Vol. 33, No. 1, 1970

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 307: 1  2
Vol. 306: 1  2
Vol. 305: 1  2
Vol. 304: 1  2
Vol. 303: 1  2
Vol. 302: 1  2
Vol. 301: 1  2
Vol. 300: 1  2
Online Archive
Volume:
Issue:
     
The Journal
Subscriptions
Editorial Board
Officers
Contacts
 
Submission Guidelines
Submission Form
Policies for Authors
 
ISSN: 1945-5844 (e-only)
ISSN: 0030-8730 (print)
Special Issues
Author Index
To Appear
 
Other MSP Journals
On the maximal monotonicity of subdifferential mappings

Ralph Tyrrell Rockafellar

Vol. 33 (1970), No. 1, 209–216
Abstract

The subdifferential of a lower semicontinuous proper convex function on a Banach space is a maximal monotone operator, as well as a maximal cyclically monotone operator. This result was announced by the author in a previous paper, but the argument given there was incomplete; the result is proved here by a different method, which is simpler in the case of reflexive Banach spaces. At the same time, a new fact is established about the relationship between the subdifferential of a convex function and the subdifferential of its conjugate in the nonreflexive case.

Mathematical Subject Classification
Primary: 46.45
Milestones
Received: 17 July 1969
Published: 1 April 1970
Authors
Ralph Tyrrell Rockafellar