z» = O-p(KII?“J) = K;IP = (KH)p .

Since K” is finitely generated over R, (2.7) implies o(K¥) = K?. This
is equivalent to the statement that H is a normal subgroup of G and
completely proves the corollary.

With the hypothesis of Corollary 2, if N is a normal separable
extension of B in K which ecorresponds to the closed normal subgroup
H of G observe that there is a finite subset of G/H on N leaving
exactly R fixed. Therefore our Galois theory also applies to the
extension N of R with group G/H.

2. We now derive some properties of separable algebras. The
group of isomorphism classes of rank = 1 projective R-modules forms
a group called the class group (Picard group) of R. Generalizing
Theorem 3.6 of [1] we have

THEOREM 3. Let A be a central separable R-algebra. Assume
the class group of R, is trivial for each p < spec B(R), then every
R-algebra automorphism of A is an imner automorphism.

Proof. Let o be an algebra automorphism of A. By Theorem
3.6 of [1] we know o, induces an inner automorphism of A, for each
pespec B(R). Let o,=1; on A,, then there exists a ye€4, with
Zy = 1. Lift Z and ¥ to elements 2’ and %’ in A. By (2.9) there is a
neighborhood U, of p so that for all g e U, we have z,y, = 1. There-
fore (x'¢)(y'e) = ¢ and (¥'¢), = T, (¥'¢), = §. Let x = (L — ¢) + «’¢ and
y=1—e)+ye Then x,ycA and 2y =1. Moreover ¢, is an inner
automorphism of A with (¢,), = 7;. Now Homj (4, 4) is a finitely
generated projective R-module so by (2.9) there is a neighborhood U
of p in spec B(R) with (4,), = g, for all ge U. Cover spec B(R) with
such neighborhoods, since spec B(R) is compact one can find a finite
subcover. Thus R = Re, @ -+ P Re, with e = ¢;c¢ R and there are
elements x;€ Ae,(j = 1, --- n) such that x; is a unit in Ae; and o on
Ae; is inner automorphism by «;, Let v =, + --- + @,, then o is
inner automorphism by z on A.
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A corollory of this result shows that we are in the context of {9].

COROLLARY 4. Let A be a separable projective R-algebra with
center K, and assume the class group of K, is trivial for each
p e spec B(R), then every R-algebra automorphism of A which is not
inner 18 represented nontrivially on K.

Proof. For pespec B(R), K, is a finitely generated projective
separable R, -algebra and R, has no idempotents other than 0 and 1.
Thus C, is a finite direct sum of finitely generated projective separable
R,-algebras whose only idempotents are 0 and 1. The class group of
K, is the product of the class groups of the summands and the sum-
mands correspond to the elements of spec B(K) so Theorem 3 applies.

Our inability to extend the next result restricts the generality of
the Galois theory in § 3. See the examples following Theorem 1.1 and
Theorem 1.2 of [4].

THEOREM 5. Let R be a commutative ring, assume for each
pespec B(R) that R, is a semi-local ring, (finite number of maximal
ideals). Let A be a separable projective R-algebra with center K and
let B be a separable R-subalgebra of A with center C containing K.
Assume every idempotent in C belongs to R. Let o be an R-algebra
monomorphism from B into A leaving K fixed, then ¢ can be extended
to an inner automorphism of A.

Proof. We know for any pespec B(R) that 4, is a projective
separable R, algebra with center K, and B, is a separable subalgebra
with center C, containing K,. By hypothesis on the idempotents in C
it follows that the only idempotents in C, are 0 and 1. By the lemma on
page 25 of [4], B is projective over R so Hom, (B, A) is a finitely generated
projective R-module and (2.7) implies Hom, (B, A), = Hom, (B,, 4,).
With this identification, Theorem 1.2 of [4] gives an inner automorophism
i; on A, which extends ¢, on B,. As in the proof of Theorem 3 lift
Z to a unit x in A so that 4, is an inner automorphism of A with
(i.), = ;. Apply (2.9) to get a neighborhood U, of » so that for all
qe U, o, = (i,), on B,. Applying the same compactness argument as
used in Theorem 3 we construct an inner automorphism ¢, on A which
extends o.

If R is a regular ring (in the sense of Von Neumann) then R
satisfies the hypothesis of Theorem 5 since every principal ideal in a
regular ring is generated by an idempotent. Thus if R is regular, R,
is a field for each pespec B(R). The next result improves Theorem
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1.5 of [4].

THEOREM 6. Let A be a separable projective algebra over K and
let J be a finite group of ring automorphisms of A with the property
that J restricted to K i1s a group of automorphisms of K isomorphic
to J. Let R =K' and assume K is a separable finitely generated
R-algebra with every idempotent in K belonging to R. If B = A/,
then B is a separable projective R-algebra and A = B K.

Proof. The hypothesis of Theorem 1.5 in [4] is satisfied at each
pespec B(R). Therefore the natural homomorphism from BX K to A
is an isomorphism at each p e spec B(R). Applying (2.7) and (2.11) we
conclude BQ K = A. Now K is a finitely generated, projective, separ-
able R-algebra so R-1 is an R-direct summand of K (see Proposition
A.4 of [1]). By ([2],1IX, 9.1) B is separable over E. By the lemma
on page 2.5 of [4] B is projective over R.

The next result includes a correction of Lemma 1.8 in [4]. Let
Z be the ring of integers.

LEMMA 7. Let A be a separable projective R-algebra, then A is
generated as an algebra by its units if and only if A, is generated
as an R, algebra by its units for all pespec B(R). Moreover, if R,
is semi-local them A, is not generated as an algebra by its umnits
iof and only if R,/Rad(R,) = Z/(2) @ R and the central component
of A,/Rad(A,) over Z/(2) contains a direct factor isomorphic to

Z[(2) @ Z/(2).

Proof. Assume that A, is generated by its units for all
pespec B(R). As in the proof of Theorem 3, each unit in A4, lifts to
a unit in A. Thus if N is the R-subalgebra of A generated by the
units of A we know N, = A, for all pespec B(R). By (2.11) this
implies N = A. The converse is clear.

For the last statement observe that the proof of Lemma 1.8 in [4]
implies A, is generated by its units over R, if and only if A,/Rad (4,)
is generated by its units over R,/Rad (E,). Now R,/Rad (R,) is a finite
direct sum of fields and 4,/Rad (4,) is a finite direct sum of semi-simple
algebras over fields. It is an elementary exercise to show that the
only semi-simple algebras over a field not generated by units occurs
when the algebra contains Z/(2) P Z/(2) as a direct summand over the
field Z/(2). This proves the lemma.

More information about automorphisms of separable algebras is
contained in
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LEMMA 8. Let A be a projective separable R-algebra with center
K and assume every idempotent in K belongs to R, then any R-
homomorphism ¢ from A to A is an automorphism of A.

Proof. Observe that ¢ is an R-homomorphism from K to K. Con-
sider the exact sequence

ag

0 — ker (o) K o(K) 0.

Now ¢(K) is a separable R-subalgebra of X so by the lemma on page
25 of [4] o(K) is projective over R. Therefore ker (¢) is an ideal
direct summand and is generated by an idempotent in K. But every
idempotent in K belongs to B and ¢ is one-to-one on R so ¢ is one-
to-one on K. For each pespec B(R) we know o0,: K, — K, is one-to-
one. K, has no idempotents other than 0 and 1 and K, can be im-
bedded in a Galois (in the sense of [3]) extension of R, by [6] so
Theorem 2.3 of [3] and the fact that Rank, (K,) = Rank, (0,(K,))
implies o, is also onto K,. By (2.11) and (2.7) this implies o(K) = K.
Since there is a one-to-one correspondence between the two sided ideals
of A and those of K by «cK corresponds to Aa we know ker () =0
on A and o is one to one on A.

Now o(A) is a central separable K-algebra (since ¢(K) = K) and
Rank, (A) = Rank, (6(4)) since g(A) is one to one. By Theorem 3.3
of [1], A = 0(A) R A" where A’ is a central separable K-algebra. By
a rank argument, A’ = K and o maps A onto A. This proves the
lemma.

LEMMA 9. Let K and L be commutative separable R-subalgebras
of the finitely generated projective R-algebra A, then KN L and K-L
are separable projective R-subalgebras of A.

Proof. First, K-L is a homomorphic image of K & L and there-
fore is separable over K. By the lemma on page 25 of [4] K-L is
projective over R. To prove K N L is separable over R we employ the
construction in § 3 of [12] to find a commutative projective separable
R-algebra N containing K.L such that there is a finite group J of
automorphisms of N with N7 = R. By Theorem 3.8 there are finite
sets H, H' of R-automorphisms of N with N¥ = K and N¥ = L.
Observe that N* %" = K N L which by Theorem 3.8 implies K N L is
projective and separable over R.

3. Throughout this section we shall adhere to the following nota-
tions and assumptions. R is a commutative ring with R, with semi-
local for each pespec B(R). A is a separable projective R-algebra with
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center K, and every idempotent of K belongs to R. Let G be the
group of all R-algebra automorphisms of A and assume A¢ = R. Also
we assume there is a finite subset of G whose restrictions give a finite
set J of automorphisms of K with K’ = R.

If H is a subgroup of G we let H, be the normal subgroup of H
congsisting of those elements of H which are inner automorphisms of
A. We let R(H) be the subring of A generated as a K-algebra by
all the units giving the inner automorphisms in H. If B is an R-
subalgebra of A we let G, be the group of all elements in G leaving
B elementwise fixed.

Call a subgroup H of G complete if every inner automorphism of
A by an element of R(H) is in H and if when restricted to K, every
element of G/H, which leaves K# fixed is in H/H,, We show later
that this last condition implies that on K we have H a closed group
of automorphisms in the sense defined in § 1. Call a subgroup H of
G regular if H is complete, R(H) is a separable K-algebra, and every
central idempotent in R(H) belongs to K.

If B is an R-algebra of A we call B regular if B is separable as
an R-algebra, if every idempotent in the center of B ®ynx K is in K,
and if the commutator of K-B in A is generated as a K-algebra by
its units.

If R is a semi-local ring whose only idempotents are 0 and 1 these
definitions reduce to [4]. For the same reasons as in the Galois theory
for simple algebras over fields, it is the regular subgroups and the
regular subalgebras which the Galois theory relates.

THEOREM 10. If H s a regular subgroup of G, then AY is a
regular R-subalgebra of A, and H is the group of all automorphisms
of A leaving A¥ fixed.

Proof. The commutator of R(H) in A is A% thus by Theorem
2 of [7], A" is a separable R-algebra. Now H leaves R(H) setwise
invariant so H leaves Ao setwise invariant. Restricting H to A#o
yields a group of automorphisms H’ of A% leaving A" fixed which is
isomorphic to H/H, Similarly H leaves K setwise invariant. Since
all automorphisms of A leaving K fixed are inner by Theorem 3, H
restricted to K is also isomorphic to H/H, and can be viewed as the
restriction of H’ to K. By our assumptions there is a finite subset
Jof H with K7 = K¥ = KN A”. By Corollary 2, K N H? is separable
over B. The center of A%, being the same as the center of R(H),
is projective and separable over K. Furthermore K is projective and
separable over B so A% is projective and separable over R. By Theo-
rem 6 we know (A4%)’ = B is separable over K’ and A" = BQQ K
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(tensor over K7). Since KZ is separable over R, B is separable over
R. Every idempotent in the center of A%° is in K by assumption on
R(H). Now APcB butif ¢ e H and ¢|; #e then ¢ Q1 is an automorphism
of B K = A¥o which is the identity on K so o Q& 1 extends by Theorem
3 to an element of H,. This is impossible since B¢ A¥. Thus A” = B
is a regular subalgebra of A.

To prove the last statement of the theorem observe that H, con-
tains all the inner automorphisms leaving A” fixed. Also H' = H/H,
contains all the automorphisms of A% Jeaving AY” fixed since A% =
A7 R K (tensor over A” N K). Moreover H/H, is closed when viewed
as a group of automorphisms of K.

THEOREM 11. Let B be a regular subalgebra of A containing R,
then the group Gy is a reqular subgroup of B and B is the fixed ring
of Gg.

Proof. If C is the center of B, then C ®z.x K is the center of
B®znx K, so C.K is the center of B-K and is separable over B. By
Lemma 9 C N K is separable over R, therefore B N K is separable over
R. By our assumption there is a finite subset of G whose restrictions
to K leave exactly R elementwise fixed so by Theorem 6 we can write
A=A°Q K. By Corollary 2 there is a finite subset J' of the R-
automorphism group of K with K7 = BN K. The representation of
A as A°® K insures that every element of J’ extends to an element
in G/G,. Next we show the natural map j: BQyx K — B-K is an
isomorphism. Now kerj = I.(B ®znx K) where I is the kernel of the
restriction of 7 to C ®.x K. Consider the exact sequence of C Qgnx K-
modules

O———91-_)C®00KK—_)C'K’_')O.

Now Z-K is a projective R-module, so since C Q.nx K is a sepa-
rable R-algebra Z-K is a projective C Qonx K-module. Hence the
sequence splits and I is generated by an idempotent. Since every
idempotent in C ®qnx K belongs to K, I =0 and 7 is an isomorphism.

Extend each ¢’ in J’ to B-K = B®unx K by

o’ (bk) = bo'(k) .

Lift o’, viewed as an element of G/G,, to an element ¢ of G. Then
o restricted to K is 0’ so 07'0’: B-K — A leaves K fixed. Since every
central idempotent in B-K belongs to K, 0-'¢’ extends to an inner
automorphism 7 of A by Theorem 5. Now ¢’ is ot restricted to B-K
so ¢’ extends to an automorphism of A. Each ¢’ in J’ in this way
extends to an element of G, and since J’ defined on B-K leaves ex-
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actly B fixed, G, must leave exactly B fixed.

The commutator L in A of B is the commutator in A of B-K,
so is finitely generated and separable over K with every central
idempotent of L in K. Clearly, any automorphism of G, comes from
a unit in L and every unit in L defines an inner automorphism in G;.
To show that L = R(G;) and consequently that G, is regular, it suf-
fices to show that L is generated as a K-algebra by its units. This
follows from the definition of regularity for B.

Retain the notation of Theorem 11 in Theorem 12.

THEOREM 12. If B 1s a regular subalgebra of A and G; is «a
normal subgroup of G, themn G/Gy is the group of all algebra auto-
morphisms of B.

Proof. Set H = G;. The restriction map from G to the auto-
morphism group of B has kernal H. Since H is normal in G, this
implies every element in G/H can be viewed as an automorphism of B.
The proof will be complete when we extend any R-automorphism ¢’
on B to an automorphism of A. Now H' = H/H, is a normal sub-
group of G’ = G/G, by the second isomorphism theorem so restricting
our attention to K we know by Corollary 2 that BN K is a normal
separable extension of R with group G'/H’ and G'/H’ contains all
automorphisms of BN K leaving R fixed. View ¢’ as an element of
G'/H’ and extend to an element ¢ of G. Then 7’ = ¢~'¢’ is an auto-
morphism of B leaving BN K fixed. Define v/ on BRy,x K = B-K
by 7'(bk) = 7' (b)k; then 7' is an automorphism of B-K leaving K fixed.
By Theorem 5, 7’ extends to an automorphism = of G. For any be B,
ot(b) = o7'(b) = a(c7'0)(b) = ¢’(b) so or is the desired automorphism.

Following [5] we call a subalgebra B of A almost regular in case B
is separable over R, every central idempotent in B-K belongs to K, and
the commutator of B-K in A is generated by its units. Every regular
algebra is almost regular and in this context the converse also holds.

THEOREM 14. With A, K, R, and G as above, every almost regular
R-subalgebra of A is regular.

Proof. Let B be an almost regular R-subalgebra of A. Since
every idempotent in B-K belongs to K it suffices to show that the

natural map
j:BRpx K— B-K

is an isomorphism. As in the proof of Theorem 11 we can restrict our
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attention to the natural map 7: C QsnxK — C-K where C is the center
of B.

Since CN K = L is separable over R by Lemma 9 and projective
by the lemma on page 25 of [4] both C and K are projective when
viewed as L-algebras. Thus C®, K = C-K @ ker (j). By Theorem 2.3
of [4], ker(j) = 0 for every pespec B(R) so ker(j) =0 and j is an
isomorphism.
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