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The variation of the eigenvalues and eigenfunctions of an
ordinary linear self-adjoint differential operator I, is considered
under perturbations of the domain of L. The basic problem
is defined as a suitable singular eigenvalue problem for L on
the open interval o- < s < w; and is assumed to have at least
one real eigenvalue 2 of multiplicity #. The perturbed problem
is a regular self-adjoint problem defined for L on a closed
subinterval [a, b] of (w—, w;). It is proved under suitable con-
ditions on the boundary operators of the perturbed problem
that exactly & perturbed eigenvalues x, — 2 as a,b— o_, 0.
Further, asymptotic estimates are obtained for p}, — 1 as
a,b— w-, ;. The other results are refinements which lead
to asymptotic estimates for the eigenfunctions and variational
formulae for the eigenvalues,

Let L be the #n-th order ordinary linear differential operator
defined by

(1.1) Lo = = Sy p()a=(s)
k(s) i=

on the open interval w_ < s < w,, where k£ and p;,,7=20,1, --+, % are
real-valued functions on this interval with the properties that

(1) p;eCw_,w,), 1=0,1, «+«, m;

(ii) k& is piecewise continuous on (w_, .); and

(iii) p, and k are positive-valued. Furthermore the operator k- L
is assumed to be formally self-adjoint, i.e. k-L coincides with its
Lagrangian adjoint [k-L]* where

(1.2) [k-Liw = 3} (~1)Tpaa] =" .
©=20
The points w, and w_ are in general singularities for L; the possibility

that they are + o is not excluded.
It will be convenient to use the following notations:

(1.3) @, y)t = g’m)mk(u)du, 0 <5<t w,;
(1.4) @, Vo = @, ¥)e+; @, ¥) = (, Y)i_
(1.5) (®, ¥) = (z, ¥)or ;
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1.6) [2y)(s) = 3 (=12 [Pan(SY ] 5

m=1j+k=m
j20,k

1.7 [xy](x) :slifﬂ [xy](s) .

Since the operator k-L is formally self-adjoint Green’s symmetric
formula has the form

(1.8) (L, y); — (%, Ly); = [xy](t) — [=y](s) -
Let H, Ha, b] denote the Hilbert spaces which are the Lebesgue spaces
with respective inner products (x, v), (%, ¥)! and norms ||z || = (, x)'?,

e lls = [(@, )i}, o_ <a<b< w,. For ¢ any intermediate point,
@_ <c<w;, the symbols H(w_, ¢], H[e¢, ®.) will similarly denote the
Lebesgue spaces with respective inner products (x, ¥)°, (¢, ¥), and norms
N lle = [, )] || 2|, = [(x, 2),]"®. From (1.8) it is clear that [xy](+)
(or [xy](—)) exists provided «, y, Lz, Ly are in H[c¢, w,) (or «, y, Lz, Ly
are in H(w_, c]).

Let a, and b, be fixed numbers satisfying w_ < a, < b, < ®, and
let R, be the rectangle in the a — b-plane described by the inequalities
W< aZa,b £b< w,. Then every closed, bounded interval [a, b],
W_<aZLa,b <b<w, can be associated in a one-to-one manner
with a point of B,. Fork=10,1,.---,n—1, let a;,(a),71=1,2, -+, m,
and B;(0),5=1,2, -+, n — m be real-valued functions defined on the
respective intervals w_<a < a, b, < b < w,, such that for every
[a, b] € R, the boundary operators

Uy = S au@y™@), i =1,2, -+, m
1.9) :j‘j
Uiy = 5, BBy ®), § = 1,2, ==+, —m

yield a linearly independent self-adjoint set of boundary conditions

Uy=0,1=12,---,m

(1.10) ) )
Uiy=0,1=1,2, -, m—m

for L (see [3] Chapter 11). Also for each [a, b] € R, let D]a, b] denote
the set of all y € H[a, b] which have the properties that

(1) yeC"a, b], y is absolutely continuous on [a, b];

(ii) Lye Hla, b]; and

(iii) y satisfies (1.10).
Then the self-adjoint eigenvalue problem

(1.11) Ly =py, yeDla,b]

is known to have a countable set of real eigenvalues with no finite
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cluster point and a corresponding set of (real) eigenfunctions complete
in Hla, b]. Our problem is to obtain estimates for each eigenvalue
o= tt,; of (1.11) for a, b near w_, @, under hypotheses that will ensure
that the limits of y,, as a, b — w_, @, will exist. Accordingly, eigen-
values \ of suitable singular eigenvalue problems for L on (w_, w,) will
be assumed to exist. If the eigenspace of )\ is k-dimensional the
first theorem shows in particular that at least k eigenvalues of (1.11)
converge to A as a, b —w_, w.. The other results are refinements of
this which lead to asymptotic estimates for eigenfunctions. The method
of estimation used is due to H. F. Bohnenblust [1]. Results like these
have been previously obtained for second order cases by C. A. Swanson
[8], [9]. See also [10] where he considers the biharmonic operator.

Let I, be any fixed complex number, Iml, = 0, and let +,;, 7 =
1,2, ...,n, denote linearly independent solutions (hereafter to be referred
to as basic solutions) of L,z = 0 where L, = L — l,. If basic solutions
vy 2 =1,2, -+, n exist such that the lim|+;/v;] is either 0 or « as
s — @, for each pair +;, v;, 1,5 =1,2, --+,n, ¢ 5 7, then w, will be
referred to as a class 1 singularity. On the other hand, w, will be
called a class 2 singularity when the behaviour of the basic solutions
is essentially arbitrary as s— w,. In particular this includes cases
where the basic solutions may oscillate as s — @,. Similar definitions
also apply to the singularity w_. The singularity w, (or w_) is further
characterized by the number of basic solutions in H[e¢, w,) (or in H(w_, ¢])
where ¢ is any number satisfying w_<c¢ < @w.. For n = 2 this reduces
to Weyl’s well-known limzit circle, limit point classification of singular
points [3, p. 225].

For the present perturbation problems will be considered for which
both w_ and w, are both class 2 singularities and all basic solutions
are in H(w_, ¢] and in H]¢, w,). In another paper class 1 singularities
(and mixed cases) as well as examples will be considered.

2. Basic and perturbed problems. Rather than general spectral
theory, one is interested in cases that the limits of z,, as a,b—w_, w,
exist in an elementary sense. Thus, eigenvalues of suitable singular
eigenvalue problems for L on (w_, w,) are supposed to exist. Such
eigenvalue problems may be established by following basically the
methods suggested by Kodaira [5] and Coddington [2]. Note that for
the particular case n = 2, a theorem of Weyl [7] leads to singular
“limit circle” problems which possess eigenvalues.

Let D be the set of all x e H such that xe C*Yw_, ®.) and 2"
is absolutely continuous on every closed bounded sub-interval of (w_, @.).
Let y;, 1 =1,2, ---, n be functions (to remain fixed) such that

(i) Ly;eH,t=1,2,---,m;

(ii) the end conditions [xy;](—)=0,72=1,2, ..+, m are linearly
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independent; and

(iii) the end conditions [ay;](+) =0,¢=m 4+ 1, m + 2, --- m, are
linearly independent.
Then the basic problem is the singular eigenvalue problem

2.1) L =z, xze D,
where D, is the set of all x e D such that

j[x;{i](—) =0,7=1,2, -+, m

2.2) )
t[xXz](Jr) = 0:7': m -+ ly e, N

Again (2.1) is to be a reasonable eigenvalue problem, i.e., at least one
eigenvalue \ is supposed to exist which is assumed to be real. Note
that the methods used by Coddington [2] and Kodaira {5] ensure that all
eigenvalues are real. The eigenvalue problem (1.11) is to be regarded
as a perturbation of (2.1) and hence will be referred to as the perturbed
problem.

For the class of perturbation problems to be considered, the basic
solutions are not necessarily ordered according to their asymptotic
behaviour at w, or at w_. Consequently strong conditions have to be
imposed on the limiting behaviour of the boundary operators U}, U}
as a,b— w_, .. In particular every n — 1 times differentiable func-
tion y shall satisfy

2 3) (U;y = [yXJ(a)[l + 0(1)] as a — w_ , i = 1’ 2, e, m
* Uiy = [nei L + o1)] 88 b— @,  i=1,2, ++e,n —m.

Let A denote the matrix (4;;) where

[P'/f%XJK_)y?/:l’zy "'yn;jzlazy AN ([
[qllf’vXj](n}—)!?::l!Z! ---%;j:m—}—l, e, N

i
and let 2 = det A. Then since 2 = det A?, where A’ is the transpose
of A, and since [, is nonreal it follows immediately that © == 0 (other-
wise [, would be an eigenvalue of (2.1)). Also foreachj,j=1,2,.-.,n,
Vi Lfrsy iy Ly; are in H; hence (1.8) implies that each limit [v;](%)
exists (finite) for 4,5 = 1,2, ---, n. This implies that 2 is equal to
some nonzero constant.
Let A(a, b) denote the matrix (4;;,(a, b)) where

Uzﬁ"}'iji:]-az’ “',7’)7/;_7.:1,2, e, M

Aij'aab = . . .
( ) U;—"‘q;rj,z:m%-l,-'-,%;.7=1,2,"',%

ane let Q(a, b) = det A(a, b). Since [vx;]1(a) and [v%;](b) are finite as
a—w_ and b—w, for+,5=1,2, .-, n, it follows from (2.3) that num-
bers a,, b,, can be selected (which may be pre-supposed to be the original



SINGULAR DIFFERENTIAL OPERATORS 655

choices) and a constant C such that

@24) |Uiyp; | £C, | Ufv; | £Ce=1,2,c02,m,j=1,2,--+,m,
k=1,2c,n—m

whenever w_ < a < @, b, < b < w,. Also by (2.3) the element in the
i-th row and j-th column in A(a, b) approaches the element in the ¢-th
row and j-th column in A* as a, b— w_, w,. This implies that

(2.5) Qa,b)—2+0

as a,b—w_, w, and hence by (2.4) and (2.5) the numbers a,, b, pre-
viously chosen can be assumed to be such that 2(a, b) is bounded above
and away from zero whenever w_ < a < a, b, < b < w,.

3. Comparison of the basic and perturbed problems. The two
problems (1.11) and (2.1) will be compared, with (1.11) regarded as a
perturbation of (2.1). An estimate will be obtained for the variation of
the eigenvalues and eigenfunctions under the perturbation D,— D]a, b].
In particular it will be shown that this variation has the limit 0 as
a,b— w_, w,. Let \ be an eigenvalue of (2.1) and let 4, denote the
eigenspace of dimension % corresponding to A. Let z;,7=1,2, -+, k
be an orthonormal basis for A; and define zi(x), zi(x), I',(x) and I"y(x) by

3.0 7@ = 3| Uls, s 7i(0) = 331 Uiy | 5
(3.2 @) = 3 75@); D) = 3 7).«

Then (2.2) and (2.3) clearly imply that zi(x) = o(1),72=,1,2, ---, m and
ilw) = o(1), 4= 1,2, -+, » — m and hence

(3.3) I'(2x) =o0(1), I'yx)=o()
as a—w_, b—w,. The following theorem proves the convergence of

the eigenvalues of (1.11) to those of (2.1).

THEOREM 1. Let w_ and w,. be singularities for L as described
i §1. Let N be an eigenvalue of (2.1) possessing k orthonormal
eigenfunctions. Then under assumption (2.3) there exists a rectangle
R,, and a constant C on R, such that at least k perturbed eigenvalues

My of (1.11) satisfy
3.4 | iy — M| < CIT (%) + IMy()]

whenever [a, b] € R,.

Proof. Let G,(s, t) be the Green’s function for the operator k- L,
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associated with (1.10) and let G,, be the linear transformation on
H]a, b] defined by

Gt = | Guls, k@, e Hia, 8] .

It is well-known [3, Chapter 7], that for any function y € H[a, b], the
function w = G,y is the unique solution in Dfa, b] of the differential
equation Lyw =y. For A an eigenvalue and z any corresponding nor-
malized eigenfunction of (2.1), we define a function f on [a, b] by

(3.5) f =2 -G, Y=x—1.

It is easily verified because of the linearity of all the operators involved
that f is a solution of the boundary problem

Lof:()y U;f: ij,izl,Z,---,m,
Uif =Uiz,t=1,2, -+, —m .

Let Ki(a, b) denote the determinant of the matrix obtained from A(a, by
by replacing the j-th column by

Uéxy szy Ty U;nx) Ulixr ] Uén—mx .

(3.6)

Then Cramer’s rule yields the following representation of f in terms
of the basic solutions:

1 SNe

3.7 1) = gy ZE @ D).
The solution f of (3.6) is unique for if g is any solution of (3.6) then
the function k=g — f satisfies Lih=0,Uih=0,1=1,2, .-+, m,
Uh=0,1=1,2,---,n — m. This implies that % is the zero function
or g =f.

It follows from (2.4), (3.1) and (3.2) that there exists a constant
C such that

| K(a, b) | < CI"u(@) + I'y(@)]

for each 7,7=1,2, ..., n whenever [a, b]e R,. This in addition to
(2.5), (3.5), (8.7) and the fact that all the basic solutions are in H,
enables one to deduce that there exists a constant C such that

(3.8) [[# — 7G|t < C(u(x) + Ty(@) || ]]

whenever [a, b] € B,. The following fundamental lemma was obtained
by H. F. Bohnenblust the proof of which is outlined in [8, p. 1554].

LEMMA 1. Let P(5) be the projection mapping from the Hilbert
space Hla, b] onto its subspace H,[a, b] (0 > 0) spanned by all the
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etgenfunctions y; of (1.11) such that the corresponding eigenvalues
posatisfy (¢ — N £06. Then for any we Hla, b],

hw = PowlE = (1 + 120w ~ 26wl
It follows from (3.8) and Lemma 1 that there exists a constant
C on R, such that

(3.9) M—HWWg%wmwfmwmw
With the choice 6 = C[I",(x) + I",(x)], we obtain
(3.10) o — POz = ok

and conclude that P(d)x = 0 implies x = 0 on [a, b]. But dim A4, = k;
hence there exists at least k& perturbed eigenvalues g, (counting
multiplicities) of (1.11) such that

l#éb — N = C[T (%) + Iy(2)]
for [a, b] e R,. This completes the proof of the theorem.

Theorem 1 and (3.3) show in particular that if X is a basic eigen-
value of multiplicity & there exist at least k& perturbed eigenvalues y,
(counting multiplicities) such that pi, —X when o, b —w_, w,. To
obtain the stronger result that exactly k& perturbed eigenvalues g,
satisfy (3.4) in Theorem 1, we require the monotonicity property that
the absolute value of the n-th eigenvalue of (2.1), | M| Z [N -1,
is not larger than the absolute value of the n-th eigenvalue of (1.11),
[t <] £ -++. Then an inductive proof similar to that used in
[8, p. 1554] yields the following result:

THEOREM 2. If in addition to the hypotheses of Theorem 1 the
above monotonicity property holds, then for every basic eigenvalue
of (2.1), of multiplicity k, there exists a rectangle R, and a constant
C on R, such that exactly k eigenvalues pt, (counting multiplicities)
of (L.11) satisfy (3.4) whenever [a, b] € R,.

THEOREM 3. Let the hypotheses of Theorem 2 be satisfied. Then
corresponding to the eigenvalues N and pi, of Theorem 2, there are
orthogonal eigenfunctions x? on [a, b] associated with N and y? asso-
ctated with the pi, such that

lyiy — @7 s = Cll () + @), a7 s = Iy li =1,

j:1y27 "',kr
whenever [a, b] ¢ R,.
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Proof. Let {y’} be a set of orthonormal eigenfunctions on [a, 0]
corresponding to the set of eigenvalues {g¢/,} in Theorem 2. Then
H,[a, b] is k-dimensional by Theorem 2 and P(d)x = 0 implies x = 0 by
(3.10). Hence there exist & unique linearly independent eigenfunctions
2’ corresponding to A which P(6) maps into the orthonormal eigenfunec-
tions %’ and by (3.9)

(3.11) 127 =y |la = Ol (%) + @], [a,b]leR,.
Since
L@ 200 — W w)el =y llafl 7 — w2 1l + (1210 128 — i1k
by the Schwarz inequality
(7%, 2)e = 0i; + Ol (x) + ['y(@)]

for 4,7 =1,2, ---, k where 0,; denotes the Kronecker delta. Since the
2’ are linearly independent, an orthonormal sequence 2/ can be con-
structed by the Schmidt process as linear combinations of the z¢ and
it is easily verified that

@8 — 2 ||s = Ol (%) + ['y(x)] .

This combined with (3.11) gives the desired result.

4. Uniform estimate for eigenfunctions. For the class of sin-
gular problems under consideration, additional restrictions are needed
on the basic solutions ;7 =1,2, ---, n, to obtain uniform estimates
for yi,(s) — 2/(s), a < s < b, in Theorem 3. In particular the require-
ment will be that all basic solutions are bounded on (w_, w,).

LEMMA 2. Let G,u(s, t) be the Green’s function for k-L, associated
with (1.10). Then the positive function g.,(s) defined by

b
(4.1) MM®P=SJGM&QPM@M
18 uniformly bounded on a < s < b provided a < a, b, < b.

Proof. The Green’s function G, (s, ) will be constructed first.
From (1.6) it is clear that [zy](s) may be written in the form

[zy](s) = iiZ;BH(S)x‘“(s)W(s)
with
(—1)iPys), i+j=n—1

“.2) Bi® =10, ivi>n-1.
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Let B denote the n-by-n matrix which has B;; = B;;(s) in the ¢ + 1-th
row and 7 -+ 1-th column, 4,7=0,1,2, ---, » — 1. Then (4.2) implies
that B is nonsingular on (w_, ®.).

Considering now the basic solutions one obtains from Green’s formula
(1.8) that [v,4](s) is a constant [v,7,] independent of s, @, 8 =
1,2, ---,n. With S representing the matrix with element [y ,7;] in
the a-th row and B-th column, it is easily verified that

(4.3) S = Y'BY

where Y denotes the Wronskian matrix (v{*(s)), 4,5 =1,2, ---, n and
Y* the transpose of the matrix Y. Since B, Y (and hence Y*) are
nonsingular it follows that S is a nonsingular constant matrix. Let
S~ = (7,5) denote the matrix inverse to S and consider the function

K(s, t) defined by
(44 K(s, 1) = 35 Tl )s(s) -

Since YS'Y* = B~ by (4.3) one obtains by inspection that

K7(s t)_{o, i=12mn—2
T =1pls),  i=m—1.
Let
(4.5) K., t) = K(s,t), a=<t=<s=<b
. aslSy - O, aésétéb

where [a, b] is any closed sub-interval of (w_, w.). Then from the
above remarks it follows that

4.6) Guals, 1) = Kan(s, 1) + 3 Aut)inu(s)

where A, (t), k = 1,2, ---, n, is chosen in such a way that G,,(s, t), as a
function of s, satisfies (1.10). Compare (4.6) with [4, Th. 8, p.1319].
In particular, one obtains by Cramer’s rule that

A (t) — Qléb(t)
t 2a, b)

where 2%,(t) denotes the determinant of the matrix obtained from A(a, b)
by replacing the %-th column by the column whose »-th component v,
is given by

0, r=12 -, m
Q)T: n
- Z ’Yaﬁ'yya(t)U;HmWﬁ ’ r=m + 1y s, M

a,f=1
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Since v, e H,k=1,2,..-,n it follows immediately from (2.4) and (2.5)
that there exists a constant C such that

(4.7) 4@l =C, k=1,2+--,n
whenever a < a,, b, < b.

It follows from (4.1) that for a < s < b
s b
@8 gale) = {| 166, 0 kOde} + {1 Guts, ) F kit)dtf™
By (4.4), (4.6) and the triangle inequality we obtain that

{1 Guts, 0y P krat} = 35 [rs(o) 190 I

+ 2 () [ 4@ 1[G -

J=1

But y; is bounded on (w_, ».) and ;e H,j =1,2, ---, n; hence by
(4.7) the first quantity on the right in (4.8) is uniformly bounded on
a<s<b provided a < a, b, <b. A similar proof shows that the
second integral on the right in (4.8) is also uniformly bounded on
a < s < b provided a < a,, b, < b. This gives the desired result. The
next result gives uniform estimates for the eigenfunctions of Theorem 8.

THEOREM 4. If in addition to the hypotheses of Theorem 3, +r;
18 bounded on (w_, w,),5j =1,2, ---,n, then the eigenfunctions «’
corresponding to N and yi, corresponding to pi, of Theorem 3 are
such that

(4.9) yiy(s) = 27(s) — fi(s) + Ol o(x)] + O["y(@)}, G =1,2,--+,k,
where fi(s) is the unique solution of the boundary problem

Lf:lo,fyU;:f:U,fxi, 7:—:1,2,"-,’}1?,’

4.10 o .
( ) Uif = Uiz, t=1,2 e, —m.

Proof. The Schwarz inequality for H][a, b] yields

[yis(s) — (v — L)Gap@¥(s) |
= | Gusl(eds — L)yis(s) — (v — L)ai(s)] |
< g s — Lol llyds — @7 118 + T el — N 27 15} -
Hence Lemma 2 and Theorems 2 and 3 show that there exists a con-
stant C such that

(4.11) [yi(s) — (v — L)Ga@(s) | = ClIM(@) + I'y(@)]
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on ¢ < s <b, whenever a < a,, b, < b.
The solution f(s) of the boundary problem (4.10) is given by (3.5)
or (3.7) with x replaced by 2. The function F’ defined by

Fi(s) = (v — 1)Go27(s) — 2%(s) + fi(s)
satisfies
LF/ = [ ,F7, UF' =0, =12, -, m,
UiFi =0, 1=1,2 -, n—m

and hence FY is the zero solution on a <s<b for =12, .-+, L.
This with (4.11) immediately gives the uniform estimates (4.9).

5. Asymptotic variational formulae for eigenvalues. The pur-
pose here is to derive formulae for the change pi, — ) of eigenvalues
under the perturbation D,— Dla, b}, valid for a, b in neighbourhoods
of w_, w, respectively. Let 7, y’ denote the normalized eigenfunctions
associated with A and ¢/ = p, as described in Theorem 3 and let f7
be the unique solution of (4.10). One obtains the following theorem:

THEOREM 5. Under the assumptions of Theorem 4 the following
asymptotic variational formulae for the eigenvalues N, yi, are valid:

A= ey = [f7°](0) — [f7@' )
+ (o = N7, f)a + [ale) + Ty@)](f7, 1)0(1)

as 4, b—w_, w,.

(5.1)

Proof. Let Uy = 0 denote the self-adjoint set of boundary con-
ditions given by (1.10). Then by [3, Chapter 11] there exist boundary
forms U,, Uf of rank n such that

[uv](®) — [uv)(@) = Uu-Uv + Uiu-Uv

for any pair u, ve C"'[a, b], where - represents the scalar product.
Now Uy’ =0 by (1.10) and (1.11) and Uz’ = Uf? by (4.10); hence
(dropping the superscripts j)

[2y](b) — [oyl(@) = Uz- Uy
= [fy1®) — [fyl(@) .

Then, application of Green’s formula (1.8) to the differential equations
Ly =z, Lf = I,f and Ly = py on [a, b], leads to

(5.2) N =@,y = 6 — w0 Y
(5.3) [fz](0) — [fx](@) = (L — M)(f, 2)a -
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Hence one obtains as a consequence of Theorems 1,2 and 3 that p =
A+ o(1) and

X

L@, 9)) — (@, 2)] < e lly — 2|2 = o(1)

as a,b—w_, w,. Hence
@ye=1+o01), abdb—oo_, o,
and (5.2) yield
(5.4) A== (L — M0 Y)all + o(1)] .
We now appeal to the uniform estimate (4.9) to obtain
(3.5 (fiya =2 — (f, e+ [[@) + I@](f 1D20Q) .
Then applying (5.8) and (5.5) to (5.4) the result (5.1) follows easily.

The author is indebted to Dr. C. A. Swanson for his helpful
suggestions and comments in connection with this work.
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