THE NUMERICAL RANGE OF AN OPERATOR

MARY RODRIGUEZ EMBRY
THE NUMERICAL RANGE OF AN OPERATOR

MARY R. EMBRY

Let A be a continuous linear operator on a complex Hilbert space X with inner product \langle , \rangle and associated norm $\| \cdot \|$. Let $W(A) = \{ \langle Ax, x \rangle : \| x \| = 1 \}$ be the numerical range of A and for each complex number z let $M_z = \{ x : \langle Ax, x \rangle = z \| x \|^2 \}$. Let γM_z be the linear span of M_z and $M_z \oplus M_z = \{ x + y : x \in M_z \text{ and } y \in M_z \}$. An element z of $W(A)$ is characterized in terms of the set M_z as follows:

Theorem 1. If $z \in W(A)$, then $\gamma M_z = M_z \oplus M_z$ and

(i) z is an extreme point of $W(A)$ if and only if M_z is linear;

(ii) if z is a nonextreme boundary point of $W(A)$, then γM_z is a closed linear subspace of X and $\gamma M_z = \bigcup \{ M_w : w \in L \}$, where L is the line of support of $W(A)$, passing through z. In this case $\gamma M_z = X$ if and only if $W(A) \subset L$.

(iii) if $W(A)$ is a convex body, then x is an interior point of $W(A)$ if and only if $\gamma M_z = X$.

It is well-known that $W(A)$ is a convex subset of the complex plane. Thus if $z \in W(A)$, either z is an extreme point (not in the interior of any line segment with endpoints in $W(A)$), a nonextreme boundary point, or an interior point (with respect to the usual plane topology) of $W(A)$. Thus Theorem 1 characterizes every point of $W(A)$.

The following additional notation and terminology are used. If $K \subset X$, then K^\perp denotes the orthogonal complement of K. An operator A is **normal** if and only if $AA^* = A^*A$ and **hyponormal** only if $AA^* \ll A^*A$. A line L is a **line of support** for $W(A)$ if and only if $W(A)$ lies in one of the closed half-planes determined by L and $L \cap W(A) \neq \emptyset$.

In the last section of the paper consideration is given to $\bigcap \{ \text{maximal linear subspaces of } M_z \}$. One result is that if A is hyponormal and z a boundary point of $W(A)$, then $\bigcap \{ \text{maximal linear subspaces of } M_z \} = \{ x : Ax = zx \text{ and } A^*x = z^*x \}$. This generalizes Stampfli’s result in [3]: if A is hyponormal and z is an extreme point of $W(A)$, then z is an eigenvalue of A. In [2] MacCluer proved this theorem for A normal.

2. A proof of Theorem 1. Lemmas 1 and 2 provide the core of the proof of Theorem 1.

Lemma 1. Let z be in the interior of a line segment with endpoints a and b in $W(A)$, $x \in M_a$, $y \in M_b$, $\| x \| = \| y \| = 1$. There exist
real numbers s and t in $(0, 1)$ and a complex number λ, $|\lambda| = 1$, such that $tx + (1 - t)\lambda y \in M_z$ and $sx - (1 - s)\lambda y \in M_z$. Consequently,

$$M_a \subset M_z \oplus M_z.$$

Proof. In proof of the convexity of $W(A)$ given in [1], pp. 317-318, it is shown that $tx + (1 - t)\lambda y \in M_z$ for some real number t in $(0, 1)$ and some complex λ, $|\lambda| = 1$. A slight modification of the argument shows that $sx - (1 - s)\lambda y \in M_z$ for some real number s in $(0, 1)$. Therefore, since M_z is homogeneous and $s, t \in (0, 1)$, $x \in M_z \oplus M_z$, proving the last assertion.

Lemma 2. Let L be a line of support of $W(A)$ and $N = \bigcup \{M_w \mid w \in L\}$.

(i) There exists a real number θ such that $N = \{x \mid e^{i\theta}(A - z)x = e^{-i\theta}(A^* - z^*)x\}$ for all z in L.

(ii) N is a closed linear subspace of X.

(iii) $N = X$ if and only if $W(A) \subset L$.

Proof. (i) Let θ be such that $e^{i\theta}(w - z)$ is real for all w and z in L. Then $N = \{x \mid < e^{i\theta}(A - z)x, x > \text{ is real}\}$. Therefore since L is a line of support of $W(A)$, Im $e^{i\theta}(A - z) = 0$ or < 0 and thus $N = \{x \mid e^{i\theta}(A - z)x = e^{-i\theta}(A^* - z^*)x\}$. Conclusion (ii) follows immediately from (i), and (iii) follows from the definition of N.

Proof of Theorem 1. Let $z \in W(A)$. (i) In Lemma 2 of [3] it is proven that M_z is linear if z is an extreme point of $W(A)$. If z is not an extreme point of $W(A)$, z is in the interior of a line segment with end points a and b in $W(A)$. By Lemma 1, $M_a \subset M_z \oplus M_z$. Since $a \neq z$, $M_a \cap M_z = \{0\}$. Therefore M_z cannot be linear. (ii) Assume now that z is a nonextreme boundary point of $W(A)$. Let L be the line of support of $W(A)$, passing through z, and let $N = \bigcup \{M_w \mid w \in L\}$. Lemma 1 implies that $M_w \subset M_z \oplus M_z$ whenever $w \in L$; consequently, $N \subset M_z \oplus M_z$. Lemma 2 (ii) implies that $\gamma M_z \subset N$. Therefore, $M_z \oplus M_z = \gamma M_z = N$ and thus by Lemma 2 (iii) $\gamma M_z = X$ if and only if $W(A) \subset L$. (iii) Assume now that $W(A)$ is a convex body. If z is an interior point of $W(A)$, Lemma 1 implies that $M_a \subset M_z \oplus M_z$ for each a in $W(A)$. Therefore

$$X = \bigcup \{M_a \mid a \in W(A)\} \subset M_z \oplus M_z \subset \gamma M_z = X.$$

On the other hand if z is a boundary point of $W(A)$ either $\gamma M_z = M_z$ or $\gamma M_z = N$ and in either case $\gamma M_z \neq X$ since $W(A)$ is a convex body.

3. $\bigcap \{\text{Maximal linear subspaces of } M_z\}$. Although M_z may
not be linear, it is homogeneous and closed. Therefore if \(M_z \neq \{0\} \) and \(x \in M_z \), there exists a nonzero maximal linear subspace of \(M_z \), containing \(x \). Consideration of the intersection of these maximal linear subspaces yields information about eigenvalues and eigenvectors of \(A \).

Theorem 2. Let \(z \in W(A) \) and \(K_z = \bigcap \{\text{maximal linear subspaces of } M_z\} \). If \(z \) is a boundary point of \(W(A) \), let \(N = \bigcup \{M_w \mid w \in L\} \), where \(L \) is a line of support for \(W(A) \), passing through \(z \).

(i) If \(z \) is a boundary point of \(W(A) \), \(x \in K_z \), and \(Ax \in N \), then \(Ax = zx \) and \(A^*x = z^*x \). Conversely, if \(Ax = zx \) and \(A^*x = z^*x \), then \(x \in K_z \).

(ii) If \(W(A) \) is a convex body and \(z \) is in the interior of \(W(A) \), \(K_z = \{x \mid Ax = zx \text{ and } A^*x = z^*x\} \).

Proof. By elementary techniques it can be shown that for each complex \(z \)

1. \(K_z = M_z \cap [(A - z)(\gamma M_z)]^{\perp} \cap [(A^* - z^*)(\gamma M_z)]^{\perp} \) and that if \(z \) is extreme,
2. \(M_z \subset [(A - z)N]^{\perp} \cap [(A^* - z^*)N]^{\perp} \).

(The proof of (2) depends upon the fact that \(M_z \) is linear if \(z \) is extreme.) (i) Let \(z \) be a boundary point of \(W(A) \). By Theorem 1, \(K_z = M_z \) if \(z \) is extreme and \(\gamma M_z = N \) if \(z \) is nonextreme. Moreover, if \(x \in K_z \) and \(Ax \in N \), Lemma 2 implies that

\[(A - z)x \in N \text{ and } (A^* - z^*)x \in N.\]

It now follows from (1) and (2) that \(Ax = zx \) and \(A^*x = z^*x \). The converse follows immediately from (1). (ii) If \(W(A) \) is a convex body and \(z \) is in the interior of \(W(A) \), \(\gamma M_z = X \) by Theorem 1 and (1) implies that \(K_z = \{x \mid Ax = zx \text{ and } A^*x = z^*x\} \).

Corollary 1. If \(A \) is hyponormal and \(z \) is a boundary point of \(W(A) \), \(\bigcap \{\text{maximal linear subspaces of } M_z\} = \{x \mid Ax = zx \text{ and } A^*x = z^*x\} \). In particular, if \(z \) is an extreme point of \(W(A) \), \(z \) is an eigenvalue of \(A \).

Proof. Again let \(N = \bigcup \{M_w \mid w \in L\} \), where \(L \) is a line of support for \(W(A) \), passing through \(z \). In Lemma 3 of [3] Stampfli proves that \(A(N) \subset N \). Thus by Theorem 2, (i) \(K_z = \{x \mid Ax = zx \text{ and } A^*x = z^*x\} \). Moreover, if \(z \) is extreme, \(K_z = M_z \neq \{0\} \).

One last remark about potential eigenvalues and eigenvectors: it is immediate from Lemma 2 (i) that if \(z \) is a boundary point of \(W(A) \), \(Ax = zx \) if and only if \(A^*x = z^*x \).
REFERENCES

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE
PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. SAMELSON
Stanford University
Stanford, California 94305

J. DUGUNDJI
Department of Mathematics
University of Southern California
Los Angeles, California 90007

RICHARD PIERCE
University of Washington
Seattle, Washington 98105

BASIL GORDON*
University of California
Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH
B. H. NEUMANN
F. WOLF
K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
STANFORD UNIVERSITY
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF TOKYO
UNIVERSITY OF CALIFORNIA
UNIVERSITY OF UTAH
MONTANA STATE UNIVERSITY
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF NEVADA
UNIVERSITY OF WASHINGTON
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
AMERICAN MATHEMATICAL SOCIETY
UNIVERSITY OF OREGON
CHEVRON RESEARCH CORPORATION
OSAKA UNIVERSITY
TRW SYSTEMS
UNIVERSITY OF SOUTHERN CALIFORNIA
NAVAL WEAPONS CENTER

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced, double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. It should not contain references to the bibliography. Manuscripts, in duplicate if possible, may be sent to any one of the four editors. Please classify according to the scheme of Math. Rev. 36, 1539-1546. All other communications to the editors should be addressed to the managing editor, Richard Arens, University of California, Los Angeles, California, 90024.

50 reprints are provided free for each article; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published monthly. Effective with Volume 16 the price per volume (3 numbers) is $8.00; single issues, $3.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $4.00 per volume; single issues $1.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 7-17, Fujimi 2-chome, Chiyoda-ku, Tokyo, Japan.

* Acting Managing Editor.
Shair Ahmad, *Dynamical systems of characteristic 0^+* .. 561
Charles A. Akemann and Bernard Russo, *Geometry of the unit sphere of a C*-algebra and its dual* ... 575
Philip Bacon, *The compactness of countably compact spaces* 587
Richard Blaine Barrar and Henry Loeb, *On the continuity of the nonlinear Tschebyscheff operator* .. 593
L. Carlitz, *Factorization of a special polynomial over a finite field* 603
Joe Ebeling Cude, *Compact integral domains* .. 615
Frank Rimi DeMeyer, *On automorphisms of separable algebras. II* 621
James B. Derr, *Generalized Sylow tower groups* .. 633
Raouf Doss, *Some inclusions in multipliers* ... 643
Mary Rodriguez Embry, *The numerical range of an operator* 647
John Froese, *Domain-perturbed problems for ordinary linear differential operators* .. 651
Zdeněk Frolik, *Absolute Borel and Souslin sets* ... 663
Ronald Owen Fulp, *Tensor and torsion products of semigroups* 685
George Grätzer and J. Płonka, *On the number of polynomials of an idempotent algebra. I* .. 697
Newcomb Greenleaf and Walter Read, *Positive holomorphic differentials on Klein surfaces* .. 711
John Willard Heidel, *Uniqueness, continuation, and nonoscillation for a second order nonlinear differential equation* 715
Leon A. Henkin, *Extending Boolean operations* .. 723
R. Hirshon, *On hopfian groups* ... 753
Melvin Hochster, *Totally integrally closed rings and extremal spaces* 767
R. Mohanty and B. K. Ray, *On the convergence of a trigonometric integral* .. 781
Michael Rich, *On a class of nodal algebras* ... 787
Emile B. Roth, *Conjugate space representations of Banach spaces* 793
Rolf Schneider, *On the projections of a convex polytope* 799
Bertram Manuel Schreiber, *On the coset ring and strong Ditkin sets* 805
Edgar Lee Stout, *Some remarks on varieties in polydiscs and bounded holomorphic functions* .. 813
James Edward Ward, *Two-groups and Jordan algebras* 821