ON A CLASS OF NODAL ALGEBRAS

MICHAEL RICH
In this paper it is shown that there do not exist nodal algebras A satisfying the conditions:

(I) $x(xy) + (yx)x = 2(xy)x$

(II) $(xy)x - x(yx)$ is in N, the set of nilpotent elements of A, over any field F of characteristic zero. Also several results regarding algebras satisfying (I) alone are established.

A finite dimensional power-associative algebra A with identity 1 over a field F is called a nodal algebra [7] if every element x of A can be represented in the form $x = a1 + n$ where a is in F and n is nilpotent and if the set N of nilpotent elements of A is not a subalgebra of A. It is known [5] that there are no nodal flexible algebras over any field F of characteristic zero. (An algebra is said to be flexible if the identity $(xy)x = x(yx)$ is satisfied). There do exist, however, nodal algebras over fields F of characteristic zero in which $(xy)x - x(yx)$ is in N for all elements x, y of the algebra [3]. Algebras satisfying (I) were first studied by Kosier [6]. The concern, however, was for algebras of degree > 1.

Throughout, we shall be using the result of Albert [2, p. 526] who proved that there are no commutative nodal algebras over any field F of characteristic zero by showing that N forms a subalgebra. In the noncommutative case we let A^+ be the same vector space as A with multiplication in A^+ given by $x \cdot y = 1/2(xy + yx)$, xy the multiplication in A. Then N is a subalgebra of A^+. In particular, N is a vector space. We use the standard notation, $[x, y]$ for the commutator $xy - yx$ and (x, y, z) for the associator $(xy)z - x(yz)$.

2. It is a well known fact that if an algebra A is power-associative then A^+ is power-associative. For algebras satisfying (I) the converse is also true.

THEOREM 1. If A is an algebra satisfying (I) over a field F of characteristic $\neq 2$ and if A^+ is power-associative then A is power-associative.

Proof. The following lemma is due to Witthoft [8].

LEMMA 1.1. $xx^n = x^n x$ for all x in A and for all n.

The proof is by induction on n. Trivially the lemma holds if
\(n = 1 \). Assume it holds for \(n = k - 1 \). Then \(xx^{k-1} = x^{k-1}x = x^k \). By (I), however, \(x(xx^{k-1}) + (x^{k-1}x)x = 2(xx^{k-1})x \) which reduces to \(xx^k = x^k x \) and the lemma holds by mathematical induction.

Now linearize (I) to get:

\[
(1) \quad x(xy) + z(xy) + (yx)z + (yz)x = 2(xy)z + 2(zy)x.
\]

Assume inductively that \(x^ax^b = x^{a+b} \) for all positive integers \(a, b \) such that \(a + b < n \). This is certainly true if \(n = 3 \). The induction hypothesis leads to the following.

Lemma 1.2. \(x^{n-k}x^k = x^k x^{n-k} \) for all \(k < n \).

Proof of Lemma 1.2. In (1) let \(x = x^{n-k}, y = x^{k-1}, \) and \(z = x \). We get:

\[
\begin{align*}
&x^{n-k}(xx^{k-1}) + x(x^{n-k}x^{k-1}) + (x^{k-1}x^{n-k})x + (x^{k-1}x)x^{n-k} \\
&= 2(x^{n-k}x^{k-1})x + 2(xx^{k-1})x^{n-k}.
\end{align*}
\]

However, by hypothesis \(x^{n-k}x^{k-1} = x^{k-1}x^{n-k} = x^{n-1} \) since the degree of each of these terms is \(n - 1 < n \). Also, by Lemma 1.1 \(xx^{k-1} = x^{n-1}x = x^k \) and \(xx^{n-1} = x^{n-1}x = x^k \). Therefore, the identity is reduced to \(x^{n-k}x^k + x^n + x^nx^{n-k} = 2x^n + 2x^kx^{n-k} \) or \(x^{n-k}x^k = x^kx^{n-k} \) as desired.

Now since \(A^+ \) is power-associative we have \(x^a = x^{n-k}x^k \) for any \(k < n \). Since \(x^{n-k}x^k = x^kx^{n-k} \) we get \(x^n = 2x^{n-k}x^k = x^{n-k}x^k \). Suppose now that \(a + b = n \). Then \(a = n - k, b = k \) for some \(k \leq n \). Then \(x^{a+b} = x^n = x^{n-k}x^k = x^kx^b \) and the result holds for \(a + b = n \). It follows by mathematical induction that \(x^ax^b = x^{a+b} \) for all positive integers \(a, b \) and \(A \) is power-associative.

Clearly, Theorem 1 would also hold for a ring \(A \) in which the equation \(2x = a \) is solvable for all \(a \) in \(A \). It should be noted that (I) alone is not sufficient to guarantee power-associativity of \(A \) since Albert [1, p. 25] has shown that commutativity does not guarantee power-associativity.

3. In this section we shall be considering finite dimensional, power-associative algebras with 1 every element of which is of the form \(\alpha 1 + n \) with \(n \) nilpotent. We call a nilpotent element \(w \) of such an algebra a commutator nilpotent if there are elements \(u, v \) in the algebra such that \([u, v] = \alpha 1 + w \) for some \(\alpha \) in the base field. We write \(\text{tr.}(T) \) for the trace of an operator \(T \).

Theorem 2. Let \(A \) be a finite dimensional algebra satisfying (I) over a field \(F \) of characteristic zero in which every element \(z \) is
of the form \(z = \alpha 1 + n \) where \(\alpha \) is in \(F \) and \(n \) is nilpotent. Then a necessary and sufficient condition for the set \(N \) of nilpotent elements to form an ideal of \(A \) is that \(\text{tr.} (R(w)) = 0 \) for every commutator nilpotent \(w \). \((R(w)) \) is the operator which takes any \(x \) into \(xw \).

Proof. Gerstenhaber [4, p. 29] has shown that in a commutative power-associative algebra over a field of characteristic zero, the assumption that an element \(n \) is nilpotent implies that \(R(n) \) is nilpotent. We apply this result to the algebra \(A^+ \) so that if \(a \) is a nilpotent element of \(A \) then \(R(a) = 1/2(R(a) + L(a)) \) is nilpotent and thus \(\text{tr.} [R(a)] + \text{tr.} [L(a)] = 0 \). Writing (1) in terms of operators we get:

\[
(2) \quad R(y)L(x) + R(xy) + L(y)R(x) = 2L(xy) + 2R(y)R(x)
\]

If we interchange \(x \) and \(y \) in (2) and subtract the result from (2) we get:

\[
[L(y), R(x)] + [R(y), L(x)] + R([x, y]) + L([y, x]) = 2L([x, y]) + 2[R(y), R(x)]
\]

which gives rise to:

\[
(3) \quad \text{tr.} R([x, y]) + \text{tr.} L([y, x]) = 2\text{tr.} L([x, y]) .
\]

Assume that \(\text{tr.} R(w) = 0 \) for all commutator nilpotents \(w \) of \(A \). Then \(\text{tr.} L(w) = \text{tr.} R(w) = 0 \) also. Let \(x \) and \(y \) be arbitrary elements of \(N \). Then \([x, y] = \alpha 1 + n \) for some \(\alpha \) in \(F \) and \(n \) in \(N \) and \(n \) is a commutator nilpotent. Therefore (3) reduces to \(\text{tr.} [R(\alpha 1)] - \text{tr.} [L(\alpha 1)] = 2\text{tr.} [L(\alpha 1)] \) or \(\text{tr.} [R(\alpha 1)] = 3\text{tr.} [L(\alpha 1)] \) a contradiction unless \(\alpha = 0 \). Therefore, \([x, y] \) is in \(N \) and by [2], \(xy \) and \(yx \) are in \(N \). Thus \(N \) is an ideal of \(A \).

Conversely, let \(N \) be an ideal of \(A \). Therefore \([x, y] \) is in \(N \) for all \(x, y \) in \(N \) and consequently for all \(x, y \) in \(A \). Thus if \(w \) is a commutator nilpotent of \(A \) there is an \(x, y \) such that \(w = [x, y] \). From (3) we have that \(\text{tr.} R(w) - \text{tr.} L(w) = 2\text{tr.} L(w) \). But \(\text{tr.} R(w) + \text{tr.} L(w) = 0 \). Therefore \(\text{tr.} R(w) = 0 \) and the result holds.

Theorem 3. There are no nodal Lie-admissible algebras satisfying (I) over any field \(F \) of characteristic zero.

Proof. For if \(A \) is such a Lie-admissible algebra then for all \(u, v \) in \(N \) and \(w \) in \(A \) we have \([[u, v], w] + [[v, w], u] + [[w, u], v] = 0 \). In operator form this becomes:

\[
L([[u, v], w]) - R([[u, v], w]) + [L(v), R(u)] + [R(u), R(v)]
+ [L(u), L(v)] + [R(v), L(u)] = 0 .
\]

Therefore, \(\text{tr.} L([[u, v], w]) = \text{tr.} R([[u, v], w]) \).

Suppose that \([u, v] = \alpha 1 + z \) with \(\alpha \) in \(F \) and \(z \) in \(N \). Then \(\text{tr.} L(\alpha 1) + \text{tr.} L(z) = \text{tr.} R(\alpha 1) + \text{tr.} R(z) \). Therefore, \(\text{tr.} R(z) = \text{tr.} L(z) \)
for all commutator nilpotents z. From [4] we conclude that tr. $R(z) = 0$
and by Theorem 2, N is an ideal of A. Therefore A is not a nodal algebra.

We say that N has nilindex p if p is the smallest positive integer such that $n^p = 0$ for all n in N.

Lemma 1. There are no nodal algebras satisfying (I) over a field F of characteristic zero for which the nilindex of N is two.

Proof. For if N has nilindex two, then $xy + yx = 0$ for all x, y in N. Applying (I) to x and y in N we have $x(xy) - (xy)x = 2(xy)x$ or $x(xy) = 3(xy)x$. If $xy = \alpha 1 + z$ with α in F and z in N the preceding identity becomes $\alpha xx + zz = 3\alpha xx + 3zx$. But $zz = -zx$. Therefore it reduces to $2\alpha xx = 4zx$ and since characteristic $F \neq 2$ to $\alpha xx = 2zx$. Multiplying on the left by x we have $0 = \alpha xx^2 = 2x(xz)$ or $x(xz) = 0$. But $x[x(xy)] = x[x(\alpha 1 + z)] = x[\alpha xx + xz] = \alpha xx^2 + x(xz) = 0$. Therefore we have $yL(x)^2 = 0$ for all x, y in N.

Let $\alpha 1 + n$ be a typical element of the algebra A. Then $(\alpha 1 + n)L(x)^3 = \alpha xx^3 + nL(x)^3$ and $nL(x)^3 = 0$ as above. Therefore $L(x)^3 = 0$, $L(x)$ is a nilpotent operator of A and tr. $L(x) = 0$. As before, this implies that tr. $R(x) = 0$. By Theorem 2, N is an ideal of A and A is not a nodal algebra.

Anderson [3] has shown the existence of simple nodal algebras over a field of characteristic zero for which the associators (x, y, z) are nilpotent for all $x, y,$ and z. The following theorem shows that no such algebras exist which satisfy (I).

Theorem 4. There are no simple nodal algebras satisfying (I) and (II) over any field F of characteristic zero.

Proof. We first prove the following lemmas.

Lemma 4.1. If x and y are in N then xy^2 and y^2x are also in N.

For if we let $xy = \alpha 1 + n$ with α in F and n in N, then $yx = 2x \cdot y - \alpha 1 - n$ and $(x, y, x) = 2xx + nx + xn - 2x(y \cdot y)$. But $xn + nx = 2x \cdot n$ is in N, $2ax$ is in N, and by hypothesis (x, y, x) is in N. Therefore, $2x(x \cdot y)$ and consequently $x(x \cdot y)$ is in N. Linearizing this we have:

\[(4) \quad x(x \cdot y) + z(x \cdot y) \text{ is in } N \text{ if } x, y, z \text{ in } N. \]

Let $z = y$ in (4). Then $xy^2 + y(x \cdot y)$ is in N. But $y(y \cdot x)$ is in N from the previous remark and we conclude that xy^2 is in N. Since $x \cdot y^2$ is in N y^2x is also in N.
It can be further shown by mathematical induction that $x^j y^k$ is in N if $j > 1$ or $k > 1$.

Lemma 4.2. For any x, y in N the following elements are in N: $(xy)x$, $x(xy)$, $(yx)x$, and $x(yx)$.

For, since A is power-associative we have

$$ (x, x, y) + (y, x, x) + (x, y, x) = 0. $$

But (x, y, x) is in N. So we have that $(x, x, y) + (y, x, x)$ is in N for all x, y in A. If x and y are in N then by Lemma 4.1, $x^2 y - y x^2$ is in N. Thus,

$$ (yx)x - x(xy) $$

is in N for all x, y in N.

We write $x(xy) = (yx)x + n$ for some n in N. Adding (I) to this we get that $2x(xy) = 2(xy)x + n$. But characteristic $F \neq 2$. Therefore, $x(xy) - (xy)x$ is in N. But $x \cdot (xy)$ is in N. Thus, $x(xy)$ and $(xy)x$ are in N if x and y are in N. Applying (I) again $(yx)x = 2(xy)x - x(xy)$.

By the previous remark the right side is in N. We conclude, therefore, that $(yx)x$ and hence $x(yx)$ is in N completing the proof of the lemma.

Since $x(xy)$ is in N, it follows that:

$$ x(zy) + z(xy) $$

is in N if x, y, z are in N.

Also $(yx)x$ in N implies that:

$$ (yx)z + (yz)x $$

is in N if x, y, z are in N.

Now, let y be an element of N. Then y^i is in N. We shall analyze the ideal I generated by the element y^i. I is the set of all sums of terms, each term being a product of elements of A at least one element of which is the element y^i. Consider the number of multiplications on y^i in a typical summand. If we multiply y^i by a single element in N, say z, we have either y^iz or zy^i which are in N by Lemma 4.1.

We prove by mathematical induction that any number of multiplications on y^i by elements of N maintains nilpotency. The result has been shown for one multiplication. Assume that n multiplications on y^i maintains nilpotency and consider $n + 1$ multiplications by elements $q_1, q_2, \cdots, q_n, q_{n+1}$ of N. There are only four cases to consider:

1. $[[[\cdots \cdots (y^3) \cdots \cdots)]]q_n]q_{n+1}$
2. $q_{n+1}[[[\cdots \cdots (y^3) \cdots \cdots)]]q_n$
3. $q_{n+1}[q_n[[[\cdots \cdots (y^3) \cdots \cdots)]]]
4. $[q_n[[[\cdots \cdots (y^3) \cdots \cdots)]]]q_{n+1}$

for all other arrangements would involve n or less multiplications. Let
\(b = (((\cdots (y^2) \cdots))) \). By hypothesis \(b \) is in \(N \). We must show then, that

\[
(1) \quad bq_n/q_{n+1} \quad (2) \quad q_{n+1}(bqn) \quad (3) \quad q_{n+1}(qnb) \quad (4) \quad (qnb)q_{n+1}
\]

are all in \(N \).

In (6) let \(x = q_{n+1}, \ z = b, \) and \(y = q_n \). Then we have that \(q_{n+1}(bqn) + b(q_{n+1}q_n) \) is in \(N \). But \(b(q_{n+1}q_n) \) involves only \(n \) multiplications on \(y^2 \). Therefore, by the induction hypothesis it is in \(N \) and we conclude that \(q_{n+1}(bqn) \) and therefore by [2] \((bqn)q_{n+1} \) are in \(N \). Similarly, in (7) let \(x = b, \ y = q_n, \) and \(z = q_{n+1}. \) Then we have \((q_nb)q_{n+1} + (q_nq_{n+1})b \) are in \(N \). As before this implies that \((q_nb)q_{n+1} \) and consequently \(q_{n+1}(q_nb) \) are in \(N \). Therefore \(n + 1 \) multiplications on \(y^2 \) by elements of \(N \) maintains nilpotency and the result holds for any number of multiplications. It follows easily that any number of multiplications on \(y^2 \) by elements of \(A \) preserve nilpotency.

Now every element of \(I \) is a sum of terms of the above type and consequently nilpotent. Thus \(I \subseteq N \). Hence, \(I \) is an ideal of \(A \) which does not encompass all of \(A \) and by the simplicity of \(A, I = 0. \) But \(y^2 \) is in \(I \). Therefore \(y^2 = 0. \) This holds for all \(y \) in \(N \) and so the nilindex of \(N \) is two. By Lemma 1, \(A \) is not nodal.

Theorem 5. There are no nodal algebras satisfying (I) and (II) over any field \(F \) of characteristic zero.

Proof. For let \(A \) be such an algebra. By Theorem 4, \(A \) is not simple. Let \(B \) be a maximal ideal of \(A. \) Then \(A/B \) is a simple nodal algebra satisfying (I) and (II) contradicting Theorem 4.

References

Received May 29, 1969.

Temple University
PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. SAMELSON
Stanford University
Stanford, California 94305

J. DUGUNDJI
Department of Mathematics
University of Southern California
Los Angeles, California 90007

RICHARD PIERCE
University of Washington
Seattle, Washington 98105

BASIL GORDON*
University of California
Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH B. H. NEUMANN F. WOLF K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON
OSAKA UNIVERSITY
UNIVERSITY OF SOUTHERN CALIFORNIA

STANFORD UNIVERSITY
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON
* * *
AMERICAN MATHEMATICAL SOCIETY
CHEVRON RESEARCH CORPORATION
TRW SYSTEMS
NAVAL WEAPONS CENTER

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced, double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. It should not contain references to the bibliography. Manuscripts, in duplicate if possible, may be sent to any one of the four editors. Please classify according to the scheme of Math. Rev. 36, 1539-1546. All other communications to the editors should be addressed to the managing editor, Richard Arens, University of California, Los Angeles, California, 90024.

50 reprints are provided free for each article; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published monthly. Effective with Volume 16 the price per volume (3 numbers) is $8.00; single issues, $3.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $4.00 per volume; single issues $1.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION
Printed at Kokusai Bunkens Insatsusha (International Academic Printing Co., Ltd.), 7-17, Fujimi 2-chome, Chiyoda-ku, Tokyo, Japan.

* Acting Managing Editor.
Shair Ahmad, *Dynamical systems of characteristic 0^+* 561
Charles A. Akemann and Bernard Russo, *Geometry of the unit sphere of a C*-algebra and its dual* .. 575
Philip Bacon, *The compactness of countably compact spaces* 587
Richard Blaine Barrar and Henry Loeb, *On the continuity of the nonlinear Tschebyscheff operator* .. 593
L. Carlitz, *Factorization of a special polynomial over a finite field* 603
Joe Ebeling Cude, *Compact integral domains* .. 615
Frank Rimi DeMeyer, *On automorphisms of separable algebras. II* 621
James B. Derr, *Generalized Sylow tower groups* 633
Raouf Doss, *Some inclusions in multipliers* .. 643
Mary Rodriguez Embry, *The numerical range of an operator* 647
John Froese, *Domain-perturbed problems for ordinary linear differential operators* .. 651
Zdeněk Frolík, *Absolute Borel and Souslin sets* 663
Ronald Owen Fulp, *Tensor and torsion products of semigroups* 685
George Grätzer and J. Płonka, *On the number of polynomials of an idempotent algebra. I* .. 697
Newcomb Greenleaf and Walter Read, *Positive holomorphic differentials on Klein surfaces* .. 711
John Willard Heidel, *Uniqueness, continuation, and nonoscillation for a second order nonlinear differential equation* 715
Leon A. Henkin, *Extending Boolean operations* 723
R. Hirshon, *On hopfian groups* ... 753
Melvin Hochster, *Totally integrally closed rings and extremal spaces* 767
R. Mohanty and B. K. Ray, *On the convergence of a trigonometric integral* .. 781
Michael Rich, *On a class of nodal algebras* ... 787
Emile B. Roth, *Conjugate space representations of Banach spaces* 793
Rolf Schneider, *On the projections of a convex polytope* 799
Bertram Manuel Schreiber, *On the coset ring and strong Ditkin sets* 805
Edgar Lee Stout, *Some remarks on varieties in polydiscs and bounded holomorphic functions* .. 813
James Edward Ward, *Two-groups and Jordan algebras* 821