Pacific

Journal of

Mathematics

IN THIS ISSUE-

Silvio Aurora, On normed rings with monotone multiplication . 15
Silvio Aurora, Normed fields which extend normed rings of integers. 21
John Kelly Beem, Indefinite Minkowski spaces . 29
T. F. Bridgland, Trajectory integrals of set valued functions. 43

Robert Jay Buck, A generalized Hausdorff dimension for functions and sets. 69
Vlastimil B. Dlab, A characterization of perfect rings. 79
Edward Richard Fadell, Some examples in fixed point theory . 89
Michael Benton Freeman, Tangential Cauchy-Riemann equations and uniform approximation 101
Barry J. Gardner, Torsion classes and pure subgroups . 109
Vinod B. Goyal, Bounds for the solution of a certain class of nonlinear partial differential
\quad equations . 117
Fu Cheng Hsiang, On C, 1 summability factors of Fourier series at a given point 139
Lawrence Stanislaus Husch, Jr., Homotopy groups of PL-embedding spaces. 149
Daniel Ralph Lewis, Integration with respect to vector measures . 157
Marion-Josephine Lim, \mathscr{L} - 2 subspaces of Grassmann product spaces 167
Stephen J. Pierce, Orthogonal groups of positive definite multilinear functionals 183
W. J. Pugh and S. M. Shah, On the growth of entire functions of bounded index.................. . 191

Siddani Bhaskara Rao and Ayyagari Ramachandra Rao, Existence of triconnected graphs with
\quad prescribed degrees.. 203
Ralph Tyrrell Rockafellar, On the maximal monotonicity of subdifferential mappings 209
R. Shantaram, Convergence of a sequence of transformations of distribution functions. II 217

Julianne Souchek, Rings of analytic functions . 233
Ted Joe Suffridge, The principle of subordination applied to functions of several variables 241
Wei-lung Ting, On secondary characteristic classes in cobordism theory 249
Pak-Ken Wong, Continuous complementors on B^{*}-algebras. 255
Miyuki Yamada, On a regular semigroup in which the idempotents form a band................. . 261
Vol. 33, No. 1
March, 1970

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. Samelson
Stanford University
Stanford, California 94305
Richard Pierce
University of Washington
Seattle, Washington 98105

J. Dugundji

Department of Mathematics
University of Southern California
Los Angeles, California 90007
Richard Arens
University of California
Los Angeles, California 90024
ASSOCIATE EDITORS
E. F. Beckenbach
B. H. Neumann
F. Wolf
K. Yoshida

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA CALIFORNIA INSTITUTE OF TECHNOLOGY UNIVERSITY OF CALIFORNIA MONTANA STATE UNIVERSITY UNIVERSITY OF NEVADA NEW MEXICO STATE UNIVERSITY OREGON STATE UNIVERSITY UNIVERSITY OF OREGON OSAKA UNIVERSITY
UNIVERSITY OF SOUTHERN CALIFORNIA

STANFORD UNIVERSITY UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE UNIVERSITY UNIVERSITY OF WASHINGTON

AMERICAN MATHEMATICAL SOCIETY CHEVRON RESEARCH CORPORATION TRW SYSTEMS NAVAL WEAPONS CENTER

ON SOME EXTREMAL SIMPLEXES

Mir M. Ali

Let A be a fixed point in n-dimensional Euclidean space. Let $B_{1}, B_{2}, \cdots, B_{n+1}$ be the vertices of a simplex S_{n} of n dimensions, that is, the $n+1$ vertices do not lie on a $(n-1)$ dimensional subspace. Let d_{i}, assumed to be positive, be the distance of B_{i} from A, and let $l_{i j}$ be the cosine of the angle between the straight lines $A B_{i}$ and $A B_{j}$ for $i, j=1,2, \cdots$, $n+1$. Let π_{i} denote the ($n-1$)-dimensional hyperplane passing through all the vertices of S_{n} except B_{i}, let p_{i}, assumed positive, be the perpendicular distance of π_{i} from A, and let $m_{i j}$ denote the cosine of the angle between the normals from A to π_{i} and π_{j} for $i, j=1,2, \cdots, n+1$. The present paper deals with the following problems.
(a) An expression for the content of $S_{n}, C\left(S_{n}\right)$ say, in terms of d_{i} and $l_{i j}$ for $i, j=1,2, \cdots, n+\mathbf{1}$ is first obtained. Then leaving $d_{1}, d_{2}, \cdots, d_{n+1}$ fixed, values of $l_{i j}$, say $l_{i j}^{*}$, are determined in such a manner that $C\left(S_{n}\right)$ is a maximum, and the maximum value of $C\left(S_{n}\right)$ is obtained for the two cases that arise: (i) when A is inside S_{n}, (ii) when A is outside S_{n}. The latter case does not arise when $d_{1}=d_{2}=\cdots=d_{n+1}$.
(b) An expression for $C\left(S_{n}\right)$ is obtained in terms of p_{i} and $m_{i j}, i, j=1,2, \cdots, n+1$. Then leaving $p_{1}, p_{2}, \cdots, p_{n+1}$ fixed, values for $m_{i j}$, say $m_{i j}^{*}$, are determined in such a manner that $C\left(S_{n}\right)$ is a minimum, and such $C\left(S_{n}\right)$ is computed for the two cases that arise depending on (i) whether A is inside S_{n} or (ii) A is outside S_{n}. The latter case does not arise when

$$
p_{1}=p_{2}=\cdots=p_{n+1} .
$$

The results are stated below.
(a) The content of $S_{n}, \max C\left(S_{n}\right)$ and $l_{i j}^{*}$ are given by

$$
\begin{gather*}
n!C\left(S_{n}\right)=\left|\left(l_{i j} d_{i} d_{j}+1\right)\right|^{1 / 2} \tag{1.1}\\
\max \left(n!C\left(S_{n}\right)\right)^{2}=-u^{-1} \prod_{i=1}^{n+1}\left(d_{i}^{2}-u\right) \tag{1.2}\\
l_{i j}^{*}=u /\left(d_{i} d_{j}\right) \text { for } i, j=1,2, \cdots, n+1 ; i \neq j, \tag{1.3}
\end{gather*}
$$

where u satisfies the equation

$$
\begin{equation*}
1+u \sum_{i=1}^{n+2}\left(d_{i}^{2}-u\right)^{-1}=0 . \tag{1.4}
\end{equation*}
$$

The unique negative root for u in (1.4) corresponds to the case when A is inside S_{n}. When the relation

$$
d_{1}=d_{2}=\cdots=d_{n+1}
$$

is not satisfied, the smallest positive root for u in (1.4) corresponds to the case when A is outside S_{n}. Other roots for u in (1.4), if any, are inadmissible.
(b) The content $C\left(S_{n}\right), \min \left(C\left(S_{n}\right)\right)$ and $m_{i j}^{*}$ are given by

$$
\begin{equation*}
\left(n!C\left(S_{n}\right)\right)^{2}=\left|\left(p_{i} p_{j}+m_{i j}\right)\right|^{n}\left|\prod_{i=1}^{n+1}\right| M_{i i} \mid \tag{1.5}
\end{equation*}
$$

where $\left|M_{i i}\right|$ is the cofactor of $m_{i i}$ in $\left|\left(m_{i j}\right)\right|$ and

$$
\begin{equation*}
\min \left(n!C\left(S_{n}\right)\right)^{2}=-v^{-1} n^{2 n} \prod_{i=1}^{n+1}\left(p_{i}^{p}-v\right) \tag{1.6}
\end{equation*}
$$

and
(1.7) $\quad m_{i j}^{*}=v /\left(p_{i} p_{j}\right)$ for $i \neq j ; i, j=1,2, \cdots, n+1$;
where v satisfies the equation

$$
\begin{equation*}
1+v \sum_{i=1}^{n+1}\left(p_{i}^{2}-v\right)^{-1}=0 \tag{1.8}
\end{equation*}
$$

The unique negative root for v in (1.8) corresponds to the case when A is inside S_{n}. When the relation

$$
p_{1}=p_{2}=\cdots=p_{n+1}
$$

is not satisfied, the smallest positive root for v in (1.8) corresponds to the case when A is outside S_{n}. All other roots, if any, are inadmissible.

When $d_{1}=d_{2}=\cdots=d_{n+1}$, we obtain the special result that the largest simplex inscribed in a sphere of n-dimensions is a regular one, while when $p_{1}=p_{2}=\cdots=p_{n+1}$ the smallest simplex circumscribing a sphere is a regular one.

The coordinates of B_{i} referred to a n-dimensional Cartesian coordinate system with origin at A will be denoted by ($x_{i, 1}, x_{i, 2}, \cdots, x_{i, n}$). $\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ will denote a general point in the n-space.
2. Extremal simplex determined by the distance of vertices. The content of S_{n} is given by (Sommerville, p. 124) $n!C\left(S_{n}\right)=|V|$ where

$$
V=\left[\begin{array}{cccc}
x_{1,1} & \cdots & x_{1, n} & 1 \tag{2.1}\\
x_{2,1} & \cdots & x_{2, n} & 1 \\
\vdots & & \vdots & \vdots \\
x_{n+1,1} & \cdots & x_{n+1, n} & 1
\end{array}\right]
$$

so that $\left(n!C\left(S_{n}\right)\right)^{2}=\left|V V^{\prime}\right|=\left|\left(w_{i j}\right)\right|$ say, where

$$
\begin{align*}
w_{i j} & =1+s_{i j} \text { for } i, j=1,2, \cdots, n+1 \text {; and } \tag{2.2}\\
\left(s_{i j}\right) & =\left[\begin{array}{ccc}
x_{1,1} & \cdots & x_{1, n} \\
x_{2,1} & \cdots & x_{2, n} \\
\vdots & & \vdots \\
x_{n+1,1} & \cdots & x_{n+1, n}
\end{array}\right]\left[\begin{array}{ccc}
x_{1,1} & \cdots & x_{1, n} \\
x_{2,1} & \cdots & x_{2, n} \\
\vdots & & \vdots \\
x_{n+1,1} & \cdots & v_{n+1, n}
\end{array}\right]^{\prime} \tag{2.3}\\
& =\left(l_{i j} d_{i} d_{j}\right) . \tag{2.4}
\end{align*}
$$

Hence we have proved (1.1).
We note that $s_{i i}=d_{i}^{2}$, for $i=1,2, \cdots, n+1$. From (2.3) we also note that the rank of $\left(s_{i j}\right)$ is less than $n+1$ so that $\left|\left(s_{i j}\right)\right|=0$ and $\left(s_{i j}\right)$ is semi-positive definite. Further we note that both $\left(s_{i j}\right)$ and ($w_{i j}$) are symmetric matrices and since B_{1}, \cdots, B_{n+1} do not lie on a ($n-1$)-dimensional subspace, we must have $\left|\left(w_{i j}\right)\right| \neq 0$, in fact, $\left|\left(w_{i j}\right)\right|>0$ since $\left(w_{i j}\right)$ is positive definite. Our problem of maximizing $C\left(S_{n}\right)$ with respect to the $l_{i j}, i \neq j$, for given values of $d_{i}, d_{i}>0$, may be re-stated as follows.

We must maximize $\left|\left(w_{i j}\right)\right|$ over the class of symmetric matrices $\left(s_{i j}\right)$ or ($w_{i j}$) with respect to $s_{i j}, i, j=1, \cdots, n+1$, subject to the conditions: $\left|\left(s_{i j}\right)\right|=0$ and $s_{i i}=d_{i}^{2}$ for $i=1, \cdots, n+1$. Further ($s_{i j}$) should be semipositive definite and $\left|w_{i j}\right| \neq 0$.

Let θ and $\mu_{1}, \cdots, \mu_{n+1}$ be Lagrange multipliers. We seek the extreme values of the function L with respect to $s_{i j}, i, j=1, \cdots$, $n+1$, where

$$
L=\left|w_{i j}\right|-\theta\left|s_{i j}\right|+\sum_{i=1}^{n+1} \mu_{i}\left(s_{i i}-d_{i}^{2}\right)
$$

Hence $s_{i j}$ must satisfy

$$
\begin{aligned}
& \frac{1}{2} \frac{\partial L}{\partial s_{i j}}=\left|W_{i j}\right|-\theta\left|S_{i j}\right|=0 \text { for } i \neq j, i, j,=1, \cdots, n+1 \\
& \text { and } \frac{\partial L}{\partial s_{i i}}=\left|W_{i i}\right|-\theta\left|S_{i i}\right|+\mu_{i}=0 \text { for } i=1, \cdots, n+1
\end{aligned}
$$

where $\left|W_{k l}\right|$ and $\left|S_{k l}\right|$ denote co-factors of $w_{k l}$ and $s_{k l}$ in $\left|\left(w_{i j}\right)\right|$ and $\left|\left(s_{i j}\right)\right|$ respectively.

This implies that

$$
\sum_{j=1}^{n+1} w_{k j} \cdot \frac{1}{2} \frac{\partial L}{\partial s_{i j}}+w_{k i} \frac{\partial L}{\partial s_{i i}}=0
$$

so that

$$
\sum_{j=1}^{n+1} w_{k j}\left|W_{i j}\right|-\theta \sum_{j=1}^{n+1} w_{k j}\left|S_{i j}\right|+\mu_{i} w_{k i}=0
$$

Let $k \neq i$; then using (2.2), $w_{k j}=1+s_{k j}$ and by the well-known property that expansions in terms of alien co-factors vanish identically (Aitken, p. 51) we finally obtain

$$
-\theta \sum_{j=1}^{n+1}\left|S_{i j}\right|+\mu_{i} w_{k i}=0
$$

so that $s_{k i}=w_{k i}-1=\theta / \mu_{i} \sum_{j=1}^{n+1}\left|S_{i j}\right|-1$, for all $k \neq i$. Since the above expression for $s_{k i}$ is constant for values of $k=1, \cdots, n+1$, $k \neq i$, we conclude that the elements of the i th column of $\left(s_{i j}\right)$, except
$s_{i i}=d_{i}^{2}$, must be equal. Since $s_{i j}$ is a symmetric matrix, the above property extends to the rows of $\left(s_{i j}\right)$ and it is easily seen that the extreme values of L correspond to values $s_{i j}^{*}$ of $s_{i j}$ where

$$
\begin{equation*}
s_{i j}^{*}=u \text { for } i \neq j, i, j=1, \cdots, n+1 \tag{2.5}
\end{equation*}
$$

while

$$
s_{i i}^{*}=d_{i}^{2}, i=1, \cdots, n+1 .
$$

Now u can be determined from the relation $\left|s_{i j}\right|=0$ so that we must have

$$
\left|\begin{array}{lllll}
d_{1}^{2} & u & \cdot & \cdot & u \tag{2.6}\\
u & d_{2}^{2} & \cdot & \cdot & u \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
u & u & \cdot & \cdot & d_{n+1}^{2}
\end{array}\right|=0
$$

Let us define the determinant

$$
D_{k}\left(x ; a_{1}, \cdots, a_{k}\right)=\left|\begin{array}{ccccc}
a_{1} & x & \cdot & \cdot & x \tag{2.7}\\
x & a_{2} & \cdot & \cdot & x \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
x & x & \cdot & \cdot & a_{k}
\end{array}\right|
$$

From the relation due to Grabeiri (1874) (see Muir, vol. 3, 4, p. 110), or by subtracting the first row of the above determinant from the remaining rows and by the use of Cauchy expansion in terms of the first row and first column, we have

$$
\begin{equation*}
D_{k}\left(x ; a_{1}, \cdots, a_{k}\right)=\left(1+x \sum_{i=1}^{k}\left(a_{i}-x\right)^{-1}\right) \prod_{i=1}^{k}\left(a_{i}-x\right) \tag{2.8}
\end{equation*}
$$

Hence from (2.6) u must satisfy the equation

$$
\begin{equation*}
\left(1+u \sum_{i=1}^{n+1}\left(d_{i}^{2}-u\right)^{-1}\right) \prod_{i=1}^{n+1}\left(d_{i}^{2}-u\right)=0 \tag{2.9}
\end{equation*}
$$

From (2.2) and (2.5) the extreme value of $\left(n!C\left(S_{n}\right)\right)^{2}$ for any u satisfying (2.9) is equal to

$$
\begin{align*}
& D_{n+1}\left(1+u ; 1+d_{1}^{2}, \cdots, 1+d_{n+1}^{2}\right) \\
= & \left(1+(1+u) \sum_{i=1}^{n+1}\left(d_{i}^{2}-u\right)^{-1}\right)\left(\prod_{i=1}^{n+1}\left(d_{i}^{2}-u\right)\right) \tag{2.10}\\
= & \left.\left(\sum_{i=1}^{n+1}\left(d_{i}^{2}-u\right)^{-1}\right)\left(\prod_{i=1}^{n+1} d_{i}^{2}-u\right)\right)
\end{align*}
$$

by the use of (2.9).
Since $u=0$ does not satisfy (2.6), we immediately obtain from
(2.9) that the expression (2.10) is equal to

$$
\begin{equation*}
-u^{-1} \prod_{i=1}^{n+1}\left(d_{i}^{2}-u\right) \tag{2.11}
\end{equation*}
$$

which is the extreme value of $\left(n!C\left(s_{n}\right)\right)^{2}$ in terms of u. In order that the content is nonzero we must have $u \neq d_{i}^{2}$ for $i=1, \cdots, n+1$. This statement along with (2.9) implies that u must satisfy the equation

$$
\begin{equation*}
1+u \sum_{i=1}^{n+1}\left(d_{i}^{2}-u\right)^{-1}=0 \tag{2.12}
\end{equation*}
$$

The roots for u, temporarily assuming that d_{1}, \cdots, d_{n+1} are distinct, can be located by Decartes rule of signs by checking the signs of the left-handside of (2.12) for values of u, equal to $-\infty, 0,+\infty$ and in the neighborhood of $d_{i}^{2}, i=1, \cdots, n+1$. Relabelling d_{i} such that $d_{1}<d_{2}<\cdots<d_{n+1}$, it is easily verified that all the roots for u are real, say u_{1}, \cdots, u_{n+1} and may be labelled in such a manner that

$$
\begin{equation*}
u_{1}<0<d_{1}^{2}<u_{2}<d_{2}^{2}<\cdots<u_{n+1}<d_{n+1}^{2} \tag{2.13}
\end{equation*}
$$

Consider the characteristic roots of ($s_{i j}^{*}$) given by $\left|s_{i j}^{*}-\lambda I\right|=0$. By (2.5) and (2.7) λ must satisfy $D_{n+1}\left(u ; d_{1}^{2}-\lambda, \cdots, d_{n+1}^{2}-\lambda\right)=0$. Hence from (2.9)

$$
\left(1+u \sum_{i=1}^{n+1}\left(d_{i}^{2}-\lambda-u\right)^{-1}\right) \prod_{i=1}^{n+1}\left(d_{i}^{2}-\lambda-u\right)=0
$$

By similar method as used to obtain (2.13) we find that the roots for λ may be so labelled that $\lambda_{1}=0$ and

$$
d_{i}^{2}<\lambda_{i+1}+u<d_{i+1}^{2} \quad i=1, \cdots, n
$$

In order that all the roots for λ are nonnegative it is easily seen that the relation

$$
\begin{equation*}
d_{2}^{2}-u>\lambda_{2} \geqq 0 \tag{2.14}
\end{equation*}
$$

must be satisfied so that we must have $u<d_{2}^{2}$. From (2.13) we find that the only admissible roots for u are u_{1} and u_{2}.

To establish (1.4) it only remains to show that u_{1} corresponds to the case when A is inside the extremal simplex whereas u_{2} corresponds to the case when A is outside the extremal simplex.

Consider the equation of π_{i}, passing through all the vertices of S_{n} except B_{i} having the coordinates $\left(x_{i, 1}, \cdots, x_{i, n}\right)$, given by

$$
L_{i}\left(x_{1}, \cdots, x_{n}\right)=0
$$

where

$$
L_{i}\left(x_{1}, \cdots, x_{n}\right)=\left|\begin{array}{cccc}
x_{1,1} & \cdots & x_{1, n} & 1 \\
\vdots & & \vdots & \vdots \\
x_{i-1,1} & \cdots & x_{i-1, n} & 1 \\
x_{1} & \cdots & x_{n} & 1 \\
x_{i+1,1} & \cdots & x_{1+1, n} & 1 \\
\vdots & & \vdots & \vdots \\
x_{n+1,1} & \cdots & x_{n+1, n} & 1
\end{array}\right|
$$

Now A and B_{i} lie on the same side of π_{i} if and only if $L_{i}\left(x_{i, 1}, \cdots, x_{i, n}\right)$. $L_{i}(0, \cdots, 0)>0$ while A and B_{i} lie on opposite sides of π_{i} if and only if $L_{i}\left(x_{i, 1}, \cdots, x_{i, n}\right) . \quad L_{i}(0, \cdots, 0)<0$.

Now by direct multiplication of the determinant $L_{i}\left(x_{i, 1}, \cdots, x_{i, n}\right)$ with the transpose of the determinant $L_{i}(0,0, \cdots, 0)$ we obtain

$$
\begin{aligned}
& L_{i}\left(x_{i, 1}, \cdots, x_{i, n}\right) \cdot L_{i}(0,0, \cdots, 0) \\
& =\left|\begin{array}{ccccc}
1+s_{11} & 1+s_{12} & \cdots & 1 & \cdots \\
1+s_{21} & 1+s_{22} & \cdots & 1 & \cdots \\
1 & 1+s_{1 n+1} \\
\vdots & \vdots & \vdots & \vdots \\
1+s_{n+11} & 1+s_{n+12} & \cdots & 1 & 1+s_{n+1} \\
1
\end{array}\right| .
\end{aligned}
$$

We now assume that S_{n} is an extremal simplex so that from (2.5) $s_{\nu \nu}=d_{\nu}^{2}, \nu=1, \cdots, n+1$ and $s_{\nu k}=u, \nu \neq k, \nu, k=1, \cdots, n+1$. Then in the last determinant each entry in the i-th column is 1 , the j th diagonal entry is $d_{j}^{2}+1$ for $j \neq i, j=1, \cdots, n+1$ while the remaining entries are $1+u$. Subtracting $(1+u)$ times the i-th column from the remaining columns we immediately obtain

$$
\begin{aligned}
L_{i}\left(x_{i, 1}, \cdots, x_{i, n}\right) \cdot L_{i}(0, \cdots, 0) & =\left(d_{i}^{2}-u\right)^{-1} \prod_{j=1}^{n+1}\left(d_{j}^{2}-u\right) \\
& =\frac{-u^{-1} \prod_{1}^{n+1}\left(d_{j}^{2}-u\right)}{\left(-u^{-1}\left(d_{i}^{2}-u\right)\right)}
\end{aligned}
$$

Since from (2.11) the numerator of the last expression is positive, we find that A and B_{i} lie on the same side of π_{i} if and only if

$$
-u^{-1}\left(d_{i}^{2}-u\right)>0
$$

while they lie on opposite sides of π_{i} if and only if $-u^{-1}\left(d_{i}^{2}-u\right)<0$.
Since $-u_{2}^{-1}\left(d_{2}^{2}-u_{2}\right)<0$ and $-u_{1}^{-1}\left(d_{1}^{2}-u_{1}\right)>0$, it is readily checked that we have proved (1.2), (1.3) and (1.4) in the case when d_{1}, \cdots, d_{n+1} are distinct.

Necessary modifications are easily made when some or all of the d_{i} are not distinct.

Finally we remark that the simplex corresponding to u_{1} has larger
content than that for u_{2}. This is because

$$
d_{i}^{2}-u_{1}>d_{i}^{2}-u_{2}>0 \text { for } i=2, \cdots, n-1
$$

and

$$
-u_{1}^{-1}\left(d_{1}^{2}-u_{1}\right)=1-\frac{d_{1}^{2}}{u_{1}}>1-d_{1}^{2} / u_{2}=-u_{2}^{-1}\left(d_{2}^{2}-u_{2}\right)
$$

so that

$$
\begin{equation*}
-u_{1}^{-1} \prod_{1}^{n+1}\left(d_{j}^{2}-u_{1}\right)>-u_{2}^{-1} \prod_{1}^{n+1}\left(d_{j}^{2}-u_{2}\right) \tag{2.15}
\end{equation*}
$$

We also note that when $d_{1}=d_{2}=\cdots=d_{n+1}$ (1.4) has a unique negative root for u and the point A corresponding to this value of u must lie inside the extremal simplex.
3. Simplex determined by distances of faces. We recall that the ($n-1$)-dimensional hyperplane π_{i} passes through all the vertices of S_{n} except B_{i}. The distance of π_{i} from A is p_{i}. The point B_{i} does not lie on π_{i} but does lie on all the remaining n hyperplanes

$$
\pi_{j}, j \neq i, j=1, \cdots, n+1
$$

Let π_{i} be given by (in normal form)

$$
\begin{equation*}
\pi_{i}: e_{i, 1} x_{1}+e_{i, 2} x_{2}+\cdots+e_{i, n} x_{n}=e_{i, n+1} \tag{3.1}
\end{equation*}
$$

where for notational convenience we have written

$$
\begin{equation*}
p_{i}=e_{i, n+1}, \tag{3.2}
\end{equation*}
$$

and $e_{i, 1}, \cdots, e_{i}, n$ are the direction cosines of the normal to π_{i}, so that we have

$$
\begin{equation*}
\sum_{j=1}^{k} e_{i, j} e_{k, j}=m_{i k} ; i, k=1,2, \cdots, n+1 ; m_{i i}=1 \tag{3.3}
\end{equation*}
$$

The notations used in this section will be listed first and some relations needed later will be established in order to avoid future digression.

We define the $(n+1) \times(n+1)$ matrix E in double suffix notation as

$$
\begin{equation*}
E=\left(e_{i, j}\right) \tag{3.4}
\end{equation*}
$$

and $E_{i, j}$ will denote the co-factor of $e_{i, j}$ in E. We also define the $(n+1) \times(n+1)$ matrix M as

$$
\begin{equation*}
M=\left(m_{i j}\right) \tag{3.5}
\end{equation*}
$$

and $M_{i j}$ as co-factor of $m_{i j}$ in M.
Let σ_{i} denote the signature of $\left|E_{i, n+1}\right|$ so that

$$
\sigma_{i}=\left\{\begin{array}{c}
1 \text { if }\left|E_{i, n+1}\right|>0 \tag{3.6}\\
-1 \text { if }\left|E_{i, n+1}\right|<0
\end{array} \text { for } i=1, \cdots, n+1\right.
$$

We remark here that $E_{i, n+1}$ is nonsingular. This is because

$$
\pi_{1}, \cdots, \pi_{i-1}, \pi_{i+1}, \cdots, \pi_{n+1}
$$

have one and only one point in common, namely $\left(x_{i, 1}, \cdots, x_{i, n}\right)$. Since π_{i} does not pass through the above common point, it is easily seen that the matrix E is also nonsingular, so that

$$
\begin{equation*}
|E| \neq 0 \text { and }\left|E_{i, n+1}\right| \neq 0, i=1, \cdots, n+1 \tag{3.7}
\end{equation*}
$$

Furthermore it is easily seen that

$$
\begin{align*}
& \left|E_{i, n+1}\right|=\sigma_{i}\left|E_{i, n+1} E_{i, n+1}^{\prime}\right|^{1 / 2}=\sigma_{i}\left|M_{i i}\right|^{1 / 2} \tag{3.8}\\
& \quad \text { for } i=1, \cdots, n+1
\end{align*}
$$

where the radical above as well as all radicals appearing in this paper will be always taken as positive. Hence from (3.2) and (3.4) we have

$$
\begin{equation*}
|E|=\sum_{i=1}^{n+1} p_{i}\left|E_{i, n+1}\right|=\sum_{i=1}^{n+1} \sigma_{i} p_{i}\left|M_{i i}\right|^{1 / 2}=\rho \text { (say). } \tag{3.9}
\end{equation*}
$$

D will denote the diagonal matrix

$$
\begin{equation*}
D=\operatorname{Diag} .\left(p_{1}, \cdots, p_{n+1}\right) \tag{3.10}
\end{equation*}
$$

and let

$$
\begin{equation*}
R=\left(r_{i j}\right)=D^{-1} M D^{-1} \tag{3.11}
\end{equation*}
$$

so that $r_{i i}=p_{i}^{-2}$ for $i=1, \cdots, n+1$. Since

$$
M=\left[\begin{array}{ccc}
e_{1,1} & \cdots & e_{1, n} \\
\vdots & & \vdots \\
e_{n+1,1} & \cdots & e_{n+1, n}
\end{array}\right]\left[\begin{array}{ccc}
e_{1,1} & \cdots & e_{1, n} \\
\vdots & & \vdots \\
e_{n+1,1} & \cdots & e_{n+1, n}
\end{array}\right]^{\prime}
$$

we also remark that M and consequently R are symmetric positive semi-definite matrices, so that $|M|=0$ and $|R|=0$.

Finally, it follows that

$$
\begin{equation*}
\left|M_{i i}\right|=\left|R_{i i}\right|\left(\prod_{j=1}^{n+1} p_{j}^{2}\right) / p_{i} \tag{3.12}
\end{equation*}
$$

To obtain the content $C\left(S_{n}\right)$, we will use the formula (2.1). Since $\left(x_{i, 1}, \cdots x_{i, n}\right)$ lies on $\pi_{j} ; j \neq i, j=1, \cdots, n+1$, we may directly solve for $x_{i, j}$ from the following n linear equations:

$$
\left[\begin{array}{ccc}
e_{1,1}, & \cdots, & e_{1, n} \\
\vdots & \vdots \\
e_{i-1,1}, & \cdots, & e_{i-1, n} \\
e_{i+1,1}, & \cdots, & e_{i+1, n} \\
\vdots & \vdots \\
e_{n+1,1}, & \cdots, & e_{n+1, n}
\end{array}\right]\left[\begin{array}{c}
x_{i, 1} \\
x_{i, 2} \\
\cdot \\
\cdot \\
x_{i, n}
\end{array}\right]=\left[\begin{array}{c}
e_{1, n+1} \\
\vdots \\
e_{i-1, n+1} \\
e_{i+1, n+1} \\
\vdots \\
e_{n+1, n+1}
\end{array}\right]
$$

A simple calculation shows that (see (3.4))

$$
x_{i, j}=(-1)^{n-j}(-1)^{i+j}\left|E_{i, j}\right| /\left((-1)^{n+1+i}\left|E_{i, n+1}\right|\right)
$$

Hence we obtain

$$
x_{i, j}=-\left|E_{i, j}\right| /\left|E_{i, n+1}\right| ; i, j=1, \cdots, n+1
$$

Substituting these values in $|V|$ of (2.1) and factoring out -1 from each of the first n columns of V and also factoring out $\left|E_{i, n+1}\right|^{-1}$ from the i th row of V for $i=1, \cdots, n+1$, we readily obtain

$$
\begin{align*}
n!C\left(S_{n}\right) & =(-1)^{n}|\operatorname{Adj} E| / \prod_{i=1}^{n+1}\left|E_{i, n+1}\right| \\
& =(-1)^{n}|E|^{n} / \prod_{i=1}^{n+1}\left|E_{i, n+1}\right| \tag{3.13}
\end{align*}
$$

where $|\operatorname{Adj} E|$ is the adjoint determinant of $|E|$. In order to avoid the ambiguity of sign in $C\left(S_{n}\right)$ we consider $\left(n!C\left(S_{n}\right)\right)^{2}$ instead and from (3.9) and (3.12) we obtain

$$
\begin{aligned}
\left(n!C\left(S_{n}\right)\right)^{2} & =|E|^{2 n} / \prod_{i=1}^{n+1}\left|E_{i, n+1}\right|^{2} \\
& =\left(\sum_{i=1}^{n+1} \sigma_{i} p_{i}\left|M_{i i}\right|^{1 / 2}\right)^{2 n} / \prod_{i=1}^{n+1}\left|M_{i i}\right| \\
& =\left(\sum_{i=1}^{n+1} \sigma_{i}\left|R_{i i}\right|^{1 / 2}\right)^{2 n} / \prod_{i=1}^{n+1}\left|R_{i i}\right| .
\end{aligned}
$$

Our problem of minimization is equivalent to minimizing

$$
\ln \left[\left(\sum_{i=1}^{n+1} \sigma_{i}\left|R_{i i}\right|^{1 / 2}\right)^{2} / \prod_{i=1}^{n+1}\left|R_{i i}\right|^{1 / n}\right]
$$

with respect to $r_{i j}, i, j=1, \cdots, n+1$, subject to the restriction that $r_{i i}=p_{i}^{-2}, i=1, \cdots, n+1$ and $|R|=0$ over the class of symmetric matrices R.

Let $\lambda, \mu_{1}, \cdots, \mu_{n+1}$ be Lagrange multipliers and we seek the extreme value of

$$
L=\ln \left(\sum_{i=1}^{n+1} \sigma_{i}\left|R_{i i}\right|^{1 / 2}\right)^{2}-\frac{1}{n} \sum_{i=1}^{n+1} \ln \left|R_{i i}\right|-\lambda|R|+\sum_{i=1}^{n+1} \mu_{i}\left(r_{i i}-p_{i}^{-2}\right) .
$$

$r_{i j}$ must satisfy:

$$
\begin{array}{r}
\frac{\partial L}{\partial r_{i j}}=\rho^{-1} \sum_{\nu=1}^{n+1} \frac{\partial\left|R_{\nu \nu}\right|}{\partial r_{i j}} \frac{\sigma_{\nu}}{\left|R_{\nu \nu}\right|^{1 / 2}}-\frac{1}{n} \sum_{\nu=1}^{n+1} \frac{1}{R_{\nu \nu}} \frac{\partial\left|R_{\nu \nu}\right|}{\partial r_{i j}}-\lambda \frac{\partial|R|}{\partial r_{i j}}=0, \\
i \neq j, i, j=1, \cdots, n+1
\end{array}
$$

and

$$
\frac{\partial L}{\partial r_{i i}}=\rho^{-1} \sum_{\nu=1}^{n+1} \frac{\sigma_{\nu}}{\left|R_{\nu \nu}\right|^{1 / 2}} \frac{\partial\left|R_{\nu \nu}\right|}{\partial r_{i i}}-\frac{1}{n} \sum_{\nu=1}^{n+1} \frac{1}{R_{\nu \nu}} \frac{\partial\left|R_{\nu \nu}\right|}{\partial r_{i i}}-\lambda \frac{\partial|R|}{\partial r_{i i}}+\mu_{i}=0
$$

where ρ is as defined in (3.9).
These equations reduce to

$$
\begin{array}{r}
\frac{1}{2} \frac{\partial L}{\partial r_{i j}}=\sum_{\substack{\nu=1, j \\
\nu+1}}^{n+1}\left(\rho^{-1} \sigma_{\nu}\left|R_{\nu \nu}\right|^{-1 / 2}-n^{-1}\left|R_{\nu \nu}\right|^{-1}\right)\left|R_{\nu \nu \mid i j}\right|-\lambda\left|R_{i j}\right|=0 \\
\quad \text { for } i \neq j ; i, j=1, \cdots, n+1
\end{array}
$$

and

$$
\frac{\partial L}{\partial r_{i i}}=\sum_{\substack{\nu=1 \\ \nu \neq i}}^{n+1}\left(\rho^{-1} \sigma_{\nu}\left|R_{\nu \nu}\right|^{-1 / 2}-n^{-1}\left|R_{\nu \nu}\right|^{-1}\right)\left|R_{\nu \nu \mid i i}\right|-\lambda\left|R_{i i}\right|+\mu=0
$$

where $\left|R_{\nu \nu i j}\right|$ is the co-factor of $r_{i j}$ in $\left|R_{\nu \nu}\right|$.
Hence the minimizing values of $r_{i j}, r_{i j}^{*}$, say, must satisfy the equations in $r_{i j}$:

$$
r_{i i}=p_{i}^{-2}
$$

and

$$
\begin{equation*}
\sum_{\substack{j=1 \\ j \neq i}}^{n+1} r_{i j} \frac{1}{2} \frac{\partial L}{\partial r_{i j}}+r_{i i} \frac{\partial L}{\partial r_{i i}}=0 \tag{3.14}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{\substack{j=1 \\ j \neq i}}^{n+1} r_{k j} \frac{1}{2} \frac{\partial L}{\partial r_{i j}}+r_{k j} \frac{\partial L}{\partial r_{i i}}=0 . \tag{3.15}
\end{equation*}
$$

After obvious simplification (3.14) yields

$$
\sum_{\substack{\nu=1 \\ \nu \neq i}}^{n+1}\left(\rho^{-1} \sigma_{\nu}\left|R_{\nu \nu}\right|^{-1 / 2}-n^{-1}\left|R_{\nu \nu}\right|^{-1}\right)\left|R_{\nu \nu}\right|+\mu_{i} p_{i}^{-2}=0,
$$

or

$$
\begin{equation*}
\mu_{i}=p_{i}^{2} \rho^{-1} \sigma_{i} R_{i i} \tag{3.16}
\end{equation*}
$$

From (3.15) we obtain for $k \neq i$,

$$
\begin{equation*}
\sum_{j=1}^{n+1} \sum_{\substack{\nu=1 \\ \nu \neq i, j}}^{n+1}\left(\sigma_{\nu}\left|R_{\nu \nu}\right|^{-1 / 2} \rho^{-1}-n^{-1}\left|R_{\nu \nu}\right|^{-1}\right) r_{k j}\left|R_{\nu \nu \mid i j}\right|+\mu_{i} r_{k i}=0 . \tag{3.17}
\end{equation*}
$$

After some calculations we obtain

$$
\begin{equation*}
r_{k i}=\mu_{i}^{-1}\left(\sigma_{k}\left|R_{k k}\right|^{-1 / 2} \rho^{-1}-n^{-1}\left|R_{k k}\right|^{-1}\right)\left|R_{i k}\right| \tag{3.18}
\end{equation*}
$$

It is easily seen from (3.11) that $\left|R_{i k}\right|=p_{i} p_{k}\left|M_{i k}\right|$ and

$$
M_{i k}=\left|E_{i, n+1}\right|\left|E_{k, n+1}\right|
$$

and hence from (3.8),

$$
\left|R_{i k}\right|=\sigma_{i k}\left|R_{i i}\right|^{1 / 2}\left|R_{k k}\right|^{1 / 2}
$$

so that substituting for μ_{i} from (3.16) in (3.18) we obtain

$$
\begin{equation*}
p_{i}^{2} r_{k i}=1-n^{-1} \rho \sigma_{k}\left|R_{k k}\right|^{-1 / 2} \tag{3.19}
\end{equation*}
$$

In obtaining (3.18) from (3.17), we illustrate the case for $i=1$, $n+1=4$ and $k=2$, for the expression, for example:

$$
\begin{aligned}
& \sum_{j=1}^{4} \sum_{\nu=1}^{4} \sigma_{\nu}\left|R_{\nu \nu}\right|^{-1 / 2} r_{k j}\left|R_{\nu \nu \mid i j}\right| \\
& =r_{21}\left(\sigma _ { 2 } \left|R _ { 2 2 | 1 1 } \left\|\left.R_{22}\right|^{-1 / 2}+\sigma_{3}\left|R_{33 \mid 11}\left\|\left.R_{33}\right|^{-1 / 2}+\sigma_{4}\left|R_{44 \mid 11} \| R_{44}\right|^{-1 / 2}\right)\right.\right.\right.\right. \\
& \quad+r_{22}\left(\sigma _ { 3 } \left|R_{33 \mid 12}\left\|\left.R_{33}\right|^{-1 / 2}+\sigma_{4}\left|R_{44 \mid 12} \| R_{44}\right|^{-1 / 2}\right)\right.\right. \\
& \quad+r_{23}\left(\sigma_{2}\left|R_{22 \mid 13}\right|\left|R_{22}\right|^{-1 / 2}+\sigma_{4}\left|R_{44 \mid 13}\right|\left|R_{44}\right|^{-1 / 2}\right) \\
& \quad+r_{24}\left(\sigma_{2}\left|R_{22 \mid 14} \| R_{22}\right|^{-1 / 2}+\sigma_{3}\left|R_{33 \mid 14}\right|\left|R_{33}\right|^{-1 / 2}\right) \\
& = \\
& =\sigma_{2}\left|R_{21} \| R_{22}\right|^{-1 / 2}
\end{aligned}
$$

The last expression is obtained from the coefficients of $\left.\left|R_{22}\right|^{\prime}\right|^{-1 / 2}$; the coefficients of $\left|R_{33}\right|^{-1 / 2}$ or $\left|R_{11}\right|^{-1 / 2}$ are easily seen to vanish identically, since they represent expansion by alien co-factors.

In the summation appearing in (3.17) only the term with $\nu=k$ survives;

$$
\sum_{\substack{j=1 \\ j \neq k}}^{n+1} r_{k j}\left|R_{k k \mid i j}\right|
$$

is the expansion of the determinant obtained by replacing the elements of the i-th row of $|R|$ by those of the k-th row of $|R|$ with the k-th row and k-th column deleted. Transferring the elements $r_{k i}$ appearing in the i-th row to the k-th row, there results the minor of $r_{k i}$ in $|R|$. Hence multiplying by $(-1)^{i-k}$ and $(-1)^{i+k}$ we obtain $\left|R_{k i}\right|$. It is thus seen that

$$
\sum_{\substack{j=1 \\ j \neq k}}^{n+1} r_{k j}\left|R_{k k \mid i j}\right|=\left|R_{k i}\right|=\left|R_{i k}\right|
$$

From (3.19) it is easily checked that we have

$$
\begin{equation*}
p_{i}^{2} p_{k}^{2} r_{i k}=p_{j}^{2} p_{k}^{2} r_{j k} \tag{3.20}
\end{equation*}
$$

for all $i, j=1, \cdots, n+1$, with $i \neq k, j \neq k$.
Since the matrix

$$
\left(p_{i}^{2} r_{i j} p_{j}^{2}\right)=D^{2} R D^{2}=D^{2} D^{-1} M D^{-1} D^{2}=D M D=\left(p_{i} m_{i j} p_{j}\right)
$$

is symmetric, and (3.20) implies that nondiagonal elements of each row or column of this matrix are equal we conclude, (in a manner analogous to (2.5)) that $r_{i i}^{*}=p_{i}^{-2}, i=1, \cdots, n+1$ and

$$
p_{i}^{2} r_{i j}^{*} p_{j}^{2}=p_{i} p_{j} m_{i j}^{*}=v,
$$

say, for $i \neq j ; i, j=1, \cdots, n+1$ so that

$$
\left\{\begin{array}{l}
m_{i i}^{*}=1 \quad \text { for } i=1, \cdots, n+1 \tag{3.21}\\
m_{i j}^{*}=\frac{v}{p_{i} p_{j}} \text { for } i \neq j ; i, j=1, \cdots, n+1
\end{array}\right.
$$

We obtain values of v by equating $\left|r_{i j}^{*}\right|=0$ or equivalently by setting $|D M D|=\left|\left(p_{i} p_{j} m_{i j}^{*}\right)\right|=0$, where $p_{i} p_{j} m_{i j}^{*}=v, i \neq j$ and $p_{i}^{2} m_{i i}^{*}=p_{i}^{2}$, and it is seen from (2.7) that v must satisfy

$$
D_{n+1}\left(v ; p_{1}^{2}, \cdots, p_{n+1}^{2}\right)=0 .
$$

and hence

$$
\begin{equation*}
\left(1+v \sum_{i=1}^{n+1}\left(p_{i}^{2}-v\right)^{-1}\right) \prod_{i=1}^{n+1}\left(p_{i}^{2}-v\right)=0 \tag{3.22}
\end{equation*}
$$

We also note from (3.13), (3.8), (3.9) and (3.12) that

$$
\begin{align*}
\left(n!C\left(S_{n}\right)\right)^{2} & =\rho^{2 n} \cdot \prod_{i=1}^{n+1}\left(\left|R_{i i}\right|^{-1} \cdot p_{i}^{2}\right) \\
& =p_{1}^{2}\left|R_{11}\right|^{-1} \cdot \prod_{i=2}^{n+1}\left(\rho\left|R_{i i}\right|^{-1 / 2}\right)^{2} \tag{3.23}
\end{align*}
$$

But from (3.19) we have

$$
\rho \sigma_{k}\left|R_{k k}\right|^{-1 / 2}=n\left(1-p_{i}^{2} r_{k i}^{*}\right)
$$

so that $\rho \sigma_{k}\left|R_{i i}\right|^{-1 / 2}=n\left(p_{i}^{2}-v\right) / p_{i}$, from (3.21). Also from (3.21), since $r_{i j}^{*}=v /\left(p_{i}^{2} p_{j}^{2}\right)$ and $r_{i i}^{*}=p_{i}^{-2}$ it is easily seen that

$$
\begin{aligned}
\left|R_{11}\right| \prod_{i=2}^{n+1} p_{i}^{2} & =D_{n}\left(v ; p_{2}^{2}, \cdots, p_{n+1}^{2}\right) \\
& =\left(1+v \sum_{i=2}^{n+1}\left(p_{i}^{2}-v\right)^{-1}\right) \prod_{i=2}^{n+1}\left(p_{i}^{2}-v\right) \\
& =\left(p_{1}^{2}-v\right)^{-1}\left(-v\left(p_{1}^{2}-v\right)^{-1}+\right.
\end{aligned}
$$

$$
\begin{align*}
& \left.+1+v \sum_{i=1}^{n+1}\left(p_{1}^{2}-v\right)^{-1}\right) \prod_{i=1}^{n+1}\left(p_{i}^{2}-v\right) \\
& =-v\left(p_{1}^{2}-v\right)^{-2} \prod_{i=1}^{n+1}\left(p_{i}^{2}-v\right) \quad \text { from } \tag{3.22}
\end{align*}
$$

Substituting in (3.23) we readily find that

$$
\begin{equation*}
\left(n!C\left(S_{n}\right)\right)^{2}=v^{-1} n^{2 n} \prod_{i=1}^{n+1}\left(p_{i}^{2}-v\right) \tag{3.24}
\end{equation*}
$$

Thus (1.6) is proved.
In order that S_{n} is nondegenerate $v \neq p_{i}^{2}, i=1, \cdots, n+1$. Hence from (3.22) v must satisfy

$$
\begin{equation*}
1+v \sum_{i=1}^{n+1}\left(p_{i}^{2}-v\right)^{-1}=0 \tag{3.25}
\end{equation*}
$$

Thus we have exactly the same equation as (2.12) with d_{i} replaced by p_{i} and u replaced by v. By exactly the same argument that follows (2.12) we conclude that, when p_{1}, \cdots, p_{n+1} are distinct, if the roots of (3.25) are so labelled that the unique negative root of (3.25) is v_{1} and the smallest positive root for v is v_{2} and if the p_{i} are labelled so that p_{1} is the smallest and p_{2} the second smallest $p_{i}, i=1, \cdots, n+1$, we have the two eligible roots of (3.26) as v_{1} and v_{2} satisfying

$$
\begin{equation*}
v_{1}<0<p_{1}^{2}<v_{2}<p_{2}^{2} \tag{3.26}
\end{equation*}
$$

It remains to prove that v_{1} corresponds to the case when A is inside S_{n} while v_{2} corresponds to the case when A is outside S_{n}.

We will prove that, for the extremal simplexes obtained above, the vertex B_{i} and the fixed point A lie on the same side of π_{i} if

$$
p_{i}^{2}-v>0
$$

while A and B_{i} lie on opposite sides if $p_{i}^{2}-v<0$.
Let

$$
L_{i}\left(x_{1}, \cdots, x_{n}\right)=e_{i, 1} x_{1}+\cdots+e_{i, n} x_{n}-e_{i, n+1}
$$

Then $L_{i}(0, \cdots, 0)=-e_{i, n+1}=-p_{i}$, and

$$
\begin{aligned}
L_{i} & \left(x_{i 1}, \cdots, x_{i n}\right) & & \\
& =-\sum_{j=1}^{n+1} e_{i, j}\left|E_{i, j}\right| /\left|E_{i, n+1}\right| & & \text { (by virtue of (3.5)) } \\
& =-|E| /\left|E_{i, n+1}\right| & & \\
& =-p_{i} \rho / \sigma_{i}\left|R_{i i}\right|^{1 / 2} & & \text { (from (3.8) and (3.12)) } \\
& =-n p_{i}\left(1-p_{k}^{2} r_{k i}^{*}\right) & & (\text { from (3.19)) } \\
& =-n p_{i}\left(1-v / p_{i}^{2}\right) & & \text { (from (3.21)) }
\end{aligned}
$$

Hence $L_{i}(0, \cdots, 0) \cdot L_{i}\left(x_{i, 1}, \cdots, x_{i, n}\right)=n\left(p_{i}^{2}-v\right)$. Now the equation of π_{i} is $L_{i}\left(x_{1}, \cdots, x_{n}\right)=0$. Hence $p_{i}^{2}-v>0$ implies that A and B_{i} lie on the same side of π_{i} while $p_{i}^{2}-v<0$ implies that A and B_{i} lie on opposite sides of π_{i}. Since $p_{i}^{2}-v_{1}$ is positive for $i=1, \cdots, n+1$ we conclude from (3.26) that corresponding to v_{1}, A is inside S_{n}. Also from (3.26) we find $p_{1}^{2}-v_{2}$ is negative so that corresponding to v_{2} the point A lies outside S_{n}. Hence it is readily checked that we have proved (1.5), (1.6), (1.7) and (1.8).

Finally, using an argument analogous to that used to obtain (2.15) we find that

$$
-v_{1}^{-1} \prod_{i=1}^{n+1}\left(p_{i}^{1}-v_{1}\right)>-v_{2}^{-1} \prod_{i=1}^{n+1}\left(p_{i}^{2}-v_{2}\right)
$$

so that from (3.24) we conclude that the content of S_{n} corresponding to v_{1} is greater than the content of S_{n} corresponding to v_{2}.

Obvious modifications in the foregoing proofs are easily made. when some or all the p_{1}, \cdots, p_{n+1} are equal.

When $p_{1}=p_{2}=\cdots=p_{n+1}$, (3.25) has a unique negative solution for v and in this case A must lie inside the extremal simplex.

The author expresses his thanks to Professor H. S. M. Coxeter for his valuable association which led to this problem and for his keen interest in this work.

References

1. A. C. Aitken, Determinants and matrices, Oliver and Boyd, Edinburgh, 1956.
2. T. Muir, The theory of determinants in the historical order of development, Volume 3, 4, Dover Publications Inc., 1920.
3. D. M. Y. Sommerville, An introduction to the geometry of N dimensions, Methuen, London, 1929.
4. D. Slepian, The content of some extreme simplexes, Pacific J. Math., (to appear).

Received July 23, 1969. This work was done at the University of Toronto, Department of Industrial Engineering, and the author was on leave of absence from the University of Western Ontario, Department of Mathematics.

University of Western Ontario, and
University of Toronto

ON NORMED RINGS WITH MONOTONE MULTIPLICATION

Silvio Aurora

Abstract

It is shown that if a normed division ring has a norm which is "multiplication monotone" in the sense that $N(x)<$ $N\left(x^{\prime}\right)$ and $N(y)<N\left(y^{\prime}\right)$ imply $N(x y) \leqq N\left(x^{\prime} y^{\prime}\right)$, and if the norm is "commutative" in the sense that $N(\cdots x y \cdots)=N(\cdots y x \cdots)$ for all x and y, then the topology of that ring is given by an absolute value. A consequence of this result is that if the norm of a connected normed ring with unity is multiplication monotone and commutative then the ring is embeddable in the system of quaternions.

Pontrjagin has shown [7] that the only locally compact connected fields are the field of real numbers and the field of complex numbers. A theorem of A. Ostrowski [6] implies that if the topology of a connected field is given by an absolute value then the field is (isomorphic to) a subfield of the field of complex numbers. Both results are contributions toward the solution of the problem of determining what connected fields exist.

In this note the more restricted question of studying connected normed fields is considered. (It is recalled that a normed ring has its topology induced by a norm function N; that is, N is a real-valued function defined on the ring such that: (i) $N(0)=0$ and $N(x)>0$ for $x \neq 0$, (ii) $N(-x)=N(x)$ for all x, (iii) $N(x+y) \leqq N(x)+N(y)$ for all x and y, (iv) $N(x y) \leqq N(x) N(y)$ for all x and y.) Ostrowski's results may be regarded as the treatment of the special case of this problem in which the norm N satisfies the additional condition

$$
N(x y)=N(x) N(y)
$$

for all x and y. This extra requirement is replaced here by the weaker condition that N be multiplication monotone in the sense that whenever $N(x)<N\left(x^{\prime}\right)$ and $N(y)<N\left(y^{\prime}\right)$ then $N(x y) \leqq N\left(x^{\prime} y^{\prime}\right)$.

Specifically, it is shown in the corollary of Theorem 3 that if a commutative connected normed ring with unity has a multiplication monotone norm then that ring is (algebraically and topologically isomorphic to) a subring of the field of complex numbers. (The version of this statement which appears below actually includes the noncommutative case as well.) The basic device employed in obtaining this result is Theorem 2, which asserts that if a normed division ring has a multiplication monotone norm N such that

$$
N(\cdots x y \cdots)=N(\cdots y x \cdots)
$$

for all x and y then there is an absolute value which induces the topology of the ring.
2. Preliminaries. It is recalled that a norm for a ring A is a real-valued function N on A such that: (i) $N(0)=0$ and $N(x)>0$ for all nonzero x in A, (ii) $N(-x)=N(x)$ for all x in A, (iii) $N(x+y) \leqq$ $N(x)+N(y)$ for all x, y in A, (iv) $N(x y) \leqq N(x) N(y)$ for all x, y in A. If a norm N for a ring A also has the property that $N(x y)=N(x) N(y)$ for all x, y in A then N is called an absolute value for A.

By a normed ring is meant a ring A, together with a norm N for A. The norm for a normed ring induces a metric, and therefore a topology, in A.

A topological ring is called a Q-ring of its set of quasiinvertible elements is open; for a topological ring A with unity to be a Q-ring it is necessary and sufficient that the set of invertible elements be open. In particular, it can be shown that every complete normed ring with unity is a Q-ring.

Further details on these concepts can be found in [1] and [4], where the term metric ring is employed for a normed ring.

If a norm N for a ring A has the property that $N(\cdots x y \cdots)=$ $N(\cdots y x \cdots)$ for all x, y in A then N will be called a commutative norm. For instance, absolute values are always commutative, and every norm for a commutative ring is also commutative.

In addition to the above notions, we shall also refer to the concepts which figure in [5], and we shall make use of the criteria given by Kaplansky in that paper for a topological division ring to admit an equivalent absolute value.

Two elementary lemmas will help to translate Kaplansky's criteria to the special case of normed division rings. The proofs are routine.

Lemma 1. An element x of a normed ring is topologically nilpotent if and only if there exists a natural number n such that $N\left(x^{n}\right)<1$.

Lemma 2. The set of topologically nilpotent elements of a normed ring is open.

Kaplansky's criteria can now be rephrased to fit the needs of the present discussion.

Theorem 1. Let K be a normed division ring whose norm is commutative. In order for K to admit an equivalent absolute value
(that is, an absolute value whose induced topology coincides with the topology induced by the norm for K), it is necessary and sufficient that the set of elements which are either topologically nilpotent or neutral be right bounded.

Proof. The necessity of the conditions is obvious. For the sufficiency of the conditions, we first note that the commutativity of the norm implies that $N(x)=N(1)$ whenever x is an element of the commutator subgroup of the multiplicative group of nonzero elements of K; this commutator subgroup is therefore metrically bounded and is consequently right bounded. Lemma 2 and [5; Th. 2] imply that there is an equivalent absolute value for K.
3. Rings with multiplication monotone norm. We shall subject the norm for a normed ring to a monotonicity condition which is of interest because it implies the existence of an absolute value equivalent to the given norm.

Definition. A norm N for a ring A is said to be multiplication monotone provided that whenever $N(x)<N\left(x^{\prime}\right)$ and $N(y)<N\left(y^{\prime}\right)$ then $N(x y) \leqq N\left(x^{\prime} y^{\prime}\right)$.

Clearly every absolute value is multiplication monotone, while the following theorem indicates that under suitable conditions a multiplication monotone norm for a division ring must have an equivalent absolute value.

THEOREM 2. Let K be a normed division ring whose norm is commutative and multiplication monotone. Then there is an equivalent absolute value for K.

Proof. The theorem obviously holds for discrete division rings, so we may confine our attention to nondiscrete division rings.

Let x be a fixed element of K such that $0<N(x)<N(1)^{-1}$. Then if $N(y)>N\left(x^{-2}\right)$ it follows that $N\left(y^{-1}\right) \leqq N(x)<1$, and y is therefore inversely nilpotent. Thus whenever y is topologically nilpotent or neutral we have $N(y) \leqq N\left(x^{-2}\right)$, so that the set of elements of K which are topologically nilpotent or neutral is metrically bounded and therefore right bounded. Theorem 1 yields the desired result.

It is possible to relax the requirement that the ring in question be a division ring, provided that the ring is connected. In order to achieve this we introduce the notion of generalized zero-divisors.

Definition. An element b of a normed ring A will be called a generalized left zero-divisor (generalized right zero-divisor) provided that the greatest lower bound of the set $\{N(b x) / N(x) \mid x \neq 0\}(\{N(x b) /$ $N(x) \mid x \neq 0\})$ is zero.

These are essentially the definitions which were employed in [1], but we may also note that b is a generalized left zero-divisor (generalized right zero-divisor) if and only if there exists a sequence $\left\{x_{n}\right\}$ of nonzero elements of A such that

$$
\lim N\left(b x_{n}\right) / N\left(x_{n}\right)=0\left(\lim N\left(x_{n} b\right) / N\left(x_{n}\right)=0\right)
$$

Although normed rings usually have many generalized zero-divisors it can be shown that a connected normed ring whose norm is multiplication monotone has no generalized zero-divisors other than zero.

Lemma 3. Let A be a connected normed ring with unity such that the norm for A is multiplication monotone. Then A has no generalized left zero-divisors or generalized right zero-divisors other than zero.

Proof. Suppose b is a generalized left zero-divisor in A. Let $\left\{x_{n}\right\}$ be a sequence of nonzero elements of A such that

$$
\lim N\left(b x_{n}\right) / N\left(x_{n}\right)=0
$$

Choose a sequence $\left\{y_{n}\right\}$ in A such that $(1 / 2) N\left(x_{n}\right)<N\left(y_{n}\right)<N\left(x_{n}\right)$ for every natural number n.

If I is the set of all elements c of A such that

$$
\lim N\left(c y_{n}\right) / N\left(y_{n}\right)=0
$$

then I is clearly a left ideal in A. Also, whenever c is an element of A such that $N(c)<N(b)$ then $N\left(c y_{n}\right) / N\left(y_{n}\right) \leqq N\left(b x_{n}\right) /\left((1 / 2) N\left(x_{n}\right)\right)$ for all n, so that c is an element of I. Thus, if b were not zero then an entire neighborhood of zero would be contained in the left ideal I, and I would therefore be open and closed in the connected ring A; consequently I would coincide with A, in contradiction to the fact that I can not contain the unity of A. We conclude that b is zero.

Similarly, every generalized right zero-divisor is zero.
In order to obtain the desired results concerning connected normed rings we first dispose of a special case in the following lemma.

Lemma 4. Let A be a connected ring with unity such that the set A^{*} of nonzero elements of A is disconnected. Then A is a division ring.

Proof. If c is a nonzero element of A then the mapping $x \rightarrow c x$ is clearly a continuous endomorphism of the additive group of A, so that its image H is a connected nonzero subgroup of the additive group of A. But it can be shown that the additive group of A is continuously isomorphic to the additive group of real numbers (for instance, a proof is outlined in [3; Chap. 5, p. 28, Exercise 4]), and H must therefore coincide with the additive group of A. Thus, 1 is in H, so that $1=c d$ for some d in A, and c has a right inverse in A.

Since every nonzero element of A has a right inverse in A we conclude that A is a division ring.

It is now possible to pass to the general case.
Theorem 3. Let K be a connected normed Q-ring with unity such that the norm for K is commutative and multiplication monotone. Then A is algebraically and topologically isomorphic to the field \mathfrak{R} of real numbers, a dense connected subfield of the field $\mathfrak{5}$ of complex numbers, or a dense connected division subring of the division ring \mathfrak{Q} of all real quaternions.

Proof. If the set A^{\sharp} of nonzero elements of A is not connected then Lemma 4 implies that A is a division ring. On the other hand, if A^{*} is connected then A is a division ring according to [1; Th. 1] since Lemma 3 implies that A has no generalized zero-divisors other than zero. In either case A is a division ring.

There is an equivalent absolute value for the normed division ring A by Theorem 2. Ostrowski's characterization of connected division rings with absolute value (see for instance [2; Th. 2, p. 131]) may then be applied to obtain the desired result.

Corollary. Let A be a connected normed ring with unity such that the norm for A is commutative and multiplication monotone. Then A is algebraically and topologically isomorphic to \Re, to a dense connected subring of \mathfrak{C}, or to a dense connected subring of $\mathfrak{\Omega}$.

The corollary is obtained by applying the theorem to the completion of A.

REMARK. Another kind of monotonicity condition could be introduced in normed division rings. The norm of a normed division ring can be described as inversion monotone provided that whenever $N(x)<N(y)$ for nonzero elements x, y then $N\left(x^{-1}\right) \geqq N\left(y^{-1}\right)$. Theorem 2 remains valid if "multiplication monotone" is replaced by "inversion monotone" in the hypothesis, although some details of the proof must
be modified. Similarly, the corollary of Theorem 3 continues to hold if "multiplication monotone" is replaced by "inversion monotone" in the statement of the corollary, provided that it is assumed that the ring is a division ring.

This note evolved from the consideration of some peripheral questions related to a problem which was investigated with the support of the Research Council of Rutgers University; the author wishes to express his appreciation to the Research Council for that support.

References

1. S. Aurora, Multiplicative norms for metric rings, Pacific J. Math. 7 (1957), 12791304.
2. N. Bourbaki, "Algèbre commutative," Chap. 5-6, Éléments de mathématique, Hermann, Paris, 1964.
3. , "Topologie générale," Chap. 5-8, 3rd ed., Éléments de mathématique, Hermann, Paris, 1963.
4. I. Kaplansky, Topological rings, Amer. J. Math. 69 (1947), 153-183.
5. , Topological methods in valuation theory, Duke Math. J. 14 (1947), 527541.
6. A. Ostrowski, Ueber einige Loesungen der Funktionalgleichung $\phi(x) \cdot \phi(y)=\phi(x y)$, Acta Math. 41 (1918), 271-284.
7. L. Pontrjagin, Ueber Stetige Algebraische Koerper, Ann. of Math. 33 (1932), 163174.

Received April 9, 1969.
Rutgers University
Newark, New Jersey

NORMED FIELDS WHICH EXTEND NORMED RINGS OF INTEGERS

Silvio Aurora

Abstract

It is shown that if the ring of integers is made a normed ring by using a "reasonable" norm, such as the ordinary absolute value or some power thereof, then every normed field which extends such a normed ring is a subfield of the field of complex numbers.

The development of the foundations of analysis involves the construction of the normed field of complex numbers, with the ordinary absolute value as norm, from the normed ring of integers, with the ordinary absolute value as norm, by a process of successive enlargements of algebraic systems. (By a normed ring is meant a ring A which is provided with a norm function N; that is, N is a real-valued function defined on A such that: (i) $N(0)=0$ and $N(x)>0$ for every nonzero x in A, (ii) $N(-x)=N(x)$ for all x in A, (iii) $N(x+y) \leqq$ $N(x)+N(y)$ for all x, y in A, (iv) $N(x y) \leqq N(x) N(y)$ for all x, y in A.) Although some treatments of this construction create only positive numbers in the early stages of the passage from the system of natural numbers to the complex number system, such approaches could easily be modified to retain their basic features while still producing the ring of integers at the outset; thus, all such procedures essentially involve the extension of the normed ring of integers to produce the normed field of complex numbers.

One might ask what normed fields could be produced by enlarging the normed ring of integers, with the ordinary absolute value or some power thereof as norm, if no restriction whatever were placed upon the method of extension. It is shown in Theorem 3 that the only normed fields which can be thus obtained must be (continuously isomorphic to) subfields of the field of complex numbers.

Somewhat similar results are given in $\S 4$ for the situation in which the normed field of rational numbers, with a suitably "natural" norm, is enlarged to create a new normed field. For instance, the corollary of Theorem 6 indicates that if the field of rational numbers is provided with a norm which coincides with a power of the ordinary absolute value over a suitable neighborhood of zero, then every normed field which extends this normed field is (continuously isomorphic to) a subfield of the field of complex numbers.
2. Preliminaries. It is useful to recall some of the concepts which are employed in [1] and [2].

A norm for a ring A is a real-valued function N defined on A such that: (i) $N(0)=0$ and $N(x)>0$ for all nonzero x in A, (ii) $N(-x)=N(x)$ for all x in A, (iii) $N(x+y) \leqq N(x)+N(y)$ for all x, y in A, (iv) $N(x y) \leqq N(x) N(y)$ for all x, y in A. If a norm N for a ring A has the property that $N(x y)=N(x) N(y)$ for all x, y in A then N is called an absolute value for A.

By a normed ring is meant a ring A, together with a norm N for A; the norm for a normed ring A defines a metric, and therefore a topology, for A.

If N is a norm for a ring A and c is an element of A such that $N(c x)=N(c) N(x)$ for all x in A then N is said to be homogeneous at c. A norm N for a ring A is said to be power multiplicative at an element c of A provided that $N\left(c^{n}\right)=N(c)^{n}$ for every natural number n. When a norm N for a ring A is homogeneous (power multiplicative) at every element of a subset C of A then N is said to be homogeneous (power multiplicative) on C.

In case N and N^{\prime} are norms for a ring A such that $N^{\prime}(x) \leqq N(x)$ for all x in A then we shall write $N^{\prime} \leqq N$. The relation \leqq in the set of norms for a ring A constitutes a partial ordering of that set.

An example will serve to illustrate some of these concepts. Let A be the ring of all real functions which are defined and have a continuous derivative on the closed unit interval $[0,1]$. If $N^{\prime}(x)=$ $\sup \{|x(t)| \mid 0 \leqq t \leqq 1\}$ and

$$
N(x)=\sup \{|x(t)| \mid 0 \leqq t \leqq 1\}+\sup \left\{\left|x^{\prime}(t)\right| \mid 0 \leqq t \leqq 1\right\}
$$

for all x in A, then N^{\prime} and N are norms for A, with $N^{\prime} \leqq N$. It is also easily established that N^{\prime} is power multiplicative on A and that N is homogeneous at each constant function which belongs to A.

When N is a norm for a field K and c is a nonzero element of K, then for all x in K :

$$
N(x) \geqq N(x c) / N(c) \geqq N\left(x c^{2}\right) / N(c)^{2} \geqq N\left(x c^{3}\right) / N(c)^{3} \geqq \cdots
$$

Thus

$$
N_{c}(x)=\inf \left\{N\left(x c^{n}\right) / N(c)^{n} \mid n \text { a natural number }\right\}=\lim _{n \rightarrow \infty} N\left(x c^{n}\right) / N(c)^{n}
$$

is a well-defined nonnegative real number for all x in A. It can be shown that the function N_{c} is identically zero on A if and only if N fails to be power multiplicative at c. On the other hand, if N is power multiplicative at c then N_{c} is a norm for K, with $N_{c} \leqq N$, as the following lemma indicates. (It is recalled that by a semigroup in a ring is meant a nonempty subset of that ring such that the subset is closed under multiplication.)

Lemma 1. Let N be a norm for a field K, and let c be a nonzero element of K such that N is power multiplicative at c. Then N_{c} is a norm for K such that:
(i) $\quad N_{c} \leqq N$,
(ii) $N_{c}(c)=N(c)$,
(iii) N_{c} is homogeneous at c,
(iv) whenever S is a semigroup in K, with c in S, such that N is power multiplicative on S then N_{c} is power multiplicative on S.

It is easily established that N_{c} possesses properties (ii), (iii), (iv) of a norm, so that the set I of all x in A for which $N_{c}(x)=0$ is an ideal in the field K, and N_{c} is therefore a norm for K. The remaining details of the proof are routine.

The lemma permits us to replace the norm N by a new norm which has properties similar to those of N and is homogeneous at c as well. It is possible to sharpen this result so that the new norm is homogeneous on an entire semigroup on which the original norm is power multiplicative.

Theorem 1. Let K be a normed field with norm N, let S be a semigroup in K such that N is power multiplicative on S, and let c be a nonzero element of S. Then there exists a norm N^{\prime} for K such that:
(i) $\quad N^{\prime} \leqq N$,
(ii) $N^{\prime}(c)=N(c)$,
(iii) N^{\prime} is homogeneous on S.

Proof. Let \mathscr{H} be the set of all norms $N^{\prime \prime}$ for K such that $N^{\prime \prime} \leqq N, N^{\prime \prime}(c)=N(c), N^{\prime \prime}$ is homogeneous at c, and $N^{\prime \prime}$ is power multiplicative on S. Then \mathscr{H} is not empty since it contains N_{c}; also, \mathscr{C} is partially ordered by the relation \leqq. It is easily shown that every totally ordered subset of \mathscr{C} has a lower bound in \mathscr{H}, so that Zorn's Lemma implies the existence of a minimal element, N^{\prime}, of \mathscr{H}.

If d is a nonzero element of S then Lemma 1 implies that $\left(N^{\prime}\right)_{d}$ belongs to $\mathscr{\mathscr { C }}$, with $\left(N^{\prime}\right)_{d}(d x)=\left(N^{\prime}\right)_{d}(d) \cdot\left(N^{\prime}\right)_{d}(x)$ for all x in K. Since N^{\prime} is a minimal element of \mathscr{H}, and since N^{\prime} and $\left(N^{\prime}\right)_{d}$ both belong to $\mathscr{\mathscr { C }}$, with $\left(N^{\prime}\right)_{d} \leqq N^{\prime}$, it follows that $N^{\prime}=\left(N^{\prime}\right)_{d}$. Thus, $N^{\prime}(d x)=$ $N^{\prime}(d) N^{\prime}(x)$ for all x in K. We conclude that N^{\prime} is homogeneous at every element d of S, and the theorem follows.

Remark. In order to apply Theorem 1 it is useful to have a criterion to determine when a norm for a ring is power multiplicative on a semigroup in that ring. It is easily established that a norm N
for a ring A is power multiplicative on a semigroup S in A if and only if for every element x in S there is an integer $n(x)$, with $n(x)>1$, such that $N\left(x^{n(x)}\right)=N(x)^{n(x)}$. In particular, N is power multiplicative on S if and only if $N\left(x^{2}\right)=N(x)^{2}$ for all x in S. (Any integer exponent greater than 1 could be used instead of 2 in the preceding statement.)
3. Extensions of the normed ring of integers. We are interested in normed fields which extend the ring of integers when the latter is provided with a norm which is a power of the ordinary absolute value. It will be shown that such fields are (continuously isomorphic to) subfields of the field of complex numbers. First a more general result is obtained which implies that if the ring of integers is given a norm which is power multiplicative and takes a value greater than 1 at least once then any normed field which extends this normed ring must be (continuously isomorphic to) a subfield of the field of complex numbers.

For convenience, whenever n is an integer the symbol n will be used to denote the n-fold of the unit element of the field which is under consideration.

Theorem 2. Let K be a normed field for which there is a natural number n_{0}, with $N\left(n_{0}\right)>1$, such that $N\left(n^{2}\right)=N(n)^{2}$ whenever n is a natural number for which $n \geqq n_{0}$. Then K is continuously algebraically isomorphic to a subfield of the field © of complex numbers.

Proof. If S is the set of all elements n of K such that n is a natural number with $n \geqq n_{0}$, then S is a semigroup in K such that N is power multiplicative on S. Theorem 1 can be applied to the semigroup S and the element n_{0} in order to obtain a norm N^{\prime} for K such that $N^{\prime} \leqq N, N^{\prime}\left(n_{0}\right)=N\left(x_{0}\right)>1$, and N^{\prime} is homogeneous on S.

If n is an arbitrary natural number greater than 1 then there is a natural number r such that n^{r} and n^{r+1} both belong to S; the inequality $\quad N^{\prime}\left(n^{r}\right) N^{\prime}(n) N^{\prime}(x)=N^{\prime}\left(n^{r+1}\right) N^{\prime}(x)=N^{\prime}\left(n^{r+1} x\right) \leqq N^{\prime}\left(n^{r}\right) N^{\prime}(n x)$ implies that $N^{\prime}(n x)=N^{\prime}(n) N^{\prime}(x)$ for all x in K. From the condition $N^{\prime}\left(n_{0} x\right)=N^{\prime}\left(n_{0}\right) N^{\prime}(x)$ with $x=1$ we obtain $N^{\prime}(1)=1$, and consequently N^{\prime} is homogeneous at every "integer" in K. Thus N^{\prime} is homogeneous on the prime field, P, of K. Since $N^{\prime}\left(n_{0}\right)>1$, the restriction of N^{\prime} to P is an archimedean absolute value for P; therefore Ostrowski's results [4] imply that P is algebraically isomorphic to the field of rationals (and can be identified with that field), and there is a real number s, with $0<s \leqq 1$, such that $N^{\prime}(x)=|x|^{s}$ for all x in P.

Let A be the completion of K relative to the norm N^{\prime}, so that
A is a complete commutative normed ring with unity, and there is an obvious continuous isomorphism φ of K into A. We have in fact $N^{\prime \prime}(\varphi(x))=N^{\prime}(x) \leqq N(x)$ for all x in K if $N^{\prime \prime}$ is the norm for A. The closure, R, of $\varphi(P)$ in A is the completion of $\varphi(P)$ and can be identified with the completion of P. Therefore R can be identified with the field of real numbers, and we have $N^{\prime \prime}(y)=|y|^{s}$ for all y in R.

There is a maximal ideal M in A, and M is closed since the set of invertible elements of a complete normed ring with unity is open. Thus, A / M is a complete normed field and has its norm \bar{N} given by the rule $\bar{N}(X)=\inf \left\{N^{\prime \prime}(x) \mid x \in X\right\}$ for all X in A / M. The natural homomorphism ν of A onto A / M is continuous since $\bar{N}(\nu(y)) \leqq N^{\prime \prime}(y)$ for all y in A, and $\nu(R)$ is therefore identifiable with the field R. Then A / M may be considered a complete commutative normed division algebra over R, where R is the field of real numbers with a power of the ordinary absolute value as its absolute value. The GelfandMazur Theorem, as it appears in [3; Chap. 6, p. 127, Th. 1], implies that A / M is continuously isomorphic to the field of real numbers or the field of complex numbers, so that there is a continuous isomorphism ψ of A / M into the field \mathfrak{C} of complex numbers.

It is easily seen that the mapping $\psi \circ \nu \circ \rho$ is a continuous isomorphism of the field K into \mathbb{C}^{5}, and the theorem follows.

Note. An alternative means of stating Theorem 2 is that if the ring of integers is given a norm which is power multiplicative at every integer which is sufficiently large, and if the norm takes a value greater than 1 for at least one of those integers, then every normed field which is an extension of this normed ring must be a subfield of \mathfrak{C} with a topology at least as fine as its ordinary relative topology in \mathfrak{C}.

The simplest norms which satisfy the hypothesis of Theorem 2 are those which coincide with some power of the ordinary absolute value at all natural numbers which are sufficiently large. We thus obtain the following theorem.

Theorem 3. Let K be a normed field for which there exist a natural number n_{0} and a positive real number s such that $N(n)=n^{s}$ whenever n is a natural number with $n \geqq n_{0}$. Then K is continuously algebraically isomorphic to a subfield of \mathfrak{C}.

It should be noted that s is necessarily less than or equal to 1. A special case of Theorem 3, that in which $s=1$, has been given in [2; Corollary 2 of Th. 5]. Another result of some interest can be obtained as a corollary of the theorem, and has appeared in [2; Th. 6].

Corollary. Let K be a normed field such that $N(n)=n N(1)$ for infinitely many natural numbers n. Then K is continuously algebraically isomorphic to a subfield of \mathfrak{C}.

The proof involves replacement of the norm N by a new norm N^{\prime} defined by $N^{\prime}(x)=\sup \{N(x c) / N(c) \mid c \in K, c \neq 0\}$ for all x in K.

Note. Theorem 3 implies that if the ring of integers is provided with a norm which is a power of the ordinary absolute value (or if the norm merely coincides with some power of the ordinary absolute value at integers which are sufficiently large) then every normed field which extends this normed ring must be a subfield of \mathfrak{C} with a topology at least as fine as its ordinary relative topology.

An interesting consequence of these results concerns normed fields which satisfy the parallelogram law.

Definition. A normed ring A is said to satisfy the parallelogram $l a w$ if $N(x+y)^{2}+N(x-y)^{2}=2 N(x)^{2}+2 N(y)^{2}$ whenever x, y belong to A.

The parallelogram law is characteristic of Euclidean distance and can hold for a normed field only if that field is continuously embeddable in the field of complex numbers.

Theorem 4. Let K be a normed field which satisfies the parallelogram law. Then K is continuously algebraically isomorphic to a subfield of \mathfrak{C}.

Proof. The parallelogram law with $x=y$ yields the relation $N(2 x)=2 N(x)$ for all x in K. Thus, $N\left(2^{r} x\right)=2^{r} N(x)$ for all x in K and for every natural number r. The corollary of the preceding theorem then leads to the desired result.
4. Extensions of the normed field of rational numbers. The fields of the preceding section were all necessarily of infinite characteristic although the hypotheses employed in the statements of the results did not explicitly make such an assumption. We now confine our attention to fields of infinite characteristic, and the discussion is simplified by identifying the prime field of each such field with the field of rational numbers. The results of this section then indicate that if the field of rational numbers is given a norm which is "reasonable" in an appropriate sense, then every normed field which extends
such a normed field must be (continuously isomorphic to) a subfield of \mathfrak{c}.

We first obtain an analogue of Theorem 2.
Theorem 5. Let K be a normed field of infinite characteristic for which there is a natural number n_{0}, with $N\left(1 / n_{0}\right)<1$, such that $N\left(1 / n^{2}\right)=N(1 / n)^{2}$ whenever n is a natural number with $n \geqq n_{0}$. Then K is continuously algebraically isomorphic to a subfield of \mathfrak{C}.

Proof. If S is the semigroup which consists of the elements $1 / n$ of K for which n is a natural number with $n \geqq n_{0}$, then N is power multiplicative on S and we may apply Theorem 1 to S and the element $1 / n_{0}$. Thus, there is a norm N^{\prime} for K, with $N^{\prime} \leqq N$, such that N^{\prime} is homogeneous on S and $N^{\prime}\left(1 / n_{0}\right)=N\left(1 / n_{0}\right)<1$. We have $N^{\prime}\left(n_{0}\right)>1$ since $N^{\prime}\left(1 / n_{0}\right)<1$. Also, whenever, n is a natural number with $n \geqq n_{0}$ then $N^{\prime}\left(1 / n^{2}\right) N^{\prime}\left(n^{2}\right)=1=N^{\prime}(1 / n)^{2} N^{\prime}(n)^{2}=N^{\prime}\left(1 / n^{2}\right) N^{\prime}(n)^{2}$, so that $N^{\prime}\left(n^{2}\right)=N^{\prime}(n)^{2}$. Thus, K with the norm N^{\prime} satisfies the hypothesis of Theorem 2, and the theorem follows since K is continuously algebraically isomorphic to this normed field.

When the norm for a normed field of infinite characteristic coincides with some power of the ordinary absolute value at the reciprocals of all natural numbers which are sufficiently large, we obtain an analogue of Theorem 3.

Theorem 6. Let K be a normed field of infinite characteristic for which there exist a natural number n_{0} and a positive real number s such that $N(1 / n)=1 / n^{s}$ whenever n is a natural number with $n \geqq n_{0}$. Then K is continuously algebraically isomorphic to a subfield of \mathfrak{c}.

Corollary. Let K be a normed field of infinite characteristic for which there exist positive real numbers r_{0} and s such that $N(r)=r^{s}$ whenever r is a rational number with $0<r<r_{0}$. Then K is continuously algebraically isomorphic to a subfield of \mathfrak{t}.

We note that the corollary implies that if the field of rational numbers is provided with a norm which coincides with some power of the ordinary absolute value over a suitable neighborhood of zero, then every normed field which can be obtained by extending this normed field must be a subfield of \mathfrak{C} with a topology at least as fine as its ordinary relative topology in \mathfrak{C}. The special case of this corollary which occurs when $s=1$ has already been given in [2; Th. 7].

Remark. Theorems 2, 3, 5, and 6 and their corollaries identify the normed field K with a subfield of the field \mathfrak{C} of complex numbers, but with a topology finer than the ordinary topology inherited from ©. That the topology for K may be strictly finer than the ordinary topology is shown by taking as K the field of complex numbers with the norm N given by $N(x)=\max (|x|,|\sigma(x)|)$ for every complex number x, where σ is a fixed discontinuous automorphism of the field of complex numbers.

References

1. S. Aurora, Multiplicative norms for metric rings, Pacific J. Math. 7 (1957), 12791304.
2. —, The embedding of certain metric fields, Michigan Math. J. 7 (1960), 123128.
3. N. Bourbaki, "Algèbre commutative," chap. 5-6, Éléments de mathématique, Hermann, Paris, 1964.
4. A. Ostrowski, Ueber einige Loesungen der Funktionalgleichung $\phi(x) \cdot \phi(y)=\phi(x y)$. Acta Math. 41 (1918), 271-284.

Received April 9, 1969.
Rutgers University
Newark, New Jersey

INDEFINITE MINKOWSKI SPACES

John K. Beem

Abstract

The purpose of this article is to characterize Minkowski general G-spaces. The unit sphere K is shown to have at most four components.

Assume the space R is not reducible. If K has one component, R is an ordinary Minkowski G-space. If K has two components they are quadrics and R is nearly pseudoeuclidean. When K has three components, one is a quadric and the other two are strictly convex. The unit sphere has four components only in dimension two.

The axioms of a general G-space have been given in [4] and the interesting two dimensional spaces have been investigated in [1]. We will denote the indefinite distance from x to y by $x y$. We refer to $x y$ as a metric even though it is not in general a true metric.

Definition 1.1. The general G-space R is called a Minkowski space if R is the real n-dimensional affine space A^{n}, the family of Arcs A consists of the affine segments and $w=(1 / 2)(x+y)$ implies $w x=$ $w y=(1 / 2) x y$.

If L^{r} is an r-dimensional flat in R, then L^{r} is an r-dimensional Minkowski space with the induced distance.

Let $e(x, y)$ be an associated euclidean metrization of A^{n}. Then for each line L in R there is a number $\phi(L)$ such that $x y=\dot{\phi}(L) e(x, y)$ for all $x, y \in L$. If $\phi(L)=0$, we call L a null line. The number $\phi(L)$ depends continuously on L and $\phi(L)=\phi\left(L_{1}\right)$ if L_{1} is parallel to L, see [1]. It follows that the affine translations preserve the distance $x y$.

Let z always denote the origin in A^{n}. We call $C=\{x \mid x z=0\}$ the light cone and $K=\{x \mid x z=1\}$ the unit sphere. If K is given the distance $x y$ is uniquely determined.

For $x \neq y$ let $L(x, y)$ denote the line through x and y and let $\alpha(x, y)$ denote the affine segment from x to y. When $S \subset A^{n}$ define $-S=\{x \mid-x \in S\}$. If $S=-S$ the set S is called symmetric about z or simply symmetric. The sets C and K are symmetric.

Two general G-spaces R_{1} and R_{2} are said to be topologically isometric if there exists a topological map of R_{1} onto R_{2} that preserves the indefinite distance $x y$.

It is easily seen that if R_{1} and R_{2} are Minkowski spaces defined on A^{n} with unit spheres K and K^{*} respectively, then R_{1} and R_{2} are
topologically isometric if and only if there is an affinity mapping K onto K^{*}.
2. Two dimensional spaces. If R is A^{2}, then by [4, p. 241] one of the following must hold: (1) no null lines exist in R, (2) there is exactly one null line through each point of R, (3) there are exactly two null lines through each point of R, or (4) all lines in R are null.

In case (1) we call R a spacelike plane. By [4, p. 239], a spacelike plane is an ordinary Minkowski G-space with unit sphere a strictly convex closed curve.

In case (2) we call R a neutral plane. A neutral plane is topologically isometric to the (s, t) plane with distance from $\left(s_{1}, t_{1}\right)$ to $\left(s_{2}, t_{2}\right)$ given by $\left|t_{1}-t_{2}\right|$.

When R has exactly two null lines through each point it is called a doubly timelike (Minkowski) plane, see [1]. The unit sphere has four components each of which is strictly convex and not compact.

If all lines in R are null, we call R a null plane.
3. Reducible spaces. Let R be an n-dimensional Minkowski space. Then R is reducible to $R^{r} \times N^{n-r}$ for $r<n$, provided affine coordinates $x_{1}, x_{2}, \cdots, x_{n}$ may be chosen such that
(1) R^{r} is given by $x_{r+1}=x_{r+2}=\cdots=x_{n}=0$ and N^{n-r} is given by $x_{1}=\cdots=x_{r}=0$.
(2) The projection of R onto R^{r} preserves the metric $x y$.

The maximum possible value of $n-r$ is called the index of reducibility of R. A null plane has index 2 and a neutral plane index 1 . Spacelike and doubly timelike planes are not reducible.

Nonreducible spaces often contain reducible subspaces. In the three dimensional Lorentz space any plane tangent to the light cone is neutral and hence reducible.

Given a line N the parallel to N through x will always be denoted by N_{x}.

Definition 3.1. A line N through z is called a line of reduction of R if $x \in K$ implies $N_{x} \subset K$.

Lemma 3.2. The space R is reducible if and only if R has a line of reduction.

Proof. If N is a line of reduction of R and L^{n-1} is a hyperplane with $L^{n-1} \cap N=z$, the projection of R onto L^{n-1} along parallels to N preserves the metric.

On the other hand if R is reducible to $R^{r} \times N^{n-r}$ any line N through z and in N^{n-r} is a line of reduction of R.
4. The r-flat topology. If $\left\{M_{m}\right\}$ is a sequence of closed subsets of R, we say M_{m} converges to the closed set M if $\lim M_{m}=M$ in the sense of Hausdorff's closed limit, see [2]. This limit induces a topology on the closed subsets of R. If L^{r} is an r-flat and $W\left(L^{r}\right)$ is a neighborhood of L^{r} in this topology, let $W_{r}\left(L^{r}\right)$ denote the r-flats in $W\left(L^{r}\right)$.

Lemma 4.1. Let $\left\{L_{m}^{2}\right\}$ be a sequence of doubly timelike planes, each containing z, such that $\left\{L_{m}^{2}\right\}$ converges to the two flat L^{2}. Assume $x_{i}^{m} \in K \cap L_{m}^{2}$ and $x_{i}^{m} \rightarrow x_{i}$ for $i=1,2$.
(1) Let L^{2} be doubly timelike and let x_{1}, x_{2} lie on the same component [opposed components] of K. Then for sufficiently large m the points x_{1}^{m} and x_{2}^{m} always lie on the same component [opposed components] of $K \cap L_{n}^{2}$.
(2) If L^{2} is neutral, then for sufficiently large m the points x_{1}^{m} and x_{2}^{m} are always on the same or else always on opposed components of $K \cap L_{m}^{2}$.

Proof. The proofs are similar and consequently we only consider statement (2) in which L^{2} is neutral.

Without loss of generality assume x_{1} and x_{2} are on the same component of $K \cap L^{2}$ since if $x_{1}^{m} \rightarrow x_{1}$ then $-x_{1}^{m} \rightarrow-x_{1}$.

If $y \in \alpha\left(x_{1}, x_{2}\right)$ then $y \in K$ and $z y=1$. Therefore, there exists an open set V containing the set $\alpha\left(x_{1}, x_{2}\right)$ such that all $p \in V$ have $z p>0$. For sufficiently large m all points of $\alpha\left(x_{1}^{m}, x_{2}^{m}\right)$ lie in V and have positive distance from z. It follows that x_{1}^{m} and x_{2}^{m} lie on the same component of $K \cap L_{m}^{2}$ for large m.

The components of K are arcwise connected since they are connected and locally arcwise connected.

Lemma 4.2. Let x_{1} and x_{2} lie on the same component of K and let L^{2} be a two flat containing z, x_{1} and x_{2}. If S_{1} and S_{2} are the components of $K \cap L^{2}$ containing x_{1} and x_{2} respectively then either $S_{1}=S_{2}$ or else $S_{1}=-S_{2}$.

Proof. Let $x(t)$ for $0 \leqq t \leqq 1$ be a curve on K connecting x_{1} and x_{2} with $x(0)=x_{1}$ and $x(1)=x_{2}$.

Call the two flat $L^{2}(t)$ admissible if $z, x_{1}, x(t) \in L^{2}(t)$ and $K \cap L^{2}(t)$ has components S_{1} and $S(t)$ containing x_{1} and $x(t)$ respectively such that either $S_{1}=S(t)$ or else $S_{1}=-S(t)$. For sufficiently small t there must exist admissible $L^{2}(t)$. Set $M=\{t \in[0,1] \mid$ there exists an admissible $\left.L^{2}(t)\right\}$.

We now show M is closed. If $\left\{L^{2}\left(t_{m}\right)\right\}$ is a sequence of admissible planes and $t_{m} \rightarrow t_{0}$, then there is a convergent subsequence $\left\{L^{2}\left(t_{k}\right)\right\} \subset$ $\left\{L^{2}\left(t_{m}\right)\right\}$ such that $L^{2}\left(t_{k}\right) \rightarrow L_{0}^{2}$. Clearly $z, x_{1}, x\left(t_{0}\right) \in L^{2}\left(t_{0}\right)$. Statement (1)
of Lemma 4.1 implies L_{0}^{2} cannot be doubly timelike with x_{1} and $x\left(t_{0}\right)$ neither on the same nor on opposed components of $K \cap L_{0}^{2}$. Therefore, $t_{0} \in M$.

To show M is open let $\tau \in M$ and $L^{2}(\tau)$ be admissible. If $L^{2}(\tau)$ is spacelike there must exist a neighborhood $W_{2}\left(L^{2}\right)$ containing only spacelike planes. But this implies the existence of a neighborhood $U(\tau)$ of the number τ with $U(\tau) \subset M$. If $L^{2}(\tau)$ is a doubly timelike plane statement (1) of Lemma 4.1 implies the existence of a neighborhood $U(\tau) \subset M$. In case $L^{2}(\tau)$ is a neutral plane first construct a neighborhood $W_{2}\left(L^{2}(\tau)\right)$ in which no null planes exist. If only spacelike and neutral planes exist in $W_{2}\left(L^{2}(\tau)\right)$ there is nothing to show. If there is a sequence of doubly timelike planes $L^{2}\left(t_{m}\right)$ converging to $L^{2}(\tau)$, statement (2) of Lemma 4.1 guarantees that for large m the planes $L^{2}\left(t_{m}\right)$ are admissible. It follows that there is a neighborhood $U(\tau) \subset M$. Therefore, M is open as well as closed. Since $M \neq \phi, M=$ $[0,1]$ and the lemma is established.

Theorem 4.3. Let K_{1} and K_{2} be distinct components of K that are opposed (i.e., $K_{2}=-K_{1}$). Then K_{1} and K_{2} are convex hypersurfaces.

Proof. Let $K_{1}^{0}=\left\{y \mid \alpha(z, y) \cap K_{1} \neq \phi\right\}$. Then K_{1}^{0} has boundary K_{1} and $y \in K_{1}^{0}$ implies $z y \geqq 1$. If $y_{1}, y_{2} \in K_{1}^{0}$ let L^{2} be a two flat through z, y_{1} and y_{2}. Then L^{2} must either be neutral or doubly timelike. In either case $\alpha\left(y_{1}, y_{2}\right) \subset K_{1}^{0}$ if y_{1} and y_{2} lie on the same component of $K_{1} \cap L^{2}$. Clearly y_{1} and y_{2} lie on the same component for L^{2} neutral. If L^{2} is doubly timelike, then $K_{1} \neq K_{2}$ and Lemma 4.2 imply y_{1} and y_{2} lie on the same component of $K_{1} \cap L^{2}$. It follows that K_{1}^{0} is convex and that its boundary K_{1} is a convex hypersurface. In the same fashion one may show K_{2} is a convex hypersurface.

Lemma 4.4. Let K have a component K_{1} that is symmetric about z. Then for each $x \in K_{1}$ there is a two flat L^{2} through z and x that is spacelike.

Proof. Assume the statement is false. Any two flat containing $L(z, x)$ is then either neutral or doubly timelike. Orient $L(z, x)$ to get $L^{+}(z, x)$. If L_{1} is a line parallel to $L^{+}(z, x)$, orient L_{1}^{+}in the same direction. This gives an ordering $<$ on each line parallel to $L(z, x)$.

Let $x(t)$ for $0 \leqq t \leqq 1$ be a curve on K_{1} with $x(0)=x, x(1)=-x$ and $x(t) \notin L(x,-x)$ for $0<t<1$. Let $L^{+}(t)$ be the oriented line containing $x(t)$ and parallel to $L^{+}(z, x)$. The line $L^{+}(t)$ is never a null line.

In the ordering $<$ along $L^{+}(t)$ let $p(t)$ be the first element in $\left\{y \mid y \in L^{+}(t)\right.$ and $\left.z y=0\right\}$. Let $f(t)$ be the signed euclidean distance from $x(t)$ to $p(t)$ where $f(t)<0$ if $x(t)<p(t)$. If $z<x$ then $f(0)<0$
and $f(1)>0$.
The function $f(t)$ is continuous at 0 and 1 since $p(t) \rightarrow z$ for $t \rightarrow 0$ and $t \rightarrow 1$. To show $f(t)$ is continuous on $(0,1)$ let $0<t_{0}<1$ and $t_{m} \rightarrow t_{0}$. For $0<t<1$ let $L^{2}(t)$ denote the unique plane containing $L^{+}(t)$ and z. Clearly if $L\left(t_{0}\right)$ is neutral we have $L\left(z, p\left(t_{m}\right)\right) \rightarrow L\left(z, p\left(t_{0}\right)\right)$. If $L^{2}\left(t_{0}\right)$ is doubly timelike, one can show using (1) of Lemma 4.1 that $L\left(z, p\left(t_{m}\right)\right) \rightarrow L\left(z, p\left(t_{0}\right)\right)$. In either case $p\left(t_{m}\right) \rightarrow p\left(t_{0}\right)$ and $f(t)$ is continuous. But then $f(\tau)=0$ for some $0<\tau<1$ which implies $x(\tau)=p(\tau)$. This is impossible since $z x(\tau)=1$ and $z p(\tau)=0$.
5. Three dimensional spaces. In this section we only consider three dimensional Minkowski spaces.

Lemma 5.1. Let K have three components K_{1}, K_{2} and K_{3} with $K_{3}=-K_{3}$. Then $K_{1}=-K_{2}$ and K_{1} (hence also K_{2}) is strictly convex.

Proof. By Lemma 4.4 there is a two flat L^{2} through z that is spacelike with $L^{2} \cap K_{3} \neq \dot{\phi}$. This flat separates A^{3} and does not intersect K_{2}. Hence $K_{2} \neq-K_{2}$. Consequently, $K_{1}=-K_{2}$.

To see that K_{1} is strictly convex let $x, y \in K_{1}$. If L_{0}^{2} is a two flat through x, y and z it must be doubly timelike since $L_{0}^{2} \cap L^{2} \neq \dot{\phi}$. Then $L_{0}^{2} \cap K_{1}$ is a strictly convex curve. It follows that $u \in \alpha(x, y)-x-y$ implies $z u>1$. Therefore, K_{1} must be strictly convex.

If K_{i} is a component of K then so is $-K_{i}$. Consequently, if K has exactly three components there is always one, say K_{3}, that is symmetric about z.

Extend A^{3} to the real three dimensional projective space P^{3} by adding a plane L_{∞}^{2} at ∞. The projective lines that the light cone C determine intersect L_{∞}^{2} in a curve C_{∞}. Let K have exactly three components. Since spacelike planes exist in this case, there is a line $L_{0} \subset L_{\infty}^{2}$ with $L_{0} \cap C_{\infty}=\phi$. The set $L_{\infty}^{2}-L_{0}$ is an affine plane with L_{0} the line at ∞.

Let $p, q \in C_{\infty}$ with $p \neq q$. Let L^{2} be two flat in P^{3} that contains z, p, q. Then $L^{2} \cap A^{3}$ cannot be a null plane, since if it were it would separate A^{3} and K_{3} could not be symmetric. Consequently, $L^{2} \cap A^{3}$ must be a doubly timelike plane.

It follows that $L^{2} \cap\left(L_{\infty}^{2}-L_{0}\right)$ is an affine line in $L_{\infty}^{2}-L_{0}$ that intersects C_{∞} in only the two points p and q. But C_{∞} is a closed curve. Hence, C_{∞} is a strictly convex curve in $L_{\infty}^{2}-L_{0}$.

Theorem 5.2. Let $\operatorname{dim} R=3$. If K has three components K_{1}, K_{2} and K_{3} with $K_{3}=-K_{3}$, then K_{3} is a hyperboloid of one sheet.

Proof. Let $u \in L_{\infty}^{2}-L_{0}$ and let u be exterior to the convex set
in $L_{\infty}^{2}-L_{0}$ whose boundary is C_{∞}. Then there are lines L_{1} and L_{2} through u that are supporting lines of C_{∞}. Let L_{i}^{2} be the projective plane containing z and L_{i} for $i=1$, 2. Then $L_{i}^{2} \cap C_{\infty}$ is a single point and hence $L_{i}^{2} \cap A^{3}$ is a neutral plane.

The set $L_{i}^{2} \cap A^{3} \cap K$ consists of two parallel lines which must be on K_{3} since K_{1} and K_{2} are strictly convex. For any $q \in K_{3}$ let $u=$ $L(z, q) \cap L_{\infty}^{2}$ and without loss of generality assume $u \notin L_{0}$. Then u must be exterior to C_{∞}. By the above arguments there must be two straight lines on K_{3} through q. By [5, p. 272] the set K_{3} is a hyperboloid of one sheet.

Notice that the above theorem gives the additional information that C is elliptic and C_{∞} is an ellipse in $L_{\infty}^{2}-L_{0}$.

Lemma 5.3. K can have at most four components. If K does have four components, R is reducible and no component of K is symmetric about z.

Proof. Let K_{1} be a component of K. Assume $K_{1}=-K_{1}$, then there is a spacelike plane L_{0}^{2} through z with $L_{0}^{2} \cap K_{1} \neq \phi$. Take $K_{2} \neq K_{1}$ and $x \in K_{2}$. Let $L^{2}(\theta)$ be a two flat containing $L(z, x)$ that revolves continuously in θ and sweeps out A^{3} for $0 \leqq \theta \leqq \pi$. Each $L^{2}(\theta)$ intersects L_{0}^{2} in a line through z so that $L^{2}(\theta) \cap K_{1} \neq \phi$ for all θ. Therefore, each $L^{2}(\theta)$ is doubly timelike and intersects K in four components. Two of these components lie on K_{1}, and the other two are subsets of K_{2} and $-K_{2}$. Since this holds for all $\theta \in[0, \pi], K$ can have at most three components. Therefore, $K_{1} \neq-K_{1}$ if K has four components.

By the above, it must be possible to find at least two components K_{1} and K_{2} of K with $K_{1} \neq-K_{1}, K_{2} \neq-K_{2}$ and $K_{1} \neq-K_{2}$. Set $K_{3}=$ $-K_{1}$ and $K_{4}=-K_{2}$. Let $y \in K_{1}$ and let $L^{2}(\psi)$ be a two flat through $L(z, y)$ that sweeps out A^{3} continuously for $0 \leqq \psi \leqq \pi$. It can be assumed without loss of generality that $L^{2}(0) \cap K_{2} \neq \phi$. Therefore, let x_{2} belong to $L^{2}(0) \cap K_{2}$. $L^{2}(\psi)$ cannot be doubly timelike for all ψ or else x_{2} and $-x_{2}$ would be on the same component of K. Therefore, there is a first ψ_{0} with $L^{2}\left(\psi_{0}\right)$ neutral. Let $N \subset L^{2}\left(\psi_{0}\right)$ be the null line through z. Claim N is a line of reduction of R.

It is clear that if $x \in K_{1} \cup K_{3}$ then $N_{x} \subset K_{1} \cup K_{3}$ since these are convex surfaces and $N_{y} \subset K_{1}$ as well as $N_{-y} \subset K_{3}$. For $x \in K_{2} \cup K_{4}$ consider the following argument. Let $L^{2}(\gamma)$ be a plane through $L\left(z, x_{2}\right)$ sweeping out A^{3} continuously for $0 \leqq \gamma \leqq \pi$ with $y \in L^{2}(0)$. By the same reasoning as before, there is a first γ_{0} with $L^{2}\left(\gamma_{0}\right)$ neutral. The above N must be in $L^{2}\left(\gamma_{0}\right)$ since $N_{y} \subset K_{1}$ and K_{1} is not flat. This implies $N_{x} \subset K_{2} \cup K_{4}$ whenever $x \in K_{2} \cup K_{4}$.

It is now possible to show K has at most, four components. If L_{1}^{2} is a two flat containing the above N either L_{1}^{2} is neutral or null.

If it is null, it intersects $L^{2}(\gamma)$ for $\gamma=0$ in a null line. If it is neutral, it intersects either K_{1} and K_{3} or else K_{2} and K_{4}. In any case it cannot contain a point of K not on $K_{1} \cup K_{2} \cup K_{3} \cup K_{4}$.

An immediate consequence is that if K has four components $R=$ $R^{2} \times N^{\prime}$ where R^{2} is a doubly timelike plane.

Consider now the case of K having one component. If R has no null lines, then by [4, p. 239] it is a Minkowski G-space and K must be strictly convex.

Lemma 5.4. Let K have one component and not be strictly convex. Then K is a cylinder and $R=R^{2} \times N^{1}$ where R^{2} is a spacelike plane.

Proof. Let K contain a segment α and consider the two flat L_{0}^{2} through z and α. L_{0}^{2} must be neutral, hence the line containing α must lie on K. Let N be the null line in L_{0}^{2} through z. Since K has only one component, there is a spacelike plane L^{2} through z. Any two flat L_{1}^{2} containing N must intersect L^{2} in a line through z.

The plane L_{1}^{2} cannot be a doubly timelike because of Lemma 4.2 and the fact that K has only one component. Therefore, L_{1}^{2} is neutral and contains two lines on K parallel to N. It follows K must be a cylinder with generators parallel to N.

Projecting R onto L^{2} along parallels to N gives $R=R^{2} \times N^{1}$ for R^{2} the spacelike plane L^{2}.

If K has two components K_{1} and K_{2} in dimension three, then $K_{1}=$ $-K_{2}$ since otherwise there would be a spacelike plane L^{2} through z intersecting only one component of K yet separating A^{3}. Both K_{1} and K_{2} must be flat since if $x, y \in K_{1}$ with $x \neq y$, the two flat L_{1}^{2} containing x, y and z would have to be neutral.

It can easily be shown that for K having two components, the space is always topologically isometric to (x_{1}, x_{2}, x_{3})-space with the distance from $\left(a_{1}, a_{2}, a_{3}\right)$ to $\left(b_{1}, b_{2}, b_{3}\right)$ given by $\left|a_{1}-b_{1}\right| . K$ consists of two parallel planes and $R=R^{1} \times N^{2}$ for R^{1} the real line.
6. Higher dimensional spaces. The n dimensional situation is now investigated by the use of r-flats.

Lemma 6.1. K_{1}, K_{2}, K_{3} be three distinct components of K, then two are reflections through z of each other.

Proof. Consider $p_{i} \in K_{i}$ for $i=1,2,3$ and let L^{3} be a three flat containing z, p_{1}, p_{2}, and p_{3}. Let $S_{i}=K_{i} \cap L^{3}$, then S_{1}, S_{2}, and S_{3} are disjoint components of $K \cap L^{3}$. By the last section $K \cap L^{3}$ has either three or four components, and in any case, any three of the components
of $K \cap L^{3}$ contain a pair that are symmetric to each other. If we assume $S_{1}=-S_{2}$ then clearly $K_{1}=-K_{2}$.

Lemma 6.2. K has at most four components. If K does have four components K_{1}, K_{2}, K_{3} and K_{4}, without loss of generality, one may assume $K_{1}=-K_{3}$ and $K_{2}=-K_{4}$.

Proof. Assume K has five components $K_{1}, K_{2}, K_{3}, K_{4}$ and K_{5}. Then lemma 6.1 applied to K_{1}, K_{2} and K_{3} allows the assumption $K_{3}=-K_{1}$. Applying Lemma 6.1 to K_{1}, K_{2} and K_{4} yields $K_{2}=-K_{4}$.

Let $p_{1} \in K_{1}, p_{2} \in K_{2}$ and $p_{5} \in K_{5}$, then let L_{3} be a three flat containing p_{1}, p_{2}, p_{5} and z. $K \cap L^{3}$ then contains five disjoint components, which is impossible by Lemma 5.3.

Lemma 6.3. Let $N_{x} \subset K$ then if one of the following holds, N_{z} is a line of reduction.
(1) K has exactly one component.
(2) K has exactly two components K_{1} and K_{2} that are symmetric to each other.
(3) K has exactly three components K_{1}, K_{2}, K_{3} with $K_{3}=-K_{3}$ and $N_{x} \subset K_{1} \cup K_{2}$.
(4) K has four components.

Proof. The proofs of the above four cases all follow the same general pattern. Therefore, the first case is the only one discussed.

If $N_{x} \subset K$ and K has one component, consider $y \in R$ and let L^{3} be a three flat containing z, y and N_{x}. Either $N_{y} \subset K$ or else $K \cap L^{3}$ has three components. If $K \cap L^{3}$ has three components, there is a two flat $L^{2} \subset L^{3}$ through z that is doubly timelike. But then $K \cap L^{2}$ has four components, and Lemma 4.2 would imply K had more than one component.

For convenience the following notation is adopted. If k, p, \cdots, m are r distinct integers from the set $1,2, \cdots, n$ let $L_{k p \cdots m}^{r}$ be the unique r-flat through the $x_{k}, x_{p}, \cdots, x_{m}$ axes. If L_{0} is a line with $L_{0} \not \subset L_{k p \cdots m}^{r}$ let $L_{k k_{p} \cdots m}^{r+1}$ be the $r+1$ flat containing L_{0} and $L_{k p \cdots m}^{r}$. Here we assume $L_{0} \cap L_{k p \ldots m}^{r} \neq \phi$.

Repeated application of the last lemma gives the following partial description of the nonreducible spaces:

Theorem 6.4. In all cases K has at most four components. Let R be nonreducible.
(1) If K has one component, then R is a Minkowski G-space.
(2) If K has two components that are opposed to each other then. R is isometric to the real line.
(3) If K has three components, then one is symmetric about z
and the other two are strictly convex.
(4) If K has four components, then R is a doubly timelike plane.

The case where K has two components which are not opposed is discussed in Theorem 6.13 and additional information on the case of three components is found in Theorem 6.8.

Lemma 6.7. Let $n=3$ and K have three components. Assume coordinates x_{1}, x_{2}, x_{3} are chosen such that the light cone is given by $x_{1}^{2}+x_{2}^{2}=x_{3}^{2}$. Then the plane $x_{3}=0$ intersects K_{3} in a set $x_{1}^{2}+x_{2}^{2}=a^{2}$ for some $a>0$.

Proof. Let p lie on K_{3} and in the plane $x_{3}=0$. For some $a>0$ the point p lies on $x_{1}^{2}+x_{2}^{2}-x_{3}^{2}=a^{2}$. We claim that the only hyperboloid of one sheet containing p that has C as light cone is $x_{1}^{2}+x_{2}^{2}-x_{3}^{2}=a^{2}$.

Since p is contained in exactly two planes tangent to C, the two lines on K_{3} through p are determined. For any q on one of these two lines, the same argument yields that the two lines on K_{3} through q are determined. It follows K_{3} is determined by p and C.

Consider now $n>3$ and extend A^{n} to P^{n} by adding a hyperplane L_{∞}^{n-1} at ∞. Let the projective lines that contain the lines of the light cone C intersect L_{∞}^{n-1} in a set C_{∞}.

If R is nonreducible and K has three components, let L_{0}^{n-1} be a supporting hyperplane to K_{1}. If L^{n-1} is the hyperplane parallel to L_{0}^{n-1} through z, then $L^{n-1} \cap C=z$. Otherwize $L^{n-1} \cap C$ would contain a line N. For $p \in L_{0}^{n-1} \cap K_{1}$ then the two flat L^{2} through p and N would be neutral or doubly timelike. It could not be neutral because of Lemma 6.3. It could not be doubly timelike since then N_{p} would not be a supporting line of K_{1}.

Set $L^{n-1} \cap L_{\infty}^{n-1}=L_{\infty}^{n-2}$ an $n-2$ dimensional flat. By taking L_{∞}^{n-2} as the $n-2$ flat at ∞ of L_{∞}^{n-1} the set $L_{\infty}^{n-1}-L_{\infty}^{n-2}$ becomes an $n-1$ dimensional affine space. Let $x, y \in C_{\infty}$ for $x \neq y$ and let L_{1}^{2} be the two flat containing x, y and z. Then $L_{1}^{2} \cap A^{n}$ is a doubly timelike plane. In the same manner as the argument after Lemma 5.1, we conclude C_{∞} is a strictly convex $n-2$ dimensional surface in the space $L_{\infty}^{n-1}-L_{\infty}^{n-2}$.

LEMMA 6.6. C_{∞} is an ellipsoid in $L_{\infty}^{n-1}-L_{\infty}^{n-2}$.
Proof. Let L_{∞}^{2} be a two flat in L_{∞}^{n-1} with $L_{\infty}^{2} \cap C_{\infty}$ containing more than one point. Let L^{3} be the three flat containing z and L_{∞}^{2}. Then $L^{3} \cap A^{n}$ is an indefinite metric space whose unit sphere has three components. By Theorem 5.2, $L_{\infty}^{2} \cap C_{\infty}$ is an ellipse and hence by [2, p. 91] C_{∞} is an ellipsoid.

Take now coordinates $x_{1}, x_{2}, \cdots, x_{n}$ in A^{n} such that C has the form
$x_{n}^{2}=x_{1}^{2}+\cdots+x_{n-1}^{2}$ and let L_{1}^{n-1} be the hyperplane $x_{n}=0$.
Lemma 6.7. $\quad L_{1}^{n-1} \cap K$ has the form $x_{1}^{2}+\cdots+x_{n-1}^{2}=a^{2}$ for $a>0$.
Proof. Let L^{2} be any two flat in L_{1}^{n-1} passing through z. Let L^{3} be the three flat containing L^{2} and the x_{n} axis. Since $L^{3} \cap K$ always has three components, $L^{2} \cap K$ is always an ellipse of center z. Therefore, $L_{1}^{n-1} \cap K$ is an ellipsoid in L_{1}^{n-1} of center z.

If L^{2} contains the x_{i} and x_{j} axis Lemma 6.5 implies $L^{2} \cap K_{3}$ has the form $x_{i}^{2}+x_{j}^{2}=a_{i j}^{2}$. If p_{i} and p_{j} are points of $L^{2} \cap K_{3}$ that lie on the $i^{\text {th }}$ and $j^{\text {th }}$ axes respectively, $\left|p_{i}\right|^{2}=\left|p_{j}\right|^{2}=a_{1 j}^{2}$. Therefore, $a_{i j}$ is independent of i and j. Setting $a=a_{i j}$ yields the desired result.

THEOREM 6.8. Let R be nonreducible and K have three components. If K_{3} is the components of K symmetric about z it is a quadric. In proper affine coordinates K_{3} is given by

$$
x_{1}^{2}+\cdots+x_{n-1}^{2}-x_{n}^{2}=a^{2}
$$

Proof. Using the same notation as in Lemma 6.9 define

$$
S=\left\{\left(x_{1}, x_{2}, \cdots, x_{n}\right) \mid x_{1}^{2}+\cdots+x_{n-1}^{2}-x_{n}^{2}=a^{2}\right\} .
$$

If L^{3} contains the x_{n} axis then $L^{3} \cap S=L^{3} \cap K_{3}$. The result follows by letting L^{3} sweep out A^{n}.

In order to investigate nonreducible spaces in which K has two components, we first consider nondegenerate central quadrics that have z as a center. The general form in affine space is

$$
\sum_{i, j=1}^{n} a_{i j} x_{i} x_{j}=1 \text { where } a_{i j}=a_{j i} \text { and } \operatorname{det}\left(a_{i j}\right) \neq 0
$$

If two such quadrics E_{1} and E_{2} are given respectively by

$$
\sum a_{i j} x_{i} x_{j}=1 \text { and } \sum a_{i j} x_{i} x_{j}=-\lambda^{2} \text { for } \lambda>0
$$

they will be called semiconjugate. We will refer to E_{1} as the λ semiconjugate to E_{2}. For $\lambda=1$ the quadrics are conjugate in the usual sense. Notice that one of the quadrics does not have a real locus if the quadric form is definite.

Lemma 6.9. Suppose the nonempty sets B_{1} and B_{2} contained in $\bigcup_{i \neq j} L_{i j}^{2}$ are such that the locus $B_{2} \cap L_{i j}^{2}$ is always the λ semiconjugate quadric to $B_{1} \cap L_{i j}^{2}$ for fixed λ. Then there are exactly two central quadrics E_{1} and E_{2} such that $E_{1} \cap L_{i j}^{2}=B_{1} \cap L_{i j}^{2}$ and $E_{2} \cap L_{i j}^{2}=$ $B_{2} \cap L_{i j}^{2}$ for all $i \neq j$. Furthermore, E_{2} is the λ semiconjugate to E_{1}.

Lemma 6.10. Let $n=4$ and K have two components K_{1} and K_{2}
each symmetric about z. Let L^{3} be a three flat through z such that $L^{3} \cap K$ has three components. Then $L^{3} \cap K$ consists of two semiconjugate quadrics.

Proof. By Theorem 5.2 one component of $L^{3} \cap K$ must be a hyperboloid of one sheet. Choose coordinates x_{1}, x_{2}, x_{3} in L^{3} such that $L^{3} \cap C$ takes the form $x_{1}^{2}+x_{2}^{2}=x_{3}^{2}$. Let $L^{3} \cap K$ have components S_{1}, S_{2}, S_{3} with $S_{3}=-S_{3}$. For some $a>0, S_{3}$ is given by $x_{1}^{2}+x_{2}^{2}-x_{3}^{2}=a^{2}$. Let L_{0} be a line through z in L_{12}^{2}.

In R let L^{2} be a spacelike plane containing the x_{3} axis, so $L^{2} \not \subset L^{3}$. Choose the x_{4} axis in L^{2}. Assume K has components K_{1} and K_{2} with $S_{3} \subset K_{1}$, then $L_{i 34}^{3} \cap K_{2}$ is a hyperboloid of one sheet in L_{034}^{3}. Consequently, $L_{03}^{2} \cap K_{2}$ is a hyperbola. This hyperbola is determined given only the intersection of K_{2} with the x_{3} axis and the intersection of L_{03}^{2} with the surface $x_{1}^{2}+x_{2}^{2}=x_{3}^{2}$ in L^{3}.

Revolving L_{0} in the plane L_{12}^{2} shows $L^{3} \cap K_{2}$ consists of a hyperboloid of two sheets that is a semiconjugate of $L^{3} \cap K_{1}$.

Lemma 6.11. If $n=4$ and K has two symmetric components, they are semiconjugate quadrics.

Proof. Let the notation and coordinates be the same as in the last proof. Set $B_{1}=\bigcup_{i \neq j}\left(L_{i j}^{2} \cap K_{1}\right)$ and $B_{2}=\bigcup_{i \neq j}\left(L_{i j}^{2} \cap K_{2}\right)$.

If $L^{3} \cap K_{2}$ is the λ semiconjugate to $L^{3} \cap K_{1}$ in L^{3}, then $L_{034}^{3} \cap K_{2}$ is the λ semiconjugate to $L_{034}^{3} \cap K_{1}$ in L_{034}^{3} for the same λ. This follows since L_{03}^{2} is common to both three flats and intersects both components of K. Therefore, B_{1} and B_{2} satisfy the hypothesis of Lemma 6.9. Let E_{1} and E_{2} be the semiconjugate quadrics determined by B_{1} and B_{2}.
$L^{3} \cap E_{1}=L^{3} \cap K_{1}$ since each are quadrics in L^{3} determined by $B_{1} \cap L^{3}$ and $B_{2} \cap L^{3}$. By the same reasoning, $L^{3} \cap E_{2}=L^{3} \cap K_{2}$. Also $L_{124}^{3} \cap K_{i}=L_{124}^{3} \cap K_{i}$ for $i=1,2$.

Therefore, $L_{0 j}^{2} \cap K_{i}=L_{0 j}^{2} \cap E_{i}$ for $i=1,2$ and $j=3,4$. But then using Lemma 6.11 one last time, we find $L_{034}^{3} \cap E_{i}=L_{034}^{3} \cap K_{i}$. By revolving L_{0} in L_{12}^{2} it follows $E_{i}=K_{i}$ for $i=1,2$.

Lemma 6.12. Let $n=5$ and K have two components K_{1} and K_{2} symmetric about z. If R is not reducible, K_{1} and K_{2} are semiconjugate quadrics.

Proof. Two cases are considered.
Case 1. Let there exist a three flat L^{3} through z such that $L^{3} \cap K$ has one component. Assume $L^{3} \cap K_{2} \neq \phi$. Choose coordinates x_{1}, x_{2}, x_{3} in L^{3}. We may assume that $L_{12}^{2}, L_{13}^{2}, L_{23}^{2}$ are spacelike planes. Choose
coordinates x_{4}, x_{5} such that L_{45}^{2} is spacelike and intersects K_{1}. By arguments as in Lemma 6.10 and Lemma 6.11, it is possible to show $L_{i j}^{2} \cap K_{1}$ and $L_{i j}^{2} \cap K_{2}$ are always semiconjugate quadrics for fixed λ. Therefore, $B_{1}=\bigcup_{i \neq j}\left(L_{i j}^{2} \cap K_{1}\right)$ and $B=\bigcup_{i \neq j}\left(L_{i j}^{2} \cap K_{2}\right)$ satisfy the hypothesis of Lemma 6.9.

Let E_{1} and E_{2} be the quadrics determined by B_{1} and B_{2}. Let L_{0} be a line through z in L_{12}^{2}. Since $L_{12 j}^{2} \cap E_{i}=L_{12 j}^{3} \cap K_{i}$, clearly $L_{0 j}^{2} \cap E_{i}=$ $L_{0 j}^{2} \cap K_{1}$ for $i=1,2$ and $j=3,4$, 5. Therefore $L_{0345}^{4} \cap E_{i}=L_{i 345}^{4} \cap K_{i}$. By revolving L_{0} in L_{12}^{2} it follows that $E_{i}=K_{i}$.

Case 2. Assume no L^{3} through z exists with $L^{3} \cap K$ having only one component. We will show this leads to a contradiction.

Choose coordinates $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$ such that L_{12}^{2} and L_{34}^{2} are spacelike planes intersecting respectively K_{1} and K_{2}. By Theorem 6.8, the set $K \cap L_{2345}^{4}$ cannot have exactly three components. Consequently, $L_{2345}^{3} \cap K$ consists of two symmetric components. The same must also be true of $L_{1235}^{4} \cap K$.

By Lemma 6.11 the sets $L_{1234}^{4} \cap K, L_{2345}^{4} \cap K$ and $L_{1235}^{4} \cap K$ each consists of two quadrics. In each of the three sets one quadric is the semiconjugate of the other for some fixed λ. Define

$$
B_{1}=\bigcup_{i \neq j}\left(L_{i j}^{2} \cap K_{1}\right) \quad \text { and } \quad B_{2}=\bigcup_{i \neq j}\left(L_{i j}^{2} \cap K_{2}\right) .
$$

Let E_{1} and E_{2} be the quadrics determined.
Let L_{0} be a line through z in L_{12}^{2}. Then $L_{0 j}^{2} \cap K_{i}=L_{0 j}^{2} \cap E_{i}$ for $j=3,4,5$ and $i=1$, 2 . Therefore, $L_{0345}^{4} \cap E_{i}=L_{0345}^{4} \cap K_{i}$ and revolving L_{0} in L_{12}^{2} gives $E_{i}=K_{i}$ for $i=1,2$.

Then in proper affine coordinates $y_{1}, y_{2}, y_{3}, y_{4}, y_{5}$ the components of K are given by $y_{1}^{2}+y_{2}^{2}+y_{3}^{2}-y_{4}^{2}-y_{5}^{2}=1$ and $y_{1}^{2}+y_{2}^{2}+y_{3}^{2}-y_{4}^{2}-y_{5}^{2}=$ $-\lambda^{2}$. This contradicts the assumption of Case 2.

The n dimensional case now follows using induction.
Theorem 6.13. If R is not reducible and K has two components which are not opposed, then $n \geqq 4$ and the components are semiconjugate quadrics.

Proof. Assume $n \geqq 6$. Take L^{n-1} to be a hyperplane containing L_{1}^{2} and L_{2}^{2}, which are spacelike two flats through z with $L_{i}^{2} \cap K_{i} \neq \phi$. Then $L^{n-1} \cap K$ has exactly two symmetric components. Because of Lemma 6.12, there exists an L^{3} through z and contained in L^{n-1} with $L^{3} \cap K$ having one component. Take the x_{1}, x_{2}, x_{3} affine coordinates in L^{3} and $x_{1}, x_{2}, \cdots, x_{n-1}$ affine coordinates in L^{n-1}. For $p \in K-L^{n-1}$ let the x_{n} axis be $L(z, p)$. Take L_{0} to be a line through z in L_{12}^{2}. By
induction $L_{0355 \ldots n}^{n-1} \cap K_{i}$ must consist of two semiconjugate quadrics. The argument is the same as before, letting L_{0} revolve in L_{12}^{2}.

An interesting result of this section is the following.
Corollary 6.14. If R is a nonreducible Minkowski space and not a G-space, then any spacelike plane in R is euclidean.

References

1. J. K. Beem and P. Y. Woo, Doubly timelike surfaces, Amer. Math. Soc. Memoir 92, 1970.
2. H. Busemann, The geometry of geodesics, Academic Press, New York, 1955.
3. —— Timelike spaces, Dissertationes Mathematicae, Warszawa 53 (1967).
4. H. Busemann and J. K. Beem, Axioms for indefinite metrics, Circolo Matematico di Palermo (1966), 223-246.
5. H. Busemann and P. J. Kelly, Projective geometry and projective metrics, Academic Press, New York, 1953.

Received August 25, 1969. This paper is part of a Ph. D. dissertation written under the direction of Professor H. Busemann at the University of Southern California.

University of Missouri
Columbia, Missouri

TRAJECTORY INTEGRALS OF SET VALUED FUNCTIONS

T. F. Bridgland, Jr.

Let I be a compact interval of the real line and for each t in I, let $F(t)$ denote a nonvoid subset of euclidean n-space E^{n}. Let $\mathscr{F}_{I}(F)$ be the collection of all Lebesgue summable functions $u: I \rightarrow E^{n}$ having the property that $u(t) \in F(t)$ almost everywhere on I. Following the lead of Kudo and Richter, Aumann defines the integral of F over I by

$$
\int_{I} F(t) d t=\left\{\int_{I} f(t) d t \mid f \in \mathscr{F}_{I}(F)\right\}
$$

and, in addition to other results, establishes a dominated convergence theorem for such integrals. Hermes has pursued Aumann's line of thought to obtain results concerning something akin to a "derivative" for set valued functions.

It is certainly also valid (and for control theoretic applications essential) to define the trajectory integral of F to be the set $\mathscr{S}_{I}(F)$ of all functions which vanish at the left endpoint of I and have derivatives in $\mathscr{F}_{I}(F)$. The purpose of this paper is taken to be the study of the trajectory integrals of nonvoid, compact set valued functions. A primary goal is the extension of the results of Aumann to include the trajectory integral. A secondary goal is the provision of an intuitively meaningful definition of "derivative" for set valued functions.

Whereas $\int_{I} F(t) d t$ is a subset of $E^{n}, \mathscr{S}_{I}(F)$ is a subset of a space of functions on I to E^{n}. Taking note of the relation

$$
\begin{equation*}
\int_{[0, t]} F(\tau) d \tau=\left\{\mu(t) \mid \mu \in \mathscr{S}_{I}(F)\right\}, t \in I \tag{1}
\end{equation*}
$$

the validity of which is obvious when $\mathscr{F}_{I}(F)$ is nonvoid, it is clear that the distinction between $\mathscr{S}_{I}(F)$ and $\int_{[0, t]} F(\tau) d \tau$ is essentially that between "function" and "value of a function". In view of this distinction, one necessarily anticipates that a study of the trajectory integral would, in some sense, subsume that of the integral defined by Aumann. ${ }^{1}$ Concrete justification for this point of view already exists in control theory [4].

Further motivation for the study of the trajectory integral arises in connection with the existence theory of the generalized differential equation

[^0]\[

$$
\begin{equation*}
\dot{x} \in R(t, x), x\left(t_{0}\right)=x_{0} \tag{2}
\end{equation*}
$$

\]

in the case in which the set valued function satisfies, in particular, a condition of measurability in its first argument. Here one anticipates that a suitably formulated dominated convergence theorem for the trajectory integral would provide the means for a constructive proof of existence, along classical lines, thereby providing at same time a method of approximation to solutions. This is a question of no little importance inasmuch as the general existence theorem of Plis [17] and Castaing [5] has been established by nonconstructive methods.

The goals of this paper are achieved in the following way. After developing, in §1, the pertinent algebraic and topological properties of the space Ω^{n} of nonvoid compact subsets of E^{n}, in $\S 2$ we establish several fundamental structural properties of Lebesgue measurable functions on E^{1} to Ω^{n}. The concept of Lebesgue measurability for functions on E^{1} to Ω^{n} is due to Pliś [16] and is a natural generalization of the concept of measurability of functions with range in E^{n}. As Hermes has pointed out [11], Aumann's "Borel measurability" implies measurability in the sense defined by Pliś. Some of the theorems of $\S 2$ have already been stated, without proof and in a somewhat less general form, by Filippov [9]. The central result of $\S 2$ is Theorem 2.3 which is the counterpart of the theorem for point valued functions which asserts that almost every point in the domain of a summable function is a Lebesgue point of the function. This theorem plays an essential role in the proofs of two of the major results of the paper: Theorems 3.1 and 5.1.

Theorems 3.1 and 3.2 are the principal results of interest in $\S 3$. In the former, conditions are stated-the chief one of which is measurability of F-under which $\mathscr{S}_{I}(F)$ is a nonvoid compact subset of each of two linear topological (function) spaces. One of these compactness properties, together with Hermes' refinement [12, Lemma 1.2] of Filippov's "measurable selection" lemma [8], permits a short proof of the dominated convergence theorem (Theorem 3.2) in a form suited to the proof of the existence theorem (Theorem 4.1) for (2). In § 3 we also devote some attention to the relationship between Aumann's results and our own.

Finally, in §5, we define a derivative for an element of a certain function space which, owing to its obvious relationship to Huygen's principle of wave propagation, we have styled "the Huygens derivative". The principal result (Theorem 5.1) of this section asserts, loosely speaking, that the Huygens derivative of the trajectory integral of a measurable function F is almost everywhere the convex hull of $F(t)$. As easy corollaries to this theorem we obtain generalizations of some of the results of Hermes [11] mentioned previously.

1. Algebraic and topological preliminaries. In this paper we shall need the following Banach spaces.
$E^{n}: \quad \quad$ euclidean n-space, with the scalar product of $a, b \in E^{n}$ denoted by $a \circ b$ and with norm denoted by $\|x\| \equiv$ $(x \circ x)^{1 / 2}$;
$\mathscr{G}{ }^{n}(I): \quad$ space of continuous functions on I to E^{n}, with supremum norm $\langle x\rangle=\max \{\|x(t)\| \mid t \in I\}$;
$\mathscr{N} \mathscr{A} \mathscr{C}^{n}(I)$: space of absolutely continuous functions on I to E^{n}, vanishing at the left endpoint of I, with norm $\widehat{x}=$ $\int_{I}\|\dot{x}(t)\| d t ;$
$\mathscr{L}_{1}^{n}(I): \quad$ space of Lebesgue summable functions on I to E^{n}, with norm $\langle x\rangle\rangle=\int_{I}\|x(t)\| d t$.
In each instance, I denotes a nondegenerate compact interval of E^{1}. Throughout this paper the symbol ϕ will be used to denote the null set. We shall also need the following classes of subsets of E^{n} and $\mathscr{C}^{n}(I):$
$\Omega^{n}: \quad$ class of nonvoid, compact subsets of E^{n};
Γ^{n} : class of nonvoid, compact, convex subsets of E^{n};
$\mathscr{\mathscr { L }}{ }^{n}(I)$: class of nonvoid, compact subsets of $\mathscr{C}^{n}(I)$;
$\mathscr{K}^{n}(I)$: class of nonvoid, compact, convex subsets of $\mathscr{C}^{n}(I)$.

Definition 1.1. Given a field, Φ, of scalars and a set, K, of vectors, together with functions $+: K \times K \rightarrow K$ and $\times: \Phi \times K \rightarrow K$, K is called a quasilinear space over Φ if and only if all the axioms for a linear space obtain except (i) the distributivity of \times over scalar addition and (ii) the existence of an inverse under + .

Definition 1.2. For $\alpha \in E^{1}, A, B \in \Omega^{n}$,

$$
\begin{aligned}
A+B & =\{a+b \mid a \in A ; b \in B\} \\
\alpha A & =\{\alpha a \mid a \in A\}
\end{aligned}
$$

The following result is easy to verify.

Lemma 1.1. With the foregoing definition (Definition 1.2) of addition and scalar multiplication, Ω^{n} and Γ^{n} are quasilinear spaces over the real field.

Definition 1.3. Let $A, B \in \Omega^{n}, Y, Z \in \mathscr{C}^{n}(I)$ and $x \in E^{n}, y \in \mathscr{C}^{n}(I)$; then we may define:

$$
\begin{gathered}
\alpha(x, A)=\min \{\|x-a\| \mid a \in A\} \\
\quad \beta(y, Z)=\min \{\langle y-z\rangle \mid z \in Z\} \\
\begin{array}{c}
\bar{\rho}(B, A)=\max \{\alpha(x, A) \mid x \in B\} \\
\bar{\sigma}(Y, Z)=\max \{\beta(y, Z) \mid y \in Y\} \\
\rho(A, B)=\max \{\bar{\rho}(A, B), \bar{\rho}(B, A)\} \\
\sigma(Y, Z)=\max \{\bar{\sigma}(Y, Z), \bar{\sigma}(Z, Y)\} \\
\nu(A, p)=\max \{p \circ \sigma \mid \sigma \in A\} \\
\quad\|A\|=\rho(A,\{0\}) \\
\bar{\Delta}(A, B)=\max \{\nu(A, p)-\nu(B, p) \mid\|p\|=1\} \\
\quad A_{\eta}=\left\{x \in E^{n} \mid \alpha(x, A) \leqq \eta\right\}
\end{array}
\end{gathered}
$$

$\Delta(A, B)=\max \{\bar{\Delta}(A, B), \bar{\Delta}(B, A)\}$

$$
S(x, p)=\left\{\xi \in E^{n} \mid\|\xi-x\| \leqq p\right\}, p \geqq 0 .
$$

Lemma 1.2. (i) $\left\{\Omega^{n}, \rho\right\},\left\{\Gamma^{n}, \rho\right\},\left\{\mathscr{C}^{n}(I), \sigma\right\}$ and $\left\{\mathscr{C}^{n}(I), \sigma\right\}$ are metric spaces.
(ii) If $A \in \Omega^{n}\left(\in \Gamma^{n}\right)$ then $A_{\eta} \in \Omega^{n}\left(\in \Gamma^{n}\right)$ for all $\eta>0$ and $A_{\eta}=$ $A+S(0, \eta)$.
(iii) If $A, B \in \Gamma^{n}$ then $\bar{\rho}(A, B)=\bar{\Delta}(A, B)$ and

$$
\Delta(A, B)=\max \{\mid \nu(A, p)-\nu(B, p)\| \| p \|=1\}
$$

(iv) If $A, B, C \in \Gamma^{n}$ then $\bar{\rho}(A+B, A+C)=\bar{\rho}(B, C)$.

Proof. The proofs of (i), (ii) and (iii) are to be found in [4]. For (iv), we have, by virtue of (iii),

$$
\begin{aligned}
\bar{\rho}(A+B, A+C) & =\max \{\nu(A+B, p)-\nu(A+C, p) \mid\|p\|=1\} \\
& =\max \{\nu(A, p)+\nu(B, p)-\nu(A, p)-\nu(C, p) \mid\|p\|=1\} \\
& =\bar{\rho}(B, C)
\end{aligned}
$$

Henceforth we shall use $\Omega^{n}, \Gamma^{n}, \mathscr{C}^{n}(I), \mathscr{K}^{n}(I)$ to denote the metric spaces obtained by virtue of Definition 1.3 and Lemma 1.2 (i) and in the cases of Ω^{n}, Γ^{n} we shall suppose that the algebraic structure of Definition 1.2 has been imposed. For a point $A \in \Omega^{n}$ we shall denote by A^{*} the convex hull of A; it is well known that $A^{*} \in \Gamma^{n}$. Moreover, if $\eta \in E^{1}$ and $A, B \in \Omega^{n}\left(\in \Gamma^{n}\right)$ then ηA and $A+B$ are in Ω^{n} (in Γ^{n}) [6, V. 1.4].

Lemma 1.3. (i) If $\eta \in E^{1}$ and $A, B \in \Omega^{n}$ then $\bar{\rho}(\eta A, \eta B)=$ $|\eta| \bar{\rho}(A, B)$.
(ii) If $A, B, C \in \Omega^{n}$ then $\bar{\rho}\left(B^{*}, C^{*}\right) \leqq \bar{\rho}(A+B, A+C) \leqq \bar{\rho}(B, C)$.
(iii) If $A, B, C, D \in \Omega^{n}$ then $\bar{\rho}(A+B, C+D) \leqq \bar{\rho}(A, C)+\bar{\rho}(B, D)$.

Proof. The proof of (i) is trivial. Part (iii) is an easy con-
sequence of (ii) and the "relaxed" triangle law [4, Lemma 1.1]. The second inequality of (ii) follows readily from the definitions and only the first inequality remains to be proved. By [6, V. 2.4]

$$
\bar{\rho}\left(A^{*}+B^{*}, A^{*}+C^{*}\right)=\bar{\rho}\left((A+B)^{*},(A+C)^{*}\right)
$$

and then by Lemma 1.2 (iv)

$$
\bar{\rho}\left(B^{*}, C^{*}\right)=\bar{\rho}\left((A+B)^{*},(A+C)^{*}\right)
$$

Now for $D, E \in \Omega^{n}$ we have $D \subset E+S(0, \gamma)$, where $\gamma=\bar{\rho}(D, E)$; hence $D^{*} \subset E^{*}+S(0, \gamma)$ or $D^{*} \subset\left(E^{*}\right)_{\gamma}$ by Lemma 1.2 (ii) from which we conclude $\bar{\rho}\left(D^{*}, E^{*}\right) \leqq \bar{\rho}(D, E)$. Setting $D=A+B, E=A+C$, the first inequality of (ii) follows from this result and the last formula line.

Corollary 1.1. Let $\eta, \gamma \in E^{1}, A, B \in \Omega^{n}$; then
(i) $\|\eta A\|=|\eta|\|A\|$;
(ii) $\|A\| \geqq 0$ and $\|A\|=0$ if and only if $A=\{0\}$;
(iii) $\|A+B\| \leqq\|A\|+\|B\|$;
(iv) $|\|A\|-\|B\|| \leqq \rho(A, B) \leqq\|A\|+\|B\|$;
(v) $\bar{\rho}(\eta A, \gamma A) \leqq|\eta-\gamma|\|A\|$.

Proof. (i) through (iv) follow easily from the definitions and Lemma 1.3. For (v) we have from Lemma 1.3 (i), (ii)

$$
\begin{aligned}
\bar{\rho}(\eta A, \gamma A)= & |\eta-\gamma| \bar{\rho}\left(\left(1+\frac{\gamma}{\eta-\gamma}\right) A,\left(\frac{\gamma}{\eta-\gamma}\right) A\right) \\
& \leqq|\eta-\gamma| \bar{\rho}(A,\{0\})=|\eta-\gamma|\|A\|
\end{aligned}
$$

Definition 1.4. (Kuratowski.) Let \mathscr{I} denote a metric space and let \mathscr{L}^{*} denote the space of all nonvoid, compact subsets of \mathscr{M}, metrized by the Hausdorff metric, ρ (cf. Definition 1.3). For a sequence $\left\{A_{i}\right\} \subset \mathscr{M}^{*}, \underline{\lim }_{i \rightarrow \infty} A_{i}$ is the set of all $x \in \mathscr{M}$ having the property that each neighborhood of x intersects all but a finite number of the A_{i}, whereas $\overline{\lim }_{i \rightarrow \infty} A_{i}$ is the set of all $x \in \mathscr{M}$ having the property that each neighborhood of x intersects infinitely many A_{i}. If $\underline{\lim }_{i \rightarrow \infty} A_{i}=\overline{\lim }_{i \rightarrow \infty} A_{i}$, the common value will be denoted by $\lim _{i \rightarrow \infty} A_{i}$.

Lemma 1.4. ([14, p. 248]) If $\left\{A_{i}\right\} \subset \mathscr{L}^{*}$ and $A \in \mathscr{I}^{*}$, with $\lim _{i \rightarrow \infty} \rho\left(A_{i}, A\right)=0$, then $\lim _{i \rightarrow \infty} A_{i}=A$.

Lemma 1.5. Let $\left\{A_{i}\right\} \subset \mathscr{M}^{*}$ and let $\bar{A} \in \mathscr{I}^{*}$ be a cluster point (in the Hausdorff metric topology) of $\left\{A_{i}\right\}$; then

$$
{\underset{\lim }{i \rightarrow \infty}} A_{i} \subset \bar{A} \subset \varlimsup_{i \rightarrow \infty} A_{i}
$$

Proof. Let $\left\{A_{i_{k}}\right\}$ satisfy $\lim _{k \rightarrow \infty} \rho\left(A_{i_{k}}, \bar{A}\right)=0$. By [14, pp. 242243]

$$
\lim _{i \rightarrow \infty} A_{i} \subset \varlimsup_{k \rightarrow \infty} A_{i_{k}} \subset \varlimsup_{k \rightarrow \infty} A_{i_{k}} \subset \varlimsup_{i \rightarrow \infty} A_{i} ;
$$

but by Lemma 1.4, $\bar{A}=\lim _{k \rightarrow \infty} A_{i_{k}}$.
Corollary 1.2. Let $\left\{A_{i}\right\} \subset \Gamma^{n}$ satisfy $\left\|A_{i}\right\| \leqq \lambda$, for some $\lambda \geqq 0$; if $\bar{A}=\lim _{i \rightarrow \infty} A_{i}$ then $\bar{A} \in \Gamma^{n}$ and $\lim _{i \rightarrow \infty} \rho\left(A_{i}, \bar{A}\right)=0$.

Proof. By Blaschke's Auswahlsatz, the set $U=\left\{A \cap S(0, \lambda) \mid A \in \Gamma^{n}\right\}$ is a compact subset of Γ^{n} so that $\left\{A_{i}\right\}$ has a cluster point in U. By hypothesis and Lemma $1.5, \bar{A}$ is the only cluster point of $\left\{A_{i}\right\}$ and then $\bar{A} \in \Gamma^{n}$. Again since U is compact, the assertion of the lemma follows.

Lemma 1.6. Let $\left\{A_{i}\right\} \subset \Omega^{n}$ satisfy, for some $\lambda \geqq 0,\left\|A_{i}\right\| \leqq \lambda$; if $A=\lim A_{i}$ and $A \neq \phi$ then $A \in \Omega^{n}$ and $\lim A_{i}^{*}=A^{*} \in \Gamma^{n}$.

Proof. Since [14, pp. 242-243] A is closed, the fact that $A \in \Omega^{n}$ follows easily from the hypotheses. We shall prove that

$$
A^{*} \equiv\left(\underline{\lim } A_{i}\right)^{*} \subset \underline{\lim } A_{i}^{*} \subset \overline{\lim } A_{i}^{*} \subset\left(\overline{\lim } A_{i}\right)^{*} \equiv A^{*},
$$

the second inequality being trivial. For the proof of the first inequality, let $x \in A^{*}$; by Carathéodory's theorem [7, p. 35] there exist $x^{k} \in A, k=1, \cdots, n+1$, such that $x=\sum_{k=1}^{n+1} \alpha_{k} x^{k}$,

$$
\sum \alpha_{k}=1, \alpha_{k} \geqq 0, k=1, \cdots, n+1
$$

Despite Lemma 1.1, it is trivial to establish that

$$
\{x\}_{r} \equiv\{x\}+S(0, \eta)=\sum_{k=1}^{n+1} \alpha_{k}\left[\left\{x^{k}\right\}+S(0, \eta)\right] \equiv \sum_{k=1}^{n+1} \alpha_{k}\left\{x^{k}\right\}_{\gamma} .
$$

It is easy to see that there exists $K \geqq 0$, independent of $k=1, \cdots, n+1$, such that $\left\{x^{k}\right\}_{\eta} \cap A_{i} \neq \dot{\phi}$ for all $i \geqq K$. Letting $a_{i}^{k} \in\left\{x^{k}\right\}_{\eta} \cap A_{i}$ there follows $\sum_{k=1}^{n+1} \alpha_{k} \alpha_{i}^{k} \in\{x\}_{n}$ for all $i \geqq K$; but clearly $\sum_{k=1}^{n+1} \alpha_{k} a_{i}^{k} \in A_{i}^{*}$ and we conclude that $x \in \lim A_{i}^{*}$.

For the proof of the third inequality, let $\bar{x} \in \overline{\lim } A_{i}^{*}$; then by [14, p. 243] there exists a subsequence $\left\{A_{i_{k}}^{*}\right\}$ and a sequence $\left\{x_{k}\right\}$ satisfying $x_{k} \in A_{i_{k}}^{*}$ and $\lim x_{k}=\bar{x}$. Now for each index k, there exist vectors $\xi_{k}^{j} \in A_{i_{k}}, j=1, \cdots, n+1$ and numbers $\alpha_{j}^{k} \geqq 0, j=1, \cdots, k+1$, satisfying $\sum_{j=1}^{n+1} \alpha_{j}^{k}=1$ and $x_{k}=\sum_{j=1}^{n+1} \alpha_{j}^{k} \xi_{k}^{j}$. Setting $X_{k}=\left(\xi_{k}^{1}, \cdots, \xi_{k}^{n+1}\right)$ and $\alpha_{k}=\left(\alpha_{1}^{k}, \cdots, \alpha_{n+1}^{k}\right)^{T}$, the superscript denoting transpose, we may write $x_{k}=X_{k} \alpha_{k}$. By virtue of the fact that $\left\|A_{i_{k}}\right\| \leqq \lambda$ for all k, it
is clear that $\left\{X_{k}\right\}$ is contained in a compact subset of the cartesian product ($n+1$ factors) $E^{n} \times \cdots \times E^{n}$. Moreover, the compact set $\Sigma=\left\{p \in E^{n+1} \mid p^{i} \geqq 0, \quad i=1, \cdots, n+1 ; \quad \sum_{i=1}^{n+1} p^{i}=1\right\}$ contains $\left\{\alpha_{k}\right\}$. Hence $\left\{X_{k}\right\}$ and $\left\{\alpha_{k}\right\}$ have cluster points $\bar{X}, \bar{\alpha}$ respectively with $\bar{\alpha} \in \Sigma$, and now there follows readily $\bar{x}=\bar{X} \bar{\alpha}$. Writing $\bar{X}=\left(\bar{\xi}^{1}, \cdots, \bar{\xi}^{n+1}\right)$, it is clear that $\bar{\xi}^{j} \in A, j=1, \cdots, n$, so that $\bar{x} \in A^{*}$ and the proof is complete.
2. Lebesgue measurable functions on I to Ω^{n}.

Definition 2.1 (Pliś [16].) A function $F: I \rightarrow \Omega^{n}$ is measurable if and only if the set $E(F, D)=\{t \in I \mid F(t) \cap D \neq \phi\}$ is Lebesgue measurable for each open set $D \subset E^{n}$.

Filippov [9] has stated without proof the following easily established result.

Lemma 2.1. Let \mathscr{D} be the class of all open balls in E^{n} having positive rational radii and centers with rational coordinates; then a function $F: I \rightarrow \Omega^{n}$ is measurable if and only if the set $E(F, D)$ is measurable for every $D \in \mathscr{D}$.

Lemma 2.2. If P is a closed subset of I and $F: P \rightarrow \Omega^{n}$ is continuous then there exists $\Phi: I \rightarrow \Omega^{n}$ having the following properties:
(i) Φ is continuous on I;
(ii) $\Phi(t)=F(t)$ on P;
(iii) for $t \in I,\|\Phi(t)\| \leqq \sup \{\|F(\tau)\| \mid \tau \in P\}$;
(iv) if the range of F is in Γ^{n}, so is that of Φ.

Proof. Define Φ on P by setting $\Phi(t)=F(t)$ there; without loss of generality one many assume that P is properly contained in I and that I is the smallest interval containing P. If (t_{0}, t_{1}) is one of the at most countably many complementary intervals of P, define Φ on $\left(t_{0}, t_{1}\right)$ by

$$
\Phi(t)=\left(\frac{t-t_{0}}{t_{1}-t_{0}}\right) F\left(t_{1}\right)+\left(\frac{t_{1}-t}{t_{1}-t_{0}}\right) F\left(t_{0}\right)
$$

For any points τ, τ_{0} in $\left[t_{0}, t_{1}\right]$ there follows

$$
\begin{aligned}
\rho\left(\Phi(\tau), \Phi\left(\tau_{0}\right)\right) & \leqq\left(t_{1}-t_{0}\right)^{-1} \rho\left(\tau\left(F\left(t_{1}\right)-F\left(t_{0}\right)\right), \tau_{0}\left(F\left(t_{1}\right)-F\left(t_{0}\right)\right)\right) \\
& \leqq \frac{\left|\tau-\tau_{0}\right|}{t_{1}-t_{0}}\left\|F\left(t_{1}\right)-F\left(t_{0}\right)\right\|
\end{aligned}
$$

the last inequality being a consequence of Corollary 1.1(v). The
availability of this estimate makes possible the proof that Φ is continuous on I by means of an argument like that of Natanson [15, pp. 102-104].

Lemma 2.3. (Plis [16].) If $F: I \rightarrow \Omega^{n}$ is continuous it is measurable.

Filippov [9] has stated the next theorem, without proof, again for bounded functions.

THEOREM 2.1. If $F_{k}: I \rightarrow \Omega^{n}, k=1,2,3, \cdots$, are measurable and if $\lim \rho\left(F_{k}(t), F(t)\right)=0$ almost everywhere (a.e.) on I, where $F: I \rightarrow \Omega^{n}$, then F is measurable.

Proof. (After Natanson [15, Th. 2, p. 94].) Let a, r be fixed and such $S^{0}(a, r) \in \mathscr{D}$, the class defined in Lemma 2.1, where the superscript denotes interior. For positive integers m satisfying $m r>1$ define

$$
\begin{aligned}
T_{m}^{k} & =E\left(F_{k}, S^{0}\left(a, r-m^{-1}\right)\right), k=1,2,3, \cdots, \\
Z_{m}^{n} & =\bigcap_{k \geqq n} T_{m}^{k}, n=1,2,3, \cdots .
\end{aligned}
$$

We shall prove that

$$
E\left(F, S^{0}(a, r)\right)=\bigcup_{n, m} Z_{m}^{n} .
$$

Certainly T_{m}^{k} is measurable by hypothesis and Lemma 2.1; thus Z_{m}^{n} and the right member of (3) are measurable. Then by Lemma 2.1, (3) implies the measurability of F.

Let $t_{0} \in E\left(F, S^{0}(a, r)\right)$; then $F\left(t_{0}\right) \cap S^{0}(a, r) \neq \phi$ and there exists an integer $m_{0}, m_{0} r>2$, such that $F\left(t_{0}\right) \cap S^{0}\left(a, r-2 m_{0}^{-1}\right) \neq \phi$. Since $\bar{\rho}\left(F\left(t_{0}\right), F_{k}\left(t_{0}\right)\right) \rightarrow 0$, it follows that $\bar{\rho}\left(F\left(t_{0}\right) \cap S\left(\alpha, r-2 m_{0}^{-1}\right), F_{k}\left(t_{0}\right)\right) \rightarrow 0$. Consequently there exists $n_{0}=n_{0}\left(m_{0}\right)$ such that if $k \geqq n_{0}$ then $F_{k}\left(t_{0}\right) \cap S^{0}\left(a, r-m_{0}^{-1}\right) \neq \phi$. Hence $t_{0} \in T_{m_{0}}^{k}$ for $k \geqq n_{0}$ which implies $t_{0} \in Z_{m_{0}}^{n_{0}}$ and then of course $t_{0} \in \bigcup_{n, m} Z_{m}^{n}$.

Now let $t_{0} \in \mathbf{U}_{n, m} Z_{m}^{n}$; then there exist n_{0}, m_{0} such that $t_{0} \in Z_{m_{0}}^{n_{0}}$. Hence $t_{0} \in T_{m_{0}}^{k}$ for $k \geqq n_{0}$; i.e., $F_{k}\left(t_{0}\right) \cap S^{0}\left(a, r-m_{0}^{-1}\right) \neq \phi$ for $k \geqq n_{0}$. Now since $\bar{\rho}\left(F_{k}\left(t_{0}\right), F\left(t_{0}\right)\right) \rightarrow 0$ it follows that

$$
\bar{\rho}\left(F_{k}\left(t_{0}\right) \cap S\left(a, r-m_{0}^{-1}\right), F\left(t_{0}\right)\right) \rightarrow 0 .
$$

This in turn implies that $S\left(a, r-m_{0}^{-1}\right) \cap F\left(t_{0}\right) \neq \phi$ so that certainly $F\left(t_{0}\right) \cap S^{0}(a, r) \neq \phi$. Thus $t_{0} \in E\left(F, S^{0}(a, r)\right)$ and (3) follows.

The necessity of the condition of the next theorem (generalized Lusin theorem) was established, for bounded, measurable F, by Pliś
[16]. The entire theorem, again restricted to bounded functions, was stated without proof by Filippov [9]. For a measurable set $B \subset I$, let $\mu(B)$ denote its Lebesgue measure.

THEOREM 2.2. A function $F: I \rightarrow \Omega^{n}$ is measurable if and only if for each $\eta>0$ there exists $E_{\eta} \subset I$ which is closed, $\mu\left(I-E_{\eta}\right)<\eta$ and the restriction of F to E_{η} is continuous.

Proof. (Necessity, using a device of Natanson [15, p. 10].) Let $T_{k}=E\left(F, S^{\sim}(0, k)\right)$, where k is a positive integer and the tilde denotes complementation. Now $\bigcap T_{k}=\phi$ for otherwise, if $t_{0} \in \bigcap T_{k}$,

$$
F\left(t_{0}\right) \cap S_{\sim}^{\sim}(0, k) \neq \phi
$$

for all k, contradicting the assumption that $F\left(t_{0}\right) \in \Omega^{n}$. Hence $\mu\left(\bigcap T_{k}\right)=$ 0 and since $T_{i} \subset T_{j}$ for $i>j$ it follows that $\lim \mu\left(T_{k}\right)=0$. Thus for $\eta>0$ there exists k_{0} such that $\mu\left(T_{k_{0}}\right)<\eta / 4$; moreover, there exists open $T^{*} \supset T_{k_{0}}$ such that

$$
\mu\left(T^{*}\right)<\mu\left(T_{k_{0}}\right)+\eta / 4<\eta / 2 .
$$

Defining $F^{*}: I \rightarrow \Omega^{n}$ by

$$
\begin{aligned}
& F^{*}(t)=F(t), t \in I-T^{*} \\
& F^{*}(t)=\{0\}, t \in T^{*}
\end{aligned}
$$

the measurability of F^{*} follows from that of F; in addition $\left\|F^{*}(t)\right\| \leqq$ k_{0} for all $t \in I$. Hence, by the aforementioned theorem of Pliś [16], there exists closed $E_{\eta}^{*} \subset I$ such that the restriction of F^{*} to E_{η}^{*} is continuous and $\mu\left(I-E_{\eta}^{*}\right)<\eta / 2$. Consequently, the restriction of F to the set $E_{\eta} \equiv\left(I-T^{*}\right) \bigcap E_{\eta}^{*}$ is continuous and E_{η} is certainly closed. Moreover,

$$
\mu\left(I-E_{\eta}\right)=\mu\left(T^{*} \bigcup\left(I-E_{\eta}^{*}\right)\right) \leqq \mu\left(T^{*}\right)+\mu\left(I-E_{\eta}^{*}\right)<\eta,
$$

and the argument is complete.
(Sufficiency.) For each $\eta>0$, denote by $\Phi(\circ, \eta)$ the continuous extension of F, from E_{η} to I, guaranteed by Lemma 2.2. Let $\eta_{m}=2^{-m}, m=1,2,3, \cdots$; then setting

$$
S_{m}=I-E_{\eta_{m}}
$$

it follows that $\mu\left(S_{m}\right)<2^{-m}$. Define

$$
M_{i}=\bigcup_{k \geqq i} S_{k} ; Q=\bigcap_{i \geqq 1} M_{i}
$$

Now $M_{1} \supset M_{2} \supset \cdots$ so that $\lim \mu\left(M_{i}\right)=\mu(Q)$; but since $\mu\left(M_{i}\right)<\sum_{k=i}^{\infty} 2^{-k}$ there follows $\mu(Q)=0$. Let $t_{0} \in I-Q$; then $t_{0} \in \bigcup_{i \geq 1}\left(I-M_{i}\right)$ so that
$t_{0} \in I-M_{i_{0}}$ for some i_{0}. But then $t_{0} \in I-S_{k}$ for all $k \geqq i_{0}$; i.e., $\rho\left(F\left(t_{0}\right), \Phi\left(t_{0}, \eta_{k}\right)\right)=0$ for all $k \geqq i_{0}$ and this in turn implies

$$
\lim \rho\left(F\left(t_{0}\right), \Phi\left(t_{0}, \eta_{k}\right)\right)=0
$$

By Lemma 2.3, $\Phi\left(\circ, \eta_{k}\right)$ is measurable for each k so that by Theorem 2.1 and the result just obtained, F is measurable.

Corollary 2.1. If $F: I \rightarrow \Omega^{n}$ is continuous (measurable) then the function $F^{*}: I \rightarrow \Gamma^{n}$ defined by $F^{*}(t)=(F(t))^{*}$ is continuous (measurable).

Proof. The assertion concerning continuity is immediate from Lemma 1.3 (ii). Now suppose F is measurable; by Theorem 2.2, for $\eta>0$ there exists closed $E_{\eta} \subset I$ such that $\mu\left(I-E_{\eta}\right)<\eta$ and the restriction of F to E_{η} is continuous. But by Lemma 1.3 (ii), the restriction of F^{*} to E_{η} is continuous. Another application of Theorem 2.2 yields the measurability of F^{*}.

The next two lemmas were originally stated for bounded functions; an examination of their proofs (vide [12]) reveals, in the light of Theorem 2.2, that this boundedness restriction is superfluous.

Lemma 2.4. (Hermes-Filippov.) Let $g: E^{n} \rightarrow E^{k}$ be continuous and let $H: I \rightarrow \Omega^{n}$ be measurable. If $r: I \rightarrow E^{n}$ is measurable and $r(t) \in g(H(t))$ on I then there exists measurable $\nu: I \rightarrow E^{n}$ satisfying $\nu(t) \in H(t)$ and $r(t)=g(\nu(t))$ on I.

Lemma 2.5. (Hermes.) Let $R: I \rightarrow Q^{n}$ be measurable and let $w: I \rightarrow E^{n}$ be measurable; then there exists measurable $r: I \rightarrow E^{n}$ satisfying $r(t) \in R(t)$ and $\|w(t)-r(t)\|=\alpha(w(t), R(t))$ on I.

The next lemma was originally stated by Hermes [11, Lemma 1.1] for bounded functions; again by virtue of Theorem 2.2, the boundedness restriction is superfluous. A function $F: I \rightarrow \Omega^{n}$ is approximately continuous at $t \in I$ if and only if there exists a measurable set $B \subset I$ for which t is a point of density and such that the restriction of F to B is continuous at t.

Lemma 2.6. If $F: I \rightarrow \Omega^{n}$ is measurable then F is approximately continuous a.e. on I.

Definition 2.2. (i) Let $F: I \rightarrow \Omega^{n}$; if there exists a Lebesgue summable function $h: I \rightarrow E^{1}$ such that $\|F(t)\| \leqq h(t)$ on I then F is integrably bounded.
(ii) Let A be an index set and let $F_{r}: I \rightarrow \Omega^{n}$ for all $\gamma \in A$; if there exists a Lebesgue summable function $h: I \rightarrow E^{1}$ such that $\left\|F_{\gamma}(t)\right\| \leqq h(t)$ for all $t \in I$ and all $\gamma \in A$ then $\left\{F_{\gamma} \mid \gamma \in A\right\}$ is uniformly integrably bounded.

The next lemma has an easy proof which will be omitted.
Lemma 2.7. (i) If $F: I \rightarrow \Omega^{n}$ is continuous it is integrably bounded.
(ii) If $F: I \rightarrow \Omega^{n}$ is integrably bounded then the function F^{*} defined in Corollary 2.1 has the same integrable bound as F.

Definition 2.3. Let $F: I \rightarrow \Omega^{n}$ be such that for each $t \in I$ the function $\rho(F(\circ), F(t))$ is summable on I. A point $t \in I$ for which

$$
\lim _{\eta \rightarrow 0} \eta^{-1} \int_{t}^{t+\eta} \rho(F(\tau), F(t)) d \tau=0
$$

is called a Lebesgue point of F.
Theorem 2.3. If $F: I \rightarrow \Omega^{n}$ is measurable and integrably bounded then almost all $t \in I$ are Lebesgue points of F.

Proof. Theorem 2.2 and the continuity of $\rho(\circ, \circ)$, together with Lusin's theorem for real valued functions, implies that $\rho(F(\circ), F(t))$ is measurable for each $t \in I$. Let h be an integrable bound for F; without loss of generality one may suppose that $h(t)>0$ on I. By Corollary 1.1 (iv), $\rho(F(\tau), F(t)) \leqq h(\tau)+h(t)$ for all $\tau, t \in I$. Hence $\rho(F(\circ), F(t))$ is summable on I for each $t \in I$. Now by Lemma 2.6 and [15, Th. 5, p. 255] almost all points of I are, at once, points of approximate continuity of F and Lebesgue points of h. Let t be such a point and let $B \subset I$ be a measurable set for which t is a point of density and such that the restriction of F to B is continuous at t. For $\eta>0$, set

$$
\begin{aligned}
& B_{1}(\eta)=[t, t+\eta] \cap B \\
& B_{2}(\eta)=[t, t+\eta] \cap(I-B) .
\end{aligned}
$$

Then, given $\varepsilon>0$, one may choose $\eta=\eta(\varepsilon, t)>0$ sufficiently small that the following three conditions are satisfied:
(i) for $\tau \in B_{1}(\eta), \rho(F(\tau), F(t))<\varepsilon / 6$;
(ii) $\mu\left(B_{2}(\eta)\right)<\varepsilon \eta / 6 h(t)$;
(iii) $\int_{t}^{t+\eta}|h(\tau)-h(t)| d \tau<\eta \varepsilon / 3$.

By virtue of (i), (ii), (iii) and Corollary 1.1 (iv) there follows

$$
\begin{aligned}
\eta^{-1} \int_{t}^{t+\eta} \rho(F(\tau), F(t)) d \tau & =\eta^{-1} \int_{B_{1}(\eta)} \rho(F(\tau), F(t)) d \tau+\eta^{-1} \int_{B_{2}(\eta)} \rho(F(\tau), F(t)) d \tau \\
& <\varepsilon / 3+\eta^{-1} \int_{B_{2}(\eta)}[\|F(\tau)\|+\|F(t)\|] d \tau \\
& <\varepsilon / 3+\eta^{-1} \int_{t}^{t+\eta}|h(\tau)-h(t)| d \tau+2 h(t) \eta^{-1} \mu\left(B_{2}(\eta)\right) \\
& <\varepsilon / 3+\varepsilon / 3+\varepsilon / 3=\varepsilon
\end{aligned}
$$

Thus $\lim _{\eta \rightarrow 0+} \eta^{-1} \int_{t}^{t+\eta} \rho(F(\tau), F(t)) d \tau=0$, and a similar argument shows that the left hand limit is also zero.

We close this section with the following important lemma on the measurability of composite functions.

Lemma 2.8. Let D be a nonvoid, open subset of $E^{1} \times E^{n}$ and let $R: E^{1} \times E^{n} \rightarrow \Omega^{n}$ satisfy:
(i) for each t in the projection of D on $E^{1}, R(t, \circ)$ is continuous on the set $D_{t}=\left\{x \in E^{n} \mid(t, x) \in D\right\}$;
(ii) for each x in the projection of D on E^{n} and each compact interval $I \subset E^{1}$ for which $I \times\{x\} \subset D, R(\circ, x)$ is measurable on I;
(iii) for each compact $C \subset D$ there exists a Lebesgue summable function $h_{c}: E^{1} \rightarrow E^{1}$ such that $\|R(t, x)\| \leqq h_{c}(t)$ on C.

If I is a compact interval in E^{1} and S is a compact ball in E^{n} satisfying $I \times S \subset D$ then for each continuous function $x: I \rightarrow S$ the function $R(\circ, x(\circ))$ is integrably bounded and measurable on I.

Proof. If the assertion of the lemma is true with "continuous" replaced by "step" as the restriction on $x: I \rightarrow S$ then the validity of the original statement, insofar as measurability is concerned, follows by virtue of (i) and Theorem 2.1 since a continuous function $x: I \rightarrow S$ may be uniformly approximated by step functions. Hence suppose that for $c_{k} \in S, k=1, \cdots, m, x^{*}: I \rightarrow S$ is defined by

$$
x *(t)=c_{k}, t \in I_{k}, k=1, \cdots, m
$$

where $I=\bigcup I_{k}, I_{j} \cap I_{k}=\phi$ for $j \neq k$ and each I_{k} is an interval. Then for an open set $K \subset E^{n}, E\left(R\left(\circ, x^{*}(\circ)\right), K\right)=\bigcup M_{j}$,

$$
M_{j}=\left\{t \in I_{j} \mid R\left(t, c_{j}\right) \bigcap K \neq \phi\right\}, j=1, \cdots, m
$$

But by (ii), each M_{j} is measurable so that $E\left(R\left(\circ, x^{*}(\circ)\right), K\right)$ is measurable. Integrable boundedness of $R(\circ, x(\circ))$ is an easy consequence of (iii).
3. Trajectory integrals of measurable functions. In this
section we set $I=[0,1]$ without loss of generality and suppose that $F: I \rightarrow \Omega^{n}$ is a given function. As in the introduction we denote by $\mathscr{F}{ }_{I}(F)$ the set of all Lebesgue summable functions $u: I \rightarrow E^{n}$ having the property that $u(t) \in F(t)$ a.e. on I. Let \mathscr{T} on $\mathscr{L}_{1}^{n}(I)$ be defined by

$$
(\mathscr{T} q)(t)=\int_{0}^{t} q(\tau) d \tau, \quad t \in I
$$

and define

$$
\mathscr{S}_{1}(F)=\mathscr{T} \mathscr{F}_{I}(F)
$$

$\mathscr{S}_{I}(F)$ may be considered as a subset of any of a number of Banach spaces but the ones we shall be primarily concerned with here are $\mathscr{C}^{n}(I)$ and $\mathscr{N} \mathscr{A} \mathscr{C}^{n}(I)$.

Lemma 3.1. (i) If $F: I \rightarrow \Omega^{n}$ is measurable and integrably bounded then $\mathscr{F}_{I}(F) \neq \phi$.
(ii) If $F: I \rightarrow \Gamma^{n}$ then $\mathscr{F}_{I}(F)$ is a convex subset of $\mathscr{L}_{1}^{n}(I)$.

Proof. That there exists a measurable $\nu: I \rightarrow E^{n}$ satisfying $\nu(t) \in F(t)$ a.e. on I follows from Lemma 2.4 by taking $g=0, r=0$, and $H=F$. The assertion of (i) then follows by the integrable boundedness of F. The proof of (ii) is trivial.

Theorem 3.1. If $F: I \rightarrow \Gamma^{n}$ is measurable and integrably bounded then $\mathscr{S}_{I}(F) \in \mathscr{K}^{n}(I)$; moreover, $\mathscr{S}_{I}(F)$ is a weakly compact subset of $\mathfrak{N} \mathscr{A}^{n}(I)$.

Proof. From Lemma 3.1 and the linearity of \mathscr{T} follow the facts that $\mathscr{S}_{I}(F)$ is nonvoid and convex; that $\mathscr{S}_{I}(F)$ is conditionally compact follows readily from the integrable boundedness of F together with the Arzelà-Ascoli theorem. The first assertion of the theorem will be established if we show that $\mathscr{S}_{I}(F)$ is closed in $\mathscr{C}^{n}(I)$. To this end let $w \in \overline{\mathscr{S}_{I}(F)}$ and let $\left\{w_{m}\right\} \subset \mathscr{S}_{I}(F)$ satisfy $\lim \left\langle w_{m}-w\right\rangle=0$. Now $\dot{w}_{m}(t) \in F(t)$ a.e. on I so that with h denoting the integrable bound on F we obtain

$$
\begin{aligned}
\left\|w\left(t_{2}\right)-w\left(t_{1}\right)\right\| \leqq & \left\|w\left(t_{2}\right)-w_{m}\left(t_{2}\right)\right\|+\left\|w\left(t_{1}\right)-w_{m}\left(t_{1}\right)\right\| \\
& +\left\|w_{m}\left(t_{2}\right)-w_{m}\left(t_{1}\right)\right\|<\varepsilon+\left|\int_{t_{1}}^{t_{2}} h(\tau) d \tau\right|
\end{aligned}
$$

for $\varepsilon>0$ and m sufficiently large. Thus w is absolutely continuous on I and it is easy to see that there exists measurable $U \subset I, \mu(I-U)=$ 0 , having the following properties:
(i) $\dot{w}(t)$ exists on U;
(ii) each $t \in U$ is a Lebesgue point of F.

The validity of (ii) is of course a consequence of Theorem 2.3. With ν being the function defined in Definition 1.3, by virtue of Theorem 2.2, the Lusin theorem for real valued functions and the continuity of $\nu(\circ, \circ)$ on $\Gamma^{n} \times E^{n}$ [3, Lemma 1] there follows the fact that $\nu(F(\circ), p)$ is measurable for each $p \in E^{n}$. By virtue of Lemma 1.2 (iii) and Corollary 1.1 (iv) there obtains $|\nu(F(t), p)| \leqq h(t)$ for all $(t, p) \in I \times E^{n}$ and thus $\nu(F(\circ), p)$ is summable for $p \in E^{n}$. Moreover, there exists measurable $V \subset I, \mu(I-V)=0$, such that for all $(t, p) \in V \times E^{n}$ and all m,

$$
\dot{w}_{m}(t) \circ p \leqq \nu(F(t), p)
$$

Thus for all m, all $p \in E^{n}$ and all $t_{1}, t_{2} \in I$,

$$
\left[w_{m}\left(t_{2}\right)-w_{m}\left(t_{1}\right)\right] \circ p \leqq \int_{t_{1}}^{t_{2}} \nu(F(\tau), p) d \tau ;
$$

in particular for $t \in U, \eta>0$, all m and all p such that $\|\mathrm{p}\|=1$,

$$
\begin{aligned}
\eta^{-1}\left[w_{m}(t+\eta)-w_{m}(t)\right] \circ p & \leqq \eta^{-1} \int_{t}^{t+\eta} \nu(F(\tau), p) d \tau \\
& \leqq \nu(F(t), p)+\eta^{-1} \int_{t}^{t+\eta} \rho(F(\tau), F(t)) d \tau
\end{aligned}
$$

the final inequality being a consequence of Lemma 1.2 (iii). For all $\eta>0$ such that $t+\eta \in I$, the convergence of w_{m} to w implies that

$$
\eta^{-1}[w(t+\eta)-w(t)]=\lim _{m \rightarrow \infty} \eta^{-1}\left[w_{m}(t+\eta)-w_{m}(t)\right]
$$

This and the last formula line imply that for $\|p\|=1, t \in U, \eta>0$ and $t+\eta \in I$,

$$
\eta^{-1}[w(t+\eta)-w(t)] \circ p \leqq \nu(F(t), p)+\eta^{-1} \int_{t}^{t+\eta} \rho(F(\tau), F(t)) d \tau
$$

Letting $\eta \rightarrow 0+$ in this inequality yields, for $\|p\|=1$,

$$
\dot{w}(t) \circ p \leqq \nu(F(t), p)
$$

and in turn this implies [19, Th. 5.3] that $\dot{w}(t) \in F(t)$. Thus is $\mathscr{S}_{I}(F)$ closed.

For the proof of the second assertion of the theorem, let x be a weak limit point (i.e., a limit point relative to the weak topology in $\left.\mathscr{N} \mathscr{A} \mathscr{C}^{n}(I)\right)$ of $\mathscr{S}_{1}(F)$. By [6, IV. 13.31] there exists a sequence $\left\{x_{m}\right\} \subset \mathscr{S}_{I}(F)$ which converges pointwise to x on I. But by the first assertion of the theorem, there is a subsequence $\left\{x_{m_{k}}\right\}$ which converges in $\mathscr{C}^{n}(I)$ to x so that necessarily $x \in \mathscr{S}_{I}(F)$. Thus is $\mathscr{S}_{I}(F)$ weakly closed. Now $\left\|\int_{E} q(\tau) d \tau\right\| \leqq \int_{E} h(\tau) d \tau$ for all $q \in \mathscr{F}_{I}(F)$ and all measurable $E \subset I$; hence by [6, IV. 8.11] and the absolute continuity of the set
function $\int_{E} h(\tau) d \tau, \mathscr{F}_{I}(F)$ is weakly sequentially compact in $\mathscr{L}_{1}^{n}(I)$. Since \mathscr{G} is linear and continuous with respect to the metric topologies in $\mathscr{L}_{1}^{n}(I)$ and $\mathscr{N} \mathscr{A}_{\mathscr{C}}{ }^{n}(I)$, by [6, V. 3.15] $\mathscr{S}_{1}(F)$ is weakly sequentially compact in $\mathscr{N}_{\mathscr{A}}^{\mathscr{C}}{ }^{n}(I)$. Now the weak compactness of $\mathscr{S}_{1}(F)$ is a consequence of [6, V. 6.1].

Theorem 3.2. Let $F, F_{k}: I \rightarrow \Gamma^{n}, k=1,2,3, \cdots$, satisfy

$$
\lim \rho\left(F_{k}(t), F(t)\right)=0
$$

on I; if $\left\{F_{k}\right\}$ is uniformly integrably bounded and each F_{k} is measurable then $\mathscr{S}_{I}\left(F_{k}\right)$ and $\mathscr{S}_{I}(F)$ are in $\mathscr{K}^{n}(I)$ and $\lim \sigma\left(\mathscr{S}_{I}\left(F_{k}\right), \mathscr{S}_{I}(F)\right)=0$.

Proof. That $\mathscr{S}_{I}\left(F_{k}\right) \in \mathscr{K}^{n}(I)$ is a consequence of Theorem 3.1. That F is measurable is implied by Theorem 2.1. Let h be a uniform integrable bound for $\left\{F_{k}\right\}$ and let $t \in I$ be fixed; by hypothesis and Corollary 1.1 (iv) we find that, given $\varepsilon>0$, there exists $K=K(\varepsilon, t)$ such that for $k>K,\|F(t)\|<\varepsilon+\left\|F_{k}(t)\right\| \leqq \varepsilon+h(t)$. Thus F is integrably bounded by h and from Theorem 3.1 there follows $\mathscr{S}_{I}(F) \in \mathscr{K}^{n}(I)$. Now there exists $w_{k} \in \mathscr{S}_{I}\left(F_{k}\right)$ such that $\beta\left(w_{k}, \mathscr{S}_{1}(F)\right)=$ $\bar{\sigma}\left(\mathscr{S}_{1}\left(F_{k}\right), \mathscr{S}_{1}(F)\right)$. Let $q_{k} \in \mathscr{F}_{1}\left(F_{k}\right)$ be such that $w_{k}=\mathscr{T} q_{k}$ and, by Lemma 2.5, let $u_{k} \in \mathscr{F}_{I}(F)$ satisfy $\left\|u_{k}(t)-q_{k}(t)\right\|=\alpha\left(q_{k}(t), F(t)\right) \leqq$ $\bar{\rho}\left(F_{k}(t), F(t)\right)$ on I. Then $\bar{\sigma}\left(\mathscr{S}_{I}\left(F_{k}\right), \mathscr{S}_{I}(F)\right) \leqq\left\langle w_{k}-\mathscr{J} u_{k}\right\rangle$; but

$$
\left\langle w_{k}-\mathscr{T} u_{k}\right\rangle \leqq \int_{0}^{1}\left\|q_{k}(\tau)-u_{k}(\tau)\right\| d \tau=\int_{0}^{1} \alpha\left(q_{k}(\tau), F(\tau)\right) d \tau
$$

and since $\alpha\left(q_{k}(t), F(t)\right) \rightarrow 0$ on I and $\alpha\left(q_{k}(t), F(t)\right) \leqq 2 h(t)$ on I it follows from [6, III. 6.16] that $\lim \left\langle w_{k}-\mathscr{T} u_{k}\right\rangle=0$. Hence

$$
\lim \bar{\sigma}\left(\mathscr{S}_{I}\left(F_{k}\right), \mathscr{S}_{I}(F)\right)=0 .
$$

There also exists $y_{k} \in \mathscr{S}_{1}(F)$ such that $\beta\left(y_{k}, \mathscr{S}_{1}\left(F_{k}\right)\right)=\bar{\sigma}\left(\mathscr{S}_{1}(F), \mathscr{S}_{1}\left(F_{k}\right)\right)$. Let $u_{k} \in \mathscr{F}(F)$ satisfy $y_{k}=\mathscr{I} u_{k}$ and, by Lemma 2.5, let $q_{k} \in \mathscr{F}_{I}\left(F_{k}\right)$ satisfy $\left\|\mathrm{u}_{k}(t)-q_{k}(t)\right\|=\alpha\left(u_{k}(t), F_{k}(t)\right) \leqq \bar{\rho}\left(F(t), F_{k}(t)\right) \quad$ on \quad. \quad Then $\bar{\sigma}\left(\mathscr{S}_{I}(F), \mathscr{S}_{I}\left(F_{k}\right)\right) \leqq\left\langle y_{k}-\mathscr{T} q_{k}\right\rangle ;$ but

$$
\left\langle y_{k}-\mathscr{I} q_{k}\right\rangle \leqq \int_{0}^{1}\left\|u_{k}(\tau)-q_{k}(\tau)\right\| d \tau=\int_{0}^{1} \alpha\left(u_{k}(\tau), F_{k}(\tau)\right) d \tau .
$$

Arguing as in the preceding part of the proof we conclude

$$
\lim \bar{\sigma}\left(\mathscr{S}_{1}(F), \mathscr{S}_{1}\left(F_{k}\right)\right)=0
$$

and the proof is complete.
Definition 3.1. Let \mathscr{S} be a set of functions on I to E^{n}; then

$$
G(t ; \mathscr{S})=\{\varphi(t) \mid \varphi \in S\}, t \in I .
$$

Lemma 3.2. If either of the following conditions is satisfied then for all $t \in I, G(t ; \mathscr{S}) \in \Gamma^{n}$:
(i) $\mathscr{S} \in \mathscr{K}^{n}(I)$;
(ii) \mathscr{S} is a nonvoid, convex, weakly compact subset of $\mathscr{N} \mathscr{A} \mathscr{C}^{n}(I)$.

Proof. (i) is an immediate consequence of [4, Th. 1.4]. For (ii) we observe first of all that by [6, IV. 12.3] there is a unique nonvoid, convex, weakly compact subset $\mathscr{F} \subset \mathscr{L}_{1}^{n}(I)$ such that $\mathscr{S}=\mathscr{T} \mathscr{F}$. By virtue of [6, V. 6.1], \mathscr{F} is weakly sequentially compact; from [6, IV. 8.8] it then follows that F is bounded. The function $\mathscr{T}_{t}: \mathscr{L}_{1}^{n}(I) \rightarrow E^{n}$ defined for each fixed $t \in I$ by

$$
\mathscr{T}_{t} q=\int_{0}^{t} q(\tau) d \tau
$$

is linear and continuous with respect to the metric topologies in $\mathscr{L}_{1}^{n}(I), E^{n}$; hence by [6, V. 3.15] it is continuous with respect to the weak topologies in these spaces. Consequently $\mathscr{T}_{t} \mathscr{F}$ is bounded, convex and weakly compact, hence, by [6, V. 3.13], closed. We conclude that $G(t ; \mathscr{S}) \equiv \mathscr{T}_{t} \mathscr{F} \in \Gamma^{n}$.

The next lemma generalizes a result due to Hermes [12, Th. 1.2].
Lemma 3.3. If $F: I \rightarrow \Omega^{n}$ is measurable and integrably bounded then $G\left(t ; \mathscr{S}_{I}(F)\right)=G\left(t ; \mathscr{S}_{I}\left(F^{*}\right)\right) \in \Gamma^{n}$ for all $t \in I$.

Proof. By Corollary 2.1, Lemma 2.7 (ii), Theorem 3.1 and Lemma 3.2, $G\left(t ; \mathscr{S}_{I}\left(F^{*}\right)\right) \in \Gamma^{n}$. Certainly $G\left(t ; \mathscr{S}_{I}\left(F^{\prime}\right)\right) \subset G\left(t ; \mathscr{S}_{I}\left(F^{*}\right)\right)$ and the remainder of the proof coincides with the second part of Hermes' proof for [12, Th. 1.2].

Hermes [11] has observed that: if $F: I \rightarrow \Omega^{n}$ is Borel measurable [1] then it is measurable. Our next result is the combined assertion of Theorems 1 through 4 of [1] for Borel measurable, integrably bounded $F: I \rightarrow \Omega^{n}$. It is an immediate consequence of Lemma 3.3 and Hermes' observation.

Corollary 3.1. If $F: I \rightarrow \Omega^{n}$ is Borel measurable and integrably bounded then for each $t \in I, G\left(t ; \mathscr{S}_{I}(F)\right) \in \Gamma^{n}$.

Lemma 3.3 provides the instrument for establishing the following corollaries to Theorem 3.2.

Corollary 3.2. Let $F, F_{k}: I \rightarrow \Omega^{n}, k=1,2,3, \cdots$, satisfy

$$
\lim \rho\left(F_{k}(t), F(t)\right)=0
$$

on I; if $\left\{F_{k}\right\}$ is uniformly integrably bounded and each F_{k} is measurable then for each $t \in I, G\left(t ; \mathscr{S}_{1}\left(F_{k}\right)\right)$ and $G\left(t ; \mathscr{S}_{I}(F)\right)$ are in Γ^{n} and

$$
\lim \rho\left(G\left(t ; \mathscr{S}_{\mathbb{1}}\left(F_{k}\right)\right), G\left(t ; \mathscr{S}_{\mathbb{1}}(F)\right)\right)=0,
$$

uniformly on I.
Proof. By Corollary 2.1 and Lemma 2.7, each F_{k}^{*} is measurable and $\left\{F_{k}^{*}\right\}$ has the same uniform integrable bound as $\left\{F_{k}\right\}$. By Theorem 2.1, F is measurable and, by an argument like that used in Theorem $3.2, F$ is integrably bounded. Thus by Corollary 2.1 and Lemma 2.7, F^{*} is measurable and integrably bounded and, by hypothesis and Lemma $1.3(\mathrm{ii}), \lim \rho\left(F_{k}^{*}(t), F^{*}(t)\right)=0$. From Theorem 3.2 there follows $\lim \sigma\left(\mathscr{S}_{1}\left(F_{k}^{*}\right), \mathscr{S}_{1}\left(F^{*}\right)\right)=0$ and this result together with [4, Th. 1.5] implies

$$
\lim \rho\left(G\left(t ; \mathscr{S}_{1}\left(F_{k}^{*}\right)\right), G\left(t ; \mathscr{S}_{1}\left(F^{*}\right)\right)\right)=0,
$$

uniformly for $t \in I$. The proof is completed by application of Lemma 3.3.

Corollary 3.3. Let $F_{k}: I \rightarrow \Omega^{n}, k=1,2,3, \cdots$, satisfy the following conditions:
(i) $\left\{F_{k}\right\}$ is uniformly integrably bounded;
(ii) for each k, F_{k} is Borel measurable;
(iii) $F(t)=\lim F_{k}(t)$ exists and is nonvoid for each $t \in I$. Then $F: I \rightarrow \Omega^{n}$ and, for each $t \in I$,

$$
\lim G\left(t ; \mathscr{S}_{1}\left(F_{k}\right)\right)=G\left(t ; \mathscr{S}_{1}(F)\right) \in \Gamma^{n} .
$$

Proof. By virtue of (i), (iii) and Lemma 1.6, $F: I \rightarrow \Omega^{n}$ and $\lim F_{k}^{*}(t)=F^{*}(t)$. Lemma 2.7 implies that $\left\{F_{k}^{*}\right\}$ has the same uniform integrable bound as $\left\{F_{k}\right\}$ so that Corollary 1.2 yields $\lim \rho\left(F_{k^{*}}^{*}(t), F^{*}(t)\right)=$ 0 . The observation of Hermes quoted above, together with (ii) and Corollary 2.1, yields the measurability of F_{k}^{*}. Now Corollary 3.2 and Lemma 1.4 permit the assertion

$$
\lim G\left(t ; \mathscr{S}_{I}\left(F_{k}^{*}\right)\right)=G\left(t ; \mathscr{S}_{1}\left(F^{*}\right)\right) \in \Gamma^{n} ;
$$

hence Lemma 3.3 yields

$$
\begin{equation*}
\lim G\left(t ; \mathscr{S}_{I}\left(F_{k}\right)\right)=G\left(t ; \mathscr{S}_{I}\left(F^{*}\right)\right) \in \Gamma^{n} . \tag{~}
\end{equation*}
$$

But the assertion of [1, Th. 5] is that the left member of this equation is equal to $G\left(t ; \mathscr{S}_{1}(F)\right)$; the proof is complete.

Discussion. It is easy to see that in Corollary 3.3, the requirement that F_{k} be nonvoid, compact valued for each k can be replaced
by the requirement that it be nonvoid, closed valued for each k. The corresponding replacement can be made in Corollary 3.1. It is noteworthy that Corollary 3.1 bears out the anticipation, expressed in the introduction that a study of $\mathscr{S}_{I}(F)$ subsumes, in an obvious sense, a study of Aumann's integral. Corollary 3.3 shows that our expectations in this direction cannot be too high; indeed, under hypotheses of this corollary, (${ }^{\sim}$) appears to be the strongest result we can obtain within the confines of the theory developed in this paper. The utilization of [1, Th. 5] in this corollary could be supplanted by a counterpart of Theorem 2.1 in which Hausdorff convergence is replaced by Kuratowski convergence. However, we have not been successful in obtaining such a counterpart of Theorem 2.1; moreover, in view of the proof of Theorem 2.1 it does not appear likely that such a counterpart is valid. It is also noteworthy that the lack of such a counterpart for Theorem 2.1 prevents the inference from [1, Th. 5] alone that $G\left(t ; \mathscr{S}_{I}(F)\right) \neq \phi$ for some $t \in I$ even under the hypotheses of Corollary 3.3.

The weak compactness of $\mathscr{S}_{I}(F)$ in $\mathscr{N} \mathscr{A} \mathscr{C}^{n}(I)$ may be shown to follow directly from the hypotheses of Theorem 3.1; the device of using the compactness of $\mathscr{S}_{I}(F)$ in $\mathscr{C}^{n}(I)$ to establish weak compactness of $\mathscr{S}_{1}(F)$ was a matter of convenience in the proof of that theorem. Taking this observation into account, it is not difficult to see that Corollary 3.2 may be established independently by means of an argument which depends only on weak compactness of $\mathscr{S}_{I}(F)$, Lemma 3.2 (ii), Lemma 3.3 and Lemma 2.5. Thus Corollaries 3.1, 3.2 constitute a theory which is a direct counterpart of Aumann's theory, the major distinction between the two theories being that between Hausdorff and Kuratowski convergence. The discussion of the preceding paragraph indicates that whereas these theories are supplementary, neither implies the other.

The proof of [12, Corollary 1.1] applies with trivial modification, taking into account Lemma 3.3, to yield

Lemma 3.4. Let $F: I \rightarrow \Omega^{n}$ be measurable and integrably bounded, and let $y \in \mathscr{S}_{I}\left(F^{*}\right)$; then for each $\eta>0$ there exists $z_{\eta} \in \mathscr{S}_{I}(F)$ satisfying $\left\langle y-z_{\eta}\right\rangle<\eta$.

This lemma has the following immediate consequence.
Corollary 3.4. If $F: I \rightarrow \Omega^{n}$ is measurable and integrably bounded then $\mathscr{S}_{I}\left(F^{*}\right)$ is the closure of $\mathscr{S}_{I}(F)$ in $\mathscr{C}^{n}(I)$.

Remark 3.1. [12, Example 2.3.] shows that with the hypotheses
of Corollary $3.4 \mathscr{S}_{I}(F)$ need not be closed in $\mathscr{C}^{n}(I)$; there thus appears to be no possibility of generalizing Theorem 3.2 by requiring that F, F_{k} have values in Ω^{n}.

Let us denote by $\mathscr{S}_{I}^{*}(F)$ the closed (in $\mathscr{N} \mathscr{A} \mathscr{C}^{n}(I)$) convex hull of $\mathscr{S}_{I}(F)$ and by $\mathscr{S}_{I}^{\#}(F)$, the weak closure of $\mathscr{S}_{I}(F)$ in $\mathscr{N} \mathscr{A} \mathscr{C}^{n}(I)$.

Theorem 3.3. If $F: I \rightarrow \Omega^{n}$ is measurable and integrably bounded then

$$
\mathscr{S}_{I}^{*}(F)=\mathscr{S}_{I}^{*}(F)=\mathscr{S}_{1}\left(F^{*}\right) .
$$

Proof. By means of an argument like that for the second assertion of Theorem 3.1 it may be inferred that $\mathscr{S}_{I}(F)$ is weakly sequentially compact. Now there follows from [6, V. 3.13, 3.14] and Theorem 3.1,

$$
\mathscr{S}_{I}^{*}(F) \subset \mathscr{S}_{I}^{*}(F) \subset \mathscr{S}_{I}\left(F^{*}\right) .
$$

But from these inclusions, Lemma 3.4 and [6, IV. 13.31], the theorem follows.

Remark 3.2. It is easy to see that $\mathscr{S}_{1}^{*}(F)=\mathscr{G} \mathscr{F}_{i}^{*}(F)$, where $\mathscr{F}_{I}{ }^{*}(F)$ is the closed convex hull of $\mathscr{F}_{I}(F)$.

Arguing again as in the proof of the second assertion of Theorem 3.1, it follows that if $F: I \rightarrow \Omega^{n}$ is measurable and integrably bounded and if $\mathscr{S}_{I}(F)$ is closed in $\mathscr{C}^{n}(I)$ then $\mathscr{S}_{I}(F)$ is weakly closed in $\mathfrak{N} \mathscr{A} \mathscr{C}^{n}(I)$.

In view of this result, Theorem 3.3 yields
Corollary 3.5. If $F: I \rightarrow \Omega^{n}$ is measurable and integrably bounded then $\mathscr{S}_{I}(F) \in \mathscr{H}^{n}(I)$ only if $\mathscr{S}_{I}(F)=\mathscr{S}_{I}\left(F^{*}\right)$.

The final result of this section provides a marked strengthening of Theorem 3.1 and of the assertion of Remark 3.1.

Theorem 3.4. Let $F: I \rightarrow Q^{n}$ be measurable and integrably bounded; then the following statements are equivalent:
(i) $\mathscr{S}_{I}(F) \in \mathscr{H}^{n}(I)$.
(ii) $\mathscr{S}_{I}(F)$ is a nonvoid, weakly compact subset of $\mathscr{N} \mathscr{A}_{\mathscr{C}}{ }^{n}(I)$.
(iii) $F(t)$ is convex a.e. on I.

Proof. That (iii) implies both (i) and (ii) is an easy consequence of Theorem 3.1. For the remainder of the proof, consider the func-
tion $\rho\left(F^{*}(\circ), F(\circ)\right)$. By virtue of Corollary 2.1, an argument similar to that of the first part of the proof of Theorem 2.3 permits the assertion that this function is measurable on I. Hence the set

$$
M \equiv\left\{t \in I \mid \bar{\rho}\left(F^{*}(t), F(t)\right)>0\right\}=\left\{t \in I \mid \rho\left(F^{*}(t), F(t)\right)>0\right\}
$$

is measurable. We need prove only that if $\mu(M)>0$ then $\mathscr{S}_{I}(F)$ is a proper subset of $\mathscr{S}_{I}\left(F^{*}\right)$. Indeed, in this event it follows from Corollary 3.5 that $\mathscr{S}_{l}(F) \notin \mathscr{H}^{n}(I)$ and, from Theorem 3.3, that $\mathscr{S}_{I}(F)$ is not weakly compact. Now we observe that minor modification of Hermes' proof [12] of Lemma 2.4 produces the following result: there exists a measurable function $w: I \rightarrow E^{n}$ satisfying $w(t) \in F^{*}(t)$ and $\alpha(w(t), F(t))=\rho\left(F^{*}(t), F(t)\right)$ for all $t \in I$. A function w so determined thus satisfies $\alpha(w(t), F(t))>0$ on M. Hence, if $\mu(M)>0$ it follows that $\mathscr{F}_{I}(F)$ is a proper subset of $\mathscr{F}_{I}\left(F^{*}\right)$ and this in turn implies that $\mathscr{S}_{I}(F)$ is a proper subset of $\mathscr{S}_{I}\left(F^{*}\right)$ and the proof is complete.

4. An existence theorem.

Theorem 4.1. Let D be a nonvoid open subset of $E^{1} \times E^{n}$ and let $R: E^{1} \times E^{n} \rightarrow \Gamma^{n}$ satisfy conditions (i), (ii), (iii) of Lemma 2.8 on D; then for each $\left(t_{0}, x_{0}\right) \in D$ there exists a solution ${ }^{2}$ of

$$
\begin{equation*}
\dot{x} \in R(t, x), x\left(t_{0}\right)=x_{0}, \tag{2}
\end{equation*}
$$

and every solution of (2) may be continued to the boundary of D.
Proof. There is no loss of generality in assuming that $(0,0) \in D$ and proving the theorem in the case $\left(t_{0}, x_{0}\right)=(0,0)$. The proof is based on that of Hartman [10, Th. 2.1, p. 10]. Let $a, b>0$ be sufficiently small that $C \subset D$, where

$$
C=\left\{(t, x) \in E^{1} \times E^{n} \mid 0 \leqq t \leqq a ;\|x\| \leqq b\right\}
$$

Define $\alpha=\max \left\{t \in[0, a] \mid \int_{0}^{t} h_{c}(\tau) d \tau \leqq b\right\} ;$ evidently $\alpha \in(0, \alpha]$. Let $\eta \in(0, \alpha]$ be fixed; then on $[0, \eta]$ the function whose value is $R(t, 0)$ is measurable and integrably bounded. By Theorem 3.1 there exists $w_{1} \in \mathscr{S}_{[0, \eta]}(R(\circ, 0))$ and we define a function χ_{η} on $[0, \eta$] by

$$
\chi_{\eta}(t)=w_{1}(t), t \in[0, \eta] .
$$

There follows easily

$$
\begin{equation*}
\left\|\chi_{\eta}(t)\right\| \leqq \int_{0}^{\eta} h_{c}(\tau) d \tau<b, t \in[0, \eta] ; \tag{4a}
\end{equation*}
$$

[^1](4b)
$$
\left\|\chi_{\eta}\left(t_{2}\right)-\chi_{\eta}\left(t_{1}\right)\right\| \leqq\left|\int_{t_{1}}^{t_{2}} h_{c}(\tau) d \tau\right|, t_{1}, t_{2} \in[0, \eta]
$$

If $\eta<\alpha$, let $\eta^{1}=\min \{\alpha, 2 \eta\}$; then by Lemma 2.8 the function whose value is $R\left(t, \chi_{\eta}(t-\eta)\right)$ is measurable and integrably bounded on $\left[\eta, \eta^{1}\right]$. Hence by Theorem 3.1 there exists $w_{2} \in \mathscr{S}_{\left[\eta, \eta_{1}\right]}\left(R\left(\circ, \chi_{\eta}(\circ-\eta)\right)\right)$. We extend χ_{η} to $\left[\eta, \eta^{1}\right]$ by defining

$$
\chi_{\eta}(t)=\chi_{\eta}(\eta)+w_{2}(t), t \in\left[\eta, \eta^{1}\right] ;
$$

it is easy to see that χ_{η} satisfies (4) on $\left[\eta, \eta^{1}\right]$, hence on $\left[0, \eta^{1}\right]$. If $\eta^{1}<\alpha$ the foregoing process may be iterated at most a finite number of steps to extend the definition of χ_{n} to $[0, \alpha]$ in such a way that the following property obtains:

$$
\begin{gather*}
\chi_{\eta} \in \mathscr{S}_{[0, \alpha]}\left(R^{\eta}(\circ)\right), \text { where } R^{\eta}:[0, \alpha] \rightarrow \Gamma^{n} \text { is defined by } \tag{*}\\
R^{\eta}(t)=R(t, 0), t \in[0, \eta] \\
R^{\eta}(t)=R\left(t, \chi_{\eta}(t-\eta)\right), t \in(\eta, \alpha]
\end{gather*}
$$

with the family $\left\{R^{\eta} \mid \eta \in(0, \alpha]\right\}$ being uniformly integrably bounded and each member of the family measurable on $[0, \alpha]$.

Now let $\left\{\eta_{m}\right\}$ be a monotone null sequence of points in $[0, \alpha]$; then by property (*) and the Arzela-Ascoli theorem $\left\{\chi_{\eta_{m}}\right\}$ contains a subsequence (assume it is the original) which converges uniformly on $[0, \alpha]$ to a limit function, χ, which is easily shown to be absolutely continuous (cf. the proof of Theorem 3.1). Equicontinuity of $\left\{\chi_{\eta_{m}}\right\}$ implies

$$
\lim \chi_{\eta_{m}}\left(t-\eta_{m}\right)=\chi(t), t \in[0, \alpha]
$$

so that by condition (i)

$$
\begin{equation*}
\lim \rho\left(R^{\eta_{m}}(t), R(t, \chi(t))\right)=0, t \in[0, \alpha] \tag{5}
\end{equation*}
$$

Thus from (*), (5) and Theorem 3.2 there follows

$$
\begin{equation*}
\lim \sigma\left(\mathscr{S}_{[0, \alpha]}\left(R^{\eta m}\right), \mathscr{S}_{[0, \alpha]}(R(\circ, \chi(\circ)))\right)=0 \tag{6}
\end{equation*}
$$

Since $\chi_{\eta_{m}} \rightarrow \chi$ and $\mathscr{S}_{[0, \alpha]}(R(\circ, \chi(\circ)))$ is compact, (*) and (6) imply that

$$
\begin{equation*}
\chi \in \mathscr{S}_{[0, \alpha]}(R(\circ, \chi(\circ))) . \tag{7}
\end{equation*}
$$

But (7) is equivalent to the assertion that $\chi(0)=0$ and, a.e. on $[0, \alpha]$,

$$
\dot{\chi}(t) \in R(t, \chi(t))
$$

and the proof of existence is complete. The continuability assertion follows in a straightforward way from [2, Th. 4].
(i), (ii), (iii) of Lemma 2.8 are replaced by (iv) R is continuous on D, then the conclusion of that theorem remains valid.

Proof. That (iv) implies (i) is obvious; that (iv) implies (ii) is a consequence of Lemma 2.3. Finally, (iii) follows from (iv) by setting

$$
h_{c}(t)=\max \{\max \{\|\xi\| \mid \xi \in R(\tau, x)\} \mid(\tau, x) \in C\}, t \in E^{1} .
$$

Remark 4.1. The demonstration that all solutions of (2) may be continued over the interval $[0, \alpha]$, defined in the proof of Theorem 4.1, is exactly like the corresponding proof for ordinary differential equations. The compactness of the solution family as a subset of $\mathscr{C}^{n}([0, \alpha])$ is then an easy consequence of Theorem 3.2; this again is a parallel to the corresponding argument for ordinary differential equations. Invoking [5, Th. 1] and Corollary 2.1, only slight modification of the proof of Theorem 4.1 is needed to establish the more general Pliś-Castaing existence theorem [17], [5].
5. The Huygens derivative.

Definition 5.1. Let $\mathscr{S} \in \mathscr{H}^{n}(I)$; given $t \in I$, if there exists $S(t) \in \Gamma^{n}$ such that

$$
\lim _{\eta \rightarrow 0+} \eta^{-1} \rho(G(t+\eta ; \mathscr{S}), G(t ; \mathscr{S})+\eta S(t))=0
$$

then $S(t)$ is called a right hand (Huygens) derivative of \mathscr{S} at t. If there exists $V(t) \in \Gamma^{n}$ such that

$$
\lim _{\eta \rightarrow 0+} \eta^{-1} \rho(G(t-\eta ; \mathscr{S})+\eta V(t), G(t ; \mathscr{S}))=0
$$

the $V(t)$ is called a left hand (Huygens) derivative of \mathscr{S} at t.
Lemma 5.1. The one-sided Huygens derivatives of $\mathscr{S} \in \mathscr{H}^{n}(I)$ are unique.

Proof. We give the proof for right hand derivatives, the proof for left hand derivatives being similar. Let $R(t), S(t)$ be right hand derivatives of \mathscr{S} at t; then for $\eta>0$ it follows from Lemma 1.3 and the triangle law that

$$
\begin{aligned}
\rho(R(t), S(t))= & \eta^{-1} \rho(\eta R(t), \eta S(t))=\eta^{-1} \rho(G(t ; \mathscr{S})+\eta R(t), G(t ; \mathscr{S})+\eta S(t)) \\
\leqq & \eta^{-1} \rho(G(t+\eta ; \mathscr{S}), G(t ; \mathscr{S})+\eta R(t)) \\
& +\eta^{-1} \rho(G(t+\eta ; \mathscr{S}), G(t ; \mathscr{S})+\eta S(t)) .
\end{aligned}
$$

By hypothesis, the limit, as $\eta \rightarrow 0+$, of the rightmost member is zero so that $\rho(R(t), S(t))=0$.

Definition 5.2. When these exist, the right hand and left hand derivatives at t of $\mathscr{S} \in H^{n}(I)$ will be denoted by $\left(D^{+} \mathscr{S}\right)(t)$ and $\left(D^{-} \mathscr{S}\right)(t)$ respectively. If the one-sided derivatives of \mathscr{S} at t both exist and are equal, their common value is called the Huygens derivative of \mathscr{S} at t and is denoted by $(D \mathscr{S})(t)$.

Lemma 5.2. If $F: I \rightarrow \Gamma^{n}$ is measurable and integrably bounded then

$$
\nu\left(G\left(t ; \mathscr{S}_{I}(F)\right), p\right)=\int_{0}^{t} \nu(F(\tau), p) d \tau, t \in I, p \in E^{n}
$$

Proof. Let us condense notation by defining

$$
\begin{aligned}
& \omega(t, p)=\nu\left(G\left(t ; \mathscr{S}_{1}(F)\right), p\right) \\
& \lambda(t, p)=\nu(F(t), p)
\end{aligned}
$$

Then the assertion of the lemma is that $\omega(t, p)=\int_{0}^{t} \lambda(\tau, p) d \tau, t \in I$, $p \in E^{n}$. By an argument similar to that for Theorem 3.1 it follows that $\lambda(\circ, p)$ is summable for each $p \in E^{n}$ so that $\int_{0}^{t} \lambda(\tau, p) d \tau$ is well defined. If $\sigma \in G\left(t ; \mathscr{S}_{I}(F)\right)$ then there exists $u^{*} \in \mathscr{F}_{I}(F)$ such that $\sigma=\int_{0}^{t} u^{*}(\tau) d \tau$; hence

$$
\sigma \circ p=\int_{0}^{t} u^{*}(\tau) \circ p d \tau \leqq \int_{0}^{t} \lambda(\tau, p) d \tau, t \in I, p \in E^{n}
$$

We infer that $\omega(t, p) \leqq \int_{0}^{t} \lambda(\tau, p) d \tau$. For the proof of the reverse inequality let h be the integrable bound on F; then for $\eta>0$ and $\|\mathrm{p}\|=1, \quad(h(t)+\eta) \notin F(t)$ on I. For suppose the contrary; then

$$
h(t)<h(t)+\eta=\|(h(t)+\eta) p\| \leqq h(t),
$$

which is absurd. Let $q(t, \eta, p)$ be the unique point in the boundary of $F(t)$ nearest $(h(t)+\eta) p$; then by virtue of Lemma 2.5, $q(\circ, \eta, p)$ is summable and

$$
\int_{0}^{t} \lambda(\tau, p) d \tau=\int_{0}^{t} q(\tau, \eta, p) \circ p d \tau=\left(\int_{0}^{t} q(\tau, \eta, p) d \tau\right) \circ p \leqq \omega(t, p)
$$

This completes the proof.
Theorem 5.1. If $F: I \rightarrow \Omega^{n}$ is measurable and integrably bounded then a.e. on $I,\left(D \overline{\mathscr{S}_{I}(F)}\right)(t)=F^{*}(t)$.

Proof. By virtue of Corollary 3.4, $\left(D \overline{\mathscr{S}_{I}(F)}\right)(t)$ exists if and only if $\left(D \mathscr{S}_{I}\left(F^{*}\right)\right)(t)$ exists; moreover, the two have the same value. It is thus sufficient to show that $\left(D \mathscr{S}_{1}\left(F^{*}\right)\right)(t)=F^{*}(t)$ a.e. on I; we shall
carry out the proof for D^{+}, the proof for D^{-}being similar. For $\eta>0$ we find that with ω, λ being as defined in the proof of Lemma 5.2,

$$
\begin{aligned}
& \eta^{-1} \rho\left(G\left(t+\eta ; \mathscr{S}_{I}\left(F^{*}\right)\right), G\left(t ; \mathscr{S}_{I}\left(F^{*}\right)\right)+\eta F^{*}(t)\right) \\
= & \eta^{-1} \max \{|\omega(t+\eta, p)-[\omega(t, p)+\eta \lambda(t, p)]|\| \| p \|=1\} \\
= & \left.\eta^{-1} \max \left\{\mid \int_{t}^{t+\eta} \lambda(\tau, p) d \tau-\eta \lambda t, p\right)| |\|p\|=1\right\} \quad \text { (by Lemma 5.2) } \\
= & \eta^{-1} \max \left\{\left|\int_{t}^{t+\eta}[\lambda(\tau, p)-\lambda(t, p)] d \tau\right| \mid\|p\|=1\right\} \\
\leqq & \eta^{-1} \int_{t}^{t+\eta} \Delta\left(F^{*}(\tau), F^{*}(t)\right) d \tau \leqq \eta^{-1} \int_{t}^{t+\eta} \rho(F(\tau), F(t)) d \tau
\end{aligned}
$$

(by Lemma 1.3 (ii)).
The proof is completed by invoking Theorem 2.3.
Corollary 5.1. If $F_{i}: I \rightarrow \Omega^{n}, i=1,2$, are measurable and integrably bounded, a necessary and sufficient condition that the closures of $\mathscr{S}_{1}\left(F_{1}\right)$ and $\mathscr{S}_{1}\left(F_{2}\right)$ be equal is that $F_{1}^{*}(t)=F_{2}^{*}(t)$ a.e. on I.

Proof. (Sufficiency.) Evidently $\mathscr{S}_{1}\left(F_{1}^{*}\right)=\mathscr{S}_{I}\left(F_{2}^{*}\right)$ and the assertion follows from Corollary 3.4.
(Necessity.) By hypothesis, Corollary 3.4 and Theorem 5.1, a.e. on I we have

$$
F_{1}^{*}(t)=\left(D \overline{\mathscr{S}_{I}\left(F_{1}\right)}\right)(t)=\left(D \overline{\mathscr{S}_{I}\left(F_{2}\right)}\right)(t)=F_{2}^{*}(t) .
$$

For $t_{1}, t_{2} \in I$, let us set

$$
\int_{t_{1}}^{t_{2}} F(\tau) d \tau=\left\{\int_{t_{1}}^{t_{2}} q(\tau) d \tau \mid q \in \mathscr{F}_{I}(F)\right\}
$$

where $F: I \rightarrow \Omega^{n}$. It is not difficult to verify that for $\eta>0$

$$
G\left(t+\eta ; \mathscr{S}_{I}(F)\right)=G\left(t ; \mathscr{S}_{I}(F)\right)+\int_{\tau}^{t+\eta} F(\tau) d \tau, t, t+\eta \in I
$$

and

$$
G\left(t-\eta ; \mathscr{S}_{I}(F)\right)+\int_{t-\eta}^{t} F(\tau) d \tau=G\left(t ; \mathscr{S}_{I}(F)\right), t, t-\eta \in I
$$

Thus if $F: I \rightarrow \Omega^{n}$ is measurable and integrably bounded there follow from Lemma 3.3, Lemma 1.3 and the foregoing identities, both

$$
\eta^{-1} \rho\left(G\left(t+\eta ; \mathscr{S}_{I}(F)\right), G\left(t ; \mathscr{S}_{I}(F)\right)+\eta F^{*}(t)\right)=\rho\left(\eta^{-1} \int_{t}^{t+\eta} F(\tau) d \tau, F^{*}(t)\right)
$$

and

$$
\eta^{-1} \rho\left(G\left(t-\eta ; \mathscr{S}_{I}(F)\right)+\eta F^{*}(t), G\left(t ; \mathscr{S}_{I}(F)\right)\right)=\rho\left(\eta^{-1} \int_{t-\eta}^{t} F(\tau) d \tau, F^{*}(t)\right)
$$

when $\eta>0$. Together with Theorem 5.1, these last formulae establish the following generalization of [11, Lemmas 1.2, 1.3].

Corollary 5.2. If $F: I \rightarrow \Omega^{n}$ is measurable and integrably bounded then, a.e. on I,

$$
\lim _{\eta \rightarrow 0} \rho\left(\eta^{-1} \int_{t}^{t+\eta} F(\tau) d \tau, F^{*}(t)\right)=0
$$

Remark 5.1. Note that now Corollary 5.1 appears as a generalization of [11, Th. 1.1].

References

1. R. J. Aumann, Integrals of set-valued functions, J. Math. Anal. Appl. 12 (1965), 1-12.
2. J. Bebernes, W. Fulks, G. H. Meisters, Differentiable paths and continuation of solutions of differential equations, J. Diff. Equations 2 (1966), 102-106.
3. T. F. Bridgland, Jr., On the problem of approximate synthesis of optimal controls, J. SIAM Control 5 (1967), 326-344.
4. -, Contributions to the theory of generalized differential equations, Math. Systems Theory, 3 (1969), 17-50.
5. C. Castaing, Sur les equations differentielles multivoques, C. R. Acad. Sci. Paris (A) 263 (1966), 63-66.
6. N. Dunford and J. T. Schwartz, Linear operators, part I: general theory, Interscience, New York, 1958.
7. H. G. Eggleston Convexity, Cambridge Univ. Press, Cambridge, 1958.
8. A. F. Filippov, On certain questions in the theory of optimal control, J. SIAM Control (A) 1 (1962), 76-84.
9. -, Differential equations with many-valued discontinuous right-hand side, Soviet Math. 4 (1963), 941-945.
10. P. Hartman, Ordinary differential equations, J. Wiley \& Sons, New York, 1964.
11. H. Hermes, Calculus of set valued functions and control, J. Math. Mech. 18 (1968), 47-60.
12. \qquad , The generalized differential equation $\dot{x} \in R(t, x)$, Advances in Math. (to appear)
13. H. Kudo, Dependent experiments and sufficient statistics, Nat. Sci. Rept. Ochanomizu Univ., Tokyo 4 (1954), 151-163.
14. C. Kuratowski, Topologie I, Monografie Mat. Tom XX, Warsaw, 1948.
15. I. P. Natanson, Theory of functions of a real variable, Vol. I, tr. L. F. Boron, F. Ungar Publishing Co., New York, 1961.
16. A. Pliś, Remark on measurable set-valued functions, Bull. Acad. Polon. Sci., Ser. Sci., Math., Astr., Phys. 9 (1961), 857-859.
17. ——, Measurable orientor fields, Bull. Acad. Polon. Sci. Ser. Sci., Math., Astr., Phys. 13 (1965), 565-569.
18. H. Richter, Verallgemeinerung eines in der Statistik benotigen Satzes der Masstheorie, Math. Ann. 150 (1963), 85-90; 440-441.
19. F. A. Valentine, Convex sets, McGraw-Hill, New York, 1964.

Received January 3, 1969, and in revised form September 11, 1969. This research was sponsored by the National Science Foundation under grant GP-8921.

Drexel University

A GENERALIZED HAUSDORFF DIMENSION FOR FUNCTIONS AND SETS

Robert J. Buck

Abstract

A generalization of the Hausdorff dimension of sets is given by restricting the lengths of the intervals in the covering family. The dependence of this dimension on the choice of covering family is studied by considering the set of points in the countable unit cube I^{ω} whose coordinates are the values of the dimensions of some set for a fixed, countable collection of covering families. General conditions are given in order that two families yield the same dimension on each set, and that a covering family give the ordinary Hausdorff dimension.

In 1919, Hausdorff [3] introduced a notion of dimension for subsets of the unit interval. For any set E, this dimension is $H(E)=$ $\sup \left\{\gamma: \lambda_{r}(E)>0\right\}$, where $\lambda_{r}(E)=\inf \left\{\Sigma\left(l\left(I_{j}\right)\right)^{r}: \cup I_{j} \supseteq E\right\}$; and it can take any value between 0 and 1 , being 1 in the case that E has positive Lebesgue outer measure. This notion of dimension can be generalized in various directions and the approach taken here follows Billingsley [1]. In particular, consider the dimension $H^{\prime}(E)$ given by the outer measure $\lambda_{\gamma}^{\prime}(E)=\inf \left\{\Sigma\left(m\left(C_{i}\right)\right)^{\gamma}: \cup C_{i} \supseteq E \& C_{i} \in \mathscr{J}\right\}$, where m denotes Lebesgue measure and \mathscr{F} is any collection of m-measurable sets containing sets of arbitrarily small measure. If \mathscr{J} contains the intervals and their finite unions, then $H^{\prime}(E)$ assumes only the values 0 and 1 , as $m(E)=0$ or not. Thus for the study of sets of Lebesgue measure zero, it appears that \mathscr{F} cannot be too large with respect to the family of all intervals. Accordingly, the dimension $H^{\prime}(E)$ is studied only where \mathscr{J} is any collection of intervals containing intervals of arbitrarily small length and where \mathscr{J} is closed under translations, i.e., where \mathscr{J} is completely determined by the length of its members. Rather than use the set of these lengths to describe \mathcal{F}, it is more convenient to use the set S of their negative logarithms, which is unbounded in $(0, \infty)$. The dimension then becomes a function $S(E)$ of the set E and the unbounded set S. In $\S 2$, dimension is defined for a certain family \mathscr{F} of nondecreasing functions, c.f. [2], [4], [5], which greatly facilitates the study.

The principal results concern the dependence of $S(E)$ on the choice of the covering set determined by S, and are obtained by considering the set $\mathscr{R}(S, T)$ of points in the unit square whose coordinates are respectively $S(E)$ and $T(E)$, for some set E. If Ω denotes the product of the closed unit interval with itself countably many times, Theorem 5 shows that the set of points in Ω, whose coordinates are
$S_{k}(E)$ for some E and fixed sequence of unbounded sets $\left\{S_{k}\right\}$, is precisely the intersection of all cylinders in Ω determined by the sets $\mathscr{R}\left(S_{j}, S_{k}\right), j<k$. A characterization of $\mathscr{R}(S, T)$ directly in terms of the relative gaps in the sets S and T is given by Theorem 6. The set $\mathscr{R}(S, T)$ is closed and star-shaped with respect to the diagonal $0 \leqq x=y \leqq 1$ and Theorem 7 shows that these are characteristic properties. Theorem 9 gives an especially simple necessary and sufficient condition on S and T for the equivalence: $S(E)=T(E)$ for all sets E. The remaining theorems of $\S 4$ show that for this equivalence, an unbounded set S may be replaced by an increasing sequence $\left\{s_{n}\right\}$ and that $\lim s_{n+1} / s_{n}=1$ is a necessary and sufficient condition that $\left\{s_{n}\right\}$ give the ordinary Hausdorff dimension for all sets E.

1. Preliminaries, Let \mathscr{F} be the collection of all real-valued functions f, defined on $(-\infty, \infty)$ with the property that $x \leqq y \rightarrow$ $0 \leqq f(y)-f(x) \leqq y-x$. The following elementary properties of \mathscr{F} will be continually used without mention:

$$
\begin{aligned}
& f \in \mathscr{F} \rightarrow f+\alpha \in \mathscr{F}, \alpha \text { any constant; } \\
& f \in \mathscr{F} \text { and } 0 \leqq \alpha \leqq 1 \rightarrow \alpha f \in \mathscr{F} ; \\
& f, g \in \mathscr{F} \text { and } 0 \leqq \alpha, \beta \leqq 1, \alpha+\beta \leqq 1 \rightarrow \alpha f+\beta g \in \mathscr{F} ; \\
& \mathrm{V} f_{a} \in \mathscr{F} \text { for } f_{a} \in \mathscr{F} \text {, if } \mathrm{V} f_{a}\left(x_{0}\right)<\infty \text { for some } x_{0} ; \\
& \wedge f_{a} \in \mathscr{F} \text { for } f_{a} \in \mathscr{F} \text {, if } \bigwedge f_{a}\left(x_{0}\right)>-\infty \text { for some } x_{0} .
\end{aligned}
$$

Let S, T, etc., denote unbounded sets in $(0, \infty)$ and let $f \in \mathscr{F}$. Define $S(f)=\lim \inf f(x) / x$, over $x \rightarrow \infty, x \in S$. For $f \in \mathscr{F}, S(f)$ satisfies: $0 \leqq S(f) \leqq 1$. The number $S(f)$ is called the Hausdorff dimension of f with respect to S. The following properties are immediate consequences of the definition:

$$
\begin{aligned}
& S\left(\Lambda f_{a}\right)=\Lambda S\left(f_{a}\right) \text { over finite collections }\left\{f_{a}\right\} \\
& S(f+\alpha)=S(f) \\
& S(\alpha f+\beta x)=\alpha S(f)+\beta \\
& S(f \vee \beta x)=S(f) \vee \beta
\end{aligned}
$$

Lemma 1. Given $\varepsilon>0, f \in \mathscr{F}$, and unbounded sets S_{1}, \cdots, S_{p}, there is $g \in \mathscr{F}$ such that (i) $g(0) \geqq 0, g(x) \geqq\left(S_{k}(f)-\varepsilon\right) x$, for $x \in S_{k}$, $k=1,2, \cdots, p$; and (ii) $S(g)=S(f)$ for all unbounded S.

Proof. Choose $x_{0}>0$ large enough so that $f(x) \geqq\left(S_{k}(f)-\varepsilon\right) x$ for $x \geqq x_{0}, x \in S_{k}, k=1, \cdots, p$. Write $g(x)=(f(x) \vee 0)+x_{0}$. Then $g \in \mathscr{F}$ and $g(0) \geqq 0$. Moreover, if $0 \leqq x \leqq x_{0}$, then $g(x) \geqq x \geqq\left(S_{k}(f)-\varepsilon\right) x$. For $x \geqq x_{0}$, and $x \in S_{k}, \quad g(x) \geqq f(x) \geqq\left(S_{k}(f)-\varepsilon\right) x$, which proves (i).

Finally, from the construction of $g(x)$ it is clear that $S(g)=S(f)$ for all unbounded S.

Lemma 2. Let $f_{n} \in \mathscr{F}, n=1,2, \cdots$ and unbounded sets S_{1}, S_{2}, \cdots be given. There is $f \in \mathscr{F}$ such that $S_{k}(f)=\lim \inf S_{k}\left(f_{n}\right)$ as $n \rightarrow \infty$, for each $k=1,2, \cdots$.

Proof. By Lemma 1, it can be assumed that for each $n, f_{n}(0) \geqq$ 0 and $f_{n}(x) \geqq\left(S_{k}\left(f_{n}\right)-\varepsilon_{n}\right) x$, for $x \in S_{k}, k \leqq n$ and $\varepsilon_{n} \rightarrow 0$ as $n \rightarrow \infty$. For each k and n choose $x_{n, k} \in S_{k}$ such that $x_{n, k} \rightarrow \infty$ as $n \rightarrow \infty$ and $f_{n}\left(x_{n, k}\right) \leqq\left(S_{k}\left(f_{n}\right)+\varepsilon_{n}\right) x_{n, k}$. Let $C_{n}=\mathbf{V}_{k=1}^{n}\left(x_{n, k}-f_{n}\left(x_{n, k}\right)\right)$ and put $g_{n}(x)=$ $f_{n}(x) \vee\left(x-C_{n}\right)$. Finally write $f=\Lambda g_{n}$. Since $g_{n}(0) \geqq 0$, it follows that $f \in \mathscr{F}$. Moreover, $S_{k}\left(g_{n}\right)=1$ for each k and n implies $S_{k}(f)=$ $S_{k}\left(\Lambda_{n \geqq m} g_{n}\right)$ for all m. If $k \leqq m$, then $\Lambda g_{n} \geqq \Lambda\left(S_{k}\left(f_{n}\right)-\varepsilon_{n}\right) x$ over $n \geqq m$, so that $S_{k}(f) \geqq \lim \inf S_{k}\left(f_{n}\right)$ as $n \rightarrow \infty$. On the other hand, from the construction of C_{n}, it follows that for $k \leqq n, f\left(x_{n, k}\right) \leqq$ $\left(S_{k}\left(f_{n}\right)+\varepsilon_{n}\right) x_{n, k}$. Since $x_{n, k} \rightarrow \infty$ as $n \rightarrow \infty, S_{k}(f) \leqq \lim \inf S_{k}\left(f_{n}\right)$ as $n \rightarrow \infty$.
2. The Hausdorff dimension of sets. Let \mathscr{M} be the set of all continuous, real-valued, nondecreasing functions μ defined on $[0, \infty)$ such that $\mu(0)=0$ and $\mu(x)=1$, for $x \geqq 1$. Let $\mathscr{M}_{s a}$ be the subset of \mathscr{L} consisting of those μ in \mathscr{M} which are sub-additive, i.e., $\mu(x+y) \leqq \mu(x)+\mu(y)$. Finally, given a subset E of $[0,1]$, let $\mathscr{M}(E)$ be the subset of \mathscr{M} consisting of all functions μ in \mathscr{M} supported by E, i.e., $(a, b) \cap E=\phi$ implies $\mu(a)=\mu(\mathrm{b})$. The set $\mathscr{M}(E)$ may be void. The operator Δ, defined on \mathscr{M} by $\Delta \mu(x)=\sup (\mu(y+x)-\mu(y))$ over all $y \geqq 0$, is clearly a projection of \mathscr{M} onto $\mathscr{L}_{s a}$. The properties of subadditive functions needed here are given by

Lemma 3. If $\mu \in \mathscr{A}_{\text {sa }}$, then (i) $\mu(t x) \geqq \mu(x) t /(t+1)$ for $t, x \geqq 0$; and (ii) $\mu(x)>0$ for $x>0$.

Proof. If $t=0$, (i) is obvious. Otherwise

$$
\mu(x)=\mu\left(t x t^{-1}\right) \leqq\left(t x\left(1+\left[t^{-1}\right]\right)\right) \leqq\left(1+t^{-1}\right) \mu(t x),
$$

where [z] denotes the greatest integer $\leqq z$. This shows (i). Part (ii) follows from (i), since $\mu(t) \geqq t /(t+1)$.

Corresponding to each μ in \mathscr{I}, there is $f_{\mu} \in \mathscr{F}$ defined by $f_{\mu}(x)=$ $\mathbf{V}\left(x-y-\log \Delta \mu\left(e^{-y}\right)\right)$ over $y \geqq x$. The following estimates for $f_{\mu}(x)$ will be needed:

Lemma 4. For $\mu \in \mathscr{L},-\log \Delta \mu\left(e^{-x}\right) \leqq f_{\mu}(x) \leqq \log 2-\log \Delta \mu\left(e^{-x}\right)$.

Proof. The first inequality is trivial. By Lemma $3 \Delta \mu\left(e^{-x}\right) \leqq$ $2 e^{y-x} \Delta \mu\left(e^{-y}\right)$, which establishes the second inequality.

Using the correspondence $\mu \rightarrow f_{\mu}$, the Hausdorff dimension of functions $\mu \in \mathscr{M}$ can be defined by writing $S(\mu)=S\left(f_{\mu}\right)$, for each unbounded set S. Given any set $E \subseteq[0,1]$, the Hausdorff dimension of E with respect to S is defined to be the number:

$$
S(E)=\sup \{S(\mu): \mu \in \mathscr{M}(E)\},
$$

taking $S(E)=0$ in the case that $\mathscr{M}(E)=\varnothing$. The connection between $S(E)$ and the classical Hausdorff dimension of E is given by

Theorem 1. ([2], [4]) $S(E)=\sup \left\{\gamma: \lambda_{S, r}(E)>0\right\}$, where $\lambda_{S, \gamma}(E)=$ $\inf \left\{\Sigma\left(l\left(I_{j}\right)\right)^{r}: \cup I_{j} \supseteq E \&-\log l\left(I_{j}\right) \in S\right\}$.

Proof. Let $\beta<S(E)$ and $\left\{I_{k}\right\}$ be a covering of E by intervals such that $-\log l\left(I_{j}\right) \in S$. By Lemmas 1 and $4,2 e^{-\beta s} \geqq \Delta \mu\left(e^{-s}\right)$ for $s \in S$ and some $\mu \in \mathscr{M}(E)$, so in particular

$$
\Sigma\left(l\left(I_{k}\right)\right)^{3} \geqq 1 / 2 \Sigma \Delta \mu\left(l\left(I_{k}\right)\right) \geqq 1 / 2
$$

It follows that $\lambda_{s, \lambda}(E)>0$, and hence $S(E) \leqq \sup \left\{\gamma: \lambda_{S, \gamma}(E)>0\right\}$. To show the reverse inequality, $\lambda_{s, r}(E)>0$ implies that

$$
\mu(x)=\left(\lambda_{S, r}(E)\right)^{-1} \lambda_{S, r}(E \cap[0, x])
$$

belongs to $\mathscr{M}(E)$. Moreover $\mu\left(x+e^{-s}\right)-\mu(x) \leqq\left(\lambda_{S, 7}(E)\right)^{-1} e^{-\gamma s}$ for all x, so that by Lemma $3, f_{\mu}(s) / s-\left(\log \left(\lambda_{S, \gamma}(E)\right) / s \geqq \gamma\right.$ for all $s \in S$; and it follows that $S(E) \geqq \sup \left\{\gamma: \lambda_{s, r}(E)>0\right\}$.

The fact that $\lambda_{s, r}$ is a sub-additive and monotone set function implies

Theorem 2. Given any countable collection $\left\{E_{n}\right\}$ of subsets of $[0,1], S\left(\cup E_{n}\right)=\bigvee S\left(E_{n}\right)$ for all unbounded sets S.

Let \mathscr{C} be the collection of all sets E of the form: $E=\{\xi: \xi=$ $\Sigma \varepsilon_{k} \xi_{k}, \varepsilon_{k}=0$ or 1$\}$ for some positive, nonincreasing sequence $\left\{\xi_{k}\right\}$ with $\Sigma \xi_{k} \leqq 1$. For such sets E, the function μ_{E}, defined on [$0, \infty$) by $\mu_{E}(x)=$ $\sup \left\{\Sigma \varepsilon_{k} 2^{-k}: x \geqq \Sigma \varepsilon_{k} \xi_{k}\right\}$, belongs to $\mathscr{M}(E)$ and is sub-additive.

THEOREM 3. If $E \in \mathscr{C}$, then $S(E)=S\left(\mu_{E}\right)$ for all unbounded sets S.

Proof. Let $\lambda \in \mathscr{M}(E)$ and consider $s \in S$ such that $\xi_{k+1} \leqq e^{-s} \leqq$
ξ_{k}. Since E is contained in the union of the 2^{k+1} intervals:

$$
I\left(\varepsilon_{1}, \cdots, \varepsilon_{k+1}\right)=\left[\sum_{j=1}^{k+1} \varepsilon_{j} \xi_{j}, \sum_{j=1}^{k+1} \varepsilon_{j} \xi_{j}+\xi_{k+1}\right],
$$

and any two of these intervals intersect in at most one point, it follows that $\Delta \lambda\left(e^{-s}\right) \geqq 2^{-k-1} \geqq \Delta \mu\left(e^{-s}\right) / 2$. By Lemma $4, f_{\lambda}(s) \leqq \log 4+f_{\mu}(s)$ for $s \in S$, so that $S(\lambda) \leqq S\left(\mu_{E}\right)$.

Since $S(\mu)=S\left(f_{\mu}\right)$, Theorem 3 shows that for $E \in \mathscr{C}$, there is $f \in \mathscr{F}$ such that $S(E)=S(f)$ for all S. The converse is also true.

Theorem 4. For each $f \in \mathscr{F}$, there is $E_{f} \in \mathscr{C}$ such that $S(f)=$ $S\left(E_{f}\right)$ for all unbounded sets S.

Proof. If f is bounded, then $S(f)=0$ and E_{f} can be taken to be void. Thus assume $f(x) \rightarrow \infty$ as $x \rightarrow \infty$ and without loss of generality, $f(0)=0$. Select a positive, nonincreasing sequence ξ_{k} satisfying $f\left(-\log \xi_{k}\right)=k \log 2$. Such sequences exist since f is continuous nondecreasing and tends to ∞ as $x \rightarrow \infty$. Moreover, since $f(x)-x$ is nonincreasing, $\xi_{1} \leqq 1 / 2$ and $\xi_{k+1} \leqq \xi_{k} / 2$, which implies $\Sigma \xi_{k} \leqq 1$. Let $E=E_{f}$ be the set $\left\{\xi: \xi=\Sigma \varepsilon_{k} \xi_{k}, \varepsilon_{k}=0\right.$ or 1$\}$, and let $\mu=\mu_{E}$. For $s \in S$ and $\xi_{k+1} \leqq e^{-s} \leqq \xi_{k}, \log \mu\left(e^{-s}\right) \geqq-\log 2-f(s)$, so that $f(s) \geqq$ $-\log 4+f_{\mu}(s)$ by Lemma 4. Also $\log \mu\left(e^{-s}\right) \leqq \log 2-f(s)$, which shows $f(s) \leqq \log 2+f_{\mu}(s)$. Since these inequalities hold for all $s \in S$, this proves $S(f)=S(E)$.

If $\mathscr{H}_{0}=\left\{\left(\alpha_{S}\right)\right.$: for some $E \in \mathscr{C}, \alpha_{S}=S(E)$ for all $\left.S\right\}$, and if $\mathscr{R}_{s}=$ $\left\{\left(\beta_{s}\right)\right.$: for some $f \in \mathscr{F}, \beta_{S}=S(f)$ for all $\left.S\right\}$, then Theorems 3 and 4 show $\mathscr{C}_{e}=\mathscr{R}_{木}$. The situation for arbitrary subsets of $[0,1]$ is more difficult and the results are restricted to countable collections $\left\{S_{k}\right\}$ of unbounded sets.

For any pair of unbounded sets S and T, let $\mathscr{R}(S, T)=\{(\alpha, \beta)$: $\alpha=S(f), \beta=T(f)$ for some $f \in \mathscr{F}\}$. From the properties of \mathscr{F} and $S(f)$ for $f \in \mathscr{F}$ listed in $\S 1$, it is clear that $\mathscr{R}(S, T)$ is star-shaped with respect to each point $(\alpha, \alpha), 0 \leqq \alpha \leqq 1$. Moreover, Lemma 2 implies that $\mathscr{R}(S, T)$ is always closed. Let

$$
\Omega=\left\{\left(x_{r}\right) ; 0 \leqq x_{r} \leqq 1, r=1,2, \cdots\right\} .
$$

For each pair of natural numbers j, k with $j<k$, let $A_{j, k}$ be the cylinder in $\Omega: A_{j, k}=\left\{\left(x_{r}\right):\left(x_{j}, x_{k}\right) \in \mathscr{R}\left(S_{j}, S_{k}\right)\right\}$. Finally, let $\mathscr{C}\left[\left\{S_{k}\right\}\right]=$ $\left\{\left(\alpha_{k}\right)\right.$: for some $\left.E \subseteq[0,1], \alpha_{k}=S_{k}(E), k=1,2, \cdots\right\}$.

Theorem 5. Given any countable collection of unbounded sets $\left\{S_{k}\right\}, \mathscr{C}\left[\left\{S_{k}\right\}\right]=\cap A_{j, k}$ over $j<k$.

Proof. Suppose $\left(\alpha_{r}\right) \in \mathscr{\mathscr { C }}\left[\left\{S_{k}\right\}\right]$. Let $j<k$ and $E \subseteq[0,1]$ such
that $\alpha_{j}=S_{j}(E), \alpha_{k}=S_{k}(E)$. If $\alpha_{j}=\alpha_{k}$ then $\left(\alpha_{j}, \alpha_{k}\right) \in \mathscr{R}\left(S_{j}, S_{k}\right)$ so $\left(\alpha_{r}\right) \in A_{j, k}$. Thus assume $\alpha_{j} \neq \alpha_{k}$ and by symmetry, consider only the case $\alpha_{j}<\alpha_{k}$. Then given any $\varepsilon>0$, there is $f \in \mathscr{F}$ such that

$$
S_{k}(E)-\varepsilon<S_{k}(f) \leqq S_{k}(E) \quad \text { and } \quad S_{j}(f) \leqq S_{j}(E) .
$$

The function $g=f \vee S_{j}(E) x$ belongs to \mathscr{F} and

$$
S_{j}(g)=S_{j}(E), S_{k}(E)-\varepsilon<S_{k}(g) \leqq S_{k}(E)
$$

Since $\mathscr{R}\left(S_{j}, S_{k}\right)$ is closed, this shows $\left(\alpha_{r}\right) \in A_{j, k}$, and hence $\mathscr{\mathscr { C }}\left[\left\{S_{k}\right\}\right] \subseteq$ $\cap A_{j, k}$ over $j<k$. Now suppose $\left(x_{r}\right) \in \cap A_{j, k}$. Then for every pair $j<k$, there is $f_{j, k} \in \mathscr{F}$ with $x_{j}=S_{j}\left(f_{j, k}\right)$ and $x_{k}=S_{k}\left(f_{j, k}\right)$. For each pair of natural numbers p, n, write

$$
g_{p, n}=\Lambda\left\{f_{j, k}: k=p \text { or } j=p, k+j \leqq p+n\right\}
$$

By Lemma 2, for each p, there is $g_{p} \in \mathscr{F}$ such that $S_{k}\left(g_{p}\right)=\lim \inf$ $S_{k}\left(g_{p, n}\right)$ as $n \rightarrow \infty$, for each $k=1,2, \cdots$. Now write $E=\cup E_{g_{p}}$ over $p=1,2, \cdots$. By Theorems 2 and 4 , for each $k, S_{k}(E)=\mathrm{V}_{k}\left(g_{p}\right) \geqq$ $\lim _{n} \inf S_{k}\left(g_{k, n}\right)=x_{k}$. On the other hand, if $p \neq k$, then either $g_{p, n} \leqq$ $f_{k, p}$ or $g_{p, n} \leqq f_{p, k}$ for $n \geqq k$, depending whether $p<k$ or $p>k$. Thus $S_{k}(E)=S_{k}\left(g_{k}\right) \vee \mathrm{V}_{p \neq k} \lim _{n} \inf S_{k}\left(g_{p, n}\right) \leqq x_{k}$, for each k, which shows $\left(x_{r}\right) \in \mathscr{H}\left[\left\{S_{k}\right\}\right]$.

In general, if the sequence $\left\{S_{k}\right\}$ contains more than two terms, the set $\mathscr{H}\left[\left\{S_{k}\right\}\right]$ properly contains the set $\left\{\left(x_{k}\right)\right.$: for some $f \in \mathscr{F}, x_{k}=$ $\left.S_{k}(f), k=1,2, \cdots\right\}$.
3. The set $\mathscr{R}(S, T)$. The results of $\S 2$ show that the set $\mathscr{H}\left[\left\{S_{k}\right\}\right]$ is determined by the sets $\mathscr{R}\left(S_{j}, S_{k}\right), j<k$. This section lists a few of the properties of $\mathscr{R}(S, T)$. The first of these is a characterization of $\mathscr{R}(S, T)$ solely in terms of the sets S and T.

For each x, let $A(x, S, T)$ consist of all pairs (α, β) with $1>\alpha \geqq$ $\beta>0$ and $(x \beta / \alpha, x(1-\beta) /(1-\alpha)) \cap S=\varnothing$. Let $B(x, S, T)$ be the set of all pairs (α, β) with $(\beta, \alpha) \in A(x, T, S)$. Finally let $\mathscr{A}(S, T)=$ $\lim \sup A(t, S, T)$ as $t \rightarrow \infty, t \in T$, and $\mathscr{B}(S, T)=\lim \sup B(s, S, T)$ as $s \rightarrow \infty, s \in S$.

Theorem 6. For every pair of unbounded sets S and T,

$$
\mathscr{R}(S, T)=\mathrm{C} 1(\mathscr{A}(S, T) \cup \mathscr{B}(S, T))
$$

Proof. Suppose $(\alpha, \beta) \in \mathscr{A}(S, T)$. If $\alpha=\beta$, then $(\alpha, \beta) \in \mathscr{R}(S, T)$. Thus assume $\beta<\alpha$. Then for some unbounded subset T_{0} of T, the intervals $I_{t}=(t \beta / \alpha, t(1-\beta) /(1-\alpha))$ do not intersect S for $t \in T_{0}$. De-
fine a function f in \mathscr{F} by

$$
f(x)=\left\{\begin{array}{l}
\beta t \vee(x-(1-\beta) t), \quad \text { if } \quad x \in I_{t}, t \in T_{0} \\
\alpha x, \text { otherwise } .
\end{array}\right.
$$

Then $S(f)=\alpha$ and $f(t) / t=\beta$ for $t \in T_{0}$, and so $T(f) \leqq \beta$. It follows that $\beta S(f) \geqq \alpha T(f)$ and $(1-\beta)(1-S(f)) \leqq(1-\alpha)(1-T(f))$. Since $\mathscr{R}(S, T)$ is closed and star-shaped with respect to $(0,0)$ and $(1,1)$ it follows that $\mathrm{Cl}(\mathscr{A}(S, T)) \cong \mathscr{R}(S, T)$. A similar argument shows $\mathrm{Cl}(\mathscr{B}(S, T)) \cong \mathscr{R}(S, T)$. On the other hand, let f belong to \mathscr{F}. If $S(f)=T(f)$, then $(S(f), T(f))$, belongs to $\mathrm{Cl}(\mathscr{A}(S, T) \cup \mathscr{B}(S, T))$. Thus assume $S(f) \neq T(f)$ and by symmetry in S and T, assume $S(f)>$ $T(f)$. It suffices to show that $S(f)>\alpha>\beta>T(f)$ implies $(\alpha, \beta) \in \mathscr{A}(S, T)$. In this case, it can be assumed by Lemma 1, that $f(s)>\alpha s$ for all $s \in S$ and that there is an unbounded subset T_{0} of T on which $f(t)<$ β. Since $f \in \mathscr{F}, f(s) \leqq((s-t) \vee 0)+f(t)$ for all pairs s and t. If $t \in T_{0}$ and $s \leqq t$, this implies $\alpha s<\beta t$. If $s \geqq t$, then $\alpha s<s-t+\beta t$. These last two inequalities imply $(t \beta / \alpha, t(1-\beta) /(1-\alpha)) \cap S=\varnothing$ or $(\alpha, \beta) \in A(t, S, T)$ for each $t \in T_{0}$. It follows that $(\alpha, \beta) \in \mathscr{A}(S, T)$.

As was noted before $\mathscr{R}(S, T)$ is always closed and star-shaped with respect to all points $(\alpha, \alpha), 0 \leqq \alpha \leqq 1$. These two properties actually characterize the shape of $\mathscr{R}(S, T)$ as is seen by

Theorem 7. Let \mathscr{R} be a closed set in the unit square, $0 \leqq$ $\alpha, \beta \leqq 1$, star-shaped with respect to $(0,0)$ and $(1,1)$. There are unbounded sets S and T such that $\mathscr{R}=\mathscr{R}(S, T)$.

Proof. The theorem is obvious if \mathscr{R} is the diagonal $0 \leqq \alpha=\beta \leqq 1$, since for $S=T, \mathscr{P}(S, T)$ is this diagonal. Otherwise, there is a sequence $\left(\alpha_{n}, \beta_{n}\right), 0<\alpha_{n}, \beta_{n}<1, \alpha_{n} \neq \beta_{n}$ which is everywhere dense in \mathscr{R}. Select a sequence of intervals (a_{n}, b_{n}) such that $a_{n} \rightarrow \infty$ as $n \rightarrow \infty, b_{n} \leqq a_{n+1}$ and

$$
\begin{aligned}
& b_{n} / a_{n}=\left(\alpha_{n}^{-1}-1\right) /\left(\beta_{n}^{-1}-1\right), \text { if } \alpha_{n}<\beta_{n} \\
& b_{n} / a_{n}=\left(\beta_{n}^{-1}-1\right) /\left(\alpha_{n}^{-1}-1\right), \text { if } \alpha_{n}>\beta_{n} .
\end{aligned}
$$

If $\alpha_{n}<\beta_{n}$, the interval $\left(a_{n}, b_{n}\right)$ is called an interval of type I. If $\alpha_{n}>\beta_{n}$, the interval $\left(a_{n}, b_{n}\right)$ is said to be of type II. In each interval of type I, let $s_{n}=a_{n} \beta_{n} / \alpha_{n}$, and in each interval of type II, let $t_{n}=$ $a_{n} \alpha_{n} / \beta_{n}$. In either case the constructed point belongs to (a_{n}, b_{n}). Let S consist of all the points a_{n}, b_{n} and the points s_{n}. Let T consist of all the points a_{n}, b_{n} and the points t_{n}. Assume first that $(\alpha, \beta) \in \mathscr{R}$. If $\alpha=\beta$, then $(\alpha, \beta) \in \mathscr{R}(S, T)$. Thus suppose $\alpha \neq \beta$ and by symmetry in S and T assume $\alpha>\beta$. Select a sequence of intervals $I_{n}=$
$\left(a_{n}, b_{n}\right)$ of type II, such that $\alpha_{n} \rightarrow \alpha$ and $\beta_{n} \rightarrow \beta$. Define f in \mathscr{F} by

$$
f(x)=\left\{\begin{array}{l}
\alpha a_{n} \vee\left(x-(1-\alpha) b_{n}\right), \text { if } x \in I_{n}, n=1,2, \cdots \\
\alpha x, \text { otherwise } .
\end{array}\right.
$$

Then $S(f)=\alpha$ and for $t_{n} \in I_{n}, f\left(t_{n}\right) / t_{n}=\alpha \beta_{n} / \alpha_{n} \vee\left(1-(1-\alpha)\left(1-\beta_{n}\right) /\right.$ $\left(1-\alpha_{n}\right)$) which tends to β as $n \rightarrow \infty$. Thus $T(f)=\beta$, which shows $\mathscr{R} \subseteq \mathscr{R}(S, T)$. To show the reverse containment it is sufficient, by Theorem 6, to show $\mathscr{A}(S, T) \subseteq \mathscr{R}$. If $(\alpha, \beta) \in \mathscr{A}(S, T)$, then for a subsequence t_{k} of $\left\{t_{n}\right\},\left(t_{k} \beta / \alpha, t_{k}(1-\beta) /(1-\alpha)\right) \cap S=\varnothing$. This implies $\beta_{k} / \alpha_{k} \leqq \beta / \alpha$ and $(1-\beta) /(1-\alpha) \leqq\left(1-\beta_{k}\right) /\left(1-\alpha_{k}\right)$. Since \mathscr{R} is starshaped with respect to $(0,0)$ and $(1,1)$, this shows $(\alpha, \beta) \in \mathscr{R}$.
4. Equivalence of unbounded sets. By Theorem 5 of § 2 the statement, $S(E)=T(E)$ for all $E \subseteq[0,1]$, is the same as, $S(f)=T(f)$ for all $f \in \mathscr{F}$. The induced equivalence relation, $S \equiv T$, deserves some study.

Theorem 8. For all unbounded sets $S, S \equiv \mathrm{Cl}(S)$.
Proof. Since $S \subseteq \mathrm{Cl}(S)$, it is clear that $S(f) \geqq \mathrm{Cl}(S)(f)$ for all $f \in \mathscr{F}$. On the other hand, there is a map $\psi: \mathrm{Cl}(S) \rightarrow S$ such that $|1-x / \psi(x)| \leqq 1 / x$ for each $x \in \mathrm{Cl}(S)$. If $f \in \mathscr{F}$, then

$$
f(s) \leqq[(s-x) \vee 0]+f(x)
$$

for every pair s, x. Hence $f(\psi(x)) / \psi(x) \leqq 1 / x+(1+1 / x) f(x) / x$ for all $x \in \mathrm{Cl}(S)$. It follows that $S(f) \leqq \mathrm{Cl}(S)(f)$ for $f \in \mathscr{F}$ and so $S \equiv \mathrm{Cl}(S)$.

The related partial ordering: $S \leqq T$, if and only if, $S(f) \leqq T(f)$ for all $f \in \mathscr{F}$, again equivalent to $S(E) \leqq T(E)$ for all $E \subseteq[0,1]$, has the following characterization.

Theorem 9. A necessary and sufficient condition that $S \leqq T$, is that there exist a function $\varphi: T \rightarrow S$ such that $\lim t / \rho(t)=1$, as $t \rightarrow \infty$, $t \in T$.

Proof. If $\varphi: T \rightarrow S$ and $t / \varphi(t) \rightarrow 1$ as $t \rightarrow \infty, t \in T$, then for $f \in \mathscr{F}$, $f(\varphi(t)) \leqq[(\varphi(t)-t) \vee 0]+f(t)$, which implies

$$
f(\varphi(t)) / \varphi(t) \leqq|1-t / \varphi(t)|+(t / \varphi(t))(f(t) / t)
$$

Hence $S(f) \leqq \varphi(T)(f) \leqq T(f)$. On the other hand, assume $S(f) \leqq T(f)$ for all $f \in \mathscr{F}$. In particular this is true for $g(x)=\mathrm{V}(s / 2 \wedge(x-s / 2))$ over $s \in \mathrm{Cl}(S)$. Here, $S(g)=1 / 2 \leqq T(g)$. For each $t \in T$, let $s(t)=$ $\sup \{s: s \in S, s \leqq t\}$ and $s^{\prime}(t)=\inf \{s: s \in S, s \geqq t\}$. Then $s(t)$ and $s^{\prime}(t)$
belong to $\mathrm{Cl}(S)$ and it is easy to see that $g(t)=s(t) / 2 \vee\left(t-s^{\prime}(t) / 2\right)$. Now let $\theta: T \rightarrow \mathrm{Cl}(S)$ be defined by

$$
\theta(t)=\left\{\begin{array}{l}
s(t), \text { if } t / s^{\prime}(t) \leqq s(t) / t \\
s^{\prime}(t), \text { otherwise }
\end{array}\right.
$$

If $0<\varepsilon<1 / 2$, then for $t \in T$, t sufficiently large, $1 / 2-\varepsilon \leqq g(t) / t$, which means $1-2 \varepsilon \leqq s(t) / t$ or $s^{\prime}(t) / t \leqq 1+2 \varepsilon$. Since θ satisfies: $1 \leqq t / \theta(t) \leqq$ $s^{\prime}(t) / t$ or $1 \geqq t / \theta(t) \geqq s(t) / t$, it follows that $|1-t / \theta(t)| \leqq 2 \varepsilon$ and so $t / \theta(t) \rightarrow 1$ as $t \rightarrow \infty, t \in T$. If $\psi: \mathrm{Cl}(S) \rightarrow S$ is the mapping introduced in the proof of Theorem 8, then the composition, $\varphi=\psi \theta$, satisfies the required property, i.e., $t / \varphi(t) \rightarrow 1$ as $t \rightarrow \infty, t \in T$.

Given any unbounded S, let $I_{k}=\left[n_{k}, n_{k}+1\right.$), for n_{k} nonnegative integers, be a sequence of intervals such that $S \subset \cup I_{k}$ and $I_{k} \cap S$ is nonempty. Let $s_{k}=\inf \left\{s: s \in S \cap I_{k}\right\}$. Then $\left\{s_{k}\right\} \subseteq \mathrm{Cl}(S)$ and so $\left\{s_{k}\right\} \geqq$ S. On the other hand the map $\varphi: S \rightarrow\left\{s_{k}\right\}$ defined by $\varphi(s)=s_{k}$, if $s \in S \cap I_{k}$, clearly satisfies the condition of Theorem 9 . This proves

Theorem 10. Given any unbounded S, there is an increasing sequence $\left\{s_{k}\right\}$ such that $S \equiv\left\{s_{k}\right\}$.

The final result concerns the classical Hausdorff dimension $H(f)$, where $H=(0, \infty)$.

Theorem 11. If $S=\left\{s_{n}\right\}$ and $s_{n} \leqq s_{n+1}$, then $S \equiv H$, if and only if, $\lim s_{n+1} / s_{n}=1$, as $n \rightarrow \infty$.

Proof. If $s_{n} \leqq x \leqq s_{n+1}$, then for $f \in \mathscr{F}, f\left(s_{n+1}\right) \leqq s_{n+1}-x+f(x)$, so that $f\left(s_{n+1}\right) / s_{n+1} \leqq s_{n+1} / s_{n}-1+f(x) / x$. In the case that $s_{n+1} / s_{n} \rightarrow 1$ as $n \rightarrow \infty$, it follows that $S(f) \leqq H(f)$ for all $f \in \mathscr{F}$. Since $S \subseteq H$, this shows $S \equiv H$. Conversely, if $S \leqq H$, then for $g=\mathrm{V}(\alpha s \wedge(x-(1-\alpha) s)$ over $s \in S, H(g) \geqq S(f)=\alpha$, for a fixed $\alpha, 0<\alpha<1$. Thus, in particular for the points

$$
\begin{aligned}
& x_{n}=\alpha s_{n}+(1-\alpha) s_{n+1}, \lim \inf g\left(x_{n}\right) / x_{n}=\liminf \alpha /(\alpha+ \\
& \left.(1-\alpha) s_{n+1} / s_{n}\right) \geqq \alpha \text { as } n \rightarrow \infty . \quad \text { Thus } s_{n+1} / s_{n} \rightarrow 1 \text { as } n \rightarrow \infty .
\end{aligned}
$$

5. Connection with other dimension functions. Dimension can be defined for more general classes of intervals, \mathscr{J} cf. [1], i.e., where \mathscr{J} need not be closed under translations. It is known that if \mathscr{J} is the class of r-adic intervals, then the dimension $H^{\prime}(E)$ determined by \mathscr{J} coincides with the usual Hausdorff dimension $H(E)$,
as an easy application of Theorem 11 shows, taking

$$
S=\{-\log \mathscr{L}(I): I \in \mathscr{J}\}
$$

For which classes \mathcal{J}, does the dimension $S(E)$, where

$$
S=\{-\log \mathscr{L}(I): I \in \mathscr{J}\}
$$

coincide with that determined by \mathscr{J} ? More generally, for which \mathscr{J}, do there exist unbounded sets S, such that $S(E)$ coincides with $H^{\prime}(E)$ determined by \mathcal{J} ? In general, the solution of these problems is not known. Notice that for such classes \mathcal{J}, the dimension $H^{\prime}(E)$ is necessarily a translation invariant dimension, so that one might ask if this property is also sufficient.

The author is indebted to Professor F. Bohnenblust for his advice and guidance during the preparation of this paper, which formed a part of the author's Doctoral dissertation submitted to the California Institute of Technology.

Bibliography

1. P. Billingsley, Ergodic theory and information, John Wiley and Sons, Inc., New York, 1965.
2. O. Frostman, Potentiel d'équilibre et capacité des ensembles avec quelques applications à la théorie des functions, Lund. Universitet. Medd. 3 (1935), 56, 57, 85-91.
3. F. Hausdorff, Dimension und äusseres Mass, Math. Ann. 79 (1919), 157-179.
4. J. Kahane, and R. Salem, Ensembles parfaits et series trigonométriques, Hermann, Paris, 1963.
5. A. Rényi, Dimension, entropy and information, Transactions of the Second Prague Conference on Information Theory, Statistical Decision Functions, Random Processes, Academic Press, New York, 1960, 545-556.

Received January 3, 1969.
University of California, Davis

A CHARACTERIZATION OF PERFECT RINGS

Vlastimil Dlab

Abstract

J. P. Jans has shown that if a ring R is right perfect, then a certain torsion in the category $\operatorname{Mod} R$ of left R-modules is closed under taking direct products. Extending his method, J. S. Alin and E. P. Armendariz showed later that this is true for every (hereditary) torsion in Mod R. Here, we offer a very simple proof of this result. However, the main purpose of this paper is to present a characterization of perfect rings along these lines: A ring R is right perfect if and only if every (hereditary) torsion in $\operatorname{Mod} R$ is fundamental (i.e., derived from "prime" torsions) and closed under taking direct products; in fact, then there is a finite number of torsions, namely 2^{n} for a natural number n. Finally, examples of rings illustrating that the above characterization cannot be strengthened are provided. Thus, an example of a ring R_{1} is given which is not perfect, although there are only fundamental torsions in $\operatorname{Mod} R_{1}$, and only $4=2^{2}$ of these. Furthermore, an example of a ring $R_{2 *}$ is given which is not perfect and which, at the same time, has the property that there is only a finite number (namely, 3) of (hereditary) torsions in Mod $R_{2 *}$ all of which are closed under taking direct products. Moreover, the ideals of $R_{2 *}$ form a chain (under inclusion) and Rad $R_{2 *}$ is a nil idempotent ideal; all the other proper ideals are nilpotent and $R_{2 *}$ can be chosen to have a (unique) minimal ideal.

In what follows, R stands always for a ring with unity, \mathscr{C} for the set of all left ideals of R and $\operatorname{Mod} R$ for the category of all (unital) left R-modules and R-homomorphisms. Given $L \in \mathscr{L}$ and $\rho \in R, L: \rho$ denotes the (right) ideal-quotient of L by ρ, i.e., the left ideal of all $\chi \in R$ such that $\chi \rho \in L$. We shall call a subset \mathscr{K} of \mathscr{L} a Q-set if it is closed with respect to this operation, i.e., if $K \in \mathscr{C}$ and $\rho \in R$ implies $K: \rho \in \mathscr{K}$; obviously, \mathscr{L} and $\{R\}$ are the greatest and the least Q-sets, respectively. Thus, a topologizing idempotent filter (briefly, a T-set) of left ideals of P. Gabriel [4] is a Q-set \mathscr{K} satisfying, in addition to the filter properties, also the following "radical" condition: If L is a left ideal of R such that $L: \kappa \in \mathscr{K}$ for every element κ of $K \in \mathscr{K}$, then $L \in \mathscr{K}$, as well.

By a torsion T in $\operatorname{Mod} R$ we shall always understand a hereditary torsion; thus, a torsion T in $\operatorname{Mod} R$ is a full subcategory of $\operatorname{Mod} R$ such that
(a) T is closed under taking submodules,
(b) for every $M \in \operatorname{Mod} R$, there is the greatest submodule (the T torsion part) $T(M)$ of M belonging to T and
(c) $\quad T(M / T(M))=0$ for every $M \in \operatorname{Mod} R$.

As a consequence, every torsion in $\operatorname{Mod} R$ is closed under taking quotients, direct sums and inductive limits. There is a one-to-one correspondence between the torsions in $\operatorname{Mod} R$ and the T-sets of left ideals of R :

If \mathscr{K} is a T-set, then the class $T(\mathscr{K})$ of all R-modules whose elements have orders from \mathscr{K}^{\prime} is a torsion in $\operatorname{Mod} R$; on the other hand, if T is a torsion in $\operatorname{Mod} R$, then the T-set $\mathscr{K}(T)=\{L \mid L \in \mathscr{L}$ and $R \bmod L \in T\}$ satisfies $T=T[\mathscr{K}(T)]$. Given an R-module M, let us always denote the T-torsion part of it by $T(M)$.

Thus, given a torsion T, we can define the following two-sided ideals I_{T} and $J_{T} \supseteq I_{T}$ of R :

$$
I_{T}=\bigcap_{L \in \mathscr{S}_{(}(T)} L
$$

and

$$
J_{T} / I_{T}=T\left(R / I_{T}\right)
$$

Using this notation, we can prove easily

Proposition 1. The following four statements are equivalent:
(i) A torsion T in $\operatorname{Mod} R$ is closed under taking direct products.
(ii) For every subset \mathscr{S} of $\mathscr{K}(T)$,

$$
\begin{gathered}
\bigcap_{L \in \mathscr{U}} L \in \mathscr{K}(T) \\
I_{T} \in \mathscr{K}(T) \\
J_{R}=R
\end{gathered}
$$

Proof. The equivalence of (ii), (iii), and (iv) is trivial. Also the implication (ii) \rightarrow (i) follows easily; for, the order of an element of a direct product is evidently the intersection of the orders of its components. Finally, in order to show that (i) \rightarrow (iv), we consider the monogenic submodule of the direct product

$$
\prod_{L \in \mathscr{S C}(T)} R \bmod L
$$

generated by the element whose components are generators of $R \bmod L$; it is obviously R-isomorphic to R / I_{T}.

Proposition 2. Let every proper (i.e., $\neq R$) two-sided ideal J of R satisfy the following condition: There is $\kappa \notin J$ such that, for every $\rho \in R$ with $\rho \kappa \notin J$, there exists $\sigma \in R$ with $\sigma \rho \kappa=\kappa$. Then every torsion in $\operatorname{Mod} R$ is closed under taking direct products.

Proof. Let T be a torsion and J_{T} the two-sided ideal defined above. Assume that $J_{T} \neq R$. Thus, there exists $\kappa \notin J_{T}$ with the properties stated in our assumption. Since

$$
\bigcap_{L \in \mathscr{M}(T)} L=I_{T} \cong J_{T}
$$

there is $L_{0} \in \mathscr{K}(T)$ such that $\kappa \notin L_{0}$. Hence

$$
L_{0}: \kappa=\left(R \kappa \cap L_{0}\right): \kappa \cong J_{T}: \kappa,
$$

and therefore $J_{T}: \kappa \in \mathscr{K}(T)$, in contradiction to the fact that R / J_{T} has no nonzero element of order belonging to $\mathscr{K}^{(}(T)$. Consequently, $J_{T}=R$ and Proposition 2 follows in view of Proposition 1.

Theorem A. If a ring R satisfies the minimum condition on principal left ideals, i.e., if R is right perfect (cf. H. Bass [2]), then every torsion in $\operatorname{Mod} R$ is closed undertaking direct products.

Proof. Given an ideal $J \neq R$, consider the (nonempty) set of all principal left ideals which are not contained in J; take a minimal element K of this set, $\kappa \in K \backslash J$ and apply Proposition 2.

Remark 1. We can see easily that if R satisfies the minimum condition on principal left ideals, then every R-module M has a nonzero socle; the latter property is, in turn, obviously equivalent to either of the following two statements:
(i) Every monogenic R-module has a nonzero socle.
(ii) For every proper left ideal L of R, there is $\rho \in R \backslash L$ such that $L: \rho \neq R$ is maximal in R.

Before we proceed to establish the characterization of perfect rings, left us introduced the following convenient notation and terminology. Denote by $\mathscr{W} \subseteq \mathscr{L}$ the Q-set of all maximal left ideals of R (R itself including). Obviously, for every $W \in \mathscr{W}, W \neq R$, the subset

$$
\{W: \rho \mid \rho \in R\}
$$

is a minimal Q-set contained in \mathscr{W}. Denoting by $\mathscr{W}_{\omega}, \omega \in \Omega$, all such (distinct) minimal Q-sets, it is easy to see that $\left\{\mathscr{W}_{\omega} \mid \omega \in \Omega\right\}$ is a covering of \mathscr{W}, i.e.,

$$
\mathscr{Y}=\bigcup_{\omega \in \Omega} \mathscr{W}_{\omega} \quad \text { and } \quad \mathscr{W}_{\omega_{1}} \cap \mathscr{W}_{\omega_{2}}=\{R\} \quad \text { for } \quad \omega_{1} \neq \omega_{2}
$$

Furthermore, for every $\Omega_{1} \subseteq \Omega$, put

$$
\mathscr{W}_{\Omega_{1}}=\bigcap_{\omega \in \Omega_{1}} \mathscr{W}_{\omega} ;
$$

of course, $\mathscr{W}=\mathscr{W}_{\Omega}$ and $\mathscr{W}_{\omega}=\mathscr{W}_{\{\Omega\}}$ for each $\omega \in \Omega$. Now, for every $\Omega_{1} \subseteq \Omega$, denote the smallest T-set containing $\mathscr{W}_{\Omega_{1}}$ by $\mathscr{W}_{\Omega_{1}}^{*}$. It can be easily shown (cf. [3]) that $\mathscr{W}_{\Omega_{1}}^{*}$ is the unique T-set \sim-equivalent to $\mathscr{W}_{\Omega_{1}}$ in the sense that, for every proper left ideal $L \in \mathscr{W}_{\Omega_{1}}^{*}$,

$$
\{L: \rho \mid \rho \in R\} \cap \mathscr{W}_{\Omega_{1}} \neq\{R\} .
$$

As a consequence,

$$
\mathscr{W}_{\Omega_{1}}^{*} \cap \mathscr{W}=\mathscr{W}_{a_{1}}
$$

Let us call the torsions $T\left(\mathscr{W}_{\omega}{ }^{*}\right), \omega \in \Omega$, the prime torsions in $\operatorname{Mod} R$ and, more generally, torsions $T\left(\mathscr{W}_{\Omega_{1}}^{*}\right)$ corresponding to the subsets Ω_{1} of Ω, the fundamental torsions (i.e., derived from prime ones) in $\operatorname{Mod} R$.

On the basis of the above characterization of the T-sets $\mathscr{V}_{\Omega_{1}}^{*}$, one can derive very easily the following well-known

Proposition 3. For any ring R, all the fundamental torsions $T\left(\mathscr{W}_{\Omega_{1}}^{*}\right)$ in $\operatorname{Mod} R$ are distinct and form a lattice ideal of the complete lattice of all torsions in $\operatorname{Mod} R$, which is isomorphic to the lattice 2^{a} of all subsets of Ω.

Proof. In order to complete the proof we need only to show that every torsion T in $\operatorname{Mod} R$ contained in $T\left(\mathscr{W}^{*}\right)$ is fundamental. But this follows from the fact that the T-set $\mathscr{\mathscr { C }}(T) \subseteq \mathscr{W}^{*}$ is evidently ~-equivalent to $\mathscr{K}(T) \cap \mathscr{W}$ and since $\mathscr{K}(T) \cap \mathscr{W}=\mathscr{W}_{\Omega_{0}}$ for a suitable $\Omega_{0} \subseteq \Omega$, we have, in view of the fact that there is unique T set \sim-equivalent to $\mathscr{V}_{\Omega_{0}}$,

$$
\mathscr{C}(T)=\mathscr{W}_{2_{0}}^{*},
$$

as required.
Remark 2. We can see easily that the assertion that every torsion in $\operatorname{Mod} R$ is fundamental is equivalent to the assertion that $\mathscr{W}^{*}=\mathscr{L}$, which in turn is equivalent to any of the statements of the previous Remark 1 (for, $\mathscr{V}^{*} \sim \mathscr{W}^{\text {}}$).

Now, let us formulate the following
Theorem B. Let R be a ring such that every fundamental torsion in $\operatorname{Mod} R$ is closed under taking direct products. Then $R / \operatorname{Rad} R$ is semisimple (i.e., artinian); in particular, Ω is finite.

Proof. For each $\omega \in \Omega$, put

$$
W_{\omega}^{0}=\bigcap_{W \in \mathscr{\mathscr { O }}} W
$$

and notice that the intersection

$$
\operatorname{Rad} R=\bigcap_{\omega \in \Omega} W_{\omega}^{0}
$$

is, according to Proposition 3, irredundant. For, \mathscr{W}_{ω}^{*} (for each $\omega \in \Omega$) and \mathscr{W}^{*} are the smallest T-sets containing W_{ω}^{0} and $\operatorname{Rad} R$, respectively.

In order to prove our theorem, it is sufficient to show that the socle of $R / \operatorname{Rad} R$ is the whole quotient $\operatorname{ring} R / \operatorname{Rad} R$; for, $R / \operatorname{Rad} R$ is a ring with unity. First, observe that, in view of the fact that $\operatorname{Rad} R \in \mathscr{W}^{*}$, the socle of $R / \operatorname{Rad} R$ is essential in $R / \operatorname{Rad} R$ in the sense that it intersect every nonzero left ideal of $R / \operatorname{Rad} R$ nontrivially. Write

$$
S / \operatorname{Rad} R=\operatorname{Socle}(R / \operatorname{Rad} R)
$$

with the two-sided ideal $S \supseteqq \operatorname{Rad} R$ of R and assume

$$
S \neq R
$$

Then, there is a (proper) maximal left ideal W of R such that

$$
S \subseteq W \subset R ;
$$

and, $W \in \mathscr{W} \mathscr{\omega}_{\omega_{1}}$ for a suitable $\omega_{1} \in \Omega$. Moreover, clearly

$$
S \subseteq W_{\omega_{1}}^{0}
$$

Hence, since $\bigcap_{\omega \in \Omega} W_{\omega}^{\circ}$ is irredundant,

$$
\bigcap_{\substack{\omega \in a \\ \omega \neq \omega_{1}}} W_{\omega}^{0} \neq\left(\bigcap_{\substack{\omega \in \Omega \\ \omega \neq \omega_{1}}} W_{\omega_{1}}^{0}\right) \cap W_{\omega_{1}}^{0}=\operatorname{Rad} R ;
$$

on the other hand, since $\operatorname{Rad} R \subseteq S \subseteq W_{\omega_{1}}^{0}$,

$$
\left(\bigcap_{\substack{\omega \in a \\ \omega \neq \omega_{1}}} W_{\omega}^{0}\right) \cap S=\operatorname{Rad} R
$$

and thus

$$
\bigcap_{\substack{\omega \in \curvearrowleft \\ \omega \neq \omega_{1}}} W_{\omega}^{0}=\operatorname{Rad} R
$$

a contradiction.
The proof of the theorem is completed.
Now, the main result of the present paper, namely the characterization of perfect rings, follows straight forward from Theorem A, Remarks 1 and 2, Theorem B and the fact that a (right) perfect rings can be characterized as a ring R with unity such that every (left) R module has a nonzero socle and that $R / \operatorname{Rad} R$ is artinian (H. Bass [2]):

Corollary. A ring R is right perfect if and only if all torsions in $\operatorname{Mod} R$ are fundamental and are closed under taking direct products.

In conclusion, let us remark that the above characterization cannot be strengthened, even if we take into account the additional condition that there is a finite number of fundamental torsions in $\operatorname{Mod} R$ (the fact which is a consequence of our characterization). To show this, we present the following two examples of rings (which can easily be generalized):

Example 1. Let N be the set of all natural numbers, F a field. Denote by $R_{1}=R_{1}\left(\boldsymbol{K}_{0}, F\right)$ the ring of all countable "bounded" matrices over F, i.e., the ring of all functions $f: N \times N \rightarrow F$ satisfying the condition that there is a natural number n_{f} such that

$$
f(i, j)=0 \quad \text { for } i \neq j, i>n_{f} \text { or } j>n_{f}
$$

and

$$
f(i, i)=f\left(n_{f}+1, n_{f}+1\right) \quad \text { for all } i>n_{f},
$$

with matrix addition and multiplication. It is easy to verify that, for every $n \in N$,

$$
C_{n}=\left\{f \mid f \in R_{1} \text { and } f(i, j)=0 \text { for } j \neq n\right\}
$$

are minimal left ideals in R_{1} and that the socle

$$
S=\bigoplus_{n \in N} C_{n}
$$

of R_{1} is a (two-sided) maximal ideal in R_{1}; obviously, $R_{1} / S \cong F$. Furthermore, $\mathscr{W}_{1}^{\prime}=\left\{S, R_{1}\right\}$ is a minimal Q-set of left ideals of R_{1}. Also, for every $n \in N$, the left ideals

$$
W_{n}=\left\{f \mid f \in R_{1} \text { and } f(i, n)=0\right\}
$$

are maximal in R_{1} and belong to the same minimal Q-set \mathscr{W}_{2}^{\prime}. It is easy to see that the set of all maximal left ideals of R_{1}

$$
\mathscr{W}=\mathscr{W}_{1} \cup \mathscr{W}_{2}
$$

and that there are 4 torsions in $\operatorname{Mod} R$, all of them fundamental, namely

$$
0=T(\{R\}), T\left(\mathscr{W}_{1}^{*}\right), T\left(\mathscr{W}_{2}^{*}\right) \text { and } \operatorname{Mod} R=T\left(\mathscr{W}^{*}\right)
$$

Only $T\left(\mathscr{W}_{2}^{*}\right)$ is not closed under taking direct products. Of course, R_{1} is not perfect.

Example 2. Denote by Q^{+}the set of all nonnegative rational
numbers endowed with the usual order \leqq. Let F be a field. Denote by $R_{2}=R\left(Q^{+}, F\right)$ the ring of all functions $f: Q^{+} \rightarrow F$ such that the support

$$
\operatorname{Sup} f=\left\{r \mid r \in Q^{+} \text {and } f(r) \neq 0\right\}
$$

is contained in a well-ordered (with respect to \leqq) subset of Q^{+}which has no finite limit point, with the addition and multiplication defined by

$$
\left(f_{1}+f_{2}\right)(r)=f_{1}(r)+f_{2}(r)
$$

and

$$
\left(f_{1} * f_{2}\right)(r)=\sum_{\substack{t \in Q^{+} \\ t \leqq r}} f_{1}(t) \cdot f_{2}(r-t)
$$

respectively.
It is a matter of routine to verify that R_{2} is a (commutative) ring. Now, for every $f \in R_{2}$, denote by r_{f} the least nonzero rational number such that $f\left(r_{f}\right) \neq 0$. Moreover, for every $t \in Q^{+}$, denote by $f^{(t)}$ the function of R_{2} defined by

$$
f^{(t)}(r)= \begin{cases}1 & \text { for } r=t \\ 0 & \text { otherwise }\end{cases}
$$

Now, we can see easily that, for every $f \in R_{2}$,

$$
f=f^{\left(r_{f}\right)} * \bar{f}
$$

where $\bar{f}(r)=f\left(r+r_{f}\right)$ for $r \in Q^{+}$(and thus, $r_{\bar{f}}=0$). First, we are going to prove the following

Lemma. If $\bar{f} \in R_{2}$ such that $r_{\bar{f}}=0$, then there is $\bar{g} \in R_{2}$ satisfying

$$
\bar{f} * \bar{g}=f^{(0)}\left(=\text { unity of } R_{2}\right)
$$

Proof. In order to ease the technical difficulties of the proof, observe first that having a well-ordered subset S of Q^{+}with no finite limit point, we can consider the subsemigroup \bar{S} of Q^{+}generated by $S: \bar{S}$ is again well-ordered and has no finite limit point. Hence, we may consider, for a moment, that our function \bar{f} is defined on a wellordered subsemigroup \bar{S} of Q^{+}with no limit point and try to find \bar{g} defined on the same set \bar{S}, i.e., with $\operatorname{Sup} \bar{g} \subseteq \bar{S}$. Write

$$
S=\left\{r_{i}\right\}_{i=0}^{\infty} \text { with } 0=r_{0}<r_{1}<r_{2}<\cdots<r_{n}<\cdots
$$

Let us proceed by induction: Denoting by \bar{g}_{1} the function defined by

$$
\bar{g}_{1}(0)=[\bar{f}(0)]^{-1}, \bar{g}_{1}\left(r_{1}\right)=-[\bar{f}(0)]^{-2} \cdot f\left(r_{1}\right) \text { and } \bar{g}_{1}(r)=0 \text { otherwise, }
$$

we can see easily that

$$
\bar{f} * \bar{g}_{1}=f^{(0)}+h_{1},
$$

where

$$
\operatorname{Sup} \bar{g}_{1} \subseteq\left\{r_{i}\right\}_{i=0}^{1} \text { and } \operatorname{Sup} h_{1} \subseteq\left\{r_{i}\right\}_{i=2}^{\infty} \text {. }
$$

Assuming that, for a natural $n \geqq 1$, we have $\bar{g}_{n} \in R_{2}$ and $h_{n} \in R_{2}$ with

$$
\text { Sup } \bar{g}_{n} \cong\left\{r_{i}\right\}_{i=0}^{n} \text { and } \operatorname{Sup} h_{n} \cong\left\{r_{i}\right\}_{i=n+1}^{\infty}
$$

such that

$$
\bar{f} * \bar{g}_{n}=f^{(0)}+h_{n},
$$

let us define

$$
\bar{g}_{n+1}=\bar{g}_{n}+g_{n+1},
$$

where

$$
g_{n+1}\left(r_{n+1}\right)=-[\bar{f}(0)]^{-1} h_{n}\left(r_{n+1}\right) \text { and } g_{n+1}(r)=0 \text { otherwise . }
$$

Then,

$$
\bar{f} * \bar{g}_{n+1}=\bar{f} * \bar{g}_{n}+\bar{f} * g_{n+1}=f^{(0)}+h_{n}+\bar{f} * g_{n+1}
$$

and, writing

$$
h_{n+1}=h_{n}+\bar{f} * g_{n+1},
$$

we can easily check that

$$
\text { Sup } h_{n+1} \subseteq\left\{r_{i}\right\}_{i=n+2}^{\infty} .
$$

For,

$$
h_{n+1}(r)=\left(\bar{f} * g_{n+1}\right)(r)=\sum_{0 \leq t \leq r} \bar{f}(t) g_{n+1}(r-t)=0 \text { for } r<r_{n+1}
$$

and

$$
\begin{aligned}
h_{n+1}\left(r_{n+1}\right) & =h_{n}\left(r_{n+1}\right)+\sum_{0 \leq \leq \leq r_{n+1}} \bar{f}(t) g_{n+1}\left(r_{n+1}-t\right) \\
& =h_{n}\left(r_{n+1}\right)+\bar{f}(0) g_{n+1}\left(r_{n+1}\right)=h_{n}\left(r_{n+1}\right)-h_{n}\left(r_{n+1}\right)=0,
\end{aligned}
$$

as required.
Finally, to complete the proof of our lemma, denote by \bar{g} the function defined by

$$
\bar{g}(r)= \begin{cases}g_{i}\left(r_{i}\right) & \text { for } r=r_{i}, i=0,1, \cdots \\ 0 & \text { elsewhere }\end{cases}
$$

Then,

$$
\bar{f} * \bar{g}=f^{(0)} ;
$$

for, if $i=1,2, \cdots$

$$
\begin{aligned}
(\bar{f} * \bar{g})\left(r_{i}\right) & =\left(\bar{f} *\left[\bar{g}_{i}+\left(\bar{g}-\bar{g}_{i}\right)\right]\right)\left(r_{i}\right) \\
& =\left(\bar{f} * \bar{g}_{i}\right)\left(r_{i}\right)+\left[\bar{f} *\left(\bar{g}-\bar{g}_{i}\right)\right]\left(r_{i}\right) \\
& =\left(f^{(0)}+h_{i}\right)\left(r_{i}\right)+\left[\bar{f} *\left(\bar{g}-\bar{g}_{i}\right)\right]\left(r_{i}\right) \\
& =0+\sum_{0 \leqq t \leqq r_{i}} \bar{f}(t)\left(\bar{g}-\bar{g}_{i}\right)\left(r_{i}-t\right) \\
& =0 .
\end{aligned}
$$

As a consequence, $f \in R_{2}$ is a unit in R_{2} if and only if $r_{f}=0$. Moreover, for every $r \in Q^{+}$, there exist two ideals

$$
\bar{I}_{r}=\left\{f \mid f \in R_{2} \text { and } r_{f} \geqq r\right\}
$$

and

$$
I_{r}=\left\{f \mid f \in R_{2} \text { and } r_{f}>_{i} r\right\} ;
$$

these are all ideals of R_{2}. Notice that,

$$
I_{r} \subset \bar{I}_{r}
$$

and that

$$
r_{1}<r_{2} \quad \text { implies } \quad I_{r_{1}}^{\prime} \supset{ }_{1} \bar{I}_{r_{2}}
$$

in particular,

$$
\bar{I}_{0}=R_{2} \quad \text { and } \quad I_{0}=\operatorname{Rad}_{2} R_{2}
$$

It is also easy to see that there are no divisors of zero in $\rfloor R_{2}$ and that

$$
\left(\operatorname{Rad} R_{2}\right)^{2}=\operatorname{Rad} R_{2}
$$

For, if $f \in \operatorname{Rad} R_{2}$, then $r_{f}>0$ and obviously,

$$
f=f^{\left((1 / 2) r_{f}\right)} * g
$$

where

$$
g(r)=f\left(r+\frac{1}{2} r_{f}\right) \quad \text { for } r \in Q^{+} \text {; }
$$

here, both $f^{\left(11 / 2 r_{g}\right)}$ and g evidently belong to $\operatorname{Rad} R_{2}$.
Finally, given a positive rational number q, define

$$
R_{2 q}=R_{2} / I_{q}
$$

(similarly, we can consider $\bar{R}_{2 q}=R_{2} / \bar{I}_{q}$). It is easy to see that

$$
\operatorname{Rad} R_{2 q} \cong I_{0} / I_{q}
$$

satisfies again

$$
\left(\operatorname{Rad} R_{2 q}\right)^{2}=\operatorname{Rad} R_{2 q},
$$

but that every other proper ideal (which is isomorphic to either I_{r} / I_{q} or I_{r} / I_{q} for $r \geqq q$) is nilpotent; besides,

$$
\text { Socle }\left(R_{2 q}\right) \cong \bar{I}_{q} / I_{q}
$$

Thus, there are only three torsions in $\operatorname{Mod} R_{2 q}$, namely

$$
0=T(\{R\}), T\left(\left\{R_{2 q}, \operatorname{Rad} R_{2 q}\right\}\right) \quad \text { and } \quad \operatorname{Mod} R_{2 q}=T\left(\mathscr{L}^{R_{2 q}}\right)
$$

All of them are evidently closed under taking direct products; but, only the first two are fundamental. And, $R_{2 q}$ is not perfect.

References

1. J. S. Alin and E. P. Armendariz, TTF-classes and $E(R)$-torsion modules (to appear).
2. H. Bass, Finistic dimension and homological generalization of semi primary rings, Trans. Amer. Math. Soc. 95 (1960), 466-488.
3. V. Dlab, Distinguished sets of ideals of a ring, Czechoslovak Math. J. 18/93 (1968), 560-567.
4. P. Gabriel, Des catégories abéliennes, Bull. Soc. Math. France 90 (1962), 323-448.
5. J. P. Jans, Some aspects of torsion, Pacific J. Math. 15 (1965), 1249-1259.

Received April 4, 1969.
Carleton University
Ottawa, Ontario, Canada

SOME EXAMPLES IN FIXED POINT THEORY

E. FADELL

Abstract

It is known that the fixed point property (f.p.p.) is not invariant under suspension and join in the category of simply connected polyhedra. In this paper we exhibit examples to show that f.p.p. is not invariant under suspension and join in the category of simply connected polyhedra satisfying the Shi condition and more strongly, in the category of simply connected compact manifolds. We also exhibit a simply connected polyhedron X such that the smash product $X \wedge X$ fails to have f.p.p. if one choice of base point is used to form $X \wedge X$, while $X \wedge X$ has f.p.p. using another choice of base point. In the last section we prove that f.p.p. is invariant under Cartesian products in very special circumstances.

It is known that the fixed point property (f.p.p.) in the category of simply connected polyhedra is not an invariant under cartesian products, smash products, suspension, join or homotopy type (Lopez [3] and [1]). In all cases the counterexamples are based upon polyhedra which fail to satisfy the Shi condition, namely that for each vertex $v, \partial S t v$ (boundary of the star of v) be connected and the dimension is $\geqq 3$. It is therefore natural to consider the behavior of f.p.p. in more restrictive categories. As suggested in [1], one should look at f.p.p. in the following categories:
\mathscr{S} : Polyhedra satisfying the Shi condition.
\mathscr{S}_{0} : Simply connected polyhedra in \mathscr{S}.
\mathscr{M} : Compact topological manifolds, dimension $\geqq 3$.
\mathscr{M}_{0} : Simply connected manifolds in \mathscr{M}.
In the categories \mathscr{S} and \mathscr{M} f.p.p. is a homotopy type invariant. In fact, if X is any compact ANR dominated by Y, where Y is in \mathscr{S} or \mathscr{M}, then Y f.p.p. implies X f.p.p. [1]. Thus the result, Y f.p.p. implies $Y \times I$ f.p.p., is valid in the categories \mathscr{S} or \mathscr{M} even though it is false for (simply connected) polyhedra in general.

The question

$$
\begin{equation*}
X \text { f.p.p., } Y \text { f.p.p. } \Longrightarrow X \times Y \text { f.p.p.? } \tag{1}
\end{equation*}
$$

in the categories \mathscr{S} or \mathscr{M} remains open. In §4, we prove two very special cases for the categories \mathscr{S}_{0} and \mathscr{C}_{0}. In $\S 2$ we provide the details of the examples announced in [1] which show that in \mathscr{S}_{0} and \mathscr{M}_{0} f.p.p. is not invariant under the suspension and join operations. In § 3 we use one of the examples of § 2 to construct a simply connected polyhedron X which has f.p.p. and with the curious property
that with one choice of base point (a, a) the resulting smash product $X \wedge X=X \times X / a \times X \cup X \times a$ fails to have f.p.p., while constructing $X \wedge X$ with another choice of base point preserves f.p.p.
2. Two examples. If $F: X \rightarrow X$ is a self-map of a compact connected metric ANR, then for any field Λ

$$
\begin{equation*}
L(f ; \Lambda)=\sum_{k}(-1)^{k} \text { Trace } f_{k}^{*} \tag{1}
\end{equation*}
$$

is the Lefschetz number of f over Λ and $\bar{L}(f, \Lambda)=L(f, \Lambda)-1$ is the reduced Lefschetz number of over Λ. When $\Lambda=Q$, the field of rational numbers, then $L(f)=L(f, Q)$ is the usual Lefschetz number of f. $\chi(X)$ and $\bar{\chi}(X)=\chi(X)-1$ will denote the Euler characteristic and reduced Euler characteristic, respectively. All spaces in this paper will be connected compact metric ANR's.

We will make use of the following simple lemma.
Lemma 2.1. Suppose Λ is a field of characteristic $p \neq 2$ and X and Y are spaces with the property that for every self-map $f: X \rightarrow X$, $\bar{L}(f ; \Lambda)=0$ or 1 and every self-map $g: Y \rightarrow Y, \bar{L}(g, \Lambda)=0$. Then any space $W \sim X \vee Y$ has f.p.p.

Proof. Let

$$
\begin{align*}
& X \xrightarrow{i_{1}} X \vee Y \xrightarrow{r_{1}} X \tag{2}\\
& Y \xrightarrow{i_{2}} X \vee Y \xrightarrow{r_{2}} Y \tag{3}
\end{align*}
$$

denote the natural inclusions and retractions. Then, if $\varphi: X \vee Y \rightarrow$ $X \vee Y$ is any map, let $f=r_{1} \varphi i_{1}$ and $g=r_{2} \varphi i_{2}$. It is easy to verify that

$$
\begin{equation*}
\bar{L}(\varphi, \Lambda)=\bar{L}(f, \Lambda)+\bar{L}(g, \Lambda)=0 \text { or } 1 \tag{4}
\end{equation*}
$$

Therefore, $L(\varphi, \Lambda) \neq 0$. Thus, $X \vee Y$ has the property that every self-map φ has nonzero Lefschetz number over Λ. Since this property is a homotopy type invariant, it follows that if $W \sim X \vee Y$, then W has f.p.p.

Lemma 2.2. If $H P^{4}$ is quaternionic projective 4-space, then for every self-map $f: H P^{4} \rightarrow H P^{4}, \bar{L}\left(f, Z_{3}\right)=0$ or 1 .

Proof. Let u denote a generator in $H^{4}\left(H P^{4} ; Z_{3}\right)$. Then, if $f^{*}(u)=a u$,

$$
\begin{equation*}
\bar{L}\left(f ; Z_{3}\right)=a+a^{2}+a^{3}+a^{4}=0 \text { or } 1 \tag{5}
\end{equation*}
$$

Lemma 2.3. If $S H P^{3}$ is the suspension of quaternionic projective 3 -space, then for every self-map $g: S H P^{3} \rightarrow S H P^{3}, \bar{L}\left(g ; Z_{3}\right)=0$.

Proof. Choose a generator $v \in H^{5}\left(S H P^{3} ; Z^{3}\right)$ such that $P^{1} v$ and $P^{2} v$ generate the Z_{3}-cohomology in dimensions 9 and 13 , respectively. P^{i} is the mod 3 Steenrod reduced power operator. Now, if $g: S H P^{3} \rightarrow$ $S H P^{3}$ and $g^{*}(v)=b v$,

$$
\begin{equation*}
\bar{L}\left(g ; Z_{3}\right)=b+b+b=0 \tag{6}
\end{equation*}
$$

Proposition 2.4. Any space $W \sim H P^{4} \vee S H P^{3}$ has f.p.p.
Proposition 2.5. Let

$$
K=H P^{4} \cup_{I} S H P^{3}
$$

denote the union of $H P^{4}$ and $S H P^{3}$ along an edge. Then, K is a simply connected polyhedron which has f.p.p. and satisfies the Shi condition. Moreover, $\chi(K)=2$.

Remark. $K^{\prime}=\left(H P^{4} \vee S H P^{3}\right) \times I$ has the same properties as K.
Proposition 2.6. The suspension $S K$ and the join $K \circ K$ fail to have f.p.p.

Proof. Since $\bar{\chi}(S K)=-\bar{\chi}(K)$ and $\bar{\chi}(K \circ K)=-\bar{\chi}(K) \bar{\chi}(K)$, both $S K$ and $K \circ K$ have Euler characteristic 0 . Since $S K$ and $K \circ K$ satisfy the Shi condition, both admit maps homotopic to the identity map which are fixed point free [5].

Theorem 2.7. The f.p.p. is not invariant under suspension and join in the category \mathscr{S}_{0}.

Our next example will verify the above theorem in the category $\mathscr{M}{ }_{0}$.

Let $q: S^{7} \rightarrow S^{4}$ denote the standard Hopf fibering and let $A=M_{1}(q)$, $B=M_{2}(q)$ denote two copies of the mapping cylinder of q. Then if $h: S^{7} \rightarrow S^{7}$ is a reflection (degree -1), where S^{7} is identified with one end of the mapping cylinder of q, we may represent the connected sum

$$
\begin{equation*}
M=H P^{2} \# H P^{2} \tag{7}
\end{equation*}
$$

by

$$
\begin{equation*}
M=A \cup_{h} B \tag{8}
\end{equation*}
$$

There is a natural "flip" map $f: M \rightarrow M$ which takes A to B and B to A and which is the reflection on $S^{7}=A \cap B$, where A and B are identified with the appropriate subsets of M. It is easy to see that f is a homeomorphism which preserves orientation. Furthermore, by identifying $S^{7}=A \cap B$ we obtain an identification map

$$
g: M \longrightarrow H P^{2} \vee H P^{2}
$$

which allows us to compute the cohomology ring structure (Z-coefficients) as follows:

Lemma 2.8. The cohomology of $M=H P^{2} \# H P^{2}$ is given by

$$
\begin{align*}
& H^{\circ}(M)=Z, \text { generator } 1 \\
& H^{2}(M)=Z \oplus Z, \text { generators } x, y \tag{10}\\
& H^{4}(M)=Z, \text { generator } x^{2}=y^{2}
\end{align*}
$$

with $H^{q}(M)=0$ in the remaining dimensions and $x y=0$.
Theorem 2.9. $M=H P^{2} \# H P^{2}$ is a simply connected manifold with f.p.p. which admits a map f of Lefschetz number $L(f)=2$.

Proof. The natural "flip" map $f: M \rightarrow M$ defined above has $L(f)=2$ so that the last part of the theorem is easy. Now, let

$$
\begin{equation*}
\varphi: M \longrightarrow M \tag{11}
\end{equation*}
$$

denote an arbitrary map and suppose, using (10), that

$$
\begin{align*}
& \varphi^{*}(x)=a x+b y \tag{12}\\
& \varphi^{*}(y)=c x+d y .
\end{align*}
$$

Then,

$$
\begin{equation*}
\varphi^{*}\left(x^{2}\right)=\varphi^{*}\left(y^{2}\right)=\left(a^{2}+b^{2}\right) x^{2}=\left(c^{2}+d^{2}\right) y^{2} \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\varphi(x y)=0=(a c+b d) x^{2} \tag{14}
\end{equation*}
$$

which yields the conditions

$$
\begin{equation*}
a^{2}+b^{2}=c^{2}+d^{2}, \quad a c+b d=0 . \tag{15}
\end{equation*}
$$

Furthermore,

$$
\begin{equation*}
L(\varphi)=1+a+d+a^{2}+b^{2} . \tag{16}
\end{equation*}
$$

We now consider individual cases.

Case 1. $\quad a=0, b=0$. Here $L(\varphi)=1$.

Case 2. $a^{2}+b^{2} \neq 0,(a, b) \neq(-1,0)$. Using (15), we have

$$
\begin{equation*}
a^{2}\left(a^{2}+b^{2}\right)=a^{2}\left(c^{2}+d^{2}\right)=d^{2}\left(a^{2}+b^{2}\right) \tag{17}
\end{equation*}
$$

so that $a= \pm d$. If $a=-d, L(\rho)=1+a^{2}+b^{2}>0$. On the other hand if $a=d, L(\varphi)=(1+a)^{2}+b^{2}>0$.

Case 3. $a=-1, b=0$. This case does not occur. To see this, choose $v \in H^{4}\left(H P^{2} ; \mathbf{Z}_{3}\right)$ such that $P^{1} v=v^{2}$. Then we may assume $g^{*}(v)=x$ (over \mathbf{Z}_{3}) and $P^{1} x=x^{2}$ in $H^{4}\left(M ; \mathbf{Z}_{3}\right)$. If $\varphi^{*}(x)=a x$ (over Z), we must have

$$
\begin{equation*}
\varphi^{*}\left(P^{1} x\right)=\varphi^{*}\left(x^{2}\right)=a^{2} x^{2}=a^{2} P^{1} x=a P^{1} x=a x^{2} \tag{18}
\end{equation*}
$$

so that $a^{2} \equiv a(\bmod 3)$. This precludes $a=-1$.
Thus, we see that for any map $\varphi: M \rightarrow M, L(\varphi) \neq 0$ and hence M has f.p.p.

Theorem 2.10. The f.p.p. is not invariant under suspension and join in the category \mathscr{M}_{0}.

Proof. Let M denote the manifold in the previous theorem and $f: M \rightarrow M$ the map with $L(f)=2$. Then,

$$
\begin{equation*}
S f: S M \longrightarrow S M \text { and } f \circ f: M \circ M \longrightarrow M \circ M \tag{19}
\end{equation*}
$$

yield

$$
\begin{equation*}
\bar{L}(S f)=-\bar{L}(f)=-1=-\bar{L}(f) \bar{L}(f)=\bar{L}(f \circ g) \tag{20}
\end{equation*}
$$

so that

$$
\begin{equation*}
L(S f)=0=L(f \circ f) \tag{21}
\end{equation*}
$$

Since we are in the simply connected case, the Nielson number of $S f$ (and $f \circ f$) is zero. Therefore again using [5], $S f$ and $f \circ f$ can be deformed to fixed point free maps so that $S M$ and $M \circ M$ fail to have f.p.p.
3. The f.p.p. and smash product. Our objective in this section is to show that there is a simply connected polyhedron X with f.p.p. such that the smash product $X \wedge X=X \times X / X \vee X$ has f.p.p. with one choice of base point $x_{0} \in X$ while it may fail to have f.p.p. if one employs another base point $x_{1} \in X$.

We will make use of the polyhedron

$$
\begin{equation*}
K=H P^{4} \cup_{I} S H P^{3} \tag{1}
\end{equation*}
$$

discussed in the previous section. If $N=S H P^{2}$ and

$$
\begin{equation*}
X=K \vee N=\left(H P^{4} \cup_{I} S H P^{3}\right) \vee S H P^{2} \tag{2}
\end{equation*}
$$

we will show that $X \wedge X$ fails to have f.p.p. if the base point $x_{0} \in X$ is chosen distinct from the wedge point $v \in X$. On the other hand, if the wedge point v is employed to form $X \wedge X$, then $X \wedge X$ retains f.p.p.

Theorem 3.1. If $x_{0} \neq v$, then

$$
X \wedge X=X \times X / x_{0} \times X \cup X \times x_{0}
$$

fails to have f.p.p.
Proof. First we observe that since $\chi(X)=0, \bar{L}(i d)=-1$, where \bar{L} is the reduced Lefschetz number. Since $\bar{\chi}(K)=1$ (reduced Euler characteristic) we see that X admits a map g such that $\bar{L}(g)=1$. Thus, $\bar{L}(i d \wedge g)=\bar{L}(i d) \bar{L}(g)=-1$, and we see that $f=i d \wedge g$ is a self-map of $X \wedge X$ with $L(f)=0 . \quad X \wedge X$ is simply connected and can be shown to satisfy the Shi condition (using the fact that $x_{0} \times X \cup X \times x_{0}$ fails to separate $X \times X$). It follows that there is a $\operatorname{map} g \sim f$ such that g has no fixed points. Thus, $X \wedge X$ fails to have f.p.p.

We now show that using the wedge point v

$$
\begin{equation*}
X \wedge X=X \times X / v \times X \cup X \times v \tag{3}
\end{equation*}
$$

has f.p.p. Although the details are lengthy, the idea is quite simple. $X=K \cup N$ with $K \cap N=v$, the wedge point. Using v as base point in the formation of $X \wedge X$ yields

$$
\begin{equation*}
X \wedge X=(K \wedge K) \vee(K \wedge N) \vee(N \wedge K) \vee(N \wedge N) \tag{4}
\end{equation*}
$$

where the four-fold wedge on the right is understood to have a single wedge point v^{\prime} corresponding to $v \times X \cup X \times v$. Now, since f.p.p. is invariant under the wedge operation, it suffices to show that the four individual wedge factors $K \wedge K, K \wedge N, N \wedge K, N \wedge N$ have f.p.p.

Lemma 3.2. $H P^{4} \wedge H P^{4}$ has f.p.p. Specifically, for any self map $\varphi, \bar{L}\left(\varphi, Z_{3}\right)=0$ or 1.

Proof. We will identify $H^{*}(A \wedge B)$ with $H^{*}(A \times B, A \vee B) \simeq$ $H^{*}\left(A, a_{0}\right) \otimes H^{*}\left(B, b_{0}\right)$ using always field coefficients. Then, working over $Z_{3}, H^{*}\left(H P^{4}\right)$ has a basis of the form

$$
\begin{equation*}
1, \alpha, P^{1} \alpha, P^{2} \alpha, \alpha^{4} \tag{5}
\end{equation*}
$$

where P^{i} is the Steenrod reduced power operator. Then, we may arrange a basis for $H^{*}\left(H P^{4} \wedge H P^{4}\right)$ in positive dimensions as follows:

$$
\begin{array}{rlrl}
\alpha & \times \alpha & \alpha & \times P^{1} \alpha+P^{1} \alpha \times \alpha \\
P^{1} \alpha & \times \alpha & P^{1} \alpha \times P^{1} \alpha-P^{2} \alpha \times \alpha & -P^{2} \alpha \times P^{2} \alpha+P^{1} \alpha+P^{1} \alpha \times P^{1} \alpha+P^{2} \alpha \times \alpha \\
\alpha & \times P^{2} \alpha & P^{1} \alpha \times P^{2} \alpha & P^{2} \alpha \times P^{2} \alpha \\
\alpha^{4} & \times \alpha & \alpha^{4} & \times P^{1} \alpha \\
\alpha & \times \alpha^{4} & P^{1} \alpha \times \alpha^{4} & \alpha^{4} \times P^{2} \alpha \\
\alpha^{4} \times \alpha^{4} & & P^{2} \alpha \times \alpha^{4} .
\end{array}
$$

Notice that (for the first five rows) applying P^{1} and P^{2} to the first column yields the second and third columns. This means that for a self-map φ : of $H P^{4} \wedge H P^{4}, \bar{L}\left(\varphi, Z_{3}\right)=\lambda^{4}$, where $\varphi^{*}(\alpha \times \alpha)=\lambda(\alpha \times \alpha)$. This concludes the proof.

Lemma 3.3. $H P^{4} \wedge S H P^{3}$ has f.p.p. Specifically, for any self$\operatorname{map} \varphi, \bar{L}\left(\varphi, Z_{3}\right)=0$.

Lemma 3.4. $S H P^{3} \wedge S H P^{3}$ has f.p.p. Specifically, for any self$\operatorname{map} 甲, \bar{L}\left(\varphi, Z_{3}\right)=0$.

The proofs of these lemmas are modelled after the proof of Lemma 3.2 and consequently are left as exercises.

Proposition 3.5. $K \wedge K$ has f.p.p.
Proof. Let $K^{\prime}=H P^{4} \vee S H P^{3}$, then using the above lemmas every self-map φ^{\prime} of

$$
\begin{align*}
& K^{\prime} \wedge K^{\prime} \tag{6}\\
& \quad=\left(H P^{4} \wedge H P^{4}\right) \vee\left(H P^{4} \wedge S H P^{3}\right) \vee\left(S H P^{3} \wedge H P^{4}\right) \vee\left(S H P^{3} \wedge S H P^{3}\right)
\end{align*}
$$

has the property that $\bar{L}\left(\varphi, Z_{3}\right)=0$ or 1 (using the technique in the proof of Lemma 2.1). Since this property is a homotopy type invariant, every self-map φ of $K \wedge K$ has $L\left(\varphi, Z_{3}\right) \neq 0$. Thus, $K \wedge K$ has f.p.p.

Lemma 3.6. $H P^{4} \wedge S H P^{2}$ has f.p.p. Specifically, for every self$\operatorname{map} \varphi, \bar{L}\left(\varphi, Z_{2}\right)=0$.

Proof. We may choose basis for the Z_{2}-cohomology of $H P^{4}$ and $S H P^{2}$, respectively, as follows

$$
\begin{equation*}
H P^{4}: 1, \alpha, S q^{4} \alpha, \beta, S q^{4} \beta \tag{7}
\end{equation*}
$$

$$
S H P^{2}: 1, u, S q^{4} u
$$

Then, we may arrange a basis (in positive dimensions) for the Z_{2} cohomology of $H P^{4} \wedge S H P^{2}$ as follows

$$
\begin{array}{rr}
\alpha \times u & \alpha \times S q^{4} u+S q^{4} \alpha+S q^{4} \alpha \times u \\
S q^{4} \alpha \times u & S q^{4} \alpha \times S q^{4} u \\
\beta \times u & \beta \times S q^{4} u+S q^{4} \beta \times u \\
S q^{4} \beta \times u & S q^{4} \beta \times S q^{4} u
\end{array}
$$

where S_{q}^{4} applied to the first column yields the second coiumn. This is enough to show that for every self-map $\varphi, \bar{L}\left(\varphi, Z_{2}\right)=0$.

Lemma 3.7. $S H P^{3} \wedge S H P^{2}$ has f.p.p. Specifically, for every self$\operatorname{map} \varphi, \bar{L}\left(\varphi, Z_{2}\right)=0$.

The proof of this lemma is similar to the proof of Lemma 3.6.
Proposition 3.8. $K \wedge N$ has f.p.p.
Proof. $K \wedge N$ has the same homotopy type as
(9) $W=\left(H P^{4} \vee S H P^{3}\right) \wedge S H P^{2}=\left(H P^{4} \wedge S H P^{2}\right) \vee\left(S H P^{3} \wedge S H P^{2}\right)$.

But by the previous lemmas, every self-map φ^{\prime} of W has the property that $\bar{L}\left(\varphi^{\prime}, Z_{2}\right)=0$ and hence every self-map of $K \wedge N$ has Lefschetz number 1 (over Z_{2}). Thus, $K \wedge N$ has f.p.p.

Proposition 3.9. $N \wedge N$ has f.p.p.
Proof. Working with Z_{2} coefficients, a basis for the cohomology of $N=S H P^{2}$ has the form $1, u, S q^{4} u$. A basis for the cohomology (in positive dimensions) of $N \wedge N$ can be written

$$
\begin{array}{rl}
u \times u & S q^{4} u \times u+u \times S q^{4} u \\
S q^{4} u \times u & S q^{4} u \times S q^{4} u
\end{array}
$$

where $S q^{4}$ applied to column one yields column two. This, given any self-map φ of $M, \bar{L}\left(\rho ; Z_{2}\right)=0$.

Theorem 3.10. Using the wedge point v of X

$$
X \wedge X=X \times X / v \times X \cup X \times v
$$

has f.p.p.
4. Very special cases of the product theorem. Consider the following property:

Property F : X is said to have property F if, and only if, $L(f) \neq 0$ for every self-map $f: X \rightarrow X$.

In terms of this property we recall the following theorem [1]:

Theorem 4.1. If X belongs to \mathscr{S}_{0} or \mathscr{M}_{0}, then X has f.p.p. if, and only if, X has property F.

Thus for spaces in $\mathscr{S}_{0}\left(\right.$ or $\left.\mathscr{M}_{0}\right)$, the question of the invariance of f.p.p. under Cartesian products (see (1) of § 1) is equivalent to the question

$$
\begin{equation*}
X \text { and } Y \text { have property } F \Rightarrow X \times Y \text { has property } F ? \tag{1}
\end{equation*}
$$

Our next theorem answers (1) in the affirmative under quite special hypothesis. In the following we use rational singular cohomology.

Theorem 4.2. Suppose X and Y are spaces having property F. Suppose further that X has trivial cup products and X and Y have disjoint cohomology, i.e., $H^{p}(X) \neq 0, H^{q}(Y) \neq 0, p, q \geqq 1$, implies $p \neq q$. Then $X \times Y$ has property F.

We will make use of the following lemma whose proof is left to the reader.

Lemma 4.3. Suppose $\psi: X \rightarrow Y$ is a map and $\psi_{0}: Y \rightarrow Y$ is defined by the diagram

where σ is a section given by $\sigma(y)=\left(x_{0}, y\right), x_{0} \in X$ and π is a projection on the second factor. Then, for $v \in H^{n}(Y)$

$$
\begin{equation*}
\psi^{*}(1 \times v)=1 \times \psi_{0}^{*}(v)+E(v) \tag{2}
\end{equation*}
$$

where $E(v)$ is a linear combination of terms of the form $a \times b$ where $\operatorname{dim} a \geqq 1$.

Proof of 4.2. Let $\varphi: X \times Y \rightarrow X \times Y$ denote an arbitrary map and let f and g be defined by the diagrams

where σ_{1} and σ_{2} are sections and π_{1} and π_{2} are projections (see Lemma 4.3).

We choose bases $1=u_{1}, \cdots, u_{k}$ and $1=v_{1}, \cdots, v_{l}$ for the rational cohomology of X and Y, respectively. Then, elements of the form $u_{i} \times v_{j}$ form a basis for the cohomology of $X \times Y$. If u and v are typical basis elements, then using Lemma 4.3

$$
\begin{aligned}
& \varphi^{*}(u \times 1)=f^{*}(u) \times 1+E(u) \\
& \varphi^{*}(1 \times v)=1 \times g^{*}(v)+E(v)
\end{aligned}
$$

where $E(u)$ is a linear combination of terms of the form $a \times b$ with $\operatorname{dim} b \geqq 1$ and $E(v)$ is a linear combination of terms of the form $\alpha^{\prime} \times b^{\prime}$, $\operatorname{dim} a^{\prime} \geqq 1$. Suppose $\operatorname{dim} u=m$ and $\operatorname{dim} v=n$. Then

$$
\begin{align*}
& \varphi^{*}(u \times v) \\
& \quad=f^{*}(u) \times g^{*}(v)+E(u)\left(1 \times g^{*}(v)\right)+\left(f^{*}(u) \times 1\right) E(v)+E(u) E(v) . \tag{3}
\end{align*}
$$

Now $E(u)$ is a linear combination of terms of the form $a \times b$ where $\operatorname{dim} a \leqq m-1$ so that $u \times v$ cannot appear in the term $E(u)\left(1 \times g^{*}(v)\right)$. Similarly, $u \times v$ cannot appear in the term $\left(f^{*}(u) \times 1\right) E(v)$. In $E(u) E(v)$ a typical term has the form

$$
\begin{equation*}
(a \times b)\left(a^{\prime} \times b^{\prime}\right)= \pm a a^{\prime} \times b b^{\prime} \tag{4}
\end{equation*}
$$

where $\operatorname{dim} a \leqq m-1, \operatorname{dim} b \geqq 1, \operatorname{dim} \alpha^{\prime} \geqq 1, \operatorname{dim} b^{\prime} \leqq n-1$. If $\operatorname{dim} a \geqq 1$, $a a^{\prime}=0$ so that (4) is 0 . On the other hand if $\operatorname{dim} a=0$ then $\operatorname{dim} b=m$. Since $\operatorname{dim} u=m$ we see that $b=0$ and hence (4) is 0 in this case. Thus $E(u) E(v)=0$. Thus, we see that $\varphi^{*}(u \times v)$ and $(f \times g)^{*}(u \times v)$ have the same coefficient of $u \times v$. Thus,

$$
\begin{equation*}
L(f \times g)=L(f) L(g)=L(\phi) \neq 0 \tag{5}
\end{equation*}
$$

Theorem 4.4. Suppose X and Y belong to $\mathscr{S}_{0}\left(o r \mathscr{M}_{0}\right)$ and have f.p.p. Then $X \times Y$ has f.p.p. if X or Y has trivial rational cup products and X and Y have disjoint rational cohomology.

Example. Using Theorem 4.4, we see that $C P^{i} \times S C P^{j}$ has f.p.p. for i and j even, $i, j \geqq 2$. To prove that $C P^{i}$ has f.p.p., arrange a basis for the Z_{2}-cohomology of $C P^{i}$ in the form (i even)

$$
\begin{equation*}
1, x_{1}, S q^{2} x_{1}, x_{2}, S q^{2} x_{2}, \cdots \tag{6}
\end{equation*}
$$

so that for any self-map ρ of $C P^{i}$ we have $L\left(\rho, Z_{2}\right)=1$. Since S_{q} commutes with suspension the same argument works for $S C P^{i}$.

Theorem 4.4 raises the following question:
Question 4.5. If $S X \times Y$ has f.p.p., does this imply that $X \times Y$ has f.p.p.?

An affirmative answer to this question would settle the following conjecture.

Conjecture 4.6. Suppose X and Y belong to \mathscr{S}_{0} and X and all its suspension have f.p.p. Then if Y has f.p.p., so does $X \times Y$.

The technique used to prove Theorem 4.2 can also be used to prove the following.

Theorem 4.7. Suppose X and Y belong to $\mathscr{S}_{0}\left(o r \mathscr{I}_{0}\right)$ and have f.p.p. Suppose further that $H^{*}(X)$ is a truncated polynomial ring on a single generator $u \in H^{k}(X)$. Then, if $H^{k}(Y)=0, X \times Y$ has f.p.p.

Example. $C P^{i} \times H P^{j}$, where i is even $(i, j \geqq 2)$ has f.p.p. The argument that $H P^{j}$ has f.p.p. goes as follows. First of all, if ρ is a self-map of $H P^{j}$, then working over the rational field

$$
\begin{equation*}
L(\varphi)=1+a+a^{2}+\cdots+a^{j} \tag{7}
\end{equation*}
$$

where $\varphi^{*}(u)=a u, u$ a generator in $H^{4}\left(H P^{j}\right)$. Of course, if j is even we're done, since $L(\rho) \neq 0$ in this case. If j is odd, $j \geqq 3$ we need only preclude the case $a=-1$. Working over Z_{3}, we may assume that $P^{1} u=u^{2}$ in $H^{8}\left(H P^{j} ; Z_{3}\right)$. This forces

$$
\begin{equation*}
a^{2} \equiv a(\bmod 3) \tag{8}
\end{equation*}
$$

which precludes $a=-1$.
Remark. G. Bredon was the first to observe that $H P^{3}$ has f.p.p. using the above argument.

Bibliography

1. E. Fadell, Recent results in the fixed point theory of continuous maps, Invited Address, Cincinatti, April, 1969.
2. Jiang Bo-Ju, Estimation of Nielsen numbers, Chinese Math. 5 (1964), 330-339.
3. W. Lopez, An example in the fixed point theory of polyhedra, Bull. Amer. Math. Soc. 73 (1967), 922-924.
4. J. P. Serre, Homologic singuliere des espaces fibers, Ann. of Math. (2) 54 (1951), 425-505.
5. Shi Gen Hua, On the least number of fixed points and Nielsen numbers, Chinese Math. 8 (1966), 234-243.

Received August 18, 1969. This paper was supported in part by the National Science Foundation under Grant NSF GR-8427 and the Wisconsin Alumni Research Foundation.

The University of Wisconsin

TANGENTIAL CAUCHY-RIEMANN EQUATIONS AND UNIFORM APPROXIMATION

Michael Freeman

Abstract

A smooth $\left(\mathscr{C}^{\infty}\right)$ function on a smooth real submanifold M of complex Euclidean space \mathbf{C}^{n} is a $C R$ function if it satisfies the Cauchy-Riemann equations tangential to M. It is shown that each $C R$ function admits an extension to an open neighborhood of M in \mathbf{C}^{n} whose \bar{z}-derivatives all vanish on M to a prescribed high order, provided that the system of tangential Cauchy-Riemann equations has minimal rank throughout M. This result is applied to show that on a holomorphically convex compact set in M each $C R$ fuction can be uniformly approximated by holomorphic functions.

1. Extension and approximation of $C R$ functions. Each point p of a smooth real submanifold M of \mathbf{C}^{n} has a complex tangent space $H_{p} M$. It is the largest complex-linear subspace of the ordinary real tangent space $T_{p} M$; evidently $H_{p} M=T_{p} M \cap i T_{p} M$. Its complex dimension is the complex rank of M at p. The theorem of linear algebra relating the real dimensions of $T_{p} M, i T_{p} M$ and their sum and intersection shows that if M has real codimension k its complex rank is not less than $n-k$.

Definition 1.1. M is a $C R$ manifold if its complex rank is constant. It is generic if in addition this rank is minimal; that is, equal to the larger of 0 and $n-k$. A smooth function f on M is a $C R$ function if ker $\bar{\partial}_{p} f \supset H_{p} M$ for each p in M.

Here f is assumed to be extended in a smooth manner to an open neighborhood of M and $\bar{\partial}_{p} f$ is regarded as the conjugate complex-linear part of the ordinary Fréchet differential $d_{p} f$. Since the condition on $\bar{\partial}_{p} f$ is independent of the extension chosen, the definition makes sense. Computational equivalents to it and some elaboration are given in $\S 2$. A more comprehensive treatment of these ideas is found in the paper by S. Greenfield [1]. It should be mentioned that his definition [1, Definition II. A.1] of $C R$ manifolds also requires that the distribution $p \rightarrow H_{p} M$ be involutive. That assumption is not needed here.

If M is a complex submanifold of C^{n}, then it is $C R$ with complex rank equal to its complex dimension. It is not generic if it has positive codimension. Of course the $C R$ functions on M are just its holomorphic functions.

At the other extreme, every real hypersurface is a generic $C R$
manifold of complex rank $n-1$. These frequently have no nontrivial complex submanifolds, which is true for example of the usual $2 n-1$ sphere in \mathbf{C}^{n}.
M is a generic $C R$ manifold if its complex rank is everywhere zero, which is the totally real [5] case.

An example of a proper generic $C R$ submanifold which is neither totally real nor a hypersurface can of course only be found if $n \geqq 3$. There is one in \mathbf{C}^{3}, a 4 -sphere S^{4} given as the intersection of the usual 5 -sphere and a real hyperplane transverse to it. Let

$$
\rho_{1}=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+\left|z_{3}\right|^{2}-1
$$

and $\rho_{2}=z_{3}+\bar{z}_{3}$, where z_{1}, z_{2}, z_{3} are the usual coordinates for \mathbf{C}^{3}, and let $S^{4}=\left\{\rho_{1}=\rho_{2}=0\right\}$. It follows from (2.2) below that S^{4} has the requisite properties. Furthermore, S^{4} has no nontrivial complex submanifolds (since the 5 -sphere does not).

Theorem 1.2. If f is a $C R$ function on a generic $C R$ manifold M in \mathbf{C}^{n} and m is a nonnegative integer, then there is an extension of f to a smooth function f_{m} on an open set $U \supset M$ such that $\bar{\partial} f_{m}$ vanishes on M to order m in all directions.

This result is known [3, Lemma 4.3] and [5, Lemma 3.1] when M is totally real. It is also proved in [2, Th. 2.3.2'] when M is a real hypersurface. A local version which does not require that M be generic is proved in [5, Lemma 3.3].

Theorem 1.2 plays a key role in a program outlined by L. Hörmander for showing that $C R$ functions can be uniformly approximated by holomorphic functions. The basic idea is to take a compact set K in M and a given $C R$ function f on M and find a solution g of $\bar{\partial} g=\bar{\partial} f$ with $\sup _{K}|g|$ small. Then $u=f-g$ is holomorphic and approximates f uniformly on K with error no larger than $\sup _{K}|g|$.

In Hörmander's implementation of this idea, Theorem 1.2 implies that a certain bound on an L^{2} norm of the Sobolev type is imposed on $\bar{\partial} g$. The existence of solutions to $\bar{\partial} g=\bar{\partial} f$ subject to the same a priori bound [2] and a Sobolev inequality are used to estimate $\sup _{K}|g|$. This proof appears in [3] and [5] for the cases cited above. Since the only step of it which depends on the complex rank of M is the conclusion of Theorem 1.2, this proof will, without further modification, yield a result on uniform approximation.

Theorem 1.3. If M is a closed generic $C R$ submanifold of a domain of holomorphy U in \mathbf{C}^{n} and K is a compact subset of M holomorphically convex with respect to U, then each smooth $C R$ func-
tion on M is a uniform limit on K of functions holomorphic on U.
In fact, the same method in conjunction with Theorem 1.2 will prove the stronger statement that approximation holds in the \mathscr{C}^{∞} topology; c.f. [5, Th. 6.1]. One merely replaces $\sup _{K}|g|$ by a \mathscr{C}^{k} norm of g on K.

In the totally real case, it is known that the holomorphic convexity of any given compact subset K with respect to some domain of holomorphy is a consequence of the absence of complex tangent vectors. This follows from the fact [3, Th. 3.1] and [5, Corollary 4.2] that each K has arbitrarily small tubular neighborhoods which are domains of holomorphy. However, the case of the $2 n-1$ sphere in \mathbf{C}^{n} shows that in the presence of complex tangent vectors holomorphic convexity must be assumed. When there is complex tangency, the problem of determining holomorphic convexity of a given compact subset of M is very difficult, even for the examples mentioned above.

It should be remarked that in Definition 1.1 and Theorem $1.2 \mathbb{C}^{n}$ may be replaced by any complex manifold, and if this manifold is Stein [2], it may replace U in Theorem 1.3. No significant modification of the exposition is required.
2. $C R$ manifolds and functions. Each real-linear map $L: \mathbf{C}^{n} \rightarrow$ \mathbf{C}^{k} is uniquely expressible as a sum $L=S+T$ where $S, T: \mathbf{C}^{n} \rightarrow \mathbf{C}^{k}, S$ is complex linear, and T is conjugate complex linear. If $J: v \rightarrow i v$, a direct computation shows that $S=\frac{1}{2}(L-J L J)$ and $T=\frac{1}{2}(L+J L J)$. Applying this result to the Fréchet differential $d_{p} \rho$ of a smooth map $\rho: \mathbf{C}^{n} \rightarrow \mathbf{C}^{k}$ at p there results

$$
d_{p} \rho=\partial_{p} \rho+\bar{\partial}_{p p} \rho
$$

in which $\partial_{p} \rho$ is the complex linear part of $d_{p} \rho$ and $\bar{\partial}_{p p} \rho$ the conjugate complex linear part.

Each point of M has an open neighborhood U in \mathbf{C}^{n} on which there exists a smooth map $\rho=\left(\rho_{1}, \cdots, \rho_{k}\right): U \rightarrow \mathbf{R}^{k}$ with maximal rank k on U and satisfying

$$
\begin{equation*}
M \cap U=\{z \in U: \rho(z)=0\} \tag{2.1}
\end{equation*}
$$

Regarding \mathbf{R}^{k} as contained in \mathbf{C}^{k} in the usual way, and applying the remarks above to Definition 1.1, it follows that M is $C R$ if and only if $\bar{\partial} \rho$ has constant complex rank on $M \cap U$, and is generic exactly when this rank is maximal. When $k \geqq n$ this means that $H_{p} M=0$, which is the totally real case. The case of interest here is $k \leqq n$, when M is generic if and only if $\bar{\partial} \rho$ has complex rank k on $M \cap U$. Henceforth, it is assumed that $k \leqq n$. Since it is clear that $\bar{\partial} \rho=\left(\bar{\partial} \rho_{1}, \cdots, \bar{\partial} \rho_{k}\right)$ it
follows that the condition

$$
\begin{equation*}
\bar{\partial} \rho_{1} \wedge \cdots \wedge \bar{\partial} \rho_{k} \quad \text { has no zeros on } M \cap U \tag{2.2}
\end{equation*}
$$

is necessary and sufficient that M be a generic $C R$ manifold.
From Definition 1.1 and (2.2) it follows that a smooth function f on M is $C R$ if and only if

$$
\begin{equation*}
\bar{\partial} f \wedge \bar{\partial} \rho_{1} \wedge \cdots \wedge \bar{\partial} \rho_{k}=0 \quad \text { on } M \tag{2.3}
\end{equation*}
$$

Equivalently, since $\left\{\bar{\partial} \rho_{1}, \cdots, \bar{\partial} \rho_{k}\right\}$ is, at points of M, by virtue of (2.2) part of a basis for the space of conjugate-linear functionals on \mathbf{C}^{n}, there exist smooth functions h_{1}, \cdots, h_{k} on U such that

$$
\begin{equation*}
\bar{\partial} f=\sum_{j=1}^{k} h_{i} \bar{\partial} \rho_{j}+O(\rho) \tag{2.4}
\end{equation*}
$$

Here $O(\rho)$ denotes a form which vanishes on $M \cap U$. It is a standard result [4, Lemma 2.1] that if g is a smooth $O(\rho)$-form there exist smooth forms g_{1}, \cdots, g_{k} such that

$$
\begin{equation*}
g=\sum_{j=1}^{k} \rho_{j} g_{j} \tag{2.5}
\end{equation*}
$$

More generally, $O\left(\rho^{m}\right)$ will denote a smooth form on U which vanishes on $M \cap U$ to order m. Induction on m using (2.5) shows that if g is such a form there are smooth forms g_{α} on U satisfying

$$
\begin{equation*}
g=\sum_{|\alpha|=m} \rho^{\alpha} g_{\alpha} \tag{2.6}
\end{equation*}
$$

in which the standard multi-index notation has been used. Thus $\alpha=\left(\alpha_{1}, \cdots, \alpha_{k}\right)$ is a k-tuple of nonnegative integers, $|\alpha|=\alpha_{1}+\cdots+\alpha_{k}$, and $\rho^{\alpha}=\rho_{1}^{\alpha_{1}} \cdots \rho_{k}^{\alpha_{k}}$. The coefficients g_{α} are not unique on U, but the fact that they are determined on $M \cap U$ will be essential.

Lemma 2.1. If smooth forms g, g_{α} are related on U by

$$
g=\sum_{|\alpha|=m} \rho^{\alpha} g_{\alpha}+O\left(\rho^{m+1}\right)
$$

then for each $\alpha, D^{\alpha} g\left|M \cap U=\alpha!g_{\alpha}\right| M \cap U$. In particular, if $g=0$ on U then each $g_{\alpha} \mid M \cap U=0$.

Here $D^{\alpha}=D_{1}^{\alpha_{1}} \cdots D_{k}^{\alpha_{k}}$, where D_{j} denotes differentiation with respect to ρ_{j} and $\alpha!=\alpha_{1}!\cdots \alpha_{k}!$.

Proof. The statement is local and since ρ has rank k, the proof can be reduced to the case where each $\rho_{j}=x_{j}$, the j th ordinary Euclidean coordinate function. Then the lemma follows from the gen-
eral Leibniz formula

$$
D^{\alpha}(f g)=\sum_{\gamma \leqq \alpha}\binom{\alpha}{\gamma} D^{\gamma} f \cdot D^{\alpha-\gamma} g
$$

with $f=x^{\alpha}$, noting that $D^{\gamma} x^{\alpha}=0$ on $M \cap U$ if $\gamma<\alpha$ and $D^{\alpha} x^{\alpha}=\alpha$!. Here $\binom{\alpha}{\gamma}=\alpha!/ \gamma!(\alpha-\gamma)!$ and $\gamma<\alpha$ means that $\gamma_{j}<\alpha_{j}$ for some j.
3. Proof of Theorem 1.2. The proof is an induction on m in which f_{m+1} is obtained by subtraction of an $O\left(\rho^{m+1}\right)$ function from f_{m}. Similar procedures have been used in [2, Th. 2.3.2'], [3, Lemma 4.3], and [5, Lemmas 3.1 and 3.3]. The one used here borrows ideas from all of these. Since the totally real generic cases where $k \geqq n$ are treated in [3] and [5], it will be assumed that $k \leqq n$. However, the proof below can be read with $k \geqq n$, with some slight modifications.

In the presence of complex tangent vectors, the only known result is local in nature [5, Lemma 3.3]. Its proof refers to a particular local coordinate system for C^{n} and uses an initial extension f_{0} which is independent of the coordinates normal to M. This feature is clearly not preserved by the patching construction intended here, so an arbitrary extension of f must be admitted at each step. This introduces remainder terms of the form $O\left(\rho^{m}\right)$, and it is necessary to keep an accurate account of their effects.

To begin the induction, extend a given $C R$ function f from M to a smooth function f_{0} on an open set $U \supset M$.

First assume that the representation (2.1) holds on U. Then $\bar{\partial} f_{0}$ is of the form (2.4) and if $u=\sum_{j=1}^{k} \rho_{j} h_{j}$ it is clear that $\bar{\partial}\left(f_{0}-u\right)=O(\rho)$.

In general U has a locally finite cover by open sets U_{ι} on each of which there exists a defining function ρ_{\imath} presenting $M \cap U_{\iota}$ as in (2.1) and a $O\left(\rho_{\iota}\right)$ function u_{ι} satisfying $\bar{\partial}\left(f_{0}-u_{\iota}\right)=O\left(\rho_{\iota}\right)$ on U_{ι}. If $\left\{\varphi_{t}\right\}$ is a partition of unity subordinate to $\left\{U_{t}\right\}$ and

$$
\begin{equation*}
u=\sum_{\imath} \varphi_{\imath} u_{\imath} \tag{3.1}
\end{equation*}
$$

then

$$
\begin{equation*}
\bar{\partial}\left(f_{0}-u\right)=\sum_{\imath} \varphi_{\imath} \bar{\partial}\left(f_{0}-u_{\iota}\right)-\sum_{\imath} u_{\imath} \bar{\partial} \varphi_{\imath} . \tag{3.2}
\end{equation*}
$$

By construction each term of either sum in (3.2) vanishes on M. Therefore so does $\bar{\partial} f_{1}$ if $f_{1}=f_{0}-u$.

For the inductive step assume that $m>0$ and f has an extension f_{m} to U such that $\bar{\partial} f_{m}$ vanishes on M to order m. A global modification of f_{m} will again be obtained by patching local ones, so the construction is again begun by assuming that M is globally presented by (2.1).

Then by (2.6) there are smooth $(0,1)$ forms g_{α} such that

$$
\begin{equation*}
\bar{\partial} f_{m}=\sum_{|\alpha|=m} \rho^{\alpha} g_{\alpha} \tag{3.3}
\end{equation*}
$$

Hence

$$
\begin{equation*}
0=\bar{\partial}^{2} f_{m}=\sum_{|\alpha|=m} \sum_{j=1}^{k} \alpha_{j} \rho^{\alpha-j} \bar{\partial} \rho_{j} \wedge g_{\alpha}+O\left(\rho^{m}\right) \tag{3.4}
\end{equation*}
$$

in which $\alpha-j$ denotes ($\alpha_{1}, \cdots, \alpha_{j}-1, \cdots, \alpha_{k}$) if $\alpha_{j}>0$. Wedge this equation with $\bar{\partial} \rho_{1} \wedge \cdots \wedge \overline{\bar{\partial}} \rho_{j} \wedge \cdots \wedge \bar{\partial} \rho_{k}\left(\bar{\partial} \rho_{j}\right.$ is missing) to show that for each j

$$
\begin{equation*}
0=\sum_{|\alpha|=m} \alpha_{j} \rho^{\alpha-j} \bar{\partial} \rho_{1} \wedge \cdots \wedge \bar{\partial} \rho_{k} \wedge g_{\alpha}+O\left(\rho^{m}\right) \tag{3.5}
\end{equation*}
$$

Now for fixed j, the map $\alpha \rightarrow \alpha-j$ is a one-to-one correspondence of $\left\{\alpha:|\alpha|=m\right.$ and $\left.\alpha_{j}>0\right\}$ with $\{\beta:|\beta|=m-1\}$. Therefore (3.5) may be rewritten as

$$
0=\sum_{|\beta|=m-1}\left(\beta_{j}+1\right) \rho^{\beta} \bar{\partial} \rho_{1} \wedge \cdots \wedge \bar{\partial} \rho_{k} \wedge g_{\beta+j}+O\left(\rho^{m}\right)
$$

and Lemma 2.1 applied to deduce that $g_{\beta+j} \wedge \bar{\partial} \rho_{1} \wedge \cdots \wedge \bar{\partial} \rho_{k}=0$ on M. Since this holds for every j and β, it follows from the linear independence of $\bar{\partial} \rho_{1}, \cdots, \bar{\partial} \rho_{k}$ on M that for each $\alpha,|\alpha|=m$, and each $j, 1 \leqq j \leqq k$, there is a function $h_{\alpha j}$ such that

$$
\begin{equation*}
g_{\alpha}=\sum_{j=1}^{k} h_{\alpha j} \overline{\bar{\partial}} \rho_{j}+O(\rho) \tag{3.6}
\end{equation*}
$$

When substituted for g_{α} in (3.3) and (3.4) this relation yields

$$
\begin{equation*}
\bar{\partial} f_{m}=\sum_{\mid \alpha i=m} \sum_{j=1}^{k} \rho^{\alpha} h_{\alpha j} \bar{\partial} \rho_{j}+O\left(\rho^{m+1}\right) \tag{3.7}
\end{equation*}
$$

and

$$
\begin{equation*}
0=\sum_{|\alpha|=m} \sum_{i, j=1}^{k} \alpha_{j} \rho^{\alpha-j} h_{\alpha i} \bar{\partial} \rho_{j} \wedge \bar{\partial} \rho_{i}+O\left(\rho^{m}\right) \tag{3.8}
\end{equation*}
$$

The expression (3.7) suggests modifying f_{m} by

$$
u=\frac{1}{n+1} \sum_{|\alpha|=m} \sum_{j=1}^{k} \rho^{\alpha} \rho_{j} h_{\alpha j}
$$

(the need for the constant $1 /(n+1)$ will appear as a consequence of (3.11)). Now

$$
\begin{equation*}
(n+1) \bar{\partial} u=\sum_{\alpha, j} \rho^{\alpha} h_{\alpha j} \bar{\partial} \rho_{j}+\sum_{\alpha, j} \sum_{i=1}^{k} \rho_{j} \alpha_{i} \rho^{\alpha-i} h_{\alpha j} \bar{\partial} \rho_{i}+\sum_{\alpha, j} \rho^{\alpha} \rho_{j} \bar{\partial} h_{\alpha j} \tag{3.9}
\end{equation*}
$$

The first term of this is $\bar{\partial} f_{m}$. The second is

$$
\begin{equation*}
\sum_{i, j=1}^{k} \rho_{j}\left(\sum_{|\alpha|=m} \alpha_{i} \rho^{\alpha-i} h_{\alpha j}\right) \bar{\partial} \rho_{i} \tag{3.10}
\end{equation*}
$$

which will be shown to equal $n \bar{\partial} f_{m}+O\left(\rho^{m+1}\right)$.
To that end, for each $i<j$, wedging (3.8) with

$$
\bar{\partial} \rho_{1} \wedge \cdots \wedge \widehat{\hat{\partial} \rho_{i}} \wedge \cdots \wedge \widehat{\bar{\partial} \rho_{j}} \wedge \cdots \wedge \bar{\partial} \rho_{k}
$$

($\bar{\partial} \rho_{i}$ and $\bar{\partial} \rho_{j}$ are missing) gives the symmetry relation

$$
\begin{equation*}
0=\sum_{\mid \alpha i=m}\left(\alpha_{j} \rho^{\alpha-j} h_{\alpha i}-\alpha_{i} \rho^{\alpha-i} h_{\alpha j}\right)+O\left(\rho^{m}\right) \tag{3.11}
\end{equation*}
$$

Using this in (3.10) it becomes

$$
\sum_{i, j=1}^{k} \rho_{j}\left(\sum_{|\alpha|=m} \alpha_{j} \rho^{\alpha-j} h_{\alpha i}\right)^{\bar{\partial}} \rho_{i}+O\left(\rho^{m+1}\right)
$$

which when the summation over j is performed first is

$$
\sum_{\mid \alpha i=m} \sum_{i=1}^{k}\left(\sum_{j=1}^{k} \alpha_{j}\right) \rho^{\alpha} h_{\alpha i} \bar{\partial} \rho_{i}+O\left(\rho^{m+1}\right)
$$

Noting that $\sum_{j=1}^{k} \alpha_{j}=n$ completes the argument that the second term of (3.9) is $n \bar{\partial} f_{m}+O\left(\rho^{m+1}\right)$. Therefore $\bar{\partial} u=\bar{\partial} f_{m}+O\left(\rho^{m+1}\right)$.

Thus on each U_{\imath} there is a function $u_{\iota}=O\left(\rho_{t}^{m+1}\right)$ such that $\bar{\partial}\left(f_{m}-u_{\iota}\right) \mid U_{\iota}=O\left(\rho_{\iota}^{m+1}\right)$. With u defined again by (3.1) and $f_{m+1}=f_{m}-u$ it follows as before from (3.2) that $\bar{\partial} f_{m+1}$ vanishes on M to order $m+1$. This completes the proof.
4. Remarks. We know of no nongeneric examples where Theorem 1.2 fails. However, when M is not generic, the above proof breaks down at the inductive step from $m=1$ to $m=2$: Since $\bar{\partial} \rho$ does not have maximal rank it may be assumed that there is an integer $l<k$ such that $\bar{\partial} \rho_{1} \wedge \cdots \wedge \bar{\partial} \rho_{l}$ has no zeros on M but $\bar{\partial} \rho_{1} \wedge \cdots \wedge \bar{\partial} \rho_{j}=0$ on M if $j>l$. Thus there are more unknowns g_{α} than equations available from (3.4). There are very simple cases where this occurs:

Example 4.1. If the usual coordinates of \mathbf{C}^{2} are denoted z_{1}, z_{2} and $M=\left\{z: z_{2}=0\right\}$ then the function $f=z_{2} \bar{z}_{1}$ is $C R$, for $\bar{\partial} f=z_{2} d \bar{z}_{1}$. The most general function u vanishing to second order on M is by (the complex analogue of (2.5)) of the form

$$
u=z_{2}^{2} g_{1}+z_{2} \bar{z}_{2} g_{2}+\bar{z}_{2}^{2} g_{3}
$$

for suitable smooth functions g_{1}, g_{2}, and g_{3}. Therefore

$$
\bar{\partial} u=z_{2}^{2} \bar{\partial} g_{1}+z_{2} g_{2} d \bar{z}_{2}+z_{2} \bar{z}_{2} \bar{\partial} g_{2}+2 \bar{z}_{2} g_{3} d \bar{z}_{2}+\bar{z}_{2}^{2} \bar{\partial} g_{3} .
$$

Each of these terms either vanishes to second order on M or is linearly independent of $\bar{\partial} f$. Therefore no such u will satisfy $\bar{\partial}(f-u)=$ $O\left(\rho^{2}\right)$.

However since f is zero on M, it obviously satisfies the conclusion of Theorem 1.2. In fact, if M is a complex manifold, each $C R$ function f is holomorphic, so if U is a domain of holomorphy Theorem 1.2 for U and $M \cap U$ follows from Cartan's Theorem B [2], which implies that f has a holomorphic extension to U. Moreover, standard results in several complex variables show that Theorem 1.3 is true for any complex manifold M. Thus Theorem 1.2 and a consequent Theorem 1.3 may still hold in the nongeneric case, but some new ideas for proof are necessary.

References

1. S. J. Greenfield, Cauchy-Riemann equations in several variables, Annali della Scuola Normale Superiore di Pisa Classe di Scienze 22 (1968), 275-314.
2. L. Hörmander, An introduction to complex analysis in several variables, D. Van Nostrand, Princeton, New Jersey, 1965.
3. L. Hörmander and J. Wermer, Uniform approximation on compact sets in C^{n}, Math. Scand. (to appear)
4. J. Milnor, Morse theory. Ann. of Math. Studies 51, Princeton University Press, Princeton, New Jersey, 1963.
5. R. Nirenberg and R. O. Wells, Jr., Approximation theorems on differentiable submanifolds of a complex manifold, Trans. Amer. Math. Soc. (to appear)

Received November 21, 1969. This work was supported by NSF Grant GP-8997.
Rice University

TORSION CLASSES AND PURE SUBGROUPS

B. J. Gardner

Abstract

In this note we obtain a classification of the classes \mathscr{T} of abelian groups satisfying the following closure conditions: (i) If $\left\{A_{\mu} \mid \mu \in M\right\} \subseteq \mathscr{T}$, then \mathscr{T} contains the direct sum $\sum A_{\mu}$.

For a short exact sequence

```
(*) \(\quad 0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0\)
(ii) \(C \in \mathscr{T}\) if \(B \in \mathscr{T}\)
(iii) \(B \in \mathscr{G}\) if \(A, C \in \mathscr{T}\)
(iv) \(A \in \mathscr{T}\) if \(B \in \mathscr{T}\) and (*) is pure.
```

Classes satisfying (i), (ii) and (iii) are called torsion classes (of abelian groups) and were first studied by Dickson [2], who classified those which contain only torsion groups and showed that the general classification problem reduces, essentially, to that for torsion classes determined (in the sense of $\S 2$ below) by torsion-free groups. The torsion classes which are closed under taking subgroups (called strong-ly-complete Serre classes) can be described quite simply ([1], [2], [10]). A possible approach to the general problem is to investigate torsion classes closed under taking the subgroups corresponding to proper classes of monomorphisms as used in relative homological algebra (see for example [8], pp. 367 et seqq.), and herein lies the motivation for the present paper.

1. Notation. "Group" means "abelian group" throughout. $h(x)$ denotes the height of an element of a torsion-free group $\tau(x)$ its type and $\tau(X)$ the type of a rational group X. An S-group, where S is a set of primes, is a group whose elements have orders belonging to the multiplicative semigroup S^{*} generated by S. A group A is p divisible for a prime p if $p A=A$ and S-divisible if p-divisible for each $p \in S . \mathscr{T}_{0}, \mathscr{F}_{0}$ are the classes of all torsion and torsion-free groups respectively. For a group A, A_{t} is the torsion subgroup, A_{p} its p-primary component. The direct sum (or discrete direct sum) of a set of groups $\left\{A_{\mu} \mid \mu \in M\right\}$ is denoted by $\sum A_{\mu}$, the direct product (or complete direct sum) by $\sum^{*} A_{\mu}$ and an element of either by (α_{μ}). $[A, B]$ is the group of homomorphisms from a group A to a group B. If a is an element of a torsion-free group $A,[a]$ denotes the cyclic subgroup it generates, $[a]_{*}$ the smallest pure subgroup containing it. Z is the group of integers, Q the (additive) group of rational numbers, $Z(p)$ the cyclic group of order $p, Z\left(p^{\infty}\right)$ the quasicyclic p-group. For
a set S of primes, $Q(S)$ is the subgroup $\left\{m / n \mid m \in Z, n \in S^{*}\right\}$ of Q and for a prime $p, Q(p)=\left\{m / p^{n} \mid m, n \in Z, n \geqq 0\right\} . \quad I_{p}$ is the group or ring of p-adic integers.

For unexplained terms see [4].
2. Torsion classes. We begin by listing some properties of torsion classes for later use.

For a class \mathscr{C} of groups we write $T(\mathscr{C})$ for the torsion class determined by \mathscr{C}, i.e. the smallest torsion class \mathscr{T} with $\mathscr{C} \subseteq \mathscr{T}$ but if \mathscr{C} has a single member $C, T(C)$ rather than $T(\{C\})$ will be used.

T1. $A \in T(\mathscr{C})$ if and only if $[A, B]=0$ whenever $[C, B]=0$ for all $C \in \mathscr{C}$. [3].
$T(\mathscr{C})$ is also the lower radical class determined by \mathscr{C}, in the sense of Kurosh [7]-Shul'geifer [9], so by the simplified version of the Kurosh construction which applies in an abelian category, we obtain

T2. $A \in T(\mathscr{C})$ if and only if every nonzero homomorphic image B of A has a nonzero subgroup which is a homomorphic image of some $C \in \mathscr{C}$, i.e., $[C, B] \neq 0$.

A torsion class \mathscr{T} will be called a t-torsion class if it contains only torsion groups.

T3. Let S_{1}, S_{2} be disjoint sets of primes and let \mathscr{G} be the class of all groups of the form $A_{1} \oplus A_{2}$, where A_{1} is an S_{1}-group and A_{2} a divisible S_{2}-group. Then \mathscr{T} is the t-torsion class

$$
T\left(\left\{Z(p) \mid p \in S_{1}\right\} \cup\left\{Z\left(p^{\infty}\right) \mid p \in S_{2}\right\}\right)
$$

Any t-torsion class is uniquely represented in this way. [2].
T4. Let \mathscr{T} be a torsion class and p a prime. Then either $Z(p) \in \mathscr{T}$ or every group in \mathscr{T} is p-divisible [2].

Proposition 2.1. If \mathscr{T} is a torsion class containing a torsionfree group A, then $Z\left(p^{\infty}\right) \in \mathscr{T}$ for every prime p.

Proof. If $Z(p) \in \mathscr{T}$, then \mathscr{T} contains all p-groups (T3); if not, then A is p-divisible, so $\tau\left([\alpha]_{*}\right) \geqq \tau(Q(p))$ for any nonzero $a \in A$. Thus $A /[\alpha]$ has a subgroup and therefore a direct summand isomorphic to $Z\left(p^{\infty}\right)$, i.e. $Z\left(p^{\infty}\right)$ is a homomorphic image of A.

T5. A torsion class \mathscr{T} contains a group A if and only if A_{t}
and $A / A_{t} \in \mathscr{T}$ [2].

T6. Any torsion class \mathscr{T} satisfies the equality

$$
\mathscr{T}=T\left(\left[\mathscr{T} \cap \mathscr{T}_{0}\right] \cup\left[\mathscr{G} \cap \mathscr{F}_{0}\right]\right)
$$

[2].
T7. $T(Q(S))$ is the class of S-divisible groups, for any set S of primes. (Cf. [2], Proposition 4.1.)
3. A simplification of the problem. As a first step, we show that every torsion class closed under taking pure subgroups is either a t-torsion class or is determined by rational and torsion groups. A class of the latter kind will be called an r.t.-torsion class.

Proposition 3.1. All t-torsion classes are closed under taking pure subgroups.

Proof. Let S_{1}, S_{2} be disjoint sets of primes. If A_{1} is an S_{1}-group and A_{2} a divisible S_{2}-group, then clearly any pure subgroup of $A_{1} \oplus A_{2}$ is the direct sum of an S_{1}-group and a divisible S_{2}-group.

Theorem 3.2. A torsion class \mathscr{T} is closed under taking pure subgroups if and only if $\mathscr{T} \cap \mathscr{F}$ 。is.

Proof. Let A^{\prime} be a pure subgroup of $A \in \mathscr{T}$, and consider the induced diagram

with exact rows and columns, where g is defined by $g\left(a^{\prime}+A_{t}^{\prime}\right)=$ $a^{\prime}+A_{t} . \quad A_{t}^{\prime}$ is pure in A^{\prime} and hence in A. Therefore A_{t}^{\prime} is pure in A_{t} so by Proposition 3.1, $A_{t}^{\prime} \in \mathscr{T} \cap \mathscr{T}_{0}$. The kernel of g is $A^{\prime} \cap A_{t} / A_{t}^{\prime}=0$. If, for some nonzero $n \in Z, a^{\prime} \in A^{\prime}$ and $a \in A$ we have $g\left(a^{\prime}+A_{t}^{\prime}\right)=$ $n\left(a+A_{t}\right)$, then $m\left(a^{\prime}-n a\right)=0$ for some nonzero $m \in Z$, i.e. $m a^{\prime}=m n a$. Since A^{\prime} is pure in A, there exists $a^{\prime \prime} \in A^{\prime}$ with $m a^{\prime}=m n a^{\prime \prime}$. But then $g\left(\alpha^{\prime}+A_{t}^{\prime}\right)=n g\left(a^{\prime \prime}+A_{t}^{\prime}\right)$, so that g is a pure monomorphism. Thus if $\mathscr{T} \cap \mathscr{F}_{0}$ is closed under taking pure subgroups, $A^{\prime} \mid A_{t}^{\prime} \in \mathscr{T} \cap \mathscr{F}_{0}$
so $A^{\prime} \in \mathscr{T}$ and \mathscr{T} is therefore closed under taking pure subgroups. The converse is obvious.

Theorem 3.3. If a torsion class \mathscr{T} is closed under taking pure subgroups, then

$$
\mathscr{G}=T\left(\left[\mathscr{T} \cap \mathscr{T}_{0}\right] \cup \overline{\mathscr{T}}\right)
$$

where $\overline{\mathscr{T}}$ is the class of rational groups in \mathscr{T}.
The proof uses the following lemmas:
Lemma 3.4. For \mathscr{T} and $\overline{\mathscr{T}}$ as in Theorem 3.3, $\mathscr{T} \cap \mathscr{F}_{0}=$ $T(\overline{\mathscr{T}}) \cap \mathscr{F}_{0}$.

Proof. Clearly $\mathscr{G} \cap \mathscr{F}_{0} \supseteqq T(\overline{\mathscr{G}}) \cap \mathscr{F}_{0}$. Let A be any group in $\mathscr{T} \cap \mathscr{F}_{0}$. Then A is a homomorphic image of $\sum[a]_{*}$ where the sum extends over all $a \in A$ and each $[\alpha]_{*} \in \mathscr{T}$, so $A \in T(\overline{\mathscr{G}})$.

Lemma 3.5. For any two classes $\mathscr{C}_{1}, \mathscr{C}_{2}$ of groups, $T\left(\mathscr{C}_{1} \cup \mathscr{C}_{2}\right)=$ $T\left(T\left[\mathscr{C}_{1}\right] \cup T\left[\mathscr{C}_{2}\right]\right)$.

To complete the proof of Theorem 3.3, we observe that

$$
\begin{aligned}
& \mathscr{G}=T\left(\left[\mathscr{G} \cap \mathscr{G}_{0}\right] \cup\left[\mathscr{G} \cap \mathscr{F}_{0}\right]\right) \\
& \equiv T\left(\left[\mathscr{G} \cap \mathscr{G}_{0}\right] \cup T(\overline{\mathscr{G}})\right) \quad=T\left(\left[\mathscr{G} \cap \mathscr{G}_{0}\right] \cup\left[T(\overline{\mathscr{G}}) \cap \mathscr{F}_{0}\right]\right) \\
&\equiv \overline{\mathscr{G}}) \cong \mathscr{G} .
\end{aligned}
$$

We conclude this section by showing that not every r.t. torsion class is closed under taking pure subgroups.

Proposition 3.6. Let \mathscr{T} be a torsion class closed under taking pure subgroups and Γ the set of types of rational groups in \mathscr{T}. If $\gamma, \delta \in \Gamma$, then $\gamma \cap \delta \in \Gamma$.

Proof. Let X and Y be rational groups with $\tau(X)=\gamma$ and $\tau(Y)=\delta$. Then $X \oplus Y$ has elements and therefore pure rational subgroups of type $\gamma \cap \delta$.

Thus for example if p and q are distinct primes, $T(\{Q(p), Q(q)\})$ is not closed under taking pure subgroups since $\tau(Q(p)) \cap \tau(Q(q))=\tau(Z)$ and $[Q(p), Z]=0=[Q(q), Z]$.
4. The main results. In this section we obtain an explicit characterization of the torsion classes closed under taking pure subgroups.

Lemma 4.1. Let X be a rational group and $S=\{p$ prime $\mid X$ is
p-divisible\}. Then $I_{p} \in T(X)$ whenever $p \notin S$.
Proof. Let P be the set of primes distinct from p. Then $I_{p} \in T(Q(P))(T 7)$. Also, there is a short exact sequence

$$
0 \longrightarrow X \longrightarrow Q(P) \longrightarrow \sum Z\left(q^{\infty}\right) \longrightarrow 0
$$

where q ranges over $P-S$. Since $\sum Z\left(q^{\infty}\right) \in T(X)$ (Proposition 2.1), it follows that $T(X)$ contains $Q(P)$ and hence I_{p}.

The main result can now be stated.
Theorem 4.2. A torsion class \mathscr{T} is closed under taking pure subgroups if and only if either
(i) \mathscr{T} is a t-torsion class
or (ii) $\mathscr{T}=T(\{Z(p) \mid p \in P\} \cup\{Q(S)\})$, where P and S are sets of primes with $P \cong S$.

The proof of Theorem 4.2 will be accomplished in several stages. We first prove

Lemma 4.3. Let $\left\{X_{\mu} \mid \mu \in M\right\}$ be a set of rational groups. Let $A=\sum X_{\mu}$ and $S=\{p$ prime $\mid A$ is p-divisible $\}$. Then $T\left(\left\{X_{\mu} \mid \mu \in M\right\}\right)$ contains $\sum^{*} A_{i}, i=1,2,3, \cdots$, where each $A_{i}=A$.

Proof. Let $f: \sum^{*} A_{i} \rightarrow Y$ be a nonzero epimorphism. We show that $\left[X_{\mu}, Y\right] \neq 0$ for at least one value of μ.

If $Y_{p} \neq 0$ for some p, then since Y is S-divisible, so is Y_{p}. If $p \in S, Y_{p}$ is therefore a direct sum of copies of $Z\left(p^{\infty}\right)$ so by Proposition 2.1, $Y_{p} \in T\left(X_{\mu}\right)$ for each μ and a fortiori $\left[X_{\mu}, Y\right] \neq 0$ for all μ. If $p \notin S$, then at least one X_{μ} is p-reduced, whence $\left[X_{\mu}, Y_{p}\right] \neq 0$.

If Y is torsion-free, there are two possibilities. If $f\left(\left(a_{i}\right)\right) \neq 0$ for some $\left(a_{i}\right)$ with almost all $a_{i}=0$, then f induces a nonzero map from some A_{i}, and hence from some X_{μ}, into Y, while if $f\left(\left(a_{i}\right)\right)=0$ whenever $a_{i}=0$ for almost all values of i, then f factorizes as

where the other maps are epimorphisms. $\quad \sum^{*} A_{i} / \sum A_{i}$ is algebraically compact (see [6]), and also torsion-free, since $\sum A_{i}$ is a pure subgroup of $\sum^{*} A_{i}$. Thus $\sum^{*} A_{i} / \sum A_{i}$ is the direct sum of a divisible group and a (reduced) cotorsion group [5]; so, therefore, is Y, which being torsion-
free is algebraically compact [5]. Since Y is S-divisible, it has the form $D \oplus \Sigma^{*} R_{p}, p \notin S$ where each R_{p} is inter alia a reduced I_{p}-module and D is divisible. If $D \neq 0$ then for each $\mu \in M$ there are monomorphisms $X_{\mu} \rightarrow Q \rightarrow D$. If $D=0$, let $R_{p} \neq 0$. Then at least one X_{μ} is p-reduced, so by Lemma 4.1, $I_{p} \in T\left(X_{\mu}\right)$. Since there is an epimorphism (an I_{p}-epimorphism) from a direct sum of copies of I_{p} to R_{p}, we have $R_{p} \in T\left(I_{p}\right) \subseteq T\left(X_{\mu}\right)$, so $\left[X_{\mu}, R_{p}\right] \neq 0$ and the proof is complete.

The next step is to show when $T\left(\left\{X_{\mu} \mid \mu \in M\right\}\right)$ is closed under taking pure subgroups.

Lemma 4.4. With the notation of Lemma 4.3, if $T\left(\left\{X_{\mu} \mid \mu \in M\right\}\right)$ is closed under taking pure subgroups, it contains $Q(S)$.

Proof. Let $p_{1}, p_{2}, p_{3}, \cdots$ be the natural enumeration of the primes, and let $J=\left\{i \mid p_{i} \notin S\right\}$. For each $j \in J$, choose $a_{j} \in A$ with $h_{j}\left(a_{j}\right)=0$, where h_{j} denotes height at p_{j}. For example, let $a_{j}=\left(x_{j \mu}\right)$ with $x_{j \mu} \in X_{\mu}$ satisfying the following conditions: (i) $x_{j \lambda} \neq 0$ for some $\lambda \in M$ for which X_{λ} is p_{j}-reduced; (ii) $h_{j}\left(x_{j \lambda}\right)=0$; (iii) $x_{j \mu}=0$ for $\mu \neq \lambda$. For a natural number $i \notin J$, let a_{i} be an arbitrary element of A, and regard the resulting $\left(a_{i}\right)$ as an element of a group $\sum^{*} A_{i}, i=1,2,3, \cdots$. Then $h\left(\left(a_{i}\right)\right)=\bigcap_{i=1}^{\infty} h\left(a_{i}\right)$. In particular, $h_{j}\left(\left(a_{i}\right)\right)=0$. Therefore, since $\sum^{*} A_{i}$ is S-divisible, the height of $\left(\alpha_{i}\right)$ at a prime p is infinite if $p \in S$ and zero otherwise, i.e., $\tau\left(\left(a_{i}\right)\right)=\tau(Q(S))$ and $\sum^{*} A_{i}$ has a pure subgroup isomorphic to $Q(S)$. By Lemma 4.3 and assumption, therefore, $Q(S) \in T\left(\left\{X_{\mu} \mid \mu \in M\right\}\right)$.

Since each X_{μ} is S-divisible and $T(Q(S)$) is the class of all S divisible groups (T7) we have

Corollary 4.5. With the notation of Lemma 4.3, if $T\left(\left\{X_{\mu} \mid \mu \in M\right\}\right)$ is closed under taking pure subgroups, it is the class of all S-divisible groups.

Proof of Theorem 4.2. Let \mathscr{T} be a torsion class closed under taking pure subgroups. If \mathscr{T} is not a t-torsion class, let Γ be the set of types of rational groups in \mathscr{T} and for each $\gamma \in \Gamma$ let X_{γ} be a rational group of type γ. Then

$$
\begin{aligned}
\mathscr{G} & =T\left(\left[\mathscr{T}_{\mathcal{T}} \cap \mathscr{G}_{0}\right] \cup\left\{X_{r} \mid \gamma \in \Gamma\right\}\right) & & \text { (Theorem 3.3) } \\
\text { and } \mathscr{T} \cap \mathscr{F}_{0} & =T\left(\left\{X_{r} \mid \gamma \in \Gamma\right\}\right) \cap \mathscr{F}_{0} & & \text { (Lemma 3.4). }
\end{aligned}
$$

By Theorem 3.2, $T\left(\left\{X_{r} \mid \gamma \in \Gamma\right\}\right)$ is closed under taking pure subgroups and therefore, by Corollary 4.5, is the class of all S-divisible groups, where S is the set of all primes dividing $\sum X_{r}$. Thus $\mathscr{T}=$
$T\left(\left[\mathscr{T} \cap \mathscr{T}_{0}\right] \cup\{Q(S)\}\right)$. Let $P=\{p \in S \mid Z(p) \in \mathscr{T}\}$. Since $T(Q(S)) \subseteq$ \mathscr{T}, \mathscr{T} contains the groups $Z\left(p^{\infty}\right)$ for all primes p as well as $Z(p)$ for primes $p \notin S$. Thus by T3 and Lemma 3.5

$$
\begin{aligned}
\mathscr{T} & =T\left(\{Z(p) \mid p \notin S\} \cup\{Z(p) \mid p \in P\} \cup\left\{Z\left(p^{\infty}\right) \mid \text { all } p\right\} \cup\{Q(S)\}\right) \\
& =T(\{Z(p) \mid p \in P\} \cup\{Q(S)\}) .
\end{aligned}
$$

Conversely, that any class $\mathscr{T}=T(\{Z(p) \mid p \in P\} \cup\{Q(S)\})$ with $P \subseteq S$ is closed under taking pure subgroups follows from Theorem 3.2, Lemma 3.4 and the observation that $T(Q(S))$ is closed under taking pure subgroups. By Proposition 3.1, the proof is now complete.

Note that by T1, for a torsion class \mathscr{T} which is not a t-torsion class, the representation $\mathscr{T}=T(\{Z(p) \mid p \in P\} \cup\{Q(S)\})$ is unique. We conclude with a characterization of the groups in such a class:

Proposition 4.6. A group A belongs to $\mathscr{T}=T(\{Z(p) \mid p \in P\} \cup\{Q(S)\})$ where P and S are sets of primes with $P \cong S$, if and only if there is a short exact sequence

$$
0 \longrightarrow A^{\prime} \longrightarrow A \longrightarrow A^{\prime \prime} \longrightarrow 0
$$

where A^{\prime} is a P-group and $A^{\prime \prime}$ is S-divisible.
Proof. Let $A \in \mathscr{T}$ and $A^{\prime}=\sum A_{p}$ where the sum extends over all $p \in P, A^{\prime \prime}=A / A^{\prime}$. Then $A_{t}^{\prime \prime}$ has no P-component and belongs to \mathscr{T} (T5) so therefore has divisible S-component. Thus $A_{t}^{\prime \prime}$ is S-divisible. $A^{\prime \prime} \mid A_{t}^{\prime \prime}$ is torsion-free and belongs to \mathscr{T}. If not S-divisible, it has a nonzero S-reduced torsion free homomorphic image B. But then $B \in \mathscr{T}$ and $[Q(S), B]=0=[Z(p), B]$ for each $p \in P$ and this contradicts T1, so $A^{\prime \prime} / A_{t}^{\prime \prime}$ is S-divisible, whence $A^{\prime \prime}$ is also. The converse is obvious.

References

1. S. Balcerzyk, On classes of abelian groups, Fund. Math. 51 (1962), 149-178.
2. S. E. Dickson, On torsion classes of abelian groups, J. Math. Soc. Japan 17 (1965), 30-35.
3. -, A torsion theory for abelian categories, Trans. Amer. Math. Soc. 121 (1966), 223-235.
4. L. Fuchs, Abelian groups, Budapest, 1958.
5. -, Notes on abelian groups II, Acta Math. Acad. Sci. Hung. 11 (1960), 117125.
6. A. Hulanicki, The structure of the factor group of the unrestricted sum by the restricted sum of abelian groups, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astron. Phys. 10 (1962), 77-80.
7. A. G. Kurosh, Radicals in rings and algebras, Mat. Sb. 33 (1953), 13-26 (Russian).
8. S. MacLane, Homology, Berlin, Springer, 1963.
9. E. G. Shul'geifer, On the general theory of radicals in categories, Mat. Sb. 51 (1960),

487-500 (Russian). English translation: Amer. Math. Soc. Trans. (Second Series) 59, 150-162.
10. E. A. Walker, Quotient categories and quasi-isomorphisms of abelian groups, Proceedings of the Colloquium on Abelian Groups, Tihany, 1963, 147-162.

Received July 2, 1969.
The University of Tasmania
Hobart, Tasmania, Australia

BOUNDS FOR THE SOLUTIONS OF A CERTAIN CLASS OF NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS

Vinod B. Goyal

Abstract

This paper is a study of boundedness and other properties of the solutions of nonlinear partial differential equations of the form (1.1) $$
\Delta u=P\left(x_{1}, x_{2}, \cdots, x_{n}\right) f(u)
$$ where $P\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ is positive, and $u\left(x_{1}, x_{2}, \cdots x_{n}\right)$ is to be defined in some region of Euclidean n-space, and $\Delta u=$ $\sum_{i=1}^{n} \partial^{2} u / \partial x_{i}^{2}$ is the Laplacian of u. In particular, we consider the case $f(u)=e^{u}$.

Our principal result is concerned with the nonexistence of entire solutions. An entire solution $u=u\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ will be defined as a solution which though continuous for $0 \leqq r<\infty$ is twice continuously differentiable for $0<r<\infty$. Other results are concerned with the general form of and explicit bounds for solutions.

In the literature on the subject $[3,4,5,8,9,11,12]$ conditions have been given on $f(u)$ in order that the equation

$$
\begin{equation*}
\Delta u=f(u) \tag{1.2}
\end{equation*}
$$

or, more generally, the differential inequality

$$
\begin{equation*}
\Delta u \geqq f(u) \tag{1.3}
\end{equation*}
$$

will have no solutions $u=u\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ having two continuous derivatives for all finite values of $x_{1}, x_{2}, \cdots, x_{n}$. The most general conditions which exclude such solutions, obtained by Keller [5], are: $f(u)>0, f^{\prime}(u) \geqq 0$ for $-\infty<u<\infty$ and

$$
\int_{0}^{\infty}\left[\int_{0}^{u} f(t) d t\right]^{-1 / 2} d u<\infty
$$

For $n=2$ Redheffer [10] showed that the monotonicity of $f(u)$ may be dispensed with.

In $\S 2$ we shall consider a more general question for the equation

$$
\begin{equation*}
\Delta u=P(x, y) e^{u}, P(x, y)>0, \Delta=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}} \tag{1.4}
\end{equation*}
$$

While the coefficient $P(x, y)$ will be assumed to be positive and twice continuously differentiable for $0<r<\infty, P(x, y)$ will be permitted to vanish or to become singular in a manner specified in the statement of the Theorem 2.1. If $P(x, y)$ has such a singularity
it will, of course, be reflected in the singular behaviour of the solutions of (1.4). We shall thus give conditions on $P(x, y)$ which exclude entire solutions of (1.4). An example of such a solution is $u=r$ which solves equation (1.4) with $P(x, y)=e^{-r} / r$.

For $n=2$ it is well known that the function

$$
\begin{equation*}
u(z, \bar{z})=\log \frac{\left|f^{\prime}(z)\right|}{1-|f(z)|^{2}} \tag{1.5}
\end{equation*}
$$

is a solution of

$$
\begin{equation*}
\Delta u=4 e^{2 u} \tag{1.6}
\end{equation*}
$$

if $f(z)$ is an analytic function satisfying $|f(z)|<1$ and $|f(z)| \neq 0$ in the domain considered. In § 3 we show, conversely, that every solution of (1.6) is essentially of this form. This converse result is necessary if it desired to use (1.5) and the theory of bounded analytic functions to obtain general properties of the regular solutions of (1.6). If the solution $u(z, \bar{z})$ of (1.6) is regular in a disk $|z|<R$, Theorem 3.1 leads to a bound for u in this disk. If $|f(z)|<1$ in $|z|<R$ then, by Schwarz' lemma $\left|f^{\prime}(z)\right| / 1-|f(z)|^{2} \leqq R / R^{2}-|z|^{2}$. Hence, a solution of (1.6) which is regular for $|z|<R$ is subject to the inequality.

$$
u(z, \bar{z}) \leqq \log \frac{R}{R^{2}-|z|^{2}} .
$$

For $z=0$, this leads, in particular, to the well known fact that the equation (1.6) can not have twice continuously differentiable solutions.

In § 4 comparison theorems are proved and explicit bounds are obtained for the solutions of

$$
\begin{equation*}
\Delta u=P(r) f(u) \tag{1.7}
\end{equation*}
$$

or, more generally

$$
\begin{equation*}
\Delta u \geqq P(r) f(u) . \tag{1.8}
\end{equation*}
$$

The behaviour of these solutions at an isolated singularity is investigated.
2. Entire solutions. The main result is:

Theorem 2.1. Let

$$
\begin{equation*}
\iint_{r<r_{0}} P(x, y) d x d y=O\left(r_{0}\right) \quad\left(\text { for small } r_{0}\right) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{r} t \sigma(t) d t=O\left(r^{s}\right), \quad \varepsilon>0 \tag{2.2}
\end{equation*}
$$

where

$$
\begin{equation*}
\sigma(r)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \Delta(\log P) d \theta \tag{2.3}
\end{equation*}
$$

If either

$$
\begin{equation*}
\int^{\infty} e^{(1-\beta) g(r)} r^{c-1}(\log r)^{1-3 \beta} d r=\infty \tag{2.4}
\end{equation*}
$$

or

$$
\begin{equation*}
\int^{\infty} e^{(1-\beta) g(r)} r^{(1-2, \beta)+\varepsilon^{2}-\varepsilon / 2}(\log r)^{-\beta-\varepsilon} d r=\infty \tag{2.4}
\end{equation*}
$$

where
(i) c is a constant such that $c=(2-\varepsilon)(1-\beta)$ where $1 / 2<\beta<1$ and $\varepsilon>0$ but small. And
(ii) the function $g(r)$ is a solution of

$$
\frac{1}{r} \frac{d}{d r}\left(r \frac{d g}{d r}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \Delta(\log P) d \theta
$$

such that $r g^{\prime}(r) \rightarrow 0$ as $r \rightarrow 0$.
Then (1.4) cannot have a solution which is twice continuously differentiable for $0<r<\infty$ and continuous for $0 \leqq r<\infty$.

That such solutions of (1.4) may exist for certain $P(x, y)$ is shown by the example $u=r^{n}, n \geqq 2$ where $P(x, y)=n^{2} r^{n-2} e^{-r^{n}}$.

Proof. If we set

$$
\begin{equation*}
u=v-\log P \tag{2.5}
\end{equation*}
$$

equation (1.4) becomes

$$
\begin{equation*}
\Delta v=e^{v}+\Delta(\log P) \tag{2.6}
\end{equation*}
$$

We introduce the notation

$$
\begin{equation*}
\omega(r)=\frac{1}{2 \pi} \int_{0}^{2 \pi} v(r, \theta) d \theta \tag{2.7}
\end{equation*}
$$

By Green's formula for the circle $|z| \leqq r<R$

$$
\iint_{|z| \leqq r} \Delta v d x d y=\int_{|z|=r} \frac{\partial v}{\partial n} d s
$$

where n is the exterior normal. On account of $\partial / \partial n=\partial / \partial r$ it follows that

$$
\int_{0}^{r} \int_{0}^{2 \pi} \Delta v r d \theta d r=\int_{0}^{2 \pi} \frac{\partial v}{\partial r} r d \theta=r \frac{\partial}{\partial r} \int_{0}^{2 \pi} v(r, \theta) d \theta .
$$

With the help of (2.6) and (2.7), this yields

$$
\begin{equation*}
r \frac{d}{d r} \omega(r)=\frac{1}{2 \pi} \int_{0}^{r} \int_{0}^{2 \pi}\left(e^{v}+\Delta(\log P)\right) r d \theta d r . \tag{2.8}
\end{equation*}
$$

$\omega(r)$ is single valued and twice continuously differentiable for $r<R$. Because of (2.3) and (2.5), (2.8) is equivalent to

$$
\begin{equation*}
\frac{r d \omega(r)}{d r}=\frac{1}{2 \pi} \int_{0}^{r} \int_{0}^{2 \pi} P(x, y) e^{u} r d \theta d r+\int_{0}^{r} t \sigma(t) d t \tag{2.9}
\end{equation*}
$$

Since u is continuous, it follows from assumption (2.1) and (2.2) that

$$
\begin{equation*}
r \omega^{\prime}(r) \longrightarrow 0 \tag{2.10}
\end{equation*}
$$

as $r \rightarrow 0$.
Differentiating (2.8) with respect to r and using (2.3), we obtain

$$
\begin{equation*}
\frac{1}{r} \frac{d}{d r}\left(d \frac{d \omega}{d r}\right)=\sigma(r)+\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{v} d \theta \tag{2.11}
\end{equation*}
$$

Since e^{ξ} is convex for all ξ, the right hand side of (2.11) can be estimated by

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{v(r, \theta)} d \theta \geqq e^{1 / 2 \pi} \int_{0}^{2 \pi \S_{0}^{2 \pi v(r, \theta) d \theta}}=e^{\omega(r)}
$$

Hence (2.11) yields

$$
\begin{equation*}
\frac{d}{d r}\left(r \frac{d \omega}{d r}\right) \geqq r \sigma(r)+r e^{\omega(r)} \tag{2.12}
\end{equation*}
$$

We now set

$$
\begin{equation*}
\omega(r)=g(r)+f(r) \tag{2.13}
\end{equation*}
$$

where $g(r)$ is a solution of

$$
\frac{d}{d r}\left(r \frac{d g}{d r}\right)=r \sigma(r)
$$

which is continuous at the origin; that is, we compute $g(r)$ from

$$
\begin{equation*}
r \frac{d}{d r}(g(r))=\int_{0}^{r} t \sigma(t) d t \tag{2.14}
\end{equation*}
$$

Because of our assumption on the behaviour of $\sigma(r)$ at $r=0, g(r)$ will be continuous at $r=0$. Inequality (2.12) then takes the from

$$
\begin{equation*}
\frac{d}{d r}\left(r \frac{d f}{d r}\right) \geqq r \tau(r) e^{f} \tag{2.15}
\end{equation*}
$$

where $\tau(r)=e^{g(r)}$. Introducing the new independent variable by $\rho=\log r$ and setting

$$
\begin{equation*}
F=f+2 \rho \tag{2.16}
\end{equation*}
$$

inequality (2.15) yields

$$
\begin{equation*}
\ddot{F} \geqq \tau(\rho) e^{F} \tag{2.17}
\end{equation*}
$$

where dot denotes the differentiation with respect to ρ. Since the right hand side of (2.17) is always positive $F(\rho)$ is convex in ρ therefore, $\omega(r)$ is convex in $\log r$.

Now suppose (1.4) and, therefore, also (2.17) has entire solutions.
We observe that $\dot{F}(\rho)$ must be positive for all ρ in $(-\infty, \infty)$. Indeed, from (2.16), we get, $\dot{F}(\rho)=2+e^{\rho}\left(d f\left(e^{\rho}\right)\right) / d r$. Since by (2.14) and the assumption (2.2), $g^{\prime}(r)=O\left(r^{\varepsilon-1}\right)$ we have, $\lim _{r \rightarrow 0} r g^{\prime}(r)=0$. Hence, by (2.10) and (2.13) $\lim _{r \rightarrow 0} r \omega^{\prime}(r)=\lim _{r \rightarrow 0} r f^{\prime}(r)=0$. It follows, therefore, that $\lim _{\rho \rightarrow-\infty} \dot{F}(\rho)=2$. But, by (2.17) $F(\rho)$ is convex in ρ and we have, consequently,

$$
\begin{equation*}
\dot{F}(\rho) \geqq 2 \tag{2.18}
\end{equation*}
$$

throughout $(-\infty, \infty)$. It, therefore, follows that $F(\rho)$ is ultimately positive. We choose ρ_{0} large enough so that $F(\rho)>0$ for $\rho>\rho_{0}$ and set

$$
\begin{equation*}
\phi=F \dot{F} \tag{2.19}
\end{equation*}
$$

Differentiating with respect to ρ and using (2.17) we have

$$
\begin{equation*}
\dot{\phi} \dot{\phi}^{-r} \geqq \tau F^{1-r} e^{F} \dot{F}^{-r}+F^{-r} \dot{F}^{2-r} \tag{2.20}
\end{equation*}
$$

where γ is a constant to be chosen later.
Using the inequality [Hardy-Littlewood-Polya] $A+B \geqq(A / \alpha)^{\alpha}(B / \beta)^{\beta}$ where $\alpha+\beta=1,0 \leqq \alpha, \beta \leqq 1$. the inequality (2.20) yields

$$
\begin{equation*}
\dot{\phi} \dot{\phi}^{-\gamma} \geqq \tau^{1-\beta}(1-\beta)^{\beta-1} \beta^{-\beta} e^{(1-\beta) F} F^{1-\beta-\gamma} \dot{F}^{2, \beta-\gamma} . \tag{2.21}
\end{equation*}
$$

Now we consider two cases:
Case I. Let $2 \beta-\gamma=0,1 / 2<\beta<1$. Then the inequality (2.21) becomes

$$
\begin{equation*}
\dot{\phi} \dot{\phi}^{-2 \beta} \geqq C_{1} \tau^{1-\beta} e^{(1-\beta) F} F^{1-3,3} \tag{2.22}
\end{equation*}
$$

where $c_{1}=(1-\beta)^{\beta-1} \beta^{-\beta}$. Since $\dot{F} \geqq 2$ we have $F \geqq(2-\varepsilon) \rho$ if ρ is sufficiently large. Moreover, since $e^{(1-\beta) F} F^{(1-3 \beta)}$ is increasing for $F>3 \beta-1 / 1-\beta$, inequality (2.22) yields

$$
\dot{\phi} \dot{\phi}^{-2 \beta} \geqq c_{2} \tau^{1-\beta} \rho^{1-3 \beta} e^{c \rho}
$$

provided $(2-\varepsilon) \rho>3 \beta-1 / 1-\beta, c_{2}=c_{1}(2-\varepsilon)^{1-3 \beta}$ and $c=(2-\varepsilon)(1-\beta)$. Integration of (2.22) gives

$$
\begin{equation*}
\frac{1}{2 \beta-1}\left[\frac{1}{\phi^{2 \beta-1}\left(\rho_{0}\right)}-\frac{1}{\dot{\phi}^{2, \beta-1}(\rho)}\right] \geqq c_{2} \int_{c \rho_{0}}^{e \rho} e^{(1-\beta) g(r)} r^{c-1}(\log r)^{1-3 \beta} d r . \tag{2.23}
\end{equation*}
$$

Since F is convex and increasing in $\rho, \phi^{1-2 \beta}(\rho)$ tends to zero as $\rho \rightarrow \infty$. Hence, the left hand side of (2.23) is bounded as $\rho \rightarrow \infty$. This contradicts the assumption (2.4).

Hence the inequality (2.17) and also (1.4) does not have entire solutions.

Case II. Let $2 \beta-\gamma>0,1 / 2<\beta<1$. The inequality (2.21) becomes in this case

$$
\dot{\phi} \dot{\phi}^{-\gamma} \geqq c_{1} \tau^{1-\beta} F^{1-\beta-\gamma} e^{(1-\beta) F} 2^{2 \beta-\gamma}
$$

where we have used (2.18). But since

$$
F^{1-\beta-\gamma} e^{(1-\hat{\beta}) F}>e^{(1-\beta)(2-\varepsilon) \rho}\{(2-\varepsilon) \rho\}^{1-\beta-\gamma}
$$

provided $(2-\varepsilon) \rho>(\gamma+\beta-1)(1-\beta)^{-1}$, we have

$$
\dot{\phi} \dot{\phi}^{-\gamma} \geqq c_{1} 2^{(2 \hat{\beta}-\gamma)} \tau^{1-\beta} e^{(1-\beta)(2-\varepsilon) \rho}[\rho(2-\varepsilon)]^{1-\beta-\gamma} .
$$

Choose $\gamma=1+\varepsilon, \varepsilon>0$. Then $\beta>(1+\varepsilon) / 2$. Therefore, integration with respect to ρ gives

$$
\begin{equation*}
\frac{1}{\varepsilon}\left[\frac{1}{\phi^{\varepsilon}\left(\rho_{0}\right)}-\frac{1}{\phi^{\varepsilon}(\rho)}\right] \geqq c_{3} \int^{\rho} e^{(1-\beta) g(r)} r^{(1-2 \beta)+\left(\varepsilon^{\varepsilon}-\varepsilon / 2\right)}(\log r)^{-\beta-\varepsilon} d r \tag{2.24}
\end{equation*}
$$

where $c_{3}=c_{1}(2-\varepsilon)^{-\beta-\varepsilon}$.
If it were true that $u=u(x, y)$ is entire, the left-hand side of (2.24) would remain bounded as $\rho \rightarrow \infty$. Since by (2.4)' the right hand side of (2.24) is unbounded, this leads to a contradiction.

This completes the proof of Theorem 2.1.
3. General solution. Let $u(x, y)$ be of class C^{2} in the region D of x, y-plane and satisfy (1.6). Introducing the new independent variables $z=x+i y$ and $\bar{z}=x-i y$ equation (1.6) becomes

$$
\begin{equation*}
u_{z \bar{z}}=e^{2 u} \tag{3.1}
\end{equation*}
$$

where $\partial / \partial z=1 / 2(\partial / \partial x-i(\partial / \partial y))$ and $\partial / \partial \bar{z}=1 / 2(\partial / \partial x+i(\partial / \partial y))$. How we prove

Theorem 3.1. Every solution of (1.6) which is twice continuously differentiable in a given region D can be written in the form

$$
u(z, \bar{z})=\log \frac{\left|f^{\prime}(z)\right|}{1-|f(z)|^{2}}
$$

where $f(z)$ is analytic in D such that $\left|f^{\prime}(z)\right| \neq 0$ and $|f(z)|<1$.
Proof. According to an observation which goes back to Bieberbach [1] a regular solution of (1.6) can be associated with an analytic function of z in the following manner: We set

$$
Q=u_{z z}-u_{z}^{2}
$$

where u is a solution of (1.6) or, equivalently, of (3.1) and we compute $Q_{\bar{z}}$. We have, with the help of (3.1), $Q_{\bar{z}}=0$. Thus, Q is found to satisfy the Cauchy-Riemann equations. Since Q is continuous, it must therefore be regular analytic function $\omega(z)$.

If we set

$$
\begin{equation*}
\dot{\psi}=\bar{e}^{u} \tag{3.2}
\end{equation*}
$$

and observe that

$$
\dot{\psi}_{z z}=\bar{e}^{u}\left(u_{z}^{2}-u_{z z}\right)
$$

we find that ψ is a solution of the linear differential equation

$$
\begin{equation*}
\psi_{z z}+\omega(z) \psi=0 \tag{3.3}
\end{equation*}
$$

Since $\omega(z)$ is analytic in z the general solution of (3.3) contains the analytic solutions of the equation

$$
\begin{equation*}
F^{\prime \prime}(z)+\omega(z) F(z)=0 \tag{3.3}
\end{equation*}
$$

because, for an analytic F, we have $F^{\prime}(z)=\partial F / \partial z$. The general solution of (3.3) can, therefore, be written in the form

$$
\psi=A^{*} \psi_{1}(z)+B^{*} \psi_{2}(z)
$$

where ψ_{1} and ψ_{2} are two linearly independent (analytic) solutions of (3.3)' which may be assumed to be normalized by

$$
\begin{equation*}
\psi_{1} \psi_{2}^{\prime}-\psi_{2} \psi_{1}^{\prime}=1 \tag{3.4}
\end{equation*}
$$

and A^{*} and B^{*} are constants with respect to $\partial / \partial z$ - differentiation used in (3.3) i.e., $\partial A^{*} / \partial z=\partial B^{*} / \partial z=0$. Since these are Cauchy-

Riemann equations for functions in \bar{z} we have $A^{*}=\overline{A(z)}, B^{*}=\overline{B(z)}$ where A and B are analytic. The general solution of (3.3) is, therefore, found to be of the form

$$
\begin{equation*}
\psi=\overline{A(z)} \psi_{1}(z)+\overline{B(z)} \psi_{2}(z) \tag{3.5}
\end{equation*}
$$

where A, B, ψ_{1} and ψ_{2} are analytic functions in D. In view of (3.2), equation (3.5) can be written

$$
\begin{equation*}
\bar{e}^{u}=\bar{A}(z) \psi_{1}(z)+\bar{B}(z) \psi_{2}(z) \tag{3.6}
\end{equation*}
$$

Now the proof of the theorem will follow from the following lemma:
Lemma 3.1. Let ψ_{1} and ψ_{2} be linearly independent solutions of the differential equation (3.3)' where $\omega(z)$ is analytic in D. If $A(z)$ and $B(z)$ are analytic in D and if the expression

$$
\begin{equation*}
K(z, \bar{z})=\bar{A}(z) \psi_{1}(z)+\bar{B}(z) \psi_{2}(z) \tag{3.7}
\end{equation*}
$$

is real throughout D but does not vanish identically then $K(z, \bar{z})$ can be written in the form

$$
K(z, \bar{z})= \pm|\sigma(z)|^{2} \mp|\tau(z)|^{2}
$$

where $\sigma(z)$ and $\tau(z)$ are two linearly independent solutions of (3.3)' for which

$$
\begin{equation*}
\tau(z) \sigma^{\prime}(z)-\sigma(z) \tau^{\prime}(z)=1 \tag{3.8}
\end{equation*}
$$

Proof. Since $K(z, \bar{z})$ is real, we have

$$
\begin{equation*}
\bar{A}(z) \psi_{1}(z)+\bar{B}(z) \psi_{2}(z)=A(z) \overline{\psi_{1}(z)}+B(z) \overline{\psi_{2}(z)} \tag{3.9}
\end{equation*}
$$

Differentiation with respect to z and (3.4) give

$$
\bar{\psi}_{1}(z)\left[\psi_{1}^{\prime}(z) A(z)-\psi_{1}(z) A^{\prime}(z)\right]+\bar{\psi}_{2}(z)\left[\psi_{1}^{\prime}(z) B(z)-B^{\prime}(z) \psi_{1}(z)\right]=-\bar{B}(z) .
$$

Setting

$$
\begin{equation*}
g(z)=\psi_{1}^{\prime}(z) A(z)-\psi_{1}(z) A^{\prime}(z) \tag{3.10}
\end{equation*}
$$

and

$$
\begin{equation*}
h(z)=\psi_{1}^{\prime}(z) B(z)-\psi_{1}^{\prime}(z) B^{\prime}(z) \tag{3.11}
\end{equation*}
$$

we have

$$
\begin{equation*}
\psi_{1}(z) \bar{g}(z)+\psi_{2}(z) \bar{h}(z)=-B(z) \tag{3.12}
\end{equation*}
$$

But the left-hand side of (3.12) is a solution of $(3.3)^{\prime}$; hence $(-B(z))$ satisfies

$$
B_{z z}+\omega(z) B=0
$$

where $\omega(z)$ is an analytic function. But since $B(z)$ is analytic in z,

$$
B^{\prime \prime}(z)+\omega(z) B(z)=0
$$

consequently, B is of the form

$$
\begin{equation*}
B(z)=\alpha \psi_{1}(z)+\beta \psi_{2}(z) \tag{3.13}
\end{equation*}
$$

where α and β are constants. Arguing in the same manner (3.4) and (3.9) give

$$
\begin{equation*}
A(z)=\gamma \psi_{1}(z)+\delta \psi_{2}(z) \tag{3.14}
\end{equation*}
$$

where γ and δ are constants.
Also from (3.12) and (3.13), $\psi_{1}(z) / \psi_{2}(z)=-\overline{((h(z)+\beta) /(g(z)+\alpha)) .}$ But since $\psi_{1}(z) / \psi_{2}(z)$ is analytic in z and, moreover, since ψ_{1} and ψ_{2} are linearly independent, we must have $\bar{g}(z)+\bar{\alpha} \equiv 0$ and $\bar{h}(z)+\bar{\beta} \equiv 0$, or equivalently

$$
\begin{equation*}
\left(\gamma \psi_{1}+\delta \psi_{2}\right) \psi_{1}^{\prime}-\left(\gamma \psi_{1}^{\prime}+\delta \psi_{2}^{\prime}\right) \psi_{1}=-\bar{\alpha} \tag{3.15}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\alpha \psi_{1}+\beta \psi_{2}\right) \psi_{1}^{\prime}-\left(\alpha \psi_{1}^{\prime}+\beta \psi_{2}^{\prime}\right) \psi_{1}=-\bar{\beta} \tag{3.16}
\end{equation*}
$$

respectively. With the help of (3.12), (3.14), (3.15) and (3.16) the equation (3.7) becomes

$$
\begin{equation*}
K(z, \bar{z})=\gamma\left|\psi_{1}\right|^{2}+\beta\left|\psi_{2}\right|^{2}+\bar{\alpha} \bar{\psi}_{1} \psi_{2}+\alpha \bar{\psi}_{2} \psi_{1} \tag{3.17}
\end{equation*}
$$

Now let $\sigma(z)$ and $\tau(z)$ be any other solutions of (3.3)' such that $\psi_{1}(z)=a \sigma(z)+b \tau(z)$ and $\psi_{2}(z)=c \sigma(z)+d \tau(z)$ where a, b, c and d are constants satisfying

$$
\begin{equation*}
a d-b c=1 \tag{3.18}
\end{equation*}
$$

and

$$
\begin{equation*}
b(\gamma \bar{a}+\alpha \bar{c})+d(\bar{c} \beta+\bar{a} \bar{\alpha})=0 \tag{3.19}
\end{equation*}
$$

This is possible if the determinant

$$
\boldsymbol{D}=\gamma|a|^{2}+\beta|c|^{2}+2 \operatorname{Re}(\alpha \alpha \bar{c})
$$

does not vanish. Evidently this can always be achieved as long as not all numbers α, β and γ are zero. However α, β and γ cannot all be zero since, in view of (3.17) $K(z, \bar{z})$ would then be identically zero, and this case is excluded.

Substituting ψ_{1} and ψ_{2} in (3.17) and using (3.19) we obtain

$$
\begin{align*}
K(z, \bar{z})= & |\sigma(z)|^{2}\left\{\gamma|\alpha|^{2}+\beta|c|^{2}+\bar{a} c \bar{\alpha}+\alpha \bar{c} \alpha\right\} \tag{3.20}\\
& +|\tau(z)|^{2}\left\{\gamma|b|^{2}+\beta|d|^{2}+\bar{b} d \bar{\alpha}+b \bar{d} \alpha\right\}
\end{align*}
$$

Now we consider the following two cases:
Case I. Let $\beta \neq 0, \gamma \neq 0$. We set $a \neq 0$ and $c=0$ then, with the help of (3.18) and (3.19), (3.20) becomes

$$
K(z, \bar{z})=|\sigma(z)|^{2} \gamma|a|^{2}+|\tau(z)|^{2}|d|^{2} \gamma^{-1}\left(\beta \gamma-|\alpha|^{2}\right) .
$$

(i) Let $\gamma>0, \beta \gamma-|\alpha|^{2}=m$ (m is a positive integer). Hence,

$$
K(z, \bar{z})=\left|\sigma^{*}\right|^{2}+\left|\tau^{*}\right|^{2}
$$

where $\sigma^{*}=\sigma\left(\gamma|a|^{2}\right)^{1 / 2}$ and $\tau^{*}=\tau m^{1 / 2}\left(\gamma|a|^{2}\right)^{-1 / 2}$ are solutions of (3.3)'.
(ii) $\gamma>0, \beta \gamma-|\alpha|^{2}=-m$. In this case

$$
K(z, \bar{z})=\left|\sigma^{*}\right|^{2}-\left|\tau^{*}\right|^{2}
$$

(iii) Let $\gamma<0, \beta \gamma-|\alpha|^{2}=m$. Then

$$
K(z, \bar{z})=-\left|\sigma^{*}\right|^{2}-\left|\tau^{*}\right|^{2}
$$

(iv) $\gamma<0, \beta \gamma-|\alpha|^{2}=-m$. This gives

$$
K(z, \bar{z})=-\left|\sigma^{*}\right|^{2}+\left|\tau^{*}\right|^{2} .
$$

Case II. Let $\beta=0, \gamma=0$. We set $a, b \neq 0$. With this choice (3.18) and (3.19) reduce (3.20) to

$$
K(z, \bar{z})=-\left|\sigma_{1}\right|^{2}+\left|\tau_{1}\right|^{2}
$$

where $\left|\sigma_{1}\right|=|\sigma|(\bar{\alpha} \bar{\alpha})^{1 / 2} b^{-1 / 2}$ and $\left|\tau_{1}\right|=a^{-1 / 2}|\tau|(\bar{\alpha} \bar{\beta})^{1 / 2}$ and are solutions of (3.3)'.

Summing up, we have thus proved that, if the function $K(z, \bar{z})$ is real, it must have either of the three following forms

$$
\left.\begin{array}{l}
K(z, \bar{z})=|\tau|^{2}-|\sigma|^{2} \tag{1}\\
K(z, \bar{z})=|\tau|^{2}+|\sigma|^{2} \\
K(z, \bar{z})=-|\tau|^{2}-|\sigma|^{2}
\end{array}\right\}(S)
$$

where σ and τ are solutions of the differential equation (3.3)' normalized by (3.8). The case $K(z, \bar{z})=|\sigma|^{2}-|\tau|^{2}$ is evidently not essentially different from case (1). Case (3) can be excluded immediately, since beacuse of (3.6) and (3.7) $K(z, \bar{z})$ must be positive. This also shows that, in case (1), we necessarily must have

$$
\begin{equation*}
|\tau(z)|>|\sigma(z)| . \tag{3.21}
\end{equation*}
$$

We now define

$$
\begin{equation*}
f(z)=\frac{\sigma(z)}{\tau(z)} \tag{3.22}
\end{equation*}
$$

In view of (3.8) we have

$$
\begin{equation*}
f^{\prime}(z)=\frac{1}{\tau^{2}(z)} \tag{3.23}
\end{equation*}
$$

and thus $|\sigma|^{2}+|\tau|^{2}=\left(1+|f(z)|^{2}\right) /\left|f^{\prime}(z)\right|$ in case (2) and $|\tau|^{2}-|\sigma|^{2}=$ ($\left.1-|f(z)|^{2}\right) /\left|f^{\prime}(z)\right|$ in case (1). Comparing this with (3.6), (3.7) and (S) we find that $u(z, \bar{z})$ must be either of the forms

$$
\begin{aligned}
& u(z, \bar{z})=\log \frac{\left|f^{\prime}(z)\right|}{1-|f(z)|^{2}} \\
& u(z, \bar{z})=\log \frac{\left|f^{\prime}(z)\right|}{1+|f(z)|^{2}} \\
& u(z, \bar{z})=\log \frac{1+|f(z)|^{2}}{\left|f^{\prime}(z)\right|}
\end{aligned}
$$

Since the last two functions are not solutions of (1.6), these cases are excluded. Hence any real solution of (1.6) must be of the from

$$
u(z, \bar{z})=\log \frac{\left|f^{\prime}(z)\right|}{1-|f(z)|^{2}}
$$

where because of (3.21) and (3.22) $|f(z)|<1$ and in view of (3.23) $\left|f^{\prime}(z)\right| \neq 0$.

This completes the proof of Theorem 3.1.
4. Bounds for the solutions of $\Delta_{u} \geqq P(r) f(u)$. Let

$$
\Delta=\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}+\cdots+\frac{\partial^{2}}{\partial x_{n}^{2}}
$$

denote the n-dimensional Laplace operator and let D_{r} and S_{r} stand for the open sphere $x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}<r^{2}$ and its boundary

$$
x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}=r^{2}
$$

respectively. We are concerned here with functions

$$
\omega=\omega(Q)\left(Q \in D_{r}, 0<r<R\right)
$$

which are of class C^{2} in D_{r} and satisfy the differential equation

$$
\Delta \omega=P(r) F(\omega)
$$

or, more generally, the differential inequality

$$
\begin{equation*}
\Delta \omega \geqq P(r) F(\omega) \tag{4.1}
\end{equation*}
$$

Nehari [6] found explicit bounds for the solutions of the differential equation $\Delta u=F(u)$ or, more generally the differential inequality $\Delta u \geqq F(u)$ which are regular in a disk. We shall obtain here a more general result, which also applies to certain equations of the form (4.1).

Lemma 4.1. Let $F(t)$ and $G(t)$ be positive and differentiable functions for $-\infty<t<\infty$ and such that the integrals

$$
\int_{\omega}^{\infty} \frac{d t}{\boldsymbol{F}(t)}, \int_{v}^{\infty} \frac{d t}{G(t)}
$$

exist, and let $\omega=\omega\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ and $v=v\left(x_{1}, x_{2}, \cdots x_{n}\right)$ be two functions related by the identity

$$
\begin{equation*}
\int_{\omega}^{\infty} \frac{d t}{F(t)}=\int_{v}^{\infty} \frac{d t}{G(t)} \tag{4.2}
\end{equation*}
$$

Then

$$
\begin{equation*}
\frac{\Delta \omega}{F(\omega)} \geqq \frac{\Delta v}{G(v)} \tag{4.3}
\end{equation*}
$$

provided $F^{\prime}(\omega) \geqq G^{\prime}(v)$.
Proof. We write x for one of the variables $x_{1}, x_{2}, \cdots, x_{n}$ and differentiate (4.2) twice with respect to x. This yields

$$
\begin{aligned}
& -\frac{v_{x}}{G(v)}=-\frac{\omega_{x}}{F(\omega)} \\
& -\frac{v_{x x}}{G(v)}+\frac{v_{x}^{2} G^{\prime}(v)}{G^{2}(v)}=-\frac{\omega_{x x}}{F(\omega)}+\frac{v_{x}^{2} F^{\prime}(\omega)}{G^{2}(v)}
\end{aligned}
$$

Summing over all x_{n} and using the fact that $F^{\prime}(\omega) \geqq G^{\prime}(v)$, we get (4.3).
We derive the following corollary.
Corollary 5.1. If $v=v\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ is a function satisfying the differential inequality

$$
\begin{equation*}
\Delta v \leqq P v^{k}, \quad k>1 \tag{4.4}
\end{equation*}
$$

where $P=P\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ is positive, and if $F(u)$ is such that

$$
\begin{equation*}
F^{\prime}(u) \int_{u}^{\infty} \frac{d t}{F(t)} \leqq \frac{k}{k-1} \tag{4.5}
\end{equation*}
$$

then, the function u defined by

$$
\begin{equation*}
\frac{1}{(k-1) v^{k-1}}=\int_{u}^{\infty} \frac{d t}{F(t)} \tag{4.6}
\end{equation*}
$$

is subject to the inequality

$$
\begin{equation*}
\Delta u \leqq P F(u) \tag{4.7}
\end{equation*}
$$

Setting $G(v)=v^{k}$ in Lemma 4.1, the proof of the Corollary 4.1 is immediate.

As an application of Corollary 4.1, we prove the following result.
Theorem 4.1. If the function $\omega=\omega\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ satisfies the inequality

$$
\begin{equation*}
\Delta \omega \geqq r^{2} F(\omega) \tag{4.8}
\end{equation*}
$$

where $F(\omega)$ is such that $F^{\prime \prime}(\omega) \int^{\infty} d t / F(t) \leqq 9 / 8$ and $F^{\prime \prime}(\omega) \geqq 0$ then the function u defined by

$$
\frac{\left(r^{2}-\rho^{2}\right)^{2}\left(R^{2}-r^{2}\right)^{2}}{20 R^{4}}=\int_{u}^{\infty} \frac{d t}{F(t)} \quad 0<\rho<r<R
$$

is such that

$$
\omega \leqq u
$$

Proof. Consider the function v defined by

$$
\begin{equation*}
v=\frac{1}{\left(r^{2}-\rho^{2}\right)^{\alpha}\left(R^{2}-r^{2}\right)^{\alpha}} \tag{4.9}
\end{equation*}
$$

where α is a constant to be determined later. Differentiating (4.9) twice with respect to one of the variables $x=x_{k}$, we obtain

$$
\begin{aligned}
v_{x}= & -\frac{2 x \alpha}{\left(r^{2}-\rho^{2}\right)^{\alpha+1}\left(R^{2}-r^{2}\right)^{\alpha}}+\frac{2 x \alpha}{\left(r^{2}-\rho^{2}\right)^{\alpha}\left(R^{2}-r^{2}\right)^{\alpha+1}} \\
v_{x x}= & -\frac{2 \alpha}{\left(R^{2}-r^{2}\right)^{\alpha}\left(r^{2}-\rho^{2}\right)^{\alpha+1}}+\frac{4 x^{2} \alpha(\alpha+1)}{\left(R^{2}-r^{2}\right)^{\alpha}\left(r^{2}-\rho^{2}\right)^{\alpha+2}} \\
& +\frac{2 \alpha}{\left(r^{2}-\rho^{2}\right)^{\alpha}\left(R^{2}-r^{2}\right)^{\alpha+1}}-\frac{8 x^{2} \alpha^{2}}{\left(r^{2}-\rho^{2}\right)^{\alpha+1}\left(R^{2}-r^{2}\right)^{\alpha+1}} \\
& +\frac{4 x^{2} \alpha(\alpha+1)}{\left(r^{2}-\rho^{2}\right)^{\alpha}\left(R^{2}-r^{2}\right)^{\alpha+2}} .
\end{aligned}
$$

Summing over all $x=x_{k}$ and choosing $\alpha \geqq 1 / 4$ we get,

$$
\Delta v \leqq \frac{5}{2} r^{2} R^{4} v^{9}
$$

Now let $v=\left(2^{1 / 8} y\right) /\left(5^{1 / 2} R^{2}\right)^{1 / 4}$ then we have

$$
\begin{equation*}
\Delta y \leqq r^{2} y^{9} \tag{4.10}
\end{equation*}
$$

where y is given by

$$
y=\left(\frac{R^{2} 5^{1 / 2} 2^{-1 / 2}}{\left(R^{2}-r^{2}\right)\left(r^{2}-\rho^{2}\right)}\right)^{1 / 4}
$$

Now applying Corollary 4.1 to (4.10), we obtain,

$$
\Delta u \leqq r^{2} F(u)
$$

when u is defined by

$$
\frac{\left(r^{2}-\rho^{2}\right)^{2}\left(R^{2}-r^{2}\right)^{2}}{20 R^{4}}=\int_{u}^{\infty} \frac{d t}{F(t)}
$$

Clearly, $u^{\prime}(0)=0$ and $u \rightarrow \infty$ as $r \rightarrow R$ or $\rho \rightarrow r$. The fact that $\omega \leqq u$ now follows from Osserman's lemma [8]. This proves our assertion.

THEOREM 4.2. Let $f(\omega)$ be positive, nondecreasing, differentiable function in $(-\infty, \infty)$ for which

$$
\int_{\omega}^{\infty} \frac{d t}{f(t)}
$$

$$
(\omega>-\infty)
$$

exists and

$$
\begin{equation*}
f^{\prime}(\omega) \int_{\omega}^{\infty} \frac{d t}{f(t)} \leqq 1+\lambda \tag{4.11}
\end{equation*}
$$

If
(G)

$$
u(r)=\sup _{Q \in S_{r}} \omega(Q)
$$

where $\omega(Q)$ ranges over all functions of class C^{2} in D_{r} which satisfy (4.1). Then

$$
\begin{equation*}
\frac{C(\lambda) \alpha\left(R^{2}-r^{2}\right)^{2}}{R^{2}} \leqq \int_{u(r)}^{\infty} \frac{d t}{f(t)} \tag{4.12}
\end{equation*}
$$

in case $P(r)=\alpha(\alpha>0)$.

$$
\begin{equation*}
\frac{C(\lambda) \beta r^{n / 1+2}\left(R^{2}-r^{2}\right)^{2}}{R^{2}} \leqq \int_{u(r)}^{\infty} \frac{d t}{f(t)} \tag{4.13}
\end{equation*}
$$

if $P(r)=\beta r^{n / 1+\lambda}(\beta>0)$ and

$$
\begin{equation*}
\frac{C(\lambda) \gamma r^{n-2 / 2}\left(R^{2}-r^{2}\right)^{2}}{R^{2}} \leqq \int_{u(r)}^{\infty} \frac{d t}{f(t)} \tag{4.14}
\end{equation*}
$$

if $P(r)=\gamma r^{n-2 / \lambda}(\gamma>0)$
where

$$
\begin{equation*}
C(\lambda)=\frac{1}{4 n} \quad(4 \lambda \leqq n-2) \tag{4.15}
\end{equation*}
$$

and

$$
\begin{equation*}
C(\lambda)=\frac{1}{8(2 \lambda+1)} \quad(4 \lambda>n-2) \tag{4.16}
\end{equation*}
$$

The inequalities (4.12), (4.13) and (4.14) are sharp.
The case $\lambda=0$ had been considered by the author in [2].
Proof. Consider the function $g=g(r)$ defined by

$$
\begin{equation*}
\frac{C(\lambda)\left(R^{2}-r^{2}\right)^{2}}{R^{2}}=\frac{1}{p(r)} \int_{g}^{\infty} \frac{d t}{f(t)} \tag{4.17}
\end{equation*}
$$

where $p(r)$ is positive, monotonically increasing and twice continuously differentiable and C is a positive constant to be chosen later. Denoting by x one of the variables x_{k} and differentiating twice with respect to x we have

$$
\begin{align*}
-\frac{4 c x\left(R^{2}-r^{2}\right)}{R^{2}}=- & \frac{g_{x}}{p(r) f(g)}-\frac{2 x}{p^{2}(r)} \int_{g}^{\infty} \frac{d t}{f(t)} \tag{4.18}\\
-\frac{4 c\left(R^{2}-r^{2}\right)}{R^{2}}=- & \frac{8 c x^{2}}{R^{2}}-\frac{g_{x x}}{p(r) f(g)}+\frac{4 x \dot{p}(r) g_{x}}{p^{2}(r) f(g)}+\frac{g_{n}^{2} f^{\prime}(g)}{p(r) f^{2}(g)} \\
& \frac{2 \dot{p}(r)}{p^{2}(r)} \int_{g}^{\infty} \frac{d t}{f(t)}-\frac{4 x^{2} \ddot{p}(r)}{p^{2}(r)} \int_{g}^{\infty} \frac{d t}{f(t)} \tag{4.19}\\
& \frac{8 x^{2} \dot{p}^{2}(r)}{p^{3}(r)} \int_{g}^{\infty} \frac{d t}{f(t)}
\end{align*}
$$

where dot denotes differentiation with respect to r^{2}. With the help of (4.17) and (4.18), (4.19) becomes

$$
\begin{aligned}
\frac{g_{x x}}{p(r) f(g)}= & -\frac{8 c x^{2}}{R^{2}}+\frac{4 c\left(R^{2}-r^{2}\right)}{R^{2}}+\frac{16 c x^{2} \dot{p}(r)\left(R^{2}-r^{2}\right)}{R^{2} p(r)}+\frac{4 c x^{2}}{R^{2}} \\
& \times f^{\prime}(g) c p(r) \frac{\left(R^{2}-r^{2}\right)^{2}}{R^{2}}\left[2-\frac{\dot{p}(r)\left(R^{2}-r\right)^{2}}{p(r)}\right]^{2} \\
& -\frac{2}{p^{2}(r)}\left(2 x^{2} \ddot{p}(r)+\dot{p}(r)\right) \int_{g}^{\infty} \frac{d t}{f(t)} .
\end{aligned}
$$

Summing over all x_{k} and using (4.11) it reduces to

$$
\begin{align*}
\frac{\Delta g}{p(r) f(g)} \leqq & 4 c\left\{n-\frac{r^{2}}{R^{2}}(n-2-4 \lambda)\right\}-\frac{16\left(R^{2}-r^{2}\right) c r^{2} \dot{p}(r)}{R^{2}} \lambda \\
& -\frac{2 c\left(R^{2}-r^{2}\right)^{2}}{R^{2}}\left\{\frac{2 r^{2} \ddot{p}(r)+n \dot{p}(r)}{p(r)}-\frac{2 r^{2} \dot{p}^{2}(r)}{p^{2}(r)}(1+\lambda)\right\} . \tag{4.20}
\end{align*}
$$

We now consider the following cases:
Case I. Choose $p(r)$ such that $\dot{p}(r) / p(r)\left(\left(2 r^{2} \dot{p}(r) / p(r)\right)-n /(1+\lambda)\right)=0$.
(i) If $\dot{p}=0$ or $p=\alpha$ where α is an arbitrary positive constant then (4.20) becomes

$$
\begin{equation*}
\frac{\Delta g}{\alpha f(g)} \leqq 4 c\left\{n-\frac{r^{2}}{R^{2}}(n-2-4 \lambda)\right\} \tag{4.21}
\end{equation*}
$$

If, $4 \lambda \leqq n-2$ it follows that $\Delta g \leqq 4 n c \alpha f(g)$ and if C is given by (4.15), we have

$$
\begin{equation*}
\Delta g \leqq \alpha f(g) \tag{4.22}
\end{equation*}
$$

If $4 \lambda>n-2$ the right hand of (4.21) attains maximum for $R=r$ and the value of (4.16) for C again leads to (4.22). Since $\dot{g}(0)=0$ and increases to ∞ as $r \rightarrow R$ the proof of (4.12) will follow from Osserman's lemma [8].

Remark. If $\alpha=1$ the left hand inequality (9) of Theorem 1 of Nehari [6] becomes a particular case of this result.
(ii) If $2 r^{2} \dot{p}(r) / p(r)-(n / 1+\lambda)=0$ or $p=r^{n / 1+\lambda} \beta$ where β is an arbitrary positive constant then (4.20) gives

$$
\frac{\Delta g}{\beta r^{n / 1+\lambda} f(g)} \leqq 4 c\left\{n-\frac{r^{2}}{R^{2}}(n-2-4 \lambda)\right\} .
$$

If C is given by the values (4.15) and (4.16), we have

$$
\Delta g \leqq \beta r^{n / 1+\lambda} f(g)
$$

Now the proof of (4.13) will follow from Osserman's lemma [8].
Case II. Assume $p(r)$ to satisfy

$$
2 r^{2} p(r)(\ddot{p} r)+n p(r) \dot{p}(r)-2 r^{2}(1+\lambda) \dot{p}^{2}(r)=0
$$

or $p(r)=\gamma r^{n-2 / \lambda}$ where γ is an arbitrary positive constant. Then (4.20) reduces to

$$
\frac{\Delta g}{\gamma r^{n-2 / \lambda} f(g)} \leqq 4 c\left\{n-\frac{r^{2}}{R^{2}}(n-2-4 \lambda)\right\} .
$$

Now if C takes the values (4.15) and (4.16) respectively, we have

$$
\Delta g \leqq \gamma r^{n-2 / \lambda} f(g)
$$

and (4.14) is proved with the help of Osserman's lemma [8].
We derive the following corollary:
Corollary 4.2. If ω satisfies the equation

$$
\Delta \omega=\beta r^{n / l+\lambda} \omega^{1+(1 / 2)} \quad(\lambda>0, n \geqq 2)
$$

where β is an arbitrary constant, then

$$
\begin{equation*}
\omega \leqq\left(\frac{\lambda R^{2}}{c(\lambda) \beta r^{n / 1+\lambda}\left(R^{2}-r^{2}\right)^{2}}\right)^{2} . \tag{4.23}
\end{equation*}
$$

Also the behaviour of ω is such that

$$
\varlimsup_{r \rightarrow 0}\left(\frac{\log \omega}{\log 1 / r}\right) \leqq \frac{n \lambda}{1+\lambda} .
$$

Indeed, setting $f(t)=t^{1+(1 / \lambda)}$ in (4.13), we have (4.23), where $\omega=u$. Taking logarithm on both sides, we have, from (4.23)

$$
\log \omega \leqq \lambda \log \frac{\lambda R^{2}}{\beta c(\lambda)\left(R^{2}-r^{2}\right)^{2}}+\frac{n \lambda}{1+\lambda} \log \frac{1}{r} .
$$

Dividing by $\log 1 / r$ and letting $r \rightarrow 0$

$$
\overline{\lim _{r \rightarrow 0}}\left(\frac{\log \omega}{\log 1 / r}\right) \leqq \frac{n \lambda}{1+\lambda} .
$$

A similar result could also be proved about the solutions of the equation

$$
\Delta \omega=\gamma r^{n-2 / 2} \omega^{1+4 / 1 / 2)} .
$$

The next theorem concerns the lower bounds for the maximum of the solutions of (4.1).

Theorem 4.3. Let $f(\omega)$ satisfy the conditions of theorem 4.2 with (4.11) replaced by

$$
\begin{equation*}
f^{\prime}(\omega) \int_{\omega}^{\infty} \frac{d t}{f(t)}=1+\lambda, \quad(\lambda>0) \tag{4.11}
\end{equation*}
$$

If

$$
\begin{equation*}
v(r)=\operatorname{Sup}_{Q \in S_{r}} \omega(Q) \tag{G}
\end{equation*}
$$

where $\omega(Q)$ ranges over all funstions of class C^{2} in D_{r} and which satisfy (4.1) then

$$
\begin{equation*}
\int_{0}^{\infty} \frac{d t}{f(t)} \leqq \frac{\kappa\left(R^{2}-r^{2}\right)}{2 n} \tag{4.24}
\end{equation*}
$$

if $p(r)=\kappa$ where κ is an arbitrary positive constant,

$$
\begin{equation*}
\int_{v}^{\infty} \frac{d t}{f(t)} \leqq \frac{\delta r^{n-2 / \lambda-1}\left(R^{2}-r^{2}\right)}{2 n} \quad\left(n>2, \lambda>1, n<\frac{4 \lambda}{1+\lambda}\right) \tag{4.25}
\end{equation*}
$$

provided $p(r)=\delta r^{n-2 / \lambda-1}(\delta>0)$.

$$
\begin{equation*}
\int_{v}^{\infty} \frac{d t}{f(t)} \leqq \frac{\mu r^{1 / 2}\left(R^{2}-r^{2}\right)}{6} \quad(n=3) \tag{4.26}
\end{equation*}
$$

in case $p(r)=\mu r^{1 / 2}(\mu>0)$. However, in 2-dimensional case

$$
\begin{equation*}
\int_{v}^{\infty} \frac{d t}{f(t)} \leqq \frac{\nu r^{l}\left(R^{2}-r^{2}\right)}{4} \tag{4.27}
\end{equation*}
$$

where $p(r)=\nu r^{l}, \nu$ and l being arbitrary positive constants.
Proof. Consider the function $h=h(r)$ defined by

$$
\begin{equation*}
\frac{\rho^{2}-r^{2}}{2 n}=\frac{1}{p(r)} \int_{h}^{\infty} \frac{d t}{f(t)} \quad(\rho>R>r) \tag{4.28}
\end{equation*}
$$

where $p(r)$ is positive, monotonically increasing and twice continuously differentiable. Clearly, h belongs to the class C^{2} in D_{r}. Differentiating (5.28) twice with respect to $x=x_{k}$ we obtain

$$
\begin{align*}
-\frac{n}{x}= & -\frac{h_{x}}{f(h) p(r)}-\frac{2 x \dot{p}(r)}{p^{2}(r)} \int_{h}^{\infty} \frac{d t}{f(t)} \\
-\frac{1}{n}= & -\frac{h_{x x}}{f(h) p(r)}+\frac{4 x h_{x} \dot{p}(r)}{f(h) p^{2}(r)}+\frac{h_{x}^{2} f^{\prime}(h)}{p(r) f^{2}(h)}-\frac{2 \dot{p}}{p^{2}} \int_{h}^{\infty} \frac{d t}{f(t)} \tag{4.29}\\
& -\frac{4 x^{2} \ddot{p}(r)}{p^{2}(r)} \int_{h}^{\infty} \frac{d t}{f(t)}+\frac{8 x^{2} \dot{p}(r)}{p^{3}(r)} \int_{h}^{\infty} \frac{d t}{f(t)} .
\end{align*}
$$

Using (4.29) and summing over all x_{k}, we obtain

$$
\begin{aligned}
\frac{\Delta h}{f(h) p(r)}=1 & +\frac{4 r^{2} \dot{p}(r)}{n p(r)}+r^{2} p(r) f^{\prime}(h)\left[\frac{\rho^{2}-r^{2}}{n} \frac{\dot{p}}{p}-\frac{1}{n}\right]^{2} \\
& -\frac{2 r^{2} \ddot{p}+n \dot{p}}{p} \times \frac{\rho^{2}-r^{2}}{n}
\end{aligned}
$$

Since $f^{\prime}>0$ we obtain with the help of (4.11)'
(4.30) $\frac{\Delta h}{f(h) p(r)} \geqq 1-\frac{4 r^{2} \dot{p}}{n p} \lambda-\frac{\rho^{2}-r^{2}}{n}\left[\frac{n \dot{p}+2 r^{2} \ddot{p}}{p}-(1+\lambda) \frac{2 r^{2} \dot{p}_{i}^{2 \cdot}}{p^{2}}\right]$.

Now we consider the following cases.

Case I. Choose p such that $\dot{p}=0$ or, $p=\kappa$ where κ is an arbitrary positive constant. Hence (4.30) reduces to

$$
\begin{equation*}
\Delta h \geqq \kappa f(h) . \tag{4.31}
\end{equation*}
$$

Consequently ($G)^{\prime}$ implies

$$
h(r) \leqq v(r)
$$

Since we can take ρ arbitrarily close to R, we have

$$
\int_{v}^{\infty} \frac{d t}{f(t)} \leqq \frac{\kappa\left(R^{2}-r^{2}\right)}{2 n}
$$

Case II. Assume $p(r)$ to be such that

$$
n \dot{p}(r) p(r)+2 r^{2} p(r) \ddot{p}(r)-2 \lambda r^{2} \dot{p}^{2}(r)=0
$$

or $p=\delta r^{n-2 / \lambda-1}$ where δ is an arbitrary positive constant, $n>2$, $\lambda>1$ and such that $n<(4 \lambda / 1+\lambda)$. Hence (4.30) becomes

$$
\Delta h \geqq\left\{1-\frac{2 \lambda(n-2)}{n(\lambda-1)}\right\} \delta r^{n-2 / \lambda-1} f(h)
$$

Using $(G)^{\prime}$ and arguing as above, we obtain

$$
\int_{v}^{\infty} \frac{d t}{f(t)} \leqq \frac{\delta r^{n-2 / \lambda-1}\left(R^{2}-r^{2}\right)}{2 n}
$$

Case III. Choose p to satisfy

$$
n p(r) \dot{p}(r)+2 r^{2} p(r) \ddot{p}(r)-(1+\lambda) 2 r^{2} \dot{p}^{2}(r)=0
$$

or $p=\mu r^{1 / \lambda}$ where μ is an arbitrary positive constant and $n=3$. Hence (4.30) gives

$$
\Delta h \geqq \frac{\mu}{3} r^{1 / \lambda} f(h)
$$

Using the same argument as above, we have

$$
\int_{v}^{\infty} \frac{d t}{f(t)} \leqq \frac{\mu r^{1 / \lambda}\left(R^{2}-r^{2}\right)}{6}
$$

Case IV. Assume p to be such that $2 r^{2} p \ddot{p}+n p \dot{p}-2 r^{2} \dot{p}^{2}=0$ or $p=\nu r^{l}$ where ν and l are arbitrary positive constants. Consequently

$$
\Delta h \geqq \nu(1-l \lambda) r^{l} f(h) .
$$

And, as above we conclude

$$
\int_{v}^{\infty} \frac{d t}{f(t)} \leqq \frac{\nu r^{l}\left(R^{2}-r^{2}\right)}{4}
$$

This completes the proof of the theorem.
We derive the following corollaries:
Corollary 4.3. In case of a function ω regular in D_{r} and which satisfies the differential equation

$$
\Delta \omega=\delta r^{n-2 / \lambda-1}\left\{1-\frac{2 \lambda(n-2)}{n(\lambda+1)}\right\} \omega^{1+(1 / \lambda)}
$$

where δ is an arbitrary positive constant, $n>2, \lambda>1$ and such that $n<(4 \lambda / 1+\lambda)$ we have

$$
\left(\frac{2 n \lambda}{\delta r^{n-2 / \lambda-1}\left(R^{2}-r^{2}\right)}\right)^{\lambda} \leqq \omega
$$

And also the behaviour of ω is such that

$$
\varlimsup_{r \rightarrow 0}\left(\frac{\log \omega}{\log 1 / r}\right) \geqq \lambda \frac{n-2}{\lambda-1}
$$

Indeed, setting $f(t)=t^{1+(1 / \lambda)}$ in (4.25), where $v=\omega$, we obtain

$$
\omega^{1 / \lambda} \geqq \frac{2 n \lambda}{\delta r^{n-2 / \lambda-1}\left(R^{2}-r^{2}\right)} .
$$

Taking logarithm on both sides, we get

$$
\log \omega \geqq \lambda \log \frac{2 n \lambda}{\delta\left(R^{2}-r^{2}\right)}+\lambda \frac{n-2}{\lambda-1} \log \frac{1}{r}
$$

Dividing by $\log 1 / r$ and taking the limit

$$
\varlimsup_{r \rightarrow 0}\left(\frac{\log \omega}{\log 1 / r}\right) \geqq \lambda \frac{n-2}{\lambda-1} .
$$

Corollary 4.4. If $\Delta=\partial^{2} / \partial x_{1}^{2}+\partial^{2} / \partial x_{2}^{2}+\partial^{2} / \partial x_{3}^{2}$ is a 3-dimensional Laplace operator and ω satisfies the equation

$$
\Delta \omega=\frac{\mu}{3} r^{1 / \lambda} \omega^{1+(1 / \lambda)}
$$

we have

$$
\omega \geqq\left(\frac{6}{\mu r^{1 / \lambda}\left(R^{2}-r^{2}\right)}\right)^{\lambda}
$$

and

$$
\varlimsup_{r \rightarrow 0}\left(\frac{\log \omega}{\log 1 / r}\right) \geqq 1
$$

Corollary 4.5. If the function ω is regular in D_{r} and satisfies the differential equation

$$
\Delta \omega=\delta(1-l \lambda) r^{l} \omega^{1+(1 / \lambda)} \quad\left(\Delta=\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}\right)
$$

we have

$$
\left(\frac{4}{\delta r^{l}\left(R^{2}-r^{2}\right)}\right)^{\lambda} \leqq \omega
$$

and also the behaviour of ω is such that

$$
\varlimsup_{r \rightarrow 0}\left(\frac{\log \omega}{\log 1 / r}\right) \geqq l \lambda
$$

The proof of Corollaries 4.4 and 4.5 is exactly the same as that of 4.3 .

References

1. L. Bieberbach, $\Delta u=e^{u}$ und die automorphen Funktionen, Math. Ann. 77 (1916), 173-212.
2. V. B. Goyal, Bounds for the solutions of $\Delta u \geqq p(r) f(u)$, Compositio Mathematica 18 (1967), 162-169.
3. E. K. Haviland, A note on unrestricted solutions of the differential equation $\Delta u=$ $f(u)$, J. London Math. Soc. 26 (1951), 210-214.
4. E. Hopf, On non-linear partial differential equations, Berkeley Symposium on Partial Differential Equations (Lecture series), 1957, 1-31.
5. J. D. Keller, On solutions of $\Delta u=f(u)$, Comm. Pure Appl. Math. 10 (1957), 503510.
6. Z. Nehari, Bounds for the solutions of a class of non-linear partial differential equations, Oroc. Math. Soc. (1963), 829-836.
7. J. Nitsche, Uber die isolierten Singularitäten der Lösungen von $\Delta u=e^{u}$, Math. Zeit. 68 (1957-58), 316-324.
8. R. Osserman, On the inequality $\Delta u \geqq f(u)$, Pacific J. Math 7 (1957), 1641-1647.
9. R. Redheffer, On entire solutions of non-linear equations (abstract), Bull. Amer. Math. Soc. 62 (1956), 408.
10. On the inequality $\Delta u \geqq f(u,|\operatorname{grad} u|)$, J. Math. Anal. Appl. 1 (1960), 277-299.
11. W. Walter, Überganze Lösungen der Differentialgleichung $\Delta u=f(u)$, Jahresb. d. Deutsch. Math. Ver. 57 (1955), 94-102.
12. H. Wittich, Ganze Lösungen der Differentialgleichung $\Delta u=e^{u}$, Math. Zeit. 49 (1943-44), 579-582.

Received January 20, 1966, in revised form January 27, 1967, and July 22, 1969.

This work is a portion of the author's doctoral dissertation written under the direction of Professor Z. Nehari at Carnegie Institute of Technology in 1963, and was supported by the United States Air Force under contract No. AF20A.

Kurukshetra University
Kurukshetra, Haryana, India

ON $|C, 1|$ SUMMABILITY FACTORS OF FOURIER SERIES AT A GIVEN POINT

Fu Cheng Hsiang

Let $f(x)$ be a function integrable in the sense of Lebesgue over the interval $(-\pi, \pi)$ and periodic with period 2π. Let its Fourier series be

$$
\begin{aligned}
f(x) & \sim \frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right) \\
& \equiv \sum_{n=0}^{\infty} A_{n}(x)
\end{aligned}
$$

Whittaker proved that the series

$$
\sum_{n=1}^{\infty} A_{n}(x) / n^{a} \quad(\alpha>0)
$$

is summable $|A|$ almost everywhere. Prasad improved this result by showing that the series

$$
\sum_{n=n_{0}}^{\infty} A_{n}(x) /\left(\prod_{\mu=1}^{k-1} \log ^{\mu} n\right)\left(\log ^{k} n\right)^{1+\varepsilon} \quad\left(\log ^{k} n_{0}>0\right)
$$

is summable $|A|$ almost everywhere.
In this note, the author is interested particularly in the $|C, 1|$ summability factors of the Fourier series at a given point x_{0}.

Write

$$
\begin{aligned}
& \varphi(t)=f\left(x_{0}+t\right)+f\left(x_{0}-t\right)-2 f\left(x_{0}\right) \\
& \Phi(t)=\int_{0}^{t}|\varphi(u)| d u
\end{aligned}
$$

The author establishes the following theorems.
THEOREM 1. If

$$
\Phi(t)=O(t) \quad(t \rightarrow+0)
$$

then the series

$$
\sum_{n=1}^{\infty} A_{n}\left(x_{0}\right) / n^{\alpha}
$$

is summable $|C, 1|$ for every $\alpha>0$.
THEOREM 2. If

$$
\Phi(t)=O\left\{\frac{t}{\prod_{\mu=1}^{k} \log ^{\mu} \frac{1}{t}}\right\}
$$

as $t \rightarrow+0$, then the series

$$
\sum_{n=n_{0}}^{\infty} \frac{A_{n}\left(x_{0}\right)}{\left(\prod_{\mu=1}^{k-1} \log ^{\mu} n\right)\left(\log ^{k} n\right)^{1+\varepsilon}}
$$

is summable $|C, 1|$ for every $\varepsilon>0$.

A series $\sum a_{n}$ is said to be absolutely summable (A) or summable $|A|$, if the function

$$
f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

is of bounded variation in the interval $\langle 0,1\rangle$. Let σ_{n}^{α} denote the nth Cesàro mean of order α of the series $\sum a_{n}$, i.e.,

$$
\sigma_{n}^{\alpha}=\frac{1}{(\alpha)_{n}} \sum_{k=0}^{n}(\alpha)_{k} a_{n-k},(\alpha)_{k}=\Gamma(k+\alpha+1) / \Gamma(k+1) \Gamma(\alpha+1)
$$

If the series

$$
\sum\left|\sigma_{n}^{\alpha}-\sigma_{n-1}^{\alpha}\right|
$$

converges, then we say that the series $\sum a_{n}$ is absolutely summable (C, α) or summable $|C, \alpha|$. It is known that [2] if a series is summable $|C|$, it is also summable $|A|$, but not conversely.
2. Suppose that $f(x)$ is a function integrable in the sense of Lebesgue and periodic with period 2π. Let its Fourier series be

$$
\begin{aligned}
f(x) & \sim \frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right) \\
& \equiv \sum A_{n}(x) .
\end{aligned}
$$

Whittaker [4] proved that the series

$$
\sum_{n=1}^{\infty} A_{n}(x) / n^{\alpha}
$$

is summable $|A|$ almost everywhere. Prasad [4] improved this result by showing that the series

$$
\sum_{n=n_{0}}^{\infty} A_{n}(x) /\left(\prod_{\mu=1}^{k-1} \log ^{\mu} n\right)\left(\log ^{k} n\right)^{1+\varepsilon}\left(\log ^{k} n_{0}>0\right)
$$

where $\log ^{k} n=\log \left(\log ^{k-1} n\right), \log ^{2}=\log (\log n)$, is summable $|A|$ almost everywhere.

Let $\left(\lambda_{n}\right)$ be a convex and bounded sequence, Chow [1] demonstrated that the series

$$
\sum A_{n}(x) \lambda_{n}
$$

is summable $|C, 1|$ almost everywhere, if the series $\sum n^{-1} \lambda_{n}$ converges.
In this note, we are interested particularly in the $|C, 1|$ summability factors of the Fourier series at a given point. For a fixed point x_{0}, we write

$$
\varphi(t)=\varphi_{x_{0}}(t)=f\left(x_{0}+t\right)+f\left(x_{0}-t\right)-2 f\left(x_{0}\right),
$$

and

$$
\Phi(t)=\int_{0}^{t}|\varphi(u)| d u
$$

We are going to establish the following
Theorem 1. If

$$
\begin{equation*}
\Phi(t)=O(t) \tag{i}
\end{equation*}
$$

as $t \rightarrow+0$, then the series

$$
\sum_{n=1}^{\infty} \frac{A_{n}\left(x_{0}\right)}{n^{\alpha}}
$$

is summable $|C, 1|$ for every $\alpha>0$.
3. The following lemmas are required.

Lemma 1 [3]. Let $\alpha>-1$ and let τ_{n}^{α} be the nth Cesàro mean of order α of the sequence $\left\{n a_{n}\right\}$, then

$$
\tau_{n}^{\alpha}=n\left(\sigma_{n}^{\alpha}-\sigma_{n-1}^{\alpha}\right) .
$$

Lemma 2. Write

$$
S_{n}(t)=\sum_{k=0}^{n}(n+2-k) \cos (n+2-k) t,
$$

then

$$
S_{n}(t)=O \begin{cases}n t^{-1} & (n t \geqq 1) \\ n^{2} & (\text { for all } t)\end{cases}
$$

In fact, we have

$$
\begin{aligned}
S_{n}(t)= & I\left\{\frac{d}{d t} e^{i(n+2) t} \sum_{k=0}^{n} e^{-i k t}\right\} \\
= & I\left\{\frac{d}{d t}\left(\frac{e^{i(n+2) t}}{1-e^{-i t}}-\frac{e^{i t}}{1-e^{-i t}}\right)\right\} \\
= & I\left\{(n+2) \frac{i e^{i(n+2) t}}{1-e^{-i t}}-\frac{i e^{i(n+2) t}}{\left(1-e^{-i t}\right)^{2}}\right. \\
& \left.-\frac{i e^{i t}}{1-e^{-i t}}+\frac{i}{\left(1-e^{-i t}\right)^{2}}\right\} \\
= & O\left(n t^{-1}\right)+O\left(t^{-2}\right) \\
= & O\left(n t^{-1}\right)
\end{aligned}
$$

if $n t \leqq 1$. This proves the lemma. From this lemma, we can easily derive the following

Lemma 3.

$$
\left|\frac{1}{n+1}\left\{\sum_{\nu=1}^{n} S_{\nu}(t) \Delta \frac{1}{(\nu+2)^{\alpha}}\right\}\right| \leqq \begin{cases}\frac{A}{t h^{\alpha}}+\frac{A}{n t^{2-\alpha}} & (t \geqq 1) \\ A n^{1-\alpha} & (\text { for all } t)\end{cases}
$$

By Lemma 2, for $n t \geqq 1$, we write

$$
\begin{aligned}
\frac{1}{n+1}\left\{\sum_{\nu=1}^{n} S_{\nu}(t) \Delta \frac{1}{(\nu+2)^{\alpha}}\right\}= & \frac{1}{n+1}\left\{\sum_{\nu=1}^{[t-1]-1}+\sum_{\nu=[t-1]+1}^{n}\right\}+O\left(\frac{1}{n t^{2-\alpha}}\right) \\
= & \frac{1}{n} O\left(\sum_{\nu=1}^{[t-1]} \nu^{1-\alpha}\right)+\frac{1}{n t} O\left(\sum_{\nu=1}^{n} \frac{1}{\nu^{\alpha}}\right) \\
& +O\left(\frac{1}{n t^{2-\alpha}}\right) \\
= & O\left(\frac{1}{n t^{2-\alpha}}\right)+O\left(\frac{1}{t n^{\alpha}}\right),
\end{aligned}
$$

and for all t,

$$
\begin{aligned}
\frac{1}{n+1}\left\{\sum_{\nu=1}^{n} S_{\nu}(t) \Delta \frac{1}{(\nu+2)^{\alpha}}\right\} & =\frac{1}{n+1} O\left\{\sum_{\nu=1}^{n} \nu^{2} \frac{1}{\nu^{1+\alpha}}\right\} \\
& =\frac{1}{n+1} O\left\{\sum_{\nu=1}^{n} \nu^{1-\alpha}\right\} \\
& =O\left(n^{1-\alpha}\right)
\end{aligned}
$$

This proves the lemma.
4. We have

$$
A_{n}\left(x_{0}\right)=\frac{2}{\pi} \int_{0}^{\pi} \varphi(t) \cos n t d t
$$

Let $\tau_{n}\left(x_{0}\right)$ be the nth Cesàro mean of first order of the sequence $\left\{n A_{n}\left(x_{0}\right) / n^{\alpha}\right\}$, then

$$
\frac{\pi}{2} \tau_{n}\left(x_{0}\right)=\int_{0}^{\pi} \varphi(t) \frac{1}{n+1} \sum_{\nu=0}^{n} \frac{(\nu+2) \cos (\nu+2) t}{(\nu+2)^{\alpha}} d t
$$

Abel's transformation gives

$$
\begin{aligned}
\frac{\pi}{2} \tau_{n}\left(x_{0}\right)= & \int_{0}^{\pi} \varphi(t) \frac{1}{n+1}\left\{\sum_{\nu=0}^{n} S_{\nu}(t) \Delta \frac{1}{(\nu+2)^{\alpha}}\right\} d t \\
& +\int_{0}^{\pi} \varphi(t) \frac{1}{n+1} \cdot \frac{S_{n}(t)}{(n+3)^{\alpha}} d t \\
= & I_{1 n}+I_{2 n}
\end{aligned}
$$

say. Thus, on writing

$$
I_{1 n}=\int_{0}^{1 / n}+\int_{1 / n}^{\pi}=I_{3 n}+I_{4 n}
$$

say, we see that

$$
I_{3 n}=O\left(n^{1-\alpha} \int_{0}^{1 / n}|\varphi| d t\right)=O\left(n^{-\alpha}\right)
$$

by condition (i) of the theorem.

$$
I_{4 n}=O\left\{\frac{1}{n^{\alpha}} \int_{1 / n}^{\pi} \frac{|\varphi|}{t} d t\right\}+O\left\{\frac{1}{n} \int_{1 / n}^{\pi} \frac{|\varphi|}{t^{2-\alpha}} d t\right\}
$$

Now,

$$
\int_{1 / n}^{\pi} \frac{|\varphi|}{t} d t=\left(\frac{\Phi}{t}\right)_{1 / n}^{\pi}+\int_{1 / n}^{\pi} \frac{\Phi}{t^{2}} d t=O(1)+O\left\{\int_{1 / n}^{\pi} \frac{d t}{t}\right\}=O(\log n)
$$

and

$$
\int_{1 / n}^{\pi} \frac{|\varphi|}{t^{2-\alpha}} d t \leqq n^{1-\alpha} \int_{1 / n}^{\pi} \frac{|\varphi|}{t} d t=O\left(n^{1-\alpha} \log n\right) .
$$

It follows that

$$
I_{4 n}=O\left\{\log n / n^{\alpha}\right\}
$$

As before, we write

$$
I_{2 n}=\int_{0}^{1 / n}+\int_{1 / n}^{\pi}=I_{5 n}+I_{6 n}
$$

say. Then,

$$
I_{5 n}=O\left(n^{1-\alpha} \int_{0}^{1 / n}|\varphi| d t\right)=O\left(n^{-\alpha}\right)
$$

And

$$
I_{6 n}=O\left\{n^{-\alpha} \int_{1 / n}^{\pi} \frac{|\varphi|}{t} d t\right\}=O\left\{\log n / n^{\alpha}\right\}
$$

by the similar arguments as in the estimation of the integral $I_{4 n}$. By Lemma 1, we have to establish the convergence of $\sum\left|\tau_{n}\left(x_{0}\right)\right| / n$. And from the above analysis, it concludes that

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{\left|\tau_{n}\left(x_{0}\right)\right|}{n} & \leqq \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{1}{n}\left\{\left|I_{3 n}\right|+\left|I_{4 n}\right|+\left|I_{5 n}\right|+\left|I_{61}\right|\right\} \\
& =O\left\{\sum_{n=1}^{\infty} \frac{\log n}{n^{1+\alpha}}\right\}=O(1)
\end{aligned}
$$

This proves Theorem 1.
5. Let $\tau_{n}\left(x_{0}\right)$ be the nth Cesàro mean of first order of the sequence

$$
\left\{n A_{n}\left(x_{0}\right) /\left(\prod_{\mu=1}^{k-1} \log ^{\mu} n\right)\left(\log ^{k} n\right)^{1+\varepsilon}\right\} \quad(\varepsilon>0)
$$

where k is a positive integer. Abel's transformation gives

$$
\begin{aligned}
\frac{\pi}{2} \tau_{n}\left(x_{0}\right)= & \int_{0}^{\pi} \varphi(t) \frac{1}{n+1}\left\{\sum_{\nu=0}^{n} S_{\nu}(t) \Delta \frac{1}{\left\{\prod_{\mu=1}^{k-1} \log ^{\mu}(\nu+2)\right\}\left\{\log ^{k}(\nu+2)\right\}^{1+\varepsilon}} d t\right. \\
& +\int_{0}^{\pi} \varphi(t) \frac{1}{n+1} \cdot \frac{S_{n}(t)}{\left\{\prod_{\mu=1}^{k-1} \log ^{\mu}(n+3)\right\}\left\{\log ^{k}(n+3)\right\}^{1+\varepsilon}} d t \\
= & I_{1 n}+I_{2 n},
\end{aligned}
$$

say. As before, we write

$$
I_{1 n}=\int_{0}^{1 / n}+\int_{1 / n}^{\pi}=I_{3 n}+I_{4 n},
$$

say, and

$$
I_{2 n}=\int_{0}^{1 / n}+\int_{1 / n}^{\pi}=I_{5 n}+I_{6 n},
$$

say. Since, for $\nu \geqq n_{0}$,

$$
\left|\Delta \frac{1}{\left(\prod_{\mu=1}^{k-1} \log ^{\mu} \nu\right)\left(\log ^{k} \nu\right)^{1+\varepsilon}}\right| \leqq \frac{A}{\nu\left(\prod_{\mu=1}^{k-1} \log ^{\mu} \nu\right)\left(\log ^{k} \nu\right)^{1+\varepsilon}}
$$

we obtain

$$
\begin{aligned}
& \qquad\left\{\begin{array}{ll}
\frac{1}{n+1}\left\{\left.\sum_{\nu=0}^{n} S_{\nu}(t) \Delta \frac{1}{\left(\prod_{\mu=1}^{k-1} \log ^{\mu}(\nu+2)\right)\left(\log ^{k}(\nu+2)\right)^{1+\varepsilon}} \right\rvert\,\right. \\
\leqq\left(\prod_{\mu=0}^{k-1} \log ^{\mu} n\right)\left(\log ^{k} n\right)^{1+\varepsilon}
\end{array} \frac{A}{t^{2}\left(\prod_{\mu=1}^{k-1} \log ^{\mu} \frac{1}{t}\right)\left(\log ^{k} \frac{1}{t}\right)^{1+\varepsilon}}\right. \\
& \frac{A n}{\frac{A n}{\left(\prod_{\mu=1}^{k-1} \log ^{\mu} n\right)\left(\log ^{k} n\right)^{1+\varepsilon}}}
\end{aligned}
$$

Now, if

$$
\Phi(t)=O\left\{\frac{t}{\left(\prod_{\mu=1}^{k} \log ^{\mu} \frac{1}{t}\right)}\right\}
$$

as $t \rightarrow+0$, then

$$
\begin{aligned}
I_{3 n}= & O\left\{\frac{n}{\left(\prod_{\mu=1}^{k-1} \log ^{\mu} n\right)\left(\operatorname{long}^{k} n\right)^{1+\varepsilon}} \int_{0}^{1 / n}|\varphi| d t\right\} \\
= & O\left\{\frac{1}{\left(\prod_{\mu=1}^{k-1} \log ^{\mu} n\right)\left(\log ^{k} n\right)^{1+\varepsilon}}\right\} \\
I_{4 n}= & O\left\{\frac{1}{\left(\prod_{\mu=1}^{k-1} \log ^{\mu} n\right)\left(\log ^{k} n\right)^{1+\varepsilon}} \int_{1 / n}^{\pi} \frac{|\varphi|}{t} d t\right\} \\
& +O\left\{\frac{1}{n} \int_{1 / n}^{\pi} \frac{|\varphi|}{t^{2}\left(\prod_{\mu=1}^{k-1} \frac{1}{t}\right)\left(\log ^{k} \frac{1}{t}\right)^{1+\varepsilon}}\right\}
\end{aligned}
$$

But since

$$
\begin{aligned}
\int_{1 / n}^{\pi} \frac{|\varphi|}{t} d t & =\left(\frac{\Phi}{t}\right)_{1 / n}^{\pi}+\int_{1 / n}^{\pi} \frac{\Phi}{t^{2}} d t \\
& =O(1)+O\left\{\int_{1 / n}^{\pi} \frac{d t}{t\left(\prod_{\mu=1}^{k} \log ^{\mu} \frac{1}{t}\right)}\right\} \\
& =O(1)+O\left\{\log ^{k+1} n\right\},
\end{aligned}
$$

and

$$
\begin{aligned}
\int_{1 / n}^{=} \frac{|\varphi|}{t^{2}\left(\prod_{\mu=1}^{k-1} \log ^{\mu} \frac{1}{t}\right)\left(\log ^{k} \frac{1}{t}\right)^{1+\varepsilon}} d t & =O\left\{\frac{n}{\left(\prod_{\mu=1}^{k-1} \log ^{\mu} n\right)\left(\log ^{k} n\right)^{1+\varepsilon}} \int_{1 / n}^{=} \frac{|\varphi|}{t} d t\right\} \\
& =O\left\{\frac{n \log ^{k+1} n}{\left(\prod_{\mu=1}^{k-1} \log ^{\mu} n\right)\left(\log ^{k} n\right)^{1+\varepsilon}}\right\}
\end{aligned}
$$

we obtain

$$
I_{4 n}=O\left\{\frac{\log ^{k+1} n}{\left(\prod_{\mu=1}^{k-1} \log ^{\mu} n\right)\left(\log ^{k} n\right)^{1+\varepsilon}}\right\}
$$

Finally,

$$
\begin{aligned}
I_{5 n} & =O\left\{\frac{n}{\left(\prod_{\mu=1}^{k-1} \log ^{\mu} n\right)\left(\log ^{k} n\right)^{1+\varepsilon}} \int_{0}^{1 / n}|\varphi| d t\right\} \\
& =O\left\{\frac{1}{\left(\prod_{\mu=1}^{k-1} \log ^{\mu} n\right)\left(\log ^{k} n\right)^{1+\varepsilon}}\right\}
\end{aligned}
$$

$$
\begin{aligned}
I_{6 n} & =O\left\{\frac{1}{\left(\prod_{\mu=1}^{k-1} \log ^{\mu} n\right)\left(\log ^{k} n\right)^{1+\varepsilon}} \int_{1 / n}^{\pi} \frac{|\varphi|}{t} d t\right\} \\
& =O\left\{\frac{\log ^{k+1} n}{\left(\prod_{\mu=1}^{k=1} \log ^{\mu} n\right)\left(\log ^{k} n\right)^{1+\varepsilon}}\right\} .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{\left|\tau_{n}\left(x_{0}\right)\right|}{n} & =O\left\{\sum_{n=n_{0}}^{\infty} \frac{\log ^{k+1} n}{n\left(\prod_{\mu=1}^{k-1} \log ^{\mu} n\right)\left(\log ^{k} n\right)^{1+\varepsilon}}\right\}+O(1) \\
& =O(1)
\end{aligned}
$$

Hence, we establish

Theorem 2. If

$$
\begin{equation*}
\Phi(t)=O\left\{\frac{t}{\prod_{\mu=1}^{k} \log ^{\mu} \frac{1}{t}}\right\} \tag{ii}
\end{equation*}
$$

as $t \rightarrow+0$, then the series

$$
\sum_{n=n_{0}}^{\infty} \frac{A_{n}\left(x_{0}\right)}{\left(\prod_{k=1}^{k-1} \log ^{\mu} n\right)\left(\log ^{k} n\right)^{1+\varepsilon}} \quad\left(\log ^{k} n_{0}>0\right)
$$

is summable $|C, 1|$ for every $\varepsilon>0$.
6. For the conjugate series

$$
\sum_{n=1}^{\infty}\left(b_{n} \cos n x-a_{n} \sin n x\right) \equiv \sum B_{n}(x)
$$

we can derive two analogous theorems. Write, for a fixed $x=x_{0}$,

$$
\Psi(t)=\int_{0}^{t}|\psi(u)| d u \equiv \int_{0}^{t}\left|f\left(x_{0}+u\right)-f\left(x_{0}-u\right)\right| d u
$$

We have the following

Theorem 3. If
(iii)

$$
\Psi(t)=O(t)
$$

as $t \rightarrow+0$, then the series

$$
\sum_{n=1}^{\infty} \frac{B_{n}\left(x_{0}\right)}{n^{\alpha}}
$$

is summable $|C, 1|$ for every $\alpha>0$.

Theorem 4. If

(iv)

$$
\Psi(t)=O\left\{\frac{t}{\prod_{\mu=1}^{k} \log ^{\mu} \frac{1}{t}}\right\}
$$

as $t \rightarrow+0$, then the series

$$
\sum_{n=n_{0}}^{\infty} \frac{B_{n}\left(x_{0}\right)}{\left(\prod_{k=1}^{k-1} \log ^{\mu} n\right)\left(\log ^{k} n\right)^{1+\varepsilon}} \quad\left(\log ^{k} n_{0}>0\right)
$$

is summable $|C, 1|$ for every $\varepsilon>0$.

References

1. H. C. Chow, On the summability factors of Fourier series, J. London Math. Soc. 1941, 16 (1954), 215-220.
2. M. Fekete, On the absolute summability (A) of infinite series, Proc. Edinburgh Math. Soc. (2) 3 (1932), 132-134.
3. E. Kogebetliantz, Sur les séries subsolument commables par la methode des moyennes arithmétiques, Bull. Sci. Math. (2) 49 (1925), 234-256.
4. B. N. Prasad, On the summability of Fourier series and the bounded variation of power series, Proc. London Math. Soc. 14 (1939), 162-168.

Received February 28, 1969. This paper was written and completed during the author's stay at Berkeley in 1958.

University of California, Berkeley, and
National Taiwan University, Formosa

HOMOTOPY GROUPS OF pl-EMBEDDING SPACES

Abstract

L. S. Husch

Let N be a compact $P L$ - n-manifold, and let M be a $P L$ -m-manifold without boundary. Two of the major problems in PL-topology are to determine conditions such that (1) any continuous map of N into M can be homotoped to a $P L$ embedding, and (2) two homotopic $P L$-embeddings are $P L$ isotopic.

If $C(N, M)$ is the space of continuous maps of N into M with the compact open topology, and if $P L(N, M)$ is the subspace of $P L$-embeddings, one can consider the map $i_{\#:} \Pi_{0}(P L(N, M)) \rightarrow \Pi_{0}(C(N, M))$ induced by inclusion. If (1) is true, then $i_{\#}$ is onto; if (2) is true, then $i_{\#}$ is one-to-one. In this paper, we investigate the higher homotopy groups of $P L(N, M)$ and $C(N, M)$.

Irwin has shown that if N is a closed manifold, $m \geqq n+3$, then sufficient conditions for (1) are that N is $(2 n-m)$-connected and M is $(2 n-m+1)$-connected. By raising the connectivities of N and M by one, Zeeman [7] proved (2).

By using Proposition 1 of Morlet [4] and Irwin [3], one can easily show the following theorem by using techniques similar to the proof of Theorem 2 below.

Theorem 1. Let N be a closed $(2 n+s+1-m)$-connected $P L$ -n-manifold and let M be a $(2 n+s+2-m)$-connected $P L$-mmanifold without boundary, $m \geqq n+3$. The homomorphism i_{\ddagger} : $\Pi_{s}(P L(N, M)) \rightarrow \Pi_{s}(C(N, M))$ induced by inclusion is an isomorphism; if the connectivities of N and M are lowered by one, then i_{*} is onto.

An analogous theorem in the differential case has been proved by J. P. Dax [1], [2].

If N has a nonempty boundary, then Dancis, Hudson and Tindell (independently and unpublished) have shown that if N has a k dimensional spine with $m \geqq\{n+3, n+k\}$, this is a sufficient condition for (1). If $m \geqq\{n+3, n+k+1\}$, they obtain (2). We generalize.

Theorem 2. Let N be a compact PL-n-manifold with k-spine $K, k<n$, and let M be a PL-m-manifold without boundary. If $m \geqq n+k+s+1$, the homomorphism $i_{\sharp}: \Pi_{s}(P L(N, M)) \rightarrow \Pi_{s}(C(N, M))$ induced by inclusion is an isomorphism; if $m \geqq n+k+s, i_{\#}$ is onto.

Note that the codimension 3 restriction is eliminated. In §3,
we obtain some consequences of this theorem and its proof.
The author wishes to express his gratitude to N. Max who read a preliminary version of this paper and suggested some corrections.

In this paper, we shall consider $P L(N, M)$ and $C(C, M)$ as Δ-sets (-i.e., as semisimplicial complexes in which the degeneracy maps are ignored). In $\S 1$, we list the basic definitions and results on Δ-sets which we shall use. One may use either Rourke and Sanderson [6] or Morlet [5]. [Morlet uses the terminology "quasisimplicial" set.]

We shall assume familiarity with either [1] or [7] and shall use terminology therein with one exception. When referring to piecewise linear maps or manifolds, we shall always use the prefix " $P L$-".

Let X and Y be polyhedra. In this paper p_{1} and p_{2} will always denote projections of $X \times Y$ onto the first and second factors respectively. An isotopy between X and Y will be represented as a family of embeddings $f_{t}: X \rightarrow Y, t \in I=[0,1]$.

1. Δ-sets. Let Δ^{n} denote the standard n-simplex with ordered vertices $v_{0}, v_{1}, \cdots, v_{n}$. The i-th face $\operatorname{map} \partial_{i}: \Delta^{n-1} \rightarrow \Delta^{n}$ is the order preserving simplicial embedding which omits $v_{i} . \Delta$ is the category whose objects are $\Delta^{n}, n=0,1, \cdots$ and whose morphisms are generated by the face maps. A Δ-set (Δ-group) is a contravariant functor from Δ to the category of sets (groups). A Δ-map between Δ-sets (Δ-groups) is a natural transformation between the functors.

If X is a Δ-set, $X^{k}=X\left(\Delta^{k}\right)$ is the set of k-simplexes and the maps $\partial_{i}=X\left(\partial_{i}\right)$ are called face maps. We shall be interested in pointed Δ-sets in which we distinguish a simplex $*^{k} \in X^{k}$ for each k and designate $* \subset X$ as the sub- Δ-set of X consisting of these simplexes and maps ∂_{i} defined by $\partial_{i} *^{k}=*^{k-1}$.

With each ordered simplicial complex K, we associate a Δ-set, also designated by K, whose k-simplexes are order-preserving simplicial embeddings of Δ^{k} into K.

Let $\Lambda_{n, i}=\mathrm{Cl}\left(\mathrm{bdry} \Delta^{n}-\partial_{i} \Delta^{n-1}\right.$). A Δ-set X is called a Kan Δ-set if every Δ-map $f: \Lambda_{n, i} \rightarrow X$ can be extended to a $\Delta-m a p f_{1}: \Delta^{n} \rightarrow X$.

If X is a Kan Δ-set and P is a polyhedron, a $\operatorname{map} f: P \rightarrow X$ is a Δ-map $f: K \rightarrow X$ where K is an ordered triangulation of $P . f_{0}, f_{1}: P \rightarrow X$ are homotopic if there is a map $F: P \times I \rightarrow X$ such that $F \mid P \times\{i\}=$ $f_{i}, i=0,1$. $[P ; X]$ denotes the set of homotopy classes. We shall need the following two propositions which are proved by Rourke and Sanderson.

Proposition 1. Any homotopy class in $[P ; X]$ is represented by a $\Delta-m a p ~ f: K \rightarrow X$ where K is any ordered triangulation of P.

Proposition 2. Let Q be a subpolyhedron of P and let
$h: Q \times I \cup P \times\{0\} \rightarrow X$ be a Δ-map to a Kan Δ-set X; then h extends to $a \Delta-m a p h^{\prime}: P \times I \rightarrow X$.

If X is a pointed Kan Δ-set, then the n-th homotopy group of $X, \Pi_{n} X=\left[I^{n}\right.$, bdry $\left.I^{n} ; X, *\right]$, the homotopy classes of Δ-maps of pairs, where I^{n} is the $P L$ - n-cell.
$C(N, M)(P L(N, M))$ is made into a Δ-set by defining the k simplexes to be maps ($P L$-embeddings) $f: N \times \Delta^{k} \rightarrow M \times \Delta^{k}$ such that $p_{2} f=p_{2}$ and defining $\partial_{i} f=f \mid N \times \partial_{i} \Delta^{k}$.

Proposition 3. $C(N, M)$ and $P L(N, M)$ are Kan 4 -sets.
Proof. Let $f: \Lambda_{n, i} \rightarrow P L(N, M)$ be a Δ-map. f can then be considered as a $P L$-embedding

$$
f: N \times \Lambda_{n, i} \longrightarrow M \times \Lambda_{n, i}
$$

such that $p_{2} f=p_{2}$. Using the fact that the pair ($\left.\Lambda_{n, i} \times I, \Lambda_{n, i} \times\{0\}\right)$ is $P L$-homeomorphic to ($\Delta^{n}, \Lambda_{n, i}$), one can easily construct the desired extension.
2. Proof of Theorem 1. The following two propositions are generalizations to product spaces of the simplicial approximation and general position theorems. They can be proved similarly.

Proposition 4. Let M and Y be PL-manifolds and let $P \subseteq Q$ be compact polyhedra. Suppose $f: Q \rightarrow M \times Y$ is a continuous map such that $f \mid P$ is $P L$. There exists a homotopy $h_{t}: M \times Y \rightarrow M \times Y$, $t \in I$, such that
(i) $p_{2} h_{t}=p_{2}$ for $t \in I$;
(ii) $h_{t} f \mid P=f$ for $t \in I$;
(iii) $h_{1} f: Q \rightarrow M \times Y$ is $P L$.

Proposition 5. Let M and Y be $P L$-manifolds and let $P \subseteq Q$ be compact polyhedra. Suppose $f: Q \rightarrow M \times Y$ is a $P L$-map such that $f \mid P$ is a PL-embedding. There exists a PL-homotopy $h_{t}: M \times Y \rightarrow M \times Y, t \in I$, such that
(i) $p_{2} h_{t}=p_{2}$ for $t \in I$;
(ii) $h_{t} f \mid P=f$ for $t \in I$;
(iii) the singular set of $h_{1} f$ has dimension $\leqq 2 \operatorname{dim} Q-\operatorname{dim}(M \times Y)$;
(iv) the branch set of $h_{1} f$ has dimension $<2 \operatorname{dim} Q-\operatorname{dim}(M \times Y)$.

The following two constructions are needed frequently in the following propositions.

Proposition 6. Let N be a PL-n-manifold with k-spine K. Let
P be a polyhedron in N such that $\operatorname{dim} P+\operatorname{dim} K+1 \leqq \operatorname{dim} N$. There exists a PL-isotopy H_{t} of $N, t \in I$, such that $H_{0}=$ identity and $H_{1}(N) \cap P=\varnothing$.

Proof. By general position, we can find a $P L$-ambient isotopy L_{t} of N so that $L_{1} K \cap P=\varnothing$. Let N^{\prime} be a regular neighborhood of $L_{1} K$ in N such that $N^{\prime} \cap P=\varnothing$. Note that $L_{1} K$ is also a spine of N. Hence, by the uniqueness theorem of regular neighborhoods, there is a $P L$-isotopy H_{t} of $N, t \in I$, such that $H_{0}=$ identity and $H_{1}(N)=N^{\prime}$.

Construction α. Let I_{+}^{s} be a $P L$-cell in the interior of I^{s} and let U be a neighborhood of $\mathrm{Cl}\left(I^{s}-I_{+}^{s}\right)$ in I^{s}. Let U_{0}, U_{1} be regular neighborhoods of $\mathrm{Cl}\left(I^{s}-I_{+}^{s}\right)$ in I^{s} such that $U_{0} \subseteq \operatorname{int} U_{1}$ and $U_{1} \subseteq U$. Let $\varphi: S^{s-1} \times I \rightarrow \mathrm{Cl}\left(U_{1}-U_{0}\right)$ be a $P L$-homeomorphism such that $\varphi\left(S^{s-1} \times\{i\}\right)=$ bdry $U_{i} \cap \operatorname{int} I^{s}, i=0,1$.

Proposition 7. Let N, K, M be as in Theorem 2 with $m \geqq$ $n+k+s$. Let $f: N \times I^{s} \rightarrow M \times I^{s}$ be a PL-map such that $p_{2} f=p_{2}$ and such that there exists a neighborhood U of $\mathrm{Cl}\left(I^{s}-I_{+}^{s}\right)$ such that $f \mid N \times U$ is a PL-embedding, then there exists a PL-homotopy $f_{t}: N \times I^{s} \rightarrow M \times I^{s}$ and a neighborhood V of $\mathrm{Cl}\left(I^{s}-I_{+}^{s}\right)$ in I^{s} such that
(i) $f_{0}=f, p_{2} f_{t}=p_{2}, t \in I$;
(ii) $f_{t} \mid V=f, t \in I$;
(iii) $f_{1}: N \times I^{s} \rightarrow M \times I^{s}$ is a $P L$-embedding.

Proof. By Proposition 5, we can assume that the singular set T of f has dimension $\leqq 2(n+s)-(m+s)$, the branch set $B \subset T$ of f has dimension $<2(n+s)-(m+s)$, and that $f \mid K \times I^{s}$ is a $P L$ embedding. By Proposition 6, there is a $P L$-isotopy H_{t} of N such that $H_{0}=$ identity and $H_{1}(N) \cap p_{1} B=\varnothing$. Hence there is no loss of generality in assuming that $f \mid p_{1}^{-1}\left(H_{1}(N)\right) \times I^{s}$ is a $P L$-embedding.

Let U_{0}, U_{1} and ρ be as in construction α. Define $F_{t}: N \times I^{s} \rightarrow$ $N \times I^{s}, t \in I$, by

$$
\begin{aligned}
\left(H_{t}(x), y\right) & y \in \mathrm{Cl}\left(I^{s}-U_{1}\right) \\
F_{t}(x, y)=(x, y) & y \in U_{0} \\
\left(H_{t t_{0}}(x), y\right) & y \in \mathrm{Cl}\left(U_{1}-U_{0}\right), y=\varphi\left(y_{0}, t_{0}\right)
\end{aligned}
$$

Let $f_{t}=f F_{t}$ and $V=U_{0}$.
The following is the theorem of Dancis, Hudson and Tindell mentioned in the introduction. We include the proof for completeness.

Proposition 8. Let N, K, M be as in Theorem 2 with $m \geqq n+k$. There exists a PL-embedding $f: N \rightarrow M$.

Proof. Let $f^{\prime}: N \rightarrow M$ be a continuous map and approximate f^{\prime} by a $P L$-map $f^{\prime \prime}$ such that $f^{\prime \prime} / K$ is a $P L$-embedding and $f^{\prime \prime}$ is in general position. Let $B \subset S$ be the branch and singular set of $f^{\prime \prime}$ respectively. By Proposition 6, there is a $P L$-isotopy $H_{t}, t \in I$, of N such that $H_{1}(N) \cap S=S \cap K$. Let $f=f^{\prime \prime} H_{1}$.

Remark. We shall make $P L(N, M)$ and $C(N, M)$ into pointed Δ-sets by defining the basepoint complex $*$ as follows. Let $*^{s}(x, y)=$ ($f(x), y), x \in N, y \in \Delta^{s}$ where f is defined in Proposition 8. The face operators are defined naturally.

The proof of the following proposition is well known.
Proposition 9. Let N, M, K be as in Theorem 2 with $m \geqq n+k$. Let $g: N \times I^{s} \rightarrow M \times I^{s}$ represent an s-simplex in $P L(N, M)(C(N, M))$ such that

$$
g\left|N \times \operatorname{bdry} I^{s}=*^{s}\right| N \times \operatorname{bdry} I^{s}
$$

g is homotopic rel bdry I^{s} in $P L(N, M)(C(N, M))$ to $g^{\prime}: N \times I^{s} \rightarrow$ $M \times I^{s}$ such that for some neighborhood U of $\mathrm{Cl}\left(I^{s}-I^{s}+\right)$ in I^{s}, $g^{\prime}\left|N \times U=*^{s}\right| N \times U$.

Proposition 10. Let N, M, K be as in Theorem 2 with $m \geqq$ $n+k+s+1$ and let $F_{t}: N \times I^{s} \rightarrow M \times I^{s}$ be a PL-homotopy such that
(i) $\quad F_{i}$ are PL-embeddings, $i=0,1$;
(ii) $p_{2} F_{t}=p_{2}, t \in I$:
(iii) there exists a neighborhood U of $\mathrm{Cl}\left(I^{s}-I_{+}^{s}\right)$ in I^{s} such that $F_{t} \mid N \times U=*^{s}$.

Then there exists a PL-isotopy $G_{t}: N \times I_{s} \rightarrow M \times I^{s}$ such that
(i) $G_{i}=F_{i}$ for $i=0,1$;
(ii) $p_{2} G_{t}=p_{2}, t \in I$:
(iii) there exists a neighborhood V of $\mathrm{Cl}\left(I^{s}-I_{+}^{s}\right)$ in I^{s} such that $G_{t} \mid N \times V=*^{s}$.

Proof. Note that there is no loss of generality in assuming that there is an $\varepsilon>0$ so that F_{t} are $P L$-embeddings, $t \in[0, \varepsilon] \cup[1-\varepsilon, 1]$. However, now this is a restatement of Proposition 7.

The proof of Theorem 2 now follows easily from the above propositions.
3. Applications. One of the immediate consequences of Theorem 2 is a partial generalization of Hudson's "concordance implies isotopy"
theorem [2]. (See also Proposition 1 of [4].)
Corollary 1. Let N be a compact PL-n-manifold with k-spine $K, k<n$, and let M be a PL-m-manifold without boundary. Let $f: N \times I^{s} \rightarrow M \times I^{s}$ be a PL-embedding such that $p_{2} f \mid N \times$ bdry $I^{s}=$ p_{2}. Then if $m \geqq n+k+s$, there exists a PL-embedding $F: N \times I^{s} \rightarrow$ $M \times I^{s} \quad$ such that $F \mid N \times$ bdry $I^{s}=f \quad$ and $\quad p_{2} F=p_{2}$. If $m \geqq$ $n+k+s+1, f$ and F can be chosen to be isotopic rel $N \times$ bdry I^{s}.

Let X be an s-dimensional polyhedron and let $p: E \rightarrow X$ and $q: F \rightarrow X$ be $P L$-fiber bundles with fibers N and M respectively with structure groups Aut (N) and Aut (M) where
(i) N is a $P L$ - n-manifold with k-spine, $k<n$;
(ii) M is a $P L-m$-manifold without boundary;
(iii) Aut (N) and Aut (M) are the groups of $P L$-automorphisms of N and M, respectively.

By triangulating X and by using the propositions above together with induction on the dimension of the simplexes of X, one can easily prove the following.

Corollary 2. If $f: E \rightarrow F$ is a continuous bundle map (-i.e., $q f=p$) and $m \geqq n+k+s$, then f is homotopic through bundles maps to a PL-bundle map which is an embedding of E into F. If $m \geqq n+k+s+1$; any two PL-bundle embeddings of E into F are isotopic through bundle maps.

A $P L_{m}$-bundle is a $P L$-bundle $q: F \rightarrow X$ whose fiber is Euclidean m-space R^{m} and whose structural group is the $P L$-automorphisms of $R^{m} \bmod$ the origin.

Corollary 3. Let N be a $P L$-n-manifold with k-spine, $k<n$; let $p: E \rightarrow X^{s}$ be a PL-fiber bundle with N as fiber and Aut (N) as structural group. If $m \geqq n+k+s$, then for any $P L_{m}$-bundle $q: F \rightarrow X$, there exists a PL-bundle map $f: E \rightarrow F$ which is an embedding. If $m \geqq n+k+s+1$, then any such two PL-bundle embeddings are isotopic through bundle maps.

References

1. Jean Pierre Dax, Généralisation des théorèmes de plongement de Haefliger à des familles d' applications dépendant d'un nombre quelconque de paramètres, C. R. Acad. Sci. Paris (A-B) 264 (1967), A499-A502.
2. - Étude homotopique de l'espace des plongements d'une n-variété dans une m-variété. C. R. Acad. Sci. Paris (A-B) 267 (1968), A190-A193.
3. J. F. P. Hudson, Piecewise linear topology, University of Chicago Mathematics

Lecture Notes, 1966/67.
4. -, Concordance and isotopy of PL embeddings, Bull. Amer. Math Soc. 72 (1966), 534-535.
5. M. C. Irwin, Embeddings of polyhedral manifolds, Ann. of Math. 82 (1965), 1-14.
6. C. Morlet, Les méthodes de la topologie différentielle dans l'étude des variétés semilinéaires, Ann. scient. Éc. Norm. Sup. (4) 1 (1968), 313-394.
7. C. P. Rourke, and R. J. Sanderson, On the homotopy theory of Δ-sets (to appear)
8. E. C. Zeeman, Seminar on combinatorial topology, Inst. des Hautes Études Sci., Paris, 1963.

Received April 11, 1969. Research supported in part by National Science Foundation Grant GP-8615.

University of Georgia
Athens, Georgia
Virginia Polytechnic Institute
Blacksburg, Virginia

INTEGRATION WITH RESPECT TO VECTOR MEASURES

D. R. Lewis

Abstract

The purpose of this paper is to develop a theory of integration with respect to measures into a locally convex, Hausdorff linear topological space, using a linear functional approach.

Section 1 presents some basic facts about such measures, chiefly through the study of their p-semi-variations (Definition 1.2). Devices of this sort have been considered by other authors (see [1], [4]), but chiefly to give expressions for the norms of linear operators defined by vector measures. We consider the continuity properties of the p -semi-variation, and define regularity in terms of the p-semi-variation.

The integration theory is developed in § 2. Although the integral is defined in terms of linear functionals, it is in no sense a weak integral. The dominated (strong) convergence theorem is proven under the additional assumption that the limit function is integrable, and it is shown that this is true whenever the range space of the measure is sequentially complete.

In § 3 integral representations of weakly compact operators from $C(S), C_{0}(T), C_{c}(T)$ and $C(T)_{\beta}$ into a locally convex, Hausdorff space are given. We used these representations to show that the above spaces satisfy a strengthened rersion of the Dunford-Pettis Propertyspecifically that a weakly compact operator on these spaces maps weakly Cauchy sequences into convergent sequences, without any assumption about the completeness of the range of the operator.

1. Throughout the first two sections (S, Σ) denotes a measurable space, (X, \mathscr{T}) a complex, locally convex Hausdorff linear topological space with dual X^{*} and μ an additive set function from Σ into X. If $x^{*} \in X^{*}$ and p is a semi-norm on X we will write $x^{*} \leqq p$ whenever $\left|x^{*}(x)\right| \leqq p(x)$ for all $x \in X$. The following theorem, stated here without proof, was first proved by Pettis [6] for normed spaces and Grothendieck [5] for locally convex spaces.

Theorem 1.1. If μ is countably additive in the weak topology, then μ is countably additive in \mathscr{T}.

Definition 1.2. If p is a semi-norm on X, then the p-semivariation of μ is the function from Σ into the extended reals defined by $\|\mu\|_{p}(E)=\sup _{x^{*} \leqq p} v\left(x^{*} \mu, E\right)$, where $v\left(x^{*} \mu, \cdot\right)$ is the scalar variation of
$x^{*} \mu$.
It follows immediately that $\|\mu\|_{p}(\cdot)$ is monotone, subadditive and that $p[\mu(E)] \leqq\|\mu\|_{p}(E) \leqq 4 \sup _{F \in E} p[\mu(F)]$ for each $E \in \Sigma$. If μ is a measure then $\|\mu\|_{p}(\cdot)$ is countably subadditive and real valued, since the range of μ is bounded.

Theorem 1.3. If μ is a measure, p a continuous semi-norm and $\left(E_{n}\right)$ a convergent sequence in Σ, then $\|\mu\|_{p}\left(\lim _{n} E_{n}\right)=\lim _{n}\|\mu\|_{p}\left(E_{n}\right)$.

Proof. We first establish a special case. Suppose $\left(E_{n}\right)$ is a decreasing sequence in Σ with empty intersection and that, for some $\varepsilon>0,\|\mu\|_{p}\left(E_{n}\right)>\varepsilon$ for each n. Let $n_{1}=1$. For some $x^{*} \leqq p$ and $n_{2}>n_{1}, v\left(x^{*} \mu, E_{n_{1}}\right)>\varepsilon$ and $v\left(x^{*} \mu, E_{n_{2}}\right)<\varepsilon / 2$. Then also $4 \sup _{F \subset E n_{1} \backslash E n_{2}}$ $p[\mu(F)] \geqq v\left(x^{*} \mu, E_{n_{1}} \backslash E_{n_{2}}\right)>\varepsilon / 2$, so for some $F_{1} \subset E_{n_{1}} \backslash E_{n_{2}}$ we have

$$
p\left[\mu\left(F_{1}\right)\right]>\frac{\varepsilon}{8} .
$$

Continuing in this manner there is an increasing sequence $\left(n_{k}\right)$ of positive integers and a sequence $\left(F_{k}\right)$ in Σ such that $F_{k} \subset E_{n_{k}} E_{n_{k+1}}$ and $p\left[\mu\left(F_{k}\right)\right]>\varepsilon / 8$ for each k. This contradicts the countable additivity of μ since the F_{k} 's are pairwise disjoint.

If (E_{n}) is in Σ and has limit E, then $\|\mu\|_{p}(E)=\lim _{n}\|\mu\|_{p}\left(E_{n}\right)$ since the inequality

$$
\|\mu\|_{p}(E)-\|\mu\|_{p}\left(E_{n}\right) \mid \leqq\|\mu\|_{p}\left[\bigcup_{k \geqq n}\left(E \backslash E_{k}\right)\right]+\|\mu\|_{p}\left[\bigcup_{k \geqq n}\left(E_{k} \backslash E\right)\right]
$$

holds.
Corollary 1.4. If μ is a measure and $\left(E_{n}\right)$ is a convergent sequence in Σ, then $\mu\left(\lim _{n} E_{n}\right)=\lim _{n} \mu\left(E_{n}\right)$.

Proof. Let $E=\lim _{n} E_{n}$. The corollary follows since

$$
\lim _{n}\left(E \backslash E_{n}\right)=\lim _{n}\left(E_{n} \backslash E\right)=\varnothing
$$

and $\quad p\left[\mu(E)-\mu\left(E_{n}\right)\right]<\|\mu\|_{p}\left(E \backslash E_{n}\right)+\|\mu\|_{p}\left(E_{n} \backslash E\right)$ for each n and semi-norm p.

Definition 1.5. Suppose S is a topological space. μ is regular (in \mathscr{G}) if, for each $E \in \Sigma \varepsilon>0$ and continuous semi-norm p on X, there is a relatively compact set K in Σ whose closure is contained in E and a set G in Σ whose interior contains E such that

$$
\|\mu\|_{p}(G \backslash K)<\varepsilon .
$$

If μ is bounded and regular, then $x^{*} \mu$ is bounded and regular for each $x^{*} \in X^{*}$. This implies that $x^{*} \mu$ is countably additive for each $x^{*} \in X^{*}$, which in turn implies that μ is a measure. Also, regularity in the weak topology is equivalent to the regularity of $x^{*} \mu$ for each $x^{*} \in X^{*}$.

Theorem 1.6. If μ is regular in the weak topology and μ is a measure, then μ is regular in \mathscr{T}.

Proof. If μ is not inner regular there is an $E \in \Sigma$, a positive ε and a \mathscr{T}-continuous semi-norm p such that $\|\mu\|_{p}(E \backslash K)>\varepsilon$ for each relatively compact K in Σ with $\bar{K} \subset E$. Let $K_{1}=\varnothing$. There is an $x_{1} \leqq p$ and a relatively compact set K_{2} in Σ such that

$$
K_{1} \subset K_{2}, \bar{K}_{2} \subset E, v\left(x_{1} \mu, E \backslash K_{1}\right)>\varepsilon
$$

and $v\left(x_{1} \mu, E \backslash K_{2}\right)<\varepsilon / 2$. Since $\|\mu\|_{p}\left(E \backslash K_{2}\right)>\varepsilon$ we may continue this process and obtain a sequence $\left(x_{n}\right)$ of functionals dominated by p and an increasing sequence $\left(K_{n}\right)$ of relatively compact sets in Σ such that $\bar{K}_{n} \subset E, v\left(x_{n} \mu, E \backslash K_{n}\right)>\varepsilon$ and $v\left(x_{n} \mu, E \backslash K_{n+1}\right)<\varepsilon / 2$ for each n. Let $K=\bigcup_{n \geqq 1} K_{n}$. Since $\lim _{n}\left(K \backslash K_{n}\right)=\varnothing$ there is an m such that

$$
\|\mu\|_{p}\left(K \backslash K_{m}\right)<\frac{\varepsilon}{2} .
$$

But then $v\left(x_{m} \mu, E \backslash K_{m}\right) \leqq v\left(x_{m} \mu, E \backslash K_{m+1}\right)+\|\mu\|_{p}\left(K \backslash K_{m}\right)<\varepsilon$. The outer regularity of μ is proven similarly.
2. Throughout this section μ is a fixed measure from Σ into (X, \mathscr{T}) and $\mathscr{\phi}$ the complex numbers.

Definition 2.1. A function $f: S \rightarrow \phi$ is μ-integrable if
(1) f is $x^{*} \mu$-integrable for each $x^{*} \in X^{*}$, and
(2) for each $E \in \Sigma$ there is an element of X, denoted by

$$
\int_{E} f(t) \mu(d t)
$$

such that $x^{*} \int_{E} f(t) \mu(d t)=\int_{E} f(t) x^{*} \mu(d t)$ for each $x^{*} \in X^{*}$.
Since (X, \mathscr{T}) is Hausdorff the integral is well-defined. No assumption is made about the completeness of (X, \mathscr{T}). \mathscr{T} enters into the definition of the integral only in that it determines X^{*}, so that in any of the results of this section \mathscr{T} may be replaced by any topology in the Mackey spectrum of (X, \mathscr{T}).

It is easy to see that the integral has the following properties:
(1) The integral is linear.
(2) Every simple function $\sum_{i \leq n} a_{i} \chi_{E_{i}}$ is μ-integrable and

$$
\int_{E}\left(\sum_{i \leq n} a_{i} \chi_{E_{i}}\right)(t) \mu(d t)=\sum_{i \leq n} a_{i} \mu\left(E \cap E_{i}\right)
$$

for $E \in \Sigma$.
(3) If f is bounded and μ-integrable, then

$$
p\left[\int_{E} f(t) \mu(d t)\right] \leqq\|\mu\|_{p}(E) \cdot \sup _{s \in s}|f(s)|
$$

for each $E \in \Sigma$ and continuous semi-norm p.
(4) If f is μ-integrable and T is a continuous linear operator from X into a locally convex Hausdorff space Y, then f is $T \mu$-integrable and $\int_{E} f(t) T \mu(d t)=T \int_{E} f(t) \mu(d t)$ for $E \in \Sigma$.

Theorem 2.2. (1) If f is μ-integrable, then the set function on Σ defined by $\Phi(E)=\int_{E} f(t) \mu(d t)$ is a measure,

$$
\|\Phi\|_{p}(E)=\sup _{x^{*} \leqslant s p} \int_{E}|f(t)| v\left(x^{*} \mu, d t\right) \text { and } \lim _{\|\mu\| \|_{p}(E) \rightarrow 0}\|\Phi\|_{p}(E)=0
$$

for each continuous semi-norm p.
(2) Let $\left(f_{n}\right)$ be a sequence of μ-integrable functions which converge pointwise to f on S and g be a μ-integrable function such that $\left|f_{n}\right| \leqq|g|$ for each n. f is μ-integrable if X is sequentially complete. If f is μ-integrable then

$$
\int_{E} f(t) \mu(d t)=\lim _{n} \int_{E} f_{n}(t) \mu(d t)
$$

uniformly with respect to $E \in \Sigma$.
Proof. The set function Φ in (1) is a measure by Pettis's Theorem, and the expression for its p-semi-variation is correct since

$$
v\left(x^{*} \Phi, E\right)=\int_{E}|f(t)| v\left(x^{*} \mu, d t\right)
$$

for each x^{*}. Clearly $\|\Phi\|_{p}(E)=0$ whenever $\|\mu\|_{p}(E)=0$, so in light of Theorem 1.3 the usual proof by contradiction that zero-zero and $\varepsilon-\delta$ absolute continuity are equivalent in finite measure spaces establishes that $\lim _{\|\mu\| \|_{p}(E)>0}\|\Phi\|_{p}(E)=0$.

To prove (2) we first show that

$$
\left(\int_{E} f_{n}(t) \mu(d t)\right)
$$

is Cauchy uniformly with respect to $E \in \Sigma$. Let p be a continuous seminorm, $\varepsilon>0$,

$$
\Phi(F)=\int_{F} g(t) \mu(d t)
$$

and $E_{n}=\left\{s \in S:\left|f(s)-f_{n}(s)\right| \geqq \varepsilon\right\}$. If $E \in \Sigma$ and $x^{*} \leqq p$, then f is $x^{*} \mu$-integrable by the dominated convergence theorem for scalar measures and for each n

$$
\left|\int_{E}\left(f-f_{n}\right)(t) x^{*} \mu(d t)\right| \leqq \varepsilon\|\mu\|_{p}\left(E \backslash E_{n}\right)+2\|\Phi\|_{p}\left(E \cap E_{n}\right) .
$$

Thus

$$
\begin{aligned}
& p\left[\int_{E} f_{n}(t) \mu(d t)-\int_{E} f_{m}(t) \mu(d t)\right] \\
& \quad \leqq 2 \varepsilon\|\mu\|_{p}(S)+2\|\Phi\|_{p}\left(E_{n}\right)+2\|\Phi\|_{p}\left(E_{m}\right)
\end{aligned}
$$

for all n and m. The sequence is Cauchy since $\lim _{n}\|\Phi\|_{p}\left(E_{n}\right)=0$.
The first assertion of (2) follows from this Cauchy condition and the dominated convergence theorem, and the second is true since

$$
\left(\int_{E} f_{n}(t) \mu(d t)\right)
$$

is uniformly Cauchy in \mathscr{T} with respect to E and converges weakly to $\int_{E} f(t) \mu(d t)$.

It follows that every bounded measurable function is μ-integrable if X is sequentially complete. The last two theorems of this section give characterizations of μ-integrable functions when X is sequentially complete.

Lemma 2.3. Let λ be a complex valued measure on (S, Σ) and (f_{n}) a sequence of λ-integrable functions such that
(1) $\left(f_{n}\right)$ converges to f pointwise on S, and
(2) $\left(\int_{E} f_{n}(t) \lambda(d t)\right)$ is Cauchy for each $E \in \Sigma$. Then f is λ-integrable and $\int_{E} f(t) \lambda(d t)=\lim _{n} \int_{E} f_{n}(t) \lambda(d t)$ uniformly with respect to $E \in \Sigma$.

Proof. The proof follows the standard argument. For each m define λ_{m} on Σ by $\lambda_{m}(E)=\int_{E} f_{m}(t) \lambda(d t)$. Each λ_{m} is $v(\lambda)$-continuous and by (2) $\lim _{m} \lambda_{m}(E)$ exists for each $E \in \Sigma$. By the Vitali-Hahn-Saks Theorem $\lim _{v(\lambda, E) \rightarrow 0} \lambda_{m}(E)=0$ uniformly in m. Let $\varepsilon>0$ and

$$
E_{n}=\left\{s \in S:\left|f_{n}(s)-f(s)\right| \geqq \varepsilon\right\}
$$

for each n. By (1) $\lim _{n} E_{n}=\varnothing$, so $\sup _{n \geqq n_{0}} \sup _{m} v\left(\lambda_{m}, E_{n}\right)<\varepsilon$ for some n_{0}. Also, for $n \geqq n_{0}$,

$$
\begin{aligned}
& \quad \int\left|f(t)-f_{n}(t)\right| v(\lambda, d t) \\
& \leqq \varepsilon v\left(\lambda, S \backslash E_{n}\right)+\lim \inf _{m} \int_{E_{n}}\left|f_{m}(t)-f_{n}(t)\right| v(\lambda, d t) \\
& \leqq \varepsilon[v(\lambda, S)+2] .
\end{aligned}
$$

This inequality establishes the lemma.
Theorem 2.4. Suppose X is sequentially complete and f is a complex valued function on S. The following are equivalent:
(1) f is μ-integrable.
(2) There is a sequence $\left(f_{n}\right)$ of bounded measurable functions which converges pointwise to f and for which $\left(\int_{E} f_{n}(t) \mu(d t)\right)$ is Cauchy uniformly with respect to $E \in \Sigma$.
(3) There is a sequence $\left(f_{n}\right)$ of simple functions which converges pointwise to f and for which $\left(\int_{E} f_{n}(t) \mu(d t)\right)$ is Cauchy for each $E \in \Sigma$.

Proof. For each n let $E_{n}=\{s \in S:|f(s)| \leqq n\}$ and $f_{n}=f \chi_{E_{n}}$. If f is μ-integrable then $\left(f_{n}\right)$ satisfies condition (2) by Theorem 2.2. (2) clearly implies (3). To see that (3) implies integrability, let $E \in \Sigma$ and $x_{E}=\lim _{n} \int_{E} f_{n}(t) \mu(d t)$. For $x^{*} \in X^{*}$, an application of Lemma 2.3 with $\lambda=x^{*} \mu$ shows that

$$
x^{*}\left(x_{E}\right)=\lim _{n} \int_{E} f_{n}(t) x^{*} \mu(d t)=\int_{E} f(t) x^{*} \mu(d t) .
$$

Notice that if f and $\left(f_{n}\right)$ satisfy condition (2) or (3) of Theorem 2.4, then, by Lemma 2.3,

$$
\int_{E} f(t) \mu(d t)=\lim _{n} \int_{E} f_{n}(t) \mu(d t)
$$

for each $E \in \Sigma$. Also, a reformation of (3) with the word Cauchy replaced by convergent is equivalent to (1) without sequential completeness.

We next consider the case in which X is normed. Here we need only one semi-variation of μ, that with $p(x)=\|x\|$. The dual of X^{*} under its natural norm topology will be denoted by $X^{* *}$.

Definition 2.5. Suppose X is a normed space. A function $f: S \rightarrow \notin$ has a generalized integral with respect to μ if f is $x^{*} \mu$ -
integrable for each $x^{*} \in X^{*}$. If f is such a function, then $\int_{E} f d \mu$ is the linear form on X^{*} defined by $\left(\int_{E} f d \mu\right) x^{*}=\int_{E} f(t) x^{*} \mu(d t)$.

If f is μ-integrable, then $\int_{E} f d u$ is the image of $\int_{E} f(t) \mu(d t)$ under the natural map from X into $X^{* *} . \int_{E} f d u$ is always in $X^{* *}$, since it is the pointwise limit of a sequence of the integrals of simple functions.

Theorem 2.6. Suppose X is a Banach space and $f: S \rightarrow \phi$ has a generalized integral. The following are equivalent:
(1) f is μ-integrable.
(2) The set function Φ from Σ into $X^{* *}$ defined by

$$
\Phi(E)=\int_{E} f d \mu
$$

is measure in the norm topology on $X^{* *}$.
(3) $\lim _{\left\|\mu^{\mu}\right\|(E) \rightarrow 0} \mid\left\|\int_{E} f d \mu\right\|=0$.

Proof. (1) implies (3) by Theorem 2.2. (2) is immediate from (3). For each n let $F_{n}=\{s \in S:|f(s)| \leqq n\}$ and $f_{n}=f \chi_{E_{n}}$. For n and m positive integers and $E \in \Sigma$,

$$
\left\|\int_{E} f_{m}(t) \mu(d t)-\int_{E} f_{m}(t) \mu(d t)\right\| \leqq\|\Phi\|\left(S \backslash E_{n}\right)+\|\Phi\|\left(S \backslash E_{m}\right),
$$

so that $\left(f_{n}\right)$ satisfies condition (2) of Theorem 2.4 if Φ is a measure.
3. Below S is a compact Hausdorff space, Σ the Borel sets of $S, C(S)$ the Banach space (under supremum norm) of continuous complex valued functions on S and (X, \mathscr{T}) a locally convex, Hausdorff linear topological space.

Theorem 3.1. Let $A: C(S) \rightarrow X$ be a weakly compact linear operator. There is a measure $\mu: \Sigma \rightarrow X$ such that
(1) μ is regular,
(2) the closed absolutely convex hull of $\mu[\Sigma]$ is weakly compact,
(3) every bounded Borel function on S is μ-integrable,
(4) $A f=\int f(t) \mu(d t)$ for $f \in C(S)$, and
(5) $A^{*} x^{*}=x^{*} \mu$ for $x^{*} \in X^{*}$.

Conditions (1) and (4) define μ uniquely. $\|A\|=\|\mu\|(S)$ whenever X is normed. If μ is a measure on Σ which satisfies (1), (2), and
(3), then (4) defined a weakly compact operator which satisfies (5). If X is complete, then (2) and (3) follow from (1).

Proof. Since the dual of $C(S)$ may be identified with the bounded regular Borel measures on Σ, the equation

$$
g^{\wedge}(\lambda)=\int g(t) \lambda(d t)
$$

defines an element of $C(S)^{* *}$ for each bounded Borel function g. Since A is weakly compact, $A^{* *}$, the algebraic adjoint of A^{*}, maps $C(S)^{* *}$ into X. For $E \in \Sigma$ let $\mu(E)=A^{* *}\left(\chi_{\bar{E}}^{\wedge}\right)$. For each $x^{*} \in X^{*}$, $x^{*} \mu=A^{*} x^{*}$ is a regular measure, so μ is a regular measure. Since $A^{* *}$ maps the unit ball of $C(S)^{* *}$ into a weakly compact subset of X, condition (3) is satisfied. If $\sum_{i \leqq n} a_{i} \chi_{E_{i}}$ is a simple Borel function, then

$$
A^{* *}\left[\left(\sum_{i \leqq n} a_{i} \chi_{E_{i}}\right)^{\wedge}\right]=\sum_{i \leq n} a_{i} A^{* *}\left(\chi_{E_{i}}^{\wedge}\right)=\int\left(\sum_{i \leqq n} a_{i} \chi_{E_{i}}\right)(t) \mu(d t) .
$$

Thus $x^{*}\left(A^{* *} g^{\wedge}\right)=\int g(t) x^{*} \mu(d t)$ holds for each bounded Borel function g and $x^{*} \in X^{*}$. Finally, $\|A\|=\left\|A^{*}\right\|=\|\mu\|(E)$ if X is normed.

Conversely, suppose μ satisfies (1), (2), (3). The operator A defined by (4) is continuous since $p[A f] \leqq\|f\|\|\mu\|_{p}(S)$ for each continuous semi-norm p on X. Also, by the regularity of $\mu, A^{*} x^{*}=x^{*} \mu$ for $x^{*} \in X^{*}$. Let U be the polar of the closed, absolutely convex hull of $\nu[\Sigma] . \quad U$ is a neighborhood of zero in the Mackey topology on X^{*}, and, for $x^{*} \in U,\left\|A^{*} x^{*}\right\| \leqq 4$. Thus A^{*} is continuous with the Mackey topology on X^{*} and the norm topology on $C(S)^{*}$-this implies that A is weakly compact.

If X is complete and μ is regular, then $A f=\int f(t) \mu(d t)$ defines a continuous linear operator for $C(S)$ into X such that $A^{*} x^{*}=x^{*} \mu$ for $x^{*} \in X^{*}$. To see that (2) holds, it is sufficient to show that A is weakly compact-equivalently, that A^{*} maps equicontinuous sets into weakly relatively compact sets. Let V be an open neighborhood of zero in X generated by a semi-norm p. For $x^{*} \in V^{\circ}$ and $E \in \Sigma$,

$$
\left|x^{*} \mu(E)\right| \leqq\|\mu\|_{p}(E),
$$

so the countable additivity of $A^{*}\left[V^{\circ}\right]$ is uniform. This together with norm boundedness implies that $A^{*}\left[V^{\circ}\right]$ is relatively weakly compact.

In [1] Bartle, Dunford and Schwartz have given a similar integral representation for weakly compact operators from $C(S)$ into a Banach space. Grothendieck [5] has noted that there is a one-to-one correspondence between the weakly compact operators from $C(S)$ into a complete, locally convex, Hausdorff space X and the X-valued measures on the Baire sets of S, although he did not give an integral repre-
sentation of such operators.
Let T be a locally compact Hausdorff space. $C_{0}(T)\left[C_{c}(T)\right]$ is the Banach space under supremum norm of complex valued functions on T which vanish at infinity [have compact support]. $C(T)_{\beta}$ is the space of bounded, continuous, complex valued functions on T topologized by the semi-norms $p_{\varphi}(f)=\sup _{t \in T}|\varphi(t) f(t)|$, where $\varphi \in C_{0}(T)$. A weakly compact operator $A: C_{0}(T) \rightarrow X$ can be represented by integration with respect to an X-valued measure since A can be extended to a weakly compact operator on the space of continuous functions over the one point compactification of T. Weakly compact operators on $C_{c}(T)$ have such a representation since they can be extended to $C_{0}(T)$. The bounded sets of $C(T)_{\beta}$ are precisely the uniformly bounded sets and each element of $C(T)_{\beta}^{*}$ can be identified with a bounded regular Borel measure on T [2], so the proof of Theorem 3.1 generalizes immediately for $C(S)_{\beta}$.

Corollary 3.2. Let A be a weakly compact operator from one of $C(S), C_{0}(T), C_{c}(T)$ or $C(T)_{\beta}$ into X. A maps weakly Cauchy sequences into convergent sequences.

Proof. If $\left(f_{n}\right)$ is weakly Cauchy in any of the above spaces, then $\left(f_{n}\right)$ is uniformly bounded and converges pointwise to a bounded Borel function f. Let μ be the measure determining $A . f$ is μ-integrable and, by Theorem 2.1, $\int f(t) \mu(d t)=\lim _{n} A f_{n}$.

This is proven in [5] for $C(S)$ under the assumption that X is complete.

Bibliography

1. R. G. Bartle, N. Dunford, and J. Schwartz, Weak compactness and vector measures, Canad. J. Math. 7 (1955), 289-305.
2. R. C. Buck, Bounded continuous functions on a locally compact space, Michigan Math. J. 5 (1958), 95-104.
3. N. Dunford, and J. Schwartz, Linear operators, Part I, Interscience, New York, 1958.
4. J. G. de Lamadrid, Measures and tensors, Trans. Amer. Math. Soc. 114 (1965), 98-121.
5. A. Grothendieck, Sur les applications linéaries faiblement compactes d'espaces du type $C(K)$, Canad. J. Math. 5 (1953), 129-173.
6. B. J. Pettis, On integration in vector spaces, Trans. Amer. Math. Soc. 44 (1938), 277-304.

Received February 10, 1969.
Louisiana State University
Baton Rouge, Louisiana

$\mathscr{L}-2$ SUBSPACES OF GRASSMANN PRODUCT SPACES

M. J. S. Lim

Abstract

The subspaces of the second order Grassmann product space consisting of products of a fixed irreducible length k and zero are interesting not only for their own sake and their usefulness when determining the structure of linear transformations on the product space into itself which preserve the irreducible length k, but also because they are isomorphic to subspaces of skew-symmetric matrices of fixed rank $2 k$. The structure of these subspaces and the corresponding preservers are known for $k=1$, when the underlying field F is algebraically closed. This paper gives a complete characterization of these subspaces when $k=2$ and F is algebraically closed. When F is not algebraically closed, these subspaces can be different.

Let \mathscr{C} be an n-dimensional vector space over an algebraically closed field F. Let $\Lambda^{2} \mathscr{U}$ denote the $\binom{n}{2}$-dimensional space spanned by all Grassmann products $x_{1} \wedge x_{2}, x_{i} \in F$. A vector $f \in \Lambda^{2} \mathscr{U}$ is said to have irreducible length k if it can be written as a sum of k, and not less than k, nonzero pure (decomposable) products in $\Lambda^{2} \mathscr{K}$. Let \mathscr{L}_{k} denote the set of all vectors of irreducible length k in $\Lambda^{2} \mathscr{U}$, and $f \in \mathscr{L}_{k}$ if and only if $\mathscr{L}(f)=k$. A subspace of $\Lambda^{2} \mathscr{U}$ whose nonzero members are in \mathscr{L}_{k} is called an $\mathscr{L}-k$ subspace.

An $\mathscr{L}-2$ subspace H is a $(1,1)$-type subspace if there exist fixed nonzero vectors $x \neq y$ such that each nonzero $f \in H$ can be written $f=x \wedge x_{f}+y \wedge y_{f}$. A basis of a (1, 1)-type subspace is called a $(1,1)$ basis. When $\operatorname{dim} \mathscr{U}=4$, every $\mathscr{L}-2$ subspace has dimension one ([4], Th. 10).

It is shown here that (i) for $\operatorname{dim} \mathscr{U}=n \geqq 5$, there always exists an $\mathscr{L}-2$ subspace of (1,1)-type and dimension two; (ii) the 2 -dimensional $\mathscr{L}-2$ subspaces are of (1,1)-type; (iii) every $\mathscr{L}-2$ subspace of dimension at least four is of (1,1)-type; (iv) the $\mathscr{L}-2$ subspaces have dimension at most $(n-3)$ when $n \geqq 6$; and this maximum dimension is attained. Also the 3 -dimensional $\mathscr{L}-2$ subspaces are characterized, and these are the most varied.

From [4], Theorem 5, each $f \in \mathscr{L}_{k}$ can be uniquely associated with a $2 k$-dimensional subspace $[f]$ of \mathscr{K}. The pair $\left\{f_{1}, f_{2}\right\}$ is said to be a P_{m}-pair in \mathscr{L}_{2} if $\left[f_{1}\right]+\left[f_{2}\right]$ has dimension m; and the set $\left\{f_{1}, \cdots, f_{k}\right\}$ in \mathscr{L}_{2} is pairwise- P_{m} if each pair is a P_{m}-pair, for $i \neq j$.

Theorem 1. Let $\operatorname{dim} \mathscr{\mathscr { C }}=n \geqq 5$. Then there always exists a
(1, 1)-type $\mathscr{L}-2$ subspace of dimension two.
Proof. For $n=5, u_{1}, \cdots, u_{5}$ independent in \mathscr{C}, the subspace $1 .\left\langle u_{1} \wedge u_{2}+u_{3} \wedge u_{4}, u_{2} \wedge u_{5}+u_{1} \wedge u_{3}\right\rangle$ is a (1, 1)-type $\mathscr{L}-2$ subspace of dimension two. For $n=6, u_{1}, \cdots, u_{6}$ independent in \mathscr{U}, the subspace $\left\langle u_{1} \wedge u_{2}+u_{3} \wedge u_{4}, u_{1} \wedge u_{5}+u_{3} \wedge u_{6}\right\rangle$ is a (1,1)-type $\mathscr{L}-2$ subspace of dimension two.

Theorem 2. Every 2-dimensional $\mathscr{L}-2$ subspace is a $(1,1)$ type subspace.

The theorem follows from the following Lemmas 1 to 4 .
Lemma 1. Let f_{1} and f_{2} be a P_{7}-pair in \mathscr{L}_{2}, a, b be nonzero in F. Then $\mathscr{L}\left(a f_{1}+b f_{2}\right)=3$.

Proof. Let $\left[f_{1}\right] \cap\left[f_{2}\right]=\left\langle x_{1}\right\rangle$. By Lemma 9 of [4], we can choose a basis $\left\{x_{1}, \cdots, x_{4}\right\}$ of $\left[f_{1}\right]$ such that $f_{1}=x_{1} \wedge x_{2}+x_{3} \wedge x_{4}$ and a basis $\left\{x_{1}, x_{5}, x_{6}, x_{7}\right\}$ such that $f_{2}=x_{1} \wedge x_{5}+x_{6} \wedge x_{7}$, with $\left[f_{1}\right]+\left[f_{2}\right]=\left\langle x_{1}, \cdots, x_{7}\right\rangle$. Then $z=a f_{1}+b f_{2}=x_{1} \wedge\left(a x_{2}+b x_{5}\right)+a x_{3} \wedge x_{4}+b x_{6} \wedge x_{7}$ and $\mathscr{L}(z)=3$ by Theorem 7 of [4].

Lemma 2. Let f_{1}, f_{2} be a basis of a 2-dimensional $\mathscr{L}-2$ subspace. Then $\left\{f_{1}, f_{2}\right\}$ is a P_{k}-pair where k is either 5 or 6 .

Proof. Each of $\left[f_{1}\right]$ and $\left[f_{2}\right]$ has dimension four. It is easy to see that k cannot be 4 (Theorem 10 of [4]). By Lemma 1, we conclude $k \neq 7$. If $k=8$, Theorem 6 of [4] implies that $\mathscr{L}\left(f_{1}+f_{2}\right)=4$. Hence k is either 5 or 6 .

Definition. $f_{1}, f_{2} \in \mathscr{L}_{2}$ can be expressed in (1, 1)-form if $\left\{f_{1}, f_{2}\right\}$ have representations $f_{i}=x \wedge u_{i}+y \wedge v_{i}, i=1,2$ and $\langle x, y\rangle$ is a fixed 2-dimensional subspace of \mathscr{C}.

Lemma 3. Let $\left\{f_{1}, f_{2}\right\}$ be a P_{5}-pair and a basis for an $\mathscr{L}-2$ subspace. Then $\left\{f_{1}, f_{2}\right\}$ have representations

$$
\begin{aligned}
& f_{1}=y_{4} \wedge u_{1}+u_{2} \wedge u_{3} \\
& f_{2}=y_{5} \wedge u_{2}+u_{1} \wedge u_{3}
\end{aligned}
$$

where $\left\{u_{1}, u_{2}, u_{3}, y_{4}, y_{5}\right\}$ is some basis of $\left[f_{1}\right]+\left[f_{2}\right]$.
Proof. Let $\mathscr{U}_{0}=\left[f_{1}\right] \cap\left[f_{2}\right]$. By Lemma 9 of [4], there are representations

$$
\begin{aligned}
& f_{1}=x_{1} \wedge v_{1}+v_{2} \wedge v_{3} \\
& f_{2}=x_{2} \wedge w_{1}+w_{2} \wedge w_{3}
\end{aligned}
$$

where $\left\langle v_{1}, v_{2}, v_{3}\right\rangle=\left\langle w_{1}, w_{2}, w_{3}\right\rangle=\mathscr{U}_{0}$. If v_{1}, w_{1} are dependent then some combination of f_{1} and f_{2} has irreducible length $\leqq 1$. Hence they are independent. Moreover $\left\langle v_{1}, w_{1}\right\rangle \cap\left\langle v_{2}, v_{3}\right\rangle$ and $\left\langle v_{1}, w_{1}\right\rangle \cap\left\langle w_{2}, w_{3}\right\rangle$ are both nonnull, and hence, without loss of generality, both v_{2} and w_{2} are in $\left\langle v_{1}, w_{1}\right\rangle$. Thus $v_{2}=a v_{1}+b w_{1}$ and $w_{2}=c v_{1}+d w_{1}$. Clearly $b \neq 0, c \neq 0$. Finally

$$
w_{3}=p v_{1}+q w_{1}+r v_{3}, r \neq 0
$$

Setting $y_{4}=b r^{-1} c^{-1}\left(x_{1}-a v_{3}\right), y_{5}=x_{2}-d w_{3}+c q v_{1}, u_{1}=b^{-1} r c v_{1}, u_{2}=w_{1}$, $u_{3}=b v_{3}$, we obtain the desired representations.

Corollary 1. Let $\left\{f_{1}, f_{2}\right\}$ be a P_{5}-pair and $\left\langle f_{1}, f_{2}\right\rangle$ a 2-dimensional $\mathscr{L}-2$ subspace. Then $\left\{f_{1}, f_{2}\right\}$ can be expressed in $(1,1)$-form.

Lemma 4. Let $\left\{f_{1}, f_{2}\right\}$ be a P_{6}-pair and $\left\langle f_{1}, f_{2}\right\rangle$ a 2-dimensional $\mathscr{L}-2$ subspace. Then $\left\{f_{1}, f_{2}\right\}$ can be expressed in $(1,1)$-form.

Proof. By Lemma 9 of [4], there are representations

$$
f_{1}=x_{1} \wedge u+v \wedge w, \quad f_{2}=x_{1} \wedge u^{\prime}+v^{\prime} \wedge w^{\prime}
$$

where $\left\langle x_{1}\right\rangle \subset\left[f_{1}\right] \cap\left[f_{2}\right]$ and $\langle u, v, w\rangle,\left\langle u^{\prime}, v^{\prime}, w^{\prime}\right\rangle$ are contained in

$$
\left(\left[f_{1}\right]+\left[f_{2}\right]-\left\langle x_{1}\right\rangle\right)
$$

If $\langle v, w\rangle \cap\left\langle v^{\prime}, w^{\prime}\right\rangle=0$, some linear combination of f_{1}, f_{2} has irreducible length 3. If $\langle v, w\rangle=\left\langle v^{\prime}, w^{\prime}\right\rangle$ some linear combination of f_{1}, f_{2} has irreducible length $\leqq 1$. The result follows.

Lemma 2 implies the following lemma.
Lemma 5. Let H be an $\mathscr{L}-2$ subspace. Let $\left\{f_{1}, \cdots, f_{k}\right\}$ be an independent subset of H. Then
(i) $3 \geqq\left[f_{i}\right] \cap\left[f_{j}\right] \geqq 2$ for $1 \leqq i<j \leqq k$;
(ii) $\operatorname{dim} \sum_{i=1}^{k-1}\left[f_{i}\right] \leqq \operatorname{dim} \sum_{i=1}^{k}\left[f_{i}\right] \leqq \operatorname{dim} \sum_{i=1}^{k-1}\left[f_{i}\right]+2$.

Corollary 1 implies:

Lemma 6. Let $\left\{f_{1}, f_{2}, f_{3}\right\}$ be pairwise- P_{6} and generate a 3-dimensional $\mathscr{L}-2$ subspace. Then $\left\{f_{1}, f_{2}, f_{3}\right\}$ is a $(1,1)$ basis for $\left\langle f_{1}, f_{2}, f_{3}\right\rangle$ if $\left[f_{3}\right] \supset\left[f_{1}\right] \cap\left[f_{2}\right]$.

1. $\operatorname{dim} \mathscr{U}=5$. It is not difficult to see that when $\operatorname{dim} \mathscr{C}=5$, the basis of any $\mathscr{L}-2$ subspace must consist of pairwise- P_{5} vectors.

Theorem 3. Let $\operatorname{dim} \mathscr{U}=5, H$ an $\mathscr{L}-2$ subspace. Let $\left\{f_{1}\right.$, $\left.\cdots, f_{k}\right\}$ be independent in H. Then $k \leqq 3$.

Proof. Let $\left\{u_{1}, \cdots, u_{5}\right\}$ be a basis of \mathscr{C}. Then each $f_{l}, 1 \leqq l \leqq k$, has the form $f_{l}=\sum a_{i j}^{l} u_{i} \wedge u_{j}(1 \leqq i<j \leqq 5), a_{i j} \in F$. (${ }^{*}$) Consider the vector $f=\sum_{i=1}^{k} \beta_{i} f_{i}, \beta_{i} \in F$ not all zero. Now $\mathscr{L}(z) \leqq 1$ if $k \geqq 4$ for some $\left\{\beta_{i}\right\}$ not all zero since the following is true. $f=\sum_{i=1}^{k} \beta_{i} f_{i}=$ $\sum p\left(i_{1}, i_{2}\right) u_{i_{1}} \wedge u_{i_{2}}\left(1 \leqq i_{1}<i_{2} \leqq 5\right)$ where $p\left(k_{\sigma(1)}, k_{\sigma(2)}\right)=\operatorname{sgn} \sigma p\left(k_{1}, k_{2}\right), \sigma$ a permutation of $\{1,2\}$, and $\left\{k_{i}\right\}$ are arbitrary integers $1 \leqq k_{i} \leqq 5$. Thus, using (*), it follows that $\left\{p\left(i_{1}, i_{2}\right)\right\}$ are linear homogeneous functions of $\left\{\beta_{1}, \cdots, \beta_{k}\right\}$. Then the quadratic p-relations

$$
\sum_{\mu=0}^{r}(-1)^{\mu} p\left(i_{1}, \cdots, i_{r-1}, j_{\mu}\right) p\left(j_{0}, \cdots, j_{\mu-1}, j_{\mu+1}, \cdots, j_{r}\right)=0
$$

for all sequences $\left(i_{1}, \cdots, i_{r-1}\right),\left(j_{0}, \cdots, j_{r}\right)$ of integers taken from $\{1, \cdots, n\}$ define (for $n=5, r=2$ in this case) five nontrivial equations, which are in fact quadratic homogeneous equations in the indeterminates β_{1}, \cdots, β_{k} in F. Moreover, of these five, exactly three are independent (see [3], pp. 289, 312). Hence, if $k \geqq 4$, then there exists a nontrivial solution for the five equations (see [6], chapter 11). For these values of $\beta_{1}, \cdots, \beta_{k}$ (not all zero), $\mathscr{L}(f) \leqq 1$. Hence $k<4$. The following three vectors generate an $\mathscr{L}-2$ subspace of dimension three:

$$
\begin{aligned}
& f_{1}=u_{4} \wedge u_{1}+u_{3} \wedge u_{2} \\
& f_{2}=u_{5} \wedge u_{2}+u_{3} \wedge u_{1} \\
& f_{3}=\left(u_{4}+u_{5}\right) \wedge u_{3}+u_{2} \wedge u_{1}
\end{aligned}
$$

The following theorem is true for all n.
Theorem 4. Let $\operatorname{dim} \mathscr{C}^{2}=n$. Let $\left\{f_{1}, \cdots, f_{k}\right\}$ be a $(1,1)$ basis for an $\mathscr{L}-2$ subspace. Then $k \leqq n-3$.

Moreover, when $n \geqq 5$, there always exists a $(1,1)$-type $\mathscr{L}-2$ subspace of dimension $(n-3)$.

Proof. Suppose $k=n-2$. Each f_{i} can be written $f_{i}=u_{1} \wedge y_{i}+$ $u_{2} \wedge z_{i}, 1 \leqq i \leqq n-2$, where $\left\langle u_{1}, u_{2}, y_{1}, \cdots, y_{n-2}, z_{1}, \cdots, z_{n-2}\right\rangle \subseteq \mathscr{U}$. Now $\left\{u_{1}, u_{2}, y_{1}, \cdots, y_{n-2}\right\}$ must be independent for, if not, some linear combination of $\left\{f_{i}\right\}$ has irreducible length $\leqq 1$. Hence $\mathscr{U}=\left\langle u_{1}, u_{2}, y_{1}, \cdots, y_{n-2}\right\rangle$. Thus $z_{j}=\sum_{i=1}^{n-2} \alpha_{i j} y_{i}+\beta_{j} u_{1}, 1 \leqq j \leqq n-2$. If $\beta_{j} \neq 0$, write

$$
f_{j}=u_{1} \wedge\left(y_{j}-\beta_{j} u_{2}\right)+u_{2} \wedge\left(\sum_{i=1}^{n-2} \alpha_{i j} y_{i}\right)
$$

Hence, without loss of generality, we can assume $\left\{z_{i}\right\}$ is dependent on $\left\{y_{i}\right\}$. Using a similar argument, $\left\{y_{i}\right\}$ is dependent on $\left\{z_{i}\right\}$. Hence $\left\langle y_{1}, \cdots, y_{n-2}\right\rangle=\left\langle z_{1}, \cdots, z_{n-2}\right\rangle$. Hence, for some $\left\{\alpha_{i}\right\} \in F$, not all zero, we have $\sum_{i=1}^{n-2} \alpha_{i} y_{i}=\lambda \sum_{i=1}^{n-2} \alpha_{i} z_{i}=y$ for some $0 \neq \lambda \in F$; and $f=\sum_{i=1}^{n-2} \alpha_{i} f_{i}$ has irreducible length $\leqq 1$. Hence $k \leqq n-3$.

Now let $f_{i}=u_{1} \wedge u_{i+2}+u_{2} \wedge u_{i+3}$ for $i=1, \cdots,(n-3)$, where $\left\langle u_{1}, \cdots, u_{n}\right\rangle=\mathscr{K}$. Then $\left\{f_{i}\right\}$ generate an $\mathscr{L}-2$ subspace of dimension $(n-3)$.

Corollary 2. Let $\operatorname{dim} \mathscr{U}=5, H$ an $\mathscr{L}-2$ subspace of $(1,1)$ type. Then, if $\operatorname{dim} H>1, \operatorname{dim} H=2$.

We pause here to introduce some notation.
Definition 1. For subsets S, T of $\mathscr{K},[S ; T]=\langle S \cup T\rangle-\langle T\rangle$. In the case where $S=\left\{x_{1}, \cdots, x_{s}\right\}$ and $T=\left\{x_{s+1}, \cdots, x_{k}\right\}$, we use the convention $[S ; T]=\left[x_{1}, \cdots, x_{s} ; x_{s+1}, \cdots, x_{k}\right]$. Note that in this case if $y \in[S ; T]$, then $y=\sum_{i=1}^{k} \alpha_{i} x_{i}, \alpha_{i} \in F$, and at least one of $\alpha_{1}, \cdots, \alpha_{s}$ is nonzero.

Definition 2. For subsets S, T of $\mathscr{U}, S \wedge T=\{x \wedge y: x \in S$ and $y \in T\}$. In the case where S is the singleton $\{x\}$, we shall write $S \wedge T$ as $x \wedge T$. Similarly for T. Also, if S is the space $\left\langle x_{1}, \cdots, x_{k}\right\rangle$, then we shall regard S as a set and write $S \wedge T$ as $\left[x_{1}, \cdots, x_{k}\right] \wedge T$. Similarly for T.

The three-dimensional $\mathscr{L}-2$ subspace when $\operatorname{dim} \mathscr{C}=5$. In this context, a basis $\left\{f_{1}, f_{2}, f_{3}\right\}$ of an $\mathscr{L}-2$ subspace H is necessarily pairwise P_{5}. It is not a (1,1) basis. However, either there exists a three-dimensional subspace \mathscr{U}_{0} of \mathscr{U} contained in each [f_{i}], or there exists a exists a five-dimensional subspace $\mathscr{W} \subseteq \mathscr{U}$ which contains each $\left[f_{i}\right]$ (see [1], p. 14). In fact, $\mathscr{W}=\mathscr{U}$. Moreover, since $\operatorname{dim} \mathscr{U}=5$, $\operatorname{dim}\left[f_{1}\right] \cap\left[f_{2}\right]=3$, and $\operatorname{dim}\left[f_{3}\right]=4$, then $\operatorname{dim} \bigcap_{i=1}^{3}\left[f_{i}\right] \geqq 2$. Consequently this intersection has dimension two or three.

Theorem 5. Let $\operatorname{dim} \mathscr{U}=5$. Let $\left\{f_{1}, f_{2}, f_{3}\right\}$ be a basis for an $\mathscr{L}-2$ subspace H such that $\left[f_{i}\right] \supset \mathscr{U}_{0}, i=1,2,3$, where \mathscr{U}_{0} is a three-dimensional subspace of \mathscr{U}. Then \mathscr{C} has a basis $\left\{u_{1}, u_{2}, u_{3}, x_{4}, x_{5}\right\}$ such that there are representations

$$
\begin{aligned}
& f_{1}=x_{4} \wedge u_{1}+u_{2} \wedge u_{3} \\
& f_{2}=x_{5} \wedge u_{2}+u_{1} \wedge u_{3} \\
& f_{3}=y \wedge u_{3}+u_{2} \wedge u_{1}
\end{aligned}
$$

where $y \in\left[x_{4} ; x_{5} \cdot u_{1}, u_{2}\right] \cap\left[x_{5} ; x_{4}, u_{1}, u_{2}\right]$.

Proof. \mathscr{U} has a basis $\left\{w_{1}, w_{2}, w_{3}, y_{4}, y_{5}\right\}$ such that $\mathscr{U}_{0}=\left\langle w_{1}, w_{2}, w_{3}\right\rangle$ and there are representations $f_{1}=y_{4} \wedge w_{1}+w_{2} \wedge w_{3}, f_{2}=y_{5} \wedge w_{2}+w_{1} \wedge w_{3}$ (see Lemma 3). Now there exists $y^{\prime} \in\left[f_{3}\right]$ such that $y^{\prime} \notin \mathscr{U}_{0}$ and $y^{\prime} \in\left[y_{4}, y_{5} ; w_{1}, w_{2}, w_{3}\right]$. Since $\left\{f_{1}, f_{2}, f_{3}\right\}$ is pairwise- P_{5}, it is easy to see $y^{\prime} \in\left[y_{4} ; y_{5}, w_{1}, w_{2}, w_{3}\right] \cap\left[y_{5} ; y_{4}, w_{1}, w_{2}, w_{3}\right]$. Hence f_{3} has a representation

$$
f_{3}=y^{\prime} \wedge u+v \wedge w ; \mathscr{U}_{0}=\langle u, v, w\rangle
$$

(see [4], Lemma 9). Now if $u \in\left\langle w_{1}, w_{2}\right\rangle$, it is possible to find representations of f_{1}, f_{2}, f_{3} such that they form a $(1,1)$ basis for H. This contradicts Corollary 2. Hence $u \notin\left\langle w_{1}, w_{2}\right\rangle$, but $u \in\left[w_{3} ; w_{1}, w_{2}\right]$. In fact, without loss of generality, we can take $u=w_{3}+c w_{1}+c^{\prime} w_{2}$.

Now $\left\langle w_{2}, u\right\rangle,\left\langle w_{1}, u\right\rangle,\langle v, w\rangle$ intersect pairwise in dimension at least one. Also $u \notin\langle v, w\rangle$. Therefore we may suppose $v \in\left[w_{2} ; u\right], w \in\left[w_{1} ; u\right]$. We set

$$
v=a w_{2}+a^{\prime} u, w=b w_{1}+b^{\prime} u
$$

Then

$$
f_{3}=\left(y^{\prime}+a b^{\prime} w_{2}-a^{\prime} b w_{1}\right) \wedge u+\gamma w_{2} \wedge w_{1}, 0 \neq \gamma \in F
$$

Let

$$
\begin{aligned}
& \alpha^{2}=\gamma \\
& w_{2}=\alpha^{-1} u_{2}, w_{1}=\alpha^{-1} u_{1}, u=\alpha u_{3}
\end{aligned}
$$

Then

$$
\begin{aligned}
& f_{1}=\left(y_{4}-c w_{2}\right) \wedge \alpha^{-1} u+u_{2} \wedge u_{3} \\
& f_{2}=\left(y_{5}-c^{\prime} w\right) \wedge \alpha^{-1} u_{2}+u_{1} \wedge u_{3} \\
& f_{3}=x \wedge \alpha u_{3}+u_{2} \wedge u_{1}
\end{aligned}
$$

We have the result on setting $x_{4}=\alpha^{-1}\left(y_{4}-c w_{2}\right), x_{5}=\alpha^{-1}\left(y_{5}-c^{\prime} w_{1}\right)$, $y=\alpha x$, and noting that $y \in\left[x_{4} ; x_{5}, u_{1}, u_{2}\right] \cap\left[x_{5} ; x_{4}, u_{1}, u_{2}\right]$.

Theorem 6. Let $\operatorname{dim} \mathscr{U}=5$. Let $\left\{f_{1}, f_{2}, f_{3}\right\}$ be a basis for an $\mathscr{L}-2$ subspace H such that $\operatorname{dim} \bigcap_{i=1}^{3}\left[f_{i}\right]=2$. Then \mathscr{U} has a basis $\left\{u_{1}, u_{2}, u_{3}, x_{4}, x_{5}\right\}$ such that f_{1}, f_{2}, f_{3} have representations given by either (i) or (ii) below.
(i) $f_{1}=x_{4} \wedge u_{1}+u_{2} \wedge u_{3}, f_{2}=x_{5} \wedge u_{2}+u_{1} \wedge u_{3}, f_{3}=u \wedge y+u_{3} \wedge y^{\prime}$, $y, y^{\prime} \in\left[x_{4}, x_{5} ; u_{1}, u_{2}, u_{3}\right], u \in\left\langle u_{1}, u_{2}\right\rangle$,
(ii) f_{1}, f_{2} as in (i). With $u \in\left\langle u_{1}, u_{2}\right\rangle, u^{\prime} \in\left\langle u_{1}, u_{2}, u_{3}\right\rangle, f_{3}=\gamma u \wedge u^{\prime}+$ $y \wedge y^{\prime}, y, y^{\prime} \in\left[x_{4}, x_{5} ; u_{1}, u_{2}, u_{3}\right], 0 \neq \gamma \in F$.

Proof. The proof involves a suitable choice of a basis of \mathscr{U}, as in the proof of Theorem 5, and the use of the following lemma.

Lemma 7. Let $f \in \mathscr{L}_{2}$ and $\left\langle u_{1}, u_{2}\right\rangle$ any two-dimensional subspace
of $[f]$. Then either
(i) there exist $v, w \in[f]$ such that $f=\gamma u_{1} \wedge u_{2}+v \wedge w, 0 \neq \gamma \in F$, or (ii) there exist $v^{\prime}, w^{\prime} \in[f]$ such that $f=u_{1} \wedge v^{\prime}+u_{2} \wedge w^{\prime}$.

Proof. Let $\left\{u_{1}, \cdots, u_{4}\right\}$ be any basis of [f]. By Lemma 9 of [4], f has a representation $f=u_{1} \wedge u+v \wedge w$, where $\langle u, v, w\rangle=\left\langle u_{2}, u_{3}, u_{4}\right\rangle$. If $u_{1} \wedge u_{2} \wedge f=0$, then $\left\langle u_{1}, u_{2}\right\rangle \cap\langle v, w\rangle \neq 0$, and it is easy to see $u_{2} \in\langle v, w\rangle$ since $u_{1} \notin\langle u, v, w\rangle$. If $u_{1} \wedge u_{2} \wedge f \neq 0$, then $\left\langle u_{1}, u_{2}, v, w\right\rangle=$ [f], and $u=a u_{1}+b u_{2}+c v+d w$ with $b \neq 0$. Then $f=b u_{1} \wedge u_{2}+$ $\left[u_{1} \wedge(c v+d w)+v \wedge w\right]$. By Corollary 8 of [4] and since $\mathscr{L}(f)=2$, the term in square brackets has irreducible length one.

We can in fact replace the basis $\left\{f_{1}, f_{2}, f_{3}\right\}$ in Theorem 3 by the basis $\left\{f_{1}+f_{2}, f_{2}, f_{3}\right\}$. Then $\left[f_{1}+f_{2}\right] \cap\left[f_{2}\right] \cap\left[f_{3}\right]$ has dimension two. We obtain:

Theorem 7. Let $\operatorname{dim} \mathscr{U}=5, H$ an $\mathscr{L}-2$ subspace of dimension three. Then H has a basis which is either of type (i) or type (ii) in Theorem 6.

Examples of such bases are the following:
EXAMPLE 1. $f_{1}=x_{4} \wedge u_{1}+u_{2} \wedge u_{3}, f_{2}=x_{5} \wedge u_{2}+u_{1} \wedge u_{3}$,

$$
f_{3}=u_{2} \wedge x_{4}+u_{3} \wedge x_{5}
$$

Example 2. f_{1}, f_{2} as in Example 1. $f_{3}=u_{2} \wedge\left(u_{1}+u_{3}\right)+x_{4} \wedge x_{5}$.
2. $\operatorname{dim} \mathscr{U}=6$.

The three-dimensional $\mathscr{L}-2$ subspaces. If H is an $\mathscr{L}-2$ subspace with a basis $\left\{f_{1}, f_{2}, f_{3}\right\}$ and $\operatorname{dim} \mathscr{U}=6$, then $\operatorname{dim} \sum_{i=1}^{3}\left[f_{i}\right]=5$ or 6. The first case was discussed in §1. We show that, in the second case, H has a basis of pairwise- P_{6} vectors, and there are three possibilities for such a basis.

Suppose $\operatorname{dim} \sum_{i=1}^{3}\left[f_{i}\right]=6$. Now each pair in $\left\{f_{1}, f_{2}, f_{3}\right\}$ is either a P_{5}-or a P_{6}-pair. Thus either $\left\{f_{1}, f_{2}, f_{3}\right\}$ is pairwise- P_{5} or at least one pair is a P_{6}-pair. The first case is then reduced to the second.

Theorem 8. Let H be an $\mathscr{L}-2$ subspace, and let $\left\{f_{1}, f_{2}, f_{3}\right\}$ be pairwise- P_{5}, independent in H such that $\operatorname{dim} \sum_{i=1}^{3}\left[f_{i}\right]=6$. Then ($\sum_{i=1}^{3}\left[f_{i}\right]$) has a basis $\left\{u_{1}, u_{2}, u_{3}, x_{4}, x_{5}, x_{6}\right\}$ such that there are representations

$$
f_{1}=x_{4} \wedge u_{1}+u_{2} \wedge u_{3}
$$

$$
\begin{aligned}
f_{2} & =x_{5} \wedge u_{2}+u_{1} \wedge u_{3} \\
f_{3} & =x_{6} \wedge u+v \wedge u_{3} \\
\langle u, v\rangle & =\left\langle u_{1}, u_{2}\right\rangle, u \notin\left\langle u_{1}\right\rangle, u \notin\left\langle u_{2}\right\rangle
\end{aligned}
$$

Proof. There exists a three-dimensional subspace \mathscr{U}_{0} of \mathscr{U} contained in each [f_{i}] (see [1], p. 14). The proof is similar to that of Theorem 5. We choose a basis $\left\{u_{1}, u_{2}, v_{3}, y_{4}, y_{5}, y_{6}\right\}$ of $\sum_{i=1}^{3}\left[f_{i}\right]$ in order to obtain representations $f_{1}=y_{4} \wedge u_{1}+u_{2} \wedge v_{3}, f_{2}=y_{5} \wedge u_{2}+u_{1} \wedge v_{3}$, $f_{3}=y_{6} \wedge w_{1}+w_{2} \wedge w_{3}$, and $\left\langle w_{1}, w_{2}, w_{3}\right\rangle=\left\langle u_{1}, u_{2}, u_{3}\right\rangle=\mathscr{U}_{0}$. Without loss of generality, we can assume $w_{2} \in\left\langle u_{1}, u_{2}\right\rangle$. Then $w_{1} \in\left\langle u_{1}, u_{2}\right\rangle$, for, if not, $\left\langle u_{1}, u_{2}, w_{1}\right\rangle=\mathscr{U}_{0}$ and $\left(f_{1}+f_{2}+f_{3}\right)$ has irreducible length 3 (see [4], Th. 7). Moreover $u \notin\left\langle u_{1}\right\rangle$ and $u \notin\left\langle u_{2}\right\rangle$ (see proof of Lemma 3). Thus $\left\langle w_{1}, w_{2}\right\rangle=\left\langle u_{1}, u_{2}\right\rangle$ and $w_{3}=\lambda\left(v_{3}+\bar{u}\right)$ for some $0 \neq \lambda \in F$ and $\bar{u} \in\left\langle u_{1}, u_{2}\right\rangle$. Then $f_{1}=y_{4}^{\prime} \wedge u_{1}+u_{2} \wedge\left(v_{3}+\bar{u}\right), f_{2}=y_{5}^{\prime} \wedge u_{2}+u_{1} \wedge\left(v_{3}+\bar{u}\right)$, and $f_{3}=y_{8} \wedge w_{1}+\lambda w_{2} \wedge\left(v_{3}+\bar{u}\right)$. The appropriate choice of new basis vectors gives the required representations.

Corollary 3. Let H be an $\mathscr{L}-2$ subspace, and let $\left\{f_{1}, f_{2}, f_{3}\right\}$ be pairwise- P_{5}, independent in H such that $\operatorname{dim} \sum_{i=1}^{3}\left[f_{i}\right]=6$. Then $\left\{f_{1}, f_{2}, f_{3}\right\}$ is a $(1,1)$ basis for $\left\langle f_{1}, f_{2}, f_{3}\right\rangle$.

Proof. Choose a suitable representation of f_{3}.
Lemma 8. Let $\left\{f_{1}, f_{2}, f_{3}\right\}$ be $a(1,1)$ basis of an $\mathscr{L}-2$ subspace satisfying (i) dim $\sum_{i=1}^{3}\left[f_{i}\right]=6$, (ii) $\left\{f_{1}, f_{2}\right\}$ is a P_{6}-pair. Then $\left\{f_{1}, f_{2}\right\}$ can be extended to $a(1,1)$ basis of pairwise- P_{6} vectors of $\left\langle f_{1}, f_{2}, f_{3}\right\rangle$.

Proof. We choose a basis $\left\{u_{1}, u_{2}, x_{3}, \cdots, x_{6}\right\}$ of $\sum_{i=1}^{3}\left[f_{i}\right]$ so that

$$
f_{1}=u_{1} \wedge x_{3}+u_{2} \wedge x_{4}, f_{2}=u_{1} \wedge x_{5}+u_{2} \wedge x_{6}
$$

(Lemma 4). Also $f=u_{1} \wedge y+u_{2} \wedge y^{\prime}$, and we can take

$$
\left\langle y, y^{\prime}\right\rangle \subset\left\langle u_{2}, x_{3}, \cdots, x_{6}\right\rangle
$$

([4], Lemma 9). Let $y=u+\sum_{i=3}^{6} \alpha_{i} x_{i}, y^{\prime}=u^{\prime}+\sum_{i=3}^{6} \beta_{i} x_{i}$ where $\left\{u, u^{\prime}\right\} \in\left\langle u_{2}\right\rangle$. We can choose $\lambda, \mu \in F$ such that

$$
\left|\begin{array}{cc}
\alpha_{3}+\lambda & \alpha_{4} \\
\beta_{3} & \beta_{4}
\end{array}\right| \text { and }\left|\begin{array}{cc}
\alpha_{5}+\mu & \alpha_{6} \\
\beta_{5} & \beta_{6}
\end{array}\right|
$$

are both nonzero. Then $g_{3}=\left(\lambda f_{1}+\mu f_{2}+f_{3}\right)$ extends $\left\{f_{1}, f_{2}\right\}$ to a basis of $\left\langle f_{1}, f_{2}, f_{3}\right\rangle$ and $\left[g_{3}\right] \cap\left\langle x_{3}, x_{4}\right\rangle=0,\left[g_{3}\right] \cap\left\langle x_{5}, x_{6}\right\rangle=0$.

In Lemma 8, we can in fact take

$$
\begin{aligned}
& f_{1}=u_{1} \wedge x_{3}+u_{2} \wedge x_{4} \\
& f_{2}=u_{1} \wedge x_{5}+u_{2} \wedge x_{6} \\
& f_{3}=u_{1} \wedge y+u_{2} \wedge y^{\prime},\left\langle y, y^{\prime}\right\rangle \subset\left\langle u_{2}, x_{3}, \cdots, x_{6}\right\rangle
\end{aligned}
$$

and does not intersect each $\left[f_{i}\right], i \neq 3$.
Theorem 9. Let H be an $\mathscr{L}-2$ subspace. Let $\left\{f_{1}, f_{2}, f_{3}\right\}$ be pairwise- P_{5}, independent in H such that $\operatorname{dim} \sum_{i=1}^{3}\left[f_{i}\right]=6$. Then $\left\langle f_{1}, f_{2}, f_{3}\right\rangle$ has a $(1,1)$ basis of pairwise- P_{6} vectors.

Proof. Using the representations of f_{1}, f_{2}, f_{3} obtained in Theorem 8 and Corollary 3, we take $g_{1}=\left(f_{1}+f_{3}\right)$. Then $\left\{g_{1}, f_{2}, f_{3}\right\}$ is a $(1,1)$ basis $\left\{g_{1}, f_{2}\right\}$ a P_{6}-pair, and $\left[g_{1}\right] \cap\left[f_{2}\right] \cap\left[f_{3}\right]=\left\langle u_{1}, u_{2}\right\rangle$. The result follows by Lemma 8.

Corollary 4. Let $\left\{f_{1}, f_{2}, f_{3}\right\}$ be $a(1,1)$ basis for an $\mathscr{L}-2$ subspace such that $\sum_{i=1}^{3}\left[f_{i}\right]=6$. Then there exist $a(1,1)$ basis of pair-wise- P_{6} vectors for $\left\langle f_{1}, f_{2}, f_{3}\right\rangle$.

Theorem 10. Let H be an $\mathscr{L}-2$ subspace, $\operatorname{dim} H \geqq 3$. Let $\left\{f_{1}, f_{2}, f_{3}\right\}$ be independent in H such that (i) $\operatorname{dim} \sum_{i=1}^{3}\left[f_{i}\right]=6$, (ii) $\bigcap_{i=1}^{3}\left[f_{i}\right]=0$. Then $\left\{f_{1}, f_{2}, f_{3}\right\}$ are pairwise- P_{6} and for any basis $\left\{u_{1}, u_{2}\right\}$ of $\left[f_{1}\right] \cap\left[f_{2}\right],\left(\sum_{i=1}^{3}\left[f_{i}\right]\right)$ has a basis $\left\{u_{1}, u_{2}, x_{3}, \cdots, x_{6}\right\}$ such that $\left\{f_{1}, f_{2}, f_{3}\right\}$ have representations $f_{1}=u_{1} \wedge x_{3}+u_{2} \wedge x_{4}, f_{2}=u_{1} \wedge x_{5}+u_{2} \wedge x_{6}, f_{3}=$ $x_{3} \wedge w_{1}+x_{4} \wedge w_{2}=x_{5} \wedge v_{1}+x_{6} \wedge v_{2},\left\langle w_{1}, w_{2}\right\rangle=\left\langle x_{5}, x_{6}\right\rangle,\left\langle v_{1}, v_{2}\right\rangle=\left\langle x_{3}, x_{4}\right\rangle$.

Proof. If $\left\{f_{1}, f_{2}, f_{3}\right\}$ were not pairwise- P_{6}, we would have a contradiction of (ii). Since $\left\{f_{1}, f_{2}\right\}$ is a P_{6}-pair, the choice of representations of f_{1}, f_{2} is immediate (Lemma 4). Let

$$
\left[f_{3}\right]=\left\langle x_{3}^{\prime}, x_{4}^{\prime}, z_{1}, z_{2}\right\rangle, x_{3}^{\prime} \in\left[x_{3} ; u_{1}, u_{2},\right], x_{4}^{\prime} \in\left[x_{4} ; u_{1}, u_{2}\right] .
$$

It is not difficult to show we can represent $f_{3}=x_{3}^{\prime} \wedge w_{1}+x_{4}^{\prime} \wedge w_{2}$, where $\left\langle w_{1}, w_{2}, x_{4}^{\prime}\right\rangle=\left\langle x_{4}^{\prime}, z_{1}, z_{2}\right\rangle$, and thus $\left\{w_{1}, w_{2}\right\} \in\left[z_{1}, z_{2} ; x_{4}^{\prime}\right]$, and $f_{1}=u_{1} \wedge x_{3}^{\prime}+$ $u_{2} \wedge x_{4}^{\prime}$ (using Lemma 9 of [4] and proof of Lemma 4).

In a similar fashion, without altering u_{1} or u_{2}, we can choose

$$
x_{5}^{\prime} \in\left[x_{5} ; u_{1}, u_{2}\right], x_{6}^{\prime} \in\left[x_{6} ; u_{1}, x_{2}\right],\left\langle u_{5}^{\prime}, x_{6}^{\prime}\right\rangle=\left\langle z_{1}, z_{2}\right\rangle
$$

so that $f_{2}=u_{1} \wedge x_{5}^{\prime}+u_{2} \wedge x_{6}^{\prime}, f_{3}=x_{5}^{\prime} \wedge v_{1}+x_{6}^{\prime} \wedge v_{2}$, where $\left\langle v_{1}, v_{2}, x_{6}^{\prime}\right\rangle=$ $\left\langle x_{6}^{\prime}, x_{3}^{\prime}, x_{4}^{\prime}\right\rangle$. Thus $\left\{v_{1}, v_{2}\right\} \in\left[x_{3}^{\prime}, x_{4}^{\prime} ; x_{6}^{\prime}\right]$. From above, f_{3} is also $x_{3}^{\prime} \wedge w_{1}+$ $x_{4}^{\prime} \wedge w_{2}$, and $\left\{w_{1}, w_{2}\right\} \in\left[x_{5}^{\prime}, x_{6}^{\prime} ; x_{4}^{\prime}\right]$. With respect to the independent set $\left\{x_{i}^{\prime} \wedge x_{j}^{\prime}\right\}$, the coefficient of $x_{3}^{\prime} \wedge x_{4}^{\prime}$ is zero in the second expression obtained for f_{3}, and the coefficient of $x_{5}^{\prime} \wedge x_{6}^{\prime}$ is zero in the first. It
follows that neither term appears in f_{3}. We have the result on placing x_{i} for $x_{i}^{\prime}, i=3, \cdots, 6$.

Lemma 9. Let H be an $\mathscr{L}-2$ subspace. Let $\left\{f_{1}, f_{2}, f_{3}\right\}$ be independent in H satisfying
(i) $\operatorname{dim} \sum_{i=1}^{3}\left[f_{i}\right]=6$,
(ii) $\left\{f_{1}, f_{2}\right\}$ is a P_{6}-pair,
(iii) $\operatorname{dim} \bigcap_{i=1}^{3}\left[f_{i}\right]=1$.

Then there exists $g_{3} \in\left\langle f_{1}, f_{2}, f_{3}\right\rangle$ such that $\left\{f_{1}, f_{2}, g_{3}\right\}$ is a basis of pairwise $-P_{6}$ vectors for $\left\langle f_{1}, f_{2}, f_{3}\right\rangle$ and $\bigcap_{i=1}^{3}\left[f_{i}\right]=\left[g_{3}\right] \cap\left[f_{1}\right] \cap\left[f_{2}\right]$.

Proof. There are representations $f_{1}=u_{1} \wedge x_{3}+u_{2} \wedge x_{4}, f_{2}=u_{1} \wedge x_{5}+$ $u_{2} \wedge x_{6}$, and $\sum_{i=1}^{3}\left[f_{i}\right]=\left\langle u_{1}, u_{2}, x_{3}, \cdots, x_{6}\right\rangle$. Let $\bigcap_{i=1}^{3}\left[f_{i}\right]=\langle u\rangle$. Then $u \in\left\langle u_{1}, u_{2}\right\rangle$. Without loss of generality, we can take $u=u_{1}$. By Lemma 9 of [4], $f_{3}=u_{1} \wedge w+w^{\prime} \wedge v,\left\langle w, w^{\prime}, v\right\rangle \subset\left\langle u_{2}, x_{3}, \cdots, x_{6}\right\rangle$. If $\left\{f_{1}, f_{2}, f_{3}\right\}$ are pairwise- P_{6}, we have the result.

Case 1. Suppose $\left\{f_{1}, f_{3}\right\}$ is a P_{6}-pair and $\left\{f_{2}, f_{3}\right\}$ is a P_{5}-pair. Then we can take $f_{3}=u_{1} \wedge w+x_{4} \wedge v^{\prime}$ (use Lemma 6 and (iii)), where

$$
\left\langle w, v_{4}, v^{\prime}\right\rangle \subset\left\langle u_{2}, x_{3}, \cdots, x_{6}\right\rangle
$$

Let $\left[f_{2}\right] \cap\left[f_{3}\right]=\left\langle u_{1}, y, y^{\prime}\right\rangle$. Then $\left\{y, y^{\prime}\right\} \in\left[x_{5}, x_{6} ; u_{2}\right]$. Therefore

$$
f_{3}=u_{1} \wedge w+x_{4} \wedge v^{\prime}, w \in\left[x_{5}, x_{6} ; u_{2}, x_{4}\right], v^{\prime} \in\left[x_{5}, x_{6} ; u_{2}\right]
$$

Let $v^{\prime}=a x_{5}+b x_{6}+c u_{2}$. Choose $\gamma \neq 0$ such that $\gamma+c \neq 0$. Let $g_{3}=f_{3}+\gamma f_{1}$. Then $\left\{g_{3}, f_{1}\right\}$ and $\left\{f_{2}, g_{3}\right\}$ are P_{6}-pairs.

Case 2. Suppose $\left\{f_{1}, f_{3}\right\},\left\{f_{2}, f_{3}\right\}$ are both P_{5}-pairs. This and (iii) imply $\operatorname{dim}\left(\left[f_{1}\right] \cap\left[f_{3}\right]\right)+\left(\left[f_{2}\right] \cap\left[f_{3}\right]\right)=5$, which exceeds the dimension of $\left[f_{3}\right]$. Hence this case is not possible.

Lemma 10. If $f \in \mathscr{L}_{2}$ and $f \in x_{1} \wedge\left[x_{2}, x_{3}, x_{4}\right]+\left[x_{4} ; x_{2}\right] \wedge\left[x_{3} ; x_{2}\right]$ where $[f]=\left\langle x_{1}, \cdots, x_{4}\right\rangle$, then $f \in x_{1} \wedge\left[x_{2}\right]+\left[x_{4} ; x_{1}, x_{2}\right] \wedge\left[x_{3} ; x_{1}, x_{2}\right]$.

Proof. Apply Lemma 7 to $\left\langle x_{1}, x_{2}\right\rangle$ and notice that the coefficient of $x_{4} \wedge x_{3}$ is nonzero in f.

Theorem 11. Let H be an $\mathscr{L}-2$ subspace, $\operatorname{dim} H \geqq 3$. Let $\left\{f_{1}, f_{2}, f_{3}\right\}$ be pairwise- P_{6} and independent in H satisfying
(i) $\operatorname{dim} \sum_{i=1}^{3}\left[f_{i}\right]=6$,
(ii) $\operatorname{dim} \bigcap_{i=1}^{3}\left[f_{i}\right]=1$.

Then for $\left\langle u_{1}\right\rangle=\bigcap_{i=1}^{3}\left[f_{i}\right]$ and any vector u_{2} such that $\left\langle u_{1}, u_{2}\right\rangle=\left[f_{1}\right] \cap\left[f_{2}\right]$, there exists a basis $\left\{u_{1}, u_{2}, x_{3}, \cdots, x_{6}\right\}$ such that $f_{1}=u_{1} \wedge x_{3}+u_{2} \wedge x_{4}$, $f_{2}=u_{1} \wedge x_{5}+u_{2} \wedge x_{6}, f_{3}=u_{1} \wedge y+x_{4} \wedge x_{6}$, where $y \in\left\langle u_{2}, x_{3}, \cdots, x_{6}\right\rangle$,
$y \notin\left\langle u_{1}, x_{3}, x_{5}\right\rangle, y \notin\left[f_{i}\right], i=1,2$. Furthermore, there exists g_{3} such that $\left\langle f_{1}, f_{2}, g_{3}\right\rangle=\left\langle f_{1}, f_{2}, f_{3}\right\rangle$ and $g_{3}=u_{1} \wedge u_{2}+v \wedge w, v \in\left[x_{4} ; u_{1}, u_{2}\right]$, $w \in\left[x_{6} ; u_{1}, u_{2}\right]$ and $g_{3}=v^{\prime} \wedge w^{\prime}+\gamma x_{4} \wedge x_{6}, 0 \neq \gamma \in F, v^{\prime} \in\left[u_{1} ; x_{4}, x_{6}\right], w^{\prime} \in$ $\left[u_{2} ; x_{4}, x_{6}\right]$.

Proof. The proof involves choosing a suitable basis of $\sum_{i=1}^{3}\left[f_{i}\right]$ and the use of Lemma 6 and 7. To obtain the form of g_{3}, we use Lemma 10.

Lemma 11. Let H be an $\mathscr{L}-2$ subspace. Let $\left\{f_{1}, f_{2}, f_{3}\right\}$ be independent in H such that
(i) $\operatorname{dim} \sum_{i=1}^{3}\left[f_{i}\right]=6$,
(ii) $\left\{f_{1}, f_{2}\right\}$ is a P_{6}-pair,
(iii) $\operatorname{dim} \bigcap_{i=1}^{3}\left[f_{i}\right]=2$;
then $\left\{f_{1}, f_{2}\right\}$ can be extended to a basis of pairwise- P_{6} vectors for $\left\langle f_{1}, f_{2}, f_{3}\right\rangle$.

Proof. By a suitable choice of basis vectors for $\sum_{i=1}^{3}\left[f_{i}\right]$, and the application of Lemma 7, we have two possible cases. One case implies $\left\{f_{1}, f_{2}, f_{3}\right\}$ is a $(1,1)$ basis and the result follows by Lemma 8. This case is when either $\left\{f_{1}, f_{3}\right\}$ or $\left\{f_{2}, f_{3}\right\}$ is a P_{6}-pair. Thus, the other possible case is when both $\left\{f_{1}, f_{3}\right\}$ and $\left\{f_{2}, f_{3}\right\}$ are P_{5}-pairs. Then $f_{1}=$ $u_{1} \wedge x_{3}+u_{2} \wedge x_{4}, f_{2}=u_{1} \wedge x_{5}+u_{2} \wedge x_{6}$ with $\sum_{i=1}^{3}\left[f_{i}\right]=\left\langle u_{1}, u_{2}, x_{3}, \cdots, x_{6}\right\rangle$. By Lemma 7, f_{3} is either $u_{1} \wedge v+u_{2} \wedge w$ or $u_{1} \wedge u_{2}+v^{\prime} \wedge w^{\prime}$. The first case implies $\left\{f_{1}, f_{2}, f_{3}\right\}$ is $a(1,1)$ basis and Lemma 8 applies. In the second case, we can take $v^{\prime} \in\left[f_{1}\right], w^{\prime} \in\left[f_{2}\right]$; i.e., $v^{\prime} \in\left[x_{3}, x_{4} ; u_{1}, u_{2}\right]$, $w^{\prime} \in\left[x_{5}, x_{6} ; u_{1}, u_{2}\right]$. In fact, we can take $v^{\prime} \in\left[x_{3} ; x_{4}, u_{1}, u_{2}\right]$, and $v^{\prime}=$ $x_{3}+a u_{1}+b u_{2}+c x_{4}$. Now $w^{\prime}=d x_{5}+a^{\prime} u_{1}+b^{\prime} u_{2}+c^{\prime} x_{4}$. We then show $c^{\prime}-c d=0$, by considering the determinant of $\left(a_{i j}\right)$, where $a_{i j}$ is defined as follows. Let $z=f_{1}+f_{2}+f_{3}$. We can express

$$
z=w_{1} \wedge w_{2}+w_{3} \wedge w_{4}+w_{5} \wedge w_{6}
$$

For $i=1,2, a_{i j}$ is the coefficient of u_{i} in w_{j}. For $i=3, \cdots, 6, a_{i j}$ is the coefficient of x_{i} in w_{j}. This determinant is $\pm\left(c^{\prime}-c d\right)$. If it is nonzero, $\mathscr{L}(z)=3$. Hence it must equal zero. Then a suitable choice of basis vectors of $\sum_{i=1}^{3}\left[f_{i}\right]$ will allow us to assume that $c=0$ in v^{\prime} and $c^{\prime}=0$ in w^{\prime}. Then $g_{3}=\left(f_{3}-f_{1}+f_{2}\right)$ will extend $\left\{f_{1}, f_{2}\right\}$ to a pair wise- P_{6} basis for $\left\langle f_{1}, f_{2}, f_{3}\right\rangle$.

We have sufficient reason now to assert the following theorem.
Theorem 12. Let $\left\{f_{1}, f_{2}, f_{3}\right\}$ generate a three-dimensional $\mathscr{L}-2$ subspace H, and $\operatorname{dim} \sum_{i=1}^{3}\left[f_{i}\right]=6$. Then H has a basis of pairwiseP_{6} vectors $\left\{g_{1}, g_{2}, g_{3}\right\}$ which either form a $(1,1)$ basis of H or have intersection $\bigcap_{i=1}^{3}\left[g_{i}\right]$ with dimension 0 or 1 . Moreover, if $\left\{f_{1}, f_{2}\right\}$ is a
P_{6}-pair, then this pair can be extended to a basis of pairwise- P_{6} vectors of H.

Examples. H is generated by $\left\{f_{1}, f_{2}, f_{3}\right\}$ where
(i) $f_{1}=u_{1} \wedge x_{3}+u_{2} \wedge x_{4}, f_{2}=u_{1} \wedge x_{5}+u_{2} \wedge x_{6}$, $f_{3}=u_{1} \wedge\left(u_{2}+x_{3}+x_{5}\right)+x_{4} \wedge x_{6} ;$
(ii) f_{1}, f_{2} as in (i), $f_{3}=u_{1} \wedge x_{4}+u_{2} \wedge x_{6}$;
(iii) f_{1}, f_{2} as in (i), $f_{3}=x_{3} \wedge x_{5}+x_{4} \wedge x_{6}$.

The maximal $\mathscr{L}-2$ subspaces, $\operatorname{dim} \mathscr{U}=6$. We shall now obtain this main theorem:

Theorem 13. Let H be an $\mathscr{L}-2$ subspace and $\operatorname{dim} \mathscr{U}=6$. Then $\operatorname{dim} H \leqq 3$.

We prove this theorem by a series of lemmas, which show $\operatorname{dim} H \ngtr 3$, in fact, $\operatorname{dim} H \neq 4$. We take two three-dimensional $\mathscr{L}-2$ subspaces $\left\langle f_{1}, f_{2}, f_{3}\right\rangle$ and $\left\langle f_{1}, f_{2}, f_{4}\right\rangle$ and show their sum is not an $\mathscr{L}-2$ subspace. Theorem 12 allows us to take $\left\{f_{1}, f_{2}, f_{3}\right\}$ and $\left\{f_{1}, f_{2}, f_{4}\right\}$ to be pairwise- P_{6}, and there are 6 cases to consider since $\operatorname{dim} \bigcap_{i=1}^{3}\left[f_{i}\right]=$ $0,1,2$ and a similar intersection property holds for the second set.

The following results are true for any dimension n of \mathscr{C} unless otherwise specified.

Lemma 12. Let H be an $\mathscr{L}-2$ subspace. Let $\left\{f_{1}, f_{2}, f_{3}\right\}$ be independent pairwise- P_{6} in H satisfying
(i) $\operatorname{dim} \sum_{i=1}^{3}\left[f_{i}\right]=6$,
(ii) $\bigcap_{i=1}^{3}\left[f_{i}\right]=0$.

If $f_{4} \in \mathscr{L}_{2}$, independent of $\left\{f_{1}, f_{2}, f_{3}\right\}$, satisfying
(a) $\operatorname{dim} \sum_{i=1}^{t}\left[f_{i}\right]=6$
(b) $\left\{f_{1}, f_{2}, f_{4}\right\}$ is pairwise- P_{6}
(c) $\operatorname{dim} \bigcap_{i=1,2,4}\left[f_{i}\right]=1$,
then $\left\langle f_{1}, \cdots, f_{4}\right\rangle$ is not an $\mathscr{L}-2$ subspace.
Proof. By Lemma 10, $\sum_{i=1}^{3}\left[f_{i}\right]$ has a basis $\left\{u_{1}, u_{2}, x_{3}, \cdots, x_{6}\right\}$ such that $f_{1}=u_{1} \wedge x_{3}+u_{2} \wedge x_{4}, f_{2}=u_{1} \wedge x_{5}+u_{2} \wedge x_{6}, f_{3}=x_{5} \wedge z+x_{6} \wedge z^{\prime}$, $\left\langle z, z^{\prime}\right\rangle=\left\langle x_{3}, x_{4}\right\rangle$. Let $\langle u\rangle=\bigcap_{1,2,4}\left[f_{i}\right]$. Then $u \in\left\langle u_{1}, u_{2}\right\rangle$. We can take $u_{1}=u$.

By Theorem 11, there exists $g_{3} \in\left\langle f_{1}, f_{2}, f_{4}\right\rangle$ such that $g_{3}=v^{\prime} \wedge w^{\prime}+$ $\gamma x_{4} \wedge x_{6}, 0 \neq \gamma \in F$ and $\left\langle f_{1}, f_{2}, g_{3}\right\rangle=\left\langle f_{1}, f_{2}, f_{4}\right\rangle$. Since $\left\{v^{\prime}, w^{\prime}, x_{6}, x_{5}, z, z^{\prime}\right\}$ is independent and $\left\{x_{4}+\alpha z^{\prime}, z\right\}$ is independent for some $\alpha \in F$, then $z=g_{3}-\alpha f_{3}$ has irreducible length 3 for some α. Hence $\left\langle f_{1}, \cdots, f_{4}\right\rangle$ is not an $\mathscr{L}-2$ subspace.

Since the proofs of the lemmas involving the other cases are similar to the proof of Lemma 8 in the sense that in each case, we exhibit a vector of irreducible length 3 or less than 2 except in the $0-0$ case,
which we can reduce to one of the other cases, we shall simply state the final lemma.

Lemma 13. Let H be an $\mathscr{L}-2$ subspace. Let $\left\{f_{1}, f_{2}, f_{3}\right\}$ be independent in H such that $\operatorname{dim} \sum_{i=1}^{3}\left[f_{i}\right]=6$. If $f_{4} \in \mathscr{L}_{2}$, independent $\left\{f_{1}, f_{2}, f_{3}\right\}$ such that $\operatorname{dim}_{i=1}^{4}\left[f_{i}\right]=6$, then $\left\langle f_{1}, \cdots, f_{4}\right\rangle$ is not an $\mathscr{L}-2$ subspace.

We have to check one more case before we obtain Theorem 13.
Lemma 14. Let H be an $\mathscr{L}-2$ subspace. Let $\left\{f_{1}, f_{2}, f_{3}\right\}$ be independent in H, $\operatorname{dim} \sum_{i=1}^{3}\left[f_{i}\right]=5$. If $f_{4} \in \mathscr{L}_{2}, f_{4} \notin\left\langle f_{1}, f_{2}, f_{3}\right\rangle$, and $\operatorname{dim} \sum_{i=1}^{4}\left[f_{i}\right]=6$, then $\left\langle f_{1}, \cdots, f_{4}\right\rangle$ is not an $\mathscr{L}-2$ subspace.

Proof. We note $\operatorname{dim} \sum_{1,2,4}\left[f_{i}\right]=6$ and apply Lemma 13.
We have now:
Lemma 15. Let H be an $\mathscr{L}-2$ subspace. Let $\left\{f_{1}, \cdots, f_{k}\right\}$ be independent in H, $\operatorname{dim} \sum_{i=1}^{k}\left[f_{i}\right]=6$. Then $k \leqq 3$. For $k=3,\left\langle f_{1}, f_{2}, f_{3}\right\rangle$ has a basis of pairwise- P_{6} vectors.

Theorem 13 follows from Lemma 15
3. $\operatorname{dim} \mathscr{K}=7$.

The three dimensional $\mathscr{L}-2$ subspaces.
THEOREM 14. Let H be an $\mathscr{L}-2$ subspace of dimension $\geqq 3$. Let $\left\{f_{1}, f_{2}, f_{3}\right\}$ be independent in H such that $\operatorname{dim} \sum_{i=1}^{3}\left[f_{i}\right]=7$. Then $\left\{f_{1}, f_{2}, f_{3}\right\}$ contains a P_{6}-pair, say $\left\{f_{1}, f_{2}\right\}$, which can be extended to a pairwise- P_{6} basis $\left\{f_{1}, f_{2}, g_{3}\right\}$ of $\left\langle f_{1}, f_{2}, f_{3}\right\rangle$. Moreover, either this basis is a $(1,1)$ basis or $\operatorname{dim}\left(\left[f_{1}\right] \cap\left[f_{2}\right] \cap\left[g_{3}\right]\right)=1$; and any basis $\left\{u_{1}, u_{2}\right\}$ of $\left[f_{1}\right] \cap\left[f_{2}\right]$ can be extended to a basis $\left\{u_{1}, u_{2}, x_{3}, \cdots, x_{7}\right\}$ of $\left[f_{1}\right]+\left[f_{2}\right]+\left[g_{3}\right]$ such that $f_{1}=u_{1} \wedge x_{3}+u_{2} \wedge x_{4}, f_{2}=u_{1} \wedge x_{5}+u_{2} \wedge x_{6} ;$ and $g_{3}=$ $u_{1} \wedge x_{7}+u_{2} \wedge v, v \in\left\langle u_{2}, x_{3}, \cdots, x_{6}\right\rangle, v \notin\left\langle u_{2}, x_{4}, x_{6}\right\rangle, \quad$ and $\quad v \notin\left[f_{1}\right] \quad$ and $v \notin\left[f_{2}\right]$ in the first case; $g_{3}=u_{1} \wedge x_{7}+x_{4} \wedge x_{6}$ in the second case.

Proof. A consideration of the various intersections and sums of $\left[f_{i}\right], i=1,2,3$ shows $\operatorname{dim} \bigcap_{i=1}^{3}\left[f_{i}\right]$ is either 1 or 2 , and that there are at least two P_{6}-pairs in $\left\{f_{1}, f_{2}, f_{3}\right\}$. In the first case this independent set is in fact pairwise- P_{6}. The second case implies $\left\{f_{1}, f_{2}, f_{3}\right\}$ is a $(1,1)$ basis for $\left\langle f_{1}, f_{2}, f_{3}\right\rangle$. If this basis is not pairwise- P_{6} but $\left\{f_{1}, f_{2}\right\}$ and $\left\{f_{2}, f_{3}\right\}$ are P_{6}-pairs, and $\left\{f_{1}, f_{3}\right\}$ a P_{5}-pair, we can choose a basis
$\left\{u_{1}, u_{2}, x_{3}, \cdots, x_{7}\right\}$ to give $f_{1}=u_{1} \wedge x_{3}+u_{2} \wedge x_{4}, f_{2}=u_{1} \wedge x_{5}+u_{2} \wedge x_{6}, f_{3}=$ $u_{1} \wedge x_{7}+u_{2} \wedge v, v \in\left\langle u_{2}, x_{3}, \cdots, x_{6}\right\rangle$. Then we can take $g_{3}=f_{2}+f_{3}$. To obtain the desired representations of $\left\{f_{1}, f_{2}, f_{3}\right\}$ in the first case, we use an argument similar to the ones used earlier to obtain basis representations.

The maximal $\mathscr{L}-2$ subspaces, $\operatorname{dim} \mathscr{U}=7$. We obtain the following theorem.

Theorem 15. Let H be an $\mathscr{L}-2$ subspace, $\operatorname{dim} \mathscr{U}=7$. Then $\operatorname{dim} H \leqq 4$. When $\operatorname{dim} H=4, H$ has a $(1,1)$ basis, three of whose members are pairwise- P_{6}.

The proof is contained in Lemmas 16, 17, and 18 which follow.
Lemma 16. Let $\left\{f_{1}, f_{2}, f_{3}\right\}$ be $a(1,1)$ basis for the $\mathscr{L}-2$ subspace $\left\langle f_{1}, f_{2}, f_{3}\right\rangle$, such that $\operatorname{dim} \sum_{i=1}^{3}\left[f_{i}\right]=7$. If $f_{4} \in \mathscr{L}_{2}$, independent of $\left\{f_{1}, f_{2}, f_{3}\right\}$ such that
(i) $\operatorname{dim} \sum_{i=1}^{4}\left[f_{i}\right]=7$,
(ii) $\left\langle f_{1}, \cdots, f_{4}\right\rangle$ is an $\mathscr{L}-2$ subspace, then $\left\langle f_{1}, \cdots, f_{4}\right\rangle$ has a $(1,1)$ basis, three of whose members are pairwise $-P_{6}$.

Proof. By Theorem 14, $\left\{f_{1}, f_{2}, f_{3}\right\}$ can be assumed to be pairwiseP_{6} with the representations given. Then it is easy to see that some pair in $\left\{f_{1}, f_{2}, f_{3}\right\}$, say $\left\{f_{1}, f_{2}\right\}$, is such that $\operatorname{dim} \sum_{i=1,2,4}\left[f_{i}\right]=7$, and $\left\{f_{1}, f_{2}, f_{4}\right\}$ can be assumed pairwise- P_{6}. The two cases given in Theorem 14 , apply to $\left\{f_{1}, f_{2}, f_{4}\right\}$. One case gives the desired result immediately. We can eliminate the other case by showing the presence of a vector in \mathscr{L}_{3} in $\left\langle f_{1}, \cdots, f_{4}\right\rangle$; in fact we can take the vector $f_{1}+f_{2}+f_{3}+\alpha f_{4}$ for some suitable $0 \neq \alpha \in F$.

Lemma 17. Let H be an $\mathscr{L}-2$ subspace. Let $\left\{f_{1}, f_{2}, f_{3}\right\}$ be independent in H, $\operatorname{dim} \sum_{i=1}^{3}\left[f_{i}\right]=7$. If $f_{4} \in \mathscr{L}_{2}, f_{4} \notin\left\langle f_{1}, f_{2}, f_{3}\right\rangle$ such that
(i) $\operatorname{dim} \sum_{i=1}^{4}\left[f_{i}\right]=7$,
(ii) $\left\langle f_{1}, \cdots, f_{4}\right\rangle$ is an $\mathscr{L}-2$ subspace,
then $\left\langle f_{1}, \cdots, f_{4}\right\rangle$ has $a(1,1)$ basis, three of whose members are pair-wise- P_{6}.

Proof. In view of Theorem 14 and Lemma 16, it is sufficient to eliminate the case $\operatorname{dim} \bigcap_{i=1}^{3}\left[f_{i}\right]=1$. We use a similar procedure as in the proof of Lemma 16, and the representations of $\left\{f_{i}\right\}$ in Theorem 14. We have two cases: (a) $\bigcap_{i=1,2,4}\left[f_{i}\right]=\left\langle u_{1}\right\rangle$, (b) $\bigcap_{i=1,2,4}\left[f_{i}\right]=\left\langle u_{2}\right\rangle$. In (a), $\left\langle f_{1}, \cdots, f_{4}\right\rangle$ contains a vector of irreducible length one. In (b), $\left\langle f_{1}, \cdots, f_{4}\right\rangle$ contains a vector or irreducible length at least three.

In addition to these two lemmas, we note that if H is an $\mathscr{L}-2$ subspace, $\left\{f_{1}, f_{2}, f_{3}\right\}$ independent in H and (i) $\operatorname{dim} \sum_{i=1}^{3}\left[f_{i}\right]=6$, then $\left\{f_{i}\right\}$ can be taken to be pairwise- P_{6} (Lemma 15) and if $f_{4} \notin\left\langle f_{1}, f_{2}, f_{3}\right\rangle$, $\operatorname{dim} \sum_{i=1}^{4}\left[f_{i}\right]=7$, then $\operatorname{dim} \sum_{i=1,2,4}\left[f_{i}\right]=7$; (ii) $\sum_{i=1}^{3}\left[f_{i}\right]=5$, and if $f_{4} \notin\left\langle f_{1}, f_{2}, f_{3}\right\rangle, \operatorname{dim} \sum_{i=1}^{4}\left[f_{i}\right]=7$, then $\operatorname{dim} \sum_{i=2}^{4}\left[f_{i}\right]=7$. Hence both these cases reduce to the case considered in Lemma 17.

Lemma 18. Let H be an $\mathscr{L}-2$ subspace, and $\left\{f_{1}, \cdots, f_{4}\right\}$ be independent in H, $\operatorname{dim} \sum_{i=1}^{4}\left[f_{i}\right]=7$. If $f_{5} \in \mathscr{L}_{2}, f_{5} \notin\left\langle f_{1}, \cdots, f_{4}\right\rangle$, and $\operatorname{dim} \sum_{i=1}^{5}\left[f_{i}\right]=7$, then $\left\langle f_{1}, \cdots, f_{5}\right\rangle$ is not an $\mathscr{L}-2$ subspace.

Proof. Apply Lemma 17 to $\left\{f_{1}, \cdots, f_{4}\right\}$ and $\left\{f_{2}, \cdots, f_{4}\right\}$ taking $\left\{f_{1}, f_{2}, f_{3}\right\}$ pairwise- P_{6}. Then $\left\langle f_{1}, \cdots, f_{5}\right\rangle$ has a $(1,1)$ basis, contradicting Theorem 4.
4. The main results.

Lemma 19. If H is an $\mathscr{L}-2$ subspace and $\left\{f_{1}, f_{2}, f_{3}\right\}$ is independent in H, $\operatorname{dim} \sum_{i=1}^{3}\left[f_{i}\right]=8$, then $\left\{f_{1}, f_{2}, f_{3}\right\}$ is a (1,1), pairwiseP_{6} basis of $\left\langle f_{1}, f_{2}, f_{3}\right\rangle$, and we can represent

$$
\begin{aligned}
f_{1} & =u_{1} \wedge x_{3}+u_{2} \wedge x_{4} \\
f_{2} & =u_{1} \wedge x_{5}+u_{2} \wedge x_{6} \\
f_{3} & =u_{1} \wedge x_{7}+u_{2} \wedge x_{8} \\
\sum_{i=1}^{3}\left[f_{i}\right] & =\left\langle u_{1}, u_{2}, x_{3}, \cdots, x_{8}\right\rangle
\end{aligned}
$$

If $f_{4} \in \mathscr{L}_{2}, f_{4} \notin\left\langle f_{1}, f_{2}, f_{3}\right\rangle$, and $\left\langle f_{1}, \cdots, f_{4}\right\rangle$ is an $\mathscr{L}-2$ subspace, then $\left\{f_{1}, \cdots, f_{4}\right\}$ is a $(1,1)$ basis for $\left\langle f_{1}, \cdots, f_{4}\right\rangle$.

Proof. The first part is not difficult to see. Using Lemma 5 we obtain $\operatorname{dim}\left[f_{4}\right] \cap\left\langle u_{1}, u_{2}\right\rangle \geqq 1$. This intersection will have dimension 2 , and f_{4} forms a P_{6}-pair with one of $\left\{f_{1}, f_{2}, f_{3}\right\}$ since $\operatorname{dim}\left[f_{4}\right]=4$.

Lemma 19 is extremely important as the second part states that presence of a 3 -subset $\left\{f_{1}, f_{2}, f_{3}\right\}$ of any basis of an $\mathscr{C}-2$ subspace H such that $\operatorname{dim} \sum_{i=1}^{3}\left[f_{i}\right]=8$ will guarantee that the basis will be a $(1,1)$ basis. We know that if $\operatorname{dim} \mathscr{L} \geqq 8$, then in any basis of H, we can find a 3 -subset $\left\{g_{1}, g_{2}, g_{3}\right\}$ such that $\operatorname{dim} \sum_{i=1}^{3}\left[g_{i}\right]=6,7$ or 8 . It is by now a more or less routine, and somewhat tedious, procedure to show the existence of a 3 -subset $\left\{f_{1}, f_{2}, f_{3}\right\}$ in such a basis of H for $\operatorname{dim} \mathscr{U}=8$, and then by induction for $\operatorname{dim} \mathscr{C} \geqq 9$. We shall simply state the main result and remark here that Theorem 4 provides the value of the maximal dimension of a $(1,1)$ basis.

Theorem 16. Let $\operatorname{dim} \mathscr{U}=n \geqq 6$. If H is an $\mathscr{L}-2$ subspace,
then $\operatorname{dim} H \leqq n-3$. If $\operatorname{dim} H \geqq 4$, then H has $a(1,1)$ basis, and is hence a $(1,1)$-type subspace.

References

1. E. Bertini, Einfuehrung in die Projektive Geometrie Mehrdimensionaler Raume, Vienna, 1924.
2. N. Bourbaki, Elements de mathematique, Chap. 3, Algebre Multilinear, 1948.
3. W. V. D. Hodge and D. Pedoe, Methods of Algebraic Geometry, Vol. 1, Cambridge 1968.
4. M. J. S. Lim, Rank k Grassmann products, Pacific J. Math., 29 (1969), 367-374.
5. M. Marcus and R. Westwick, Linear maps on skew-symmetric matrices, the invariance of elementary symmetr?c functions, Pacific J. Math. 10 (1960).
6. B. L. van der Wearden, Modern algebra, Vol. 2.
7. R. Westwick, Linear transformations on Grassmann spaces, Pacific J. Math. (3) 14 (1964).

Received April 14, 1969, and in revised form April 14, 1969.
McGill University,
Montreal, Canada

ORTHOGONAL GROUPS OF POSITIVE DEFINITE MULTILINEAR FUNCTIONALS

Stephen Pierce

Let V be a finite dimensional vector space over the real numbers R and let $T: V \rightarrow V$ be a linear transformation. If $\varphi: \times_{1}^{m} V \rightarrow R$ is a real multilinear functional and

$$
\varphi\left(T x_{1}, \cdots, T x_{m}\right)=\varphi\left(x_{1}, \cdots, x_{m}\right)
$$

$x_{1}, \cdots, x_{m} \in V, T$ is called an isometry with respect to φ. We say φ is positive definite if $\varphi(x, \cdots, x)>0$ for all nonzero $x \in V$. In this paper we prove that if φ is positive definite and T is an isometry with respect to φ, then all eigenvalues of T have modulus one and all elementary divisors of T over the complex numbers are linear.

Let V be an n-dimensional vector space over the real numbers R. Let $T: V \rightarrow V$ be a linear transformation of V. The following theorem [1, Th. 3] is easy to prove:

Theorem 1. There exists a positive definite symmetric quadratic form $\varphi: V \times V \rightarrow R$ such that

$$
\begin{equation*}
\varphi(T x, T y)=\varphi(x, y), x, y \in V \tag{1}
\end{equation*}
$$

if and only if

1. all eigenvalues of T have modulus 1 ;
(2) 2. all elementary divisors of T over the complex numbers C are linear.

Moreover, if T satisfies (2), then there is a positive definite symmetric φ such that (1) holds.

Theorem 1 can also be expressed in matrix theoretic terms. If A is a real $n \times n$ positive definite symmetric matrix and X is any automorph of A;

$$
\begin{equation*}
X^{T} A X=A \tag{3}
\end{equation*}
$$

then X satisfies (2); moreover, if an $n \times n$ matrix X satisfies (2), then there is a positive definite symmetric A such that (3) holds.

Let $\varphi: \times_{1}^{m} V \rightarrow R$ be a real multilinear functional. Let H be a subgroup of the symmetric group S_{m}. If

$$
\begin{equation*}
\varphi\left(x_{\sigma(1)}, \cdots, x_{\sigma(m)}\right)=\varphi\left(x_{1}, \cdots, x_{m}\right) \tag{4}
\end{equation*}
$$

for all $\sigma \in H$ and all $x_{i} \in V, i=1, \cdots, m$, then φ is said to be symmetric with respect to H. If

$$
\begin{equation*}
\varphi\left(T x_{1}, \cdots, T x_{m}\right)=\varphi\left(x_{1}, \cdots x_{m}\right) \tag{5}
\end{equation*}
$$

for all $x_{1}, \cdots, x_{m} \in V, T$ is called an isometry of V with respect to φ. (Note that if $m>2$, (5) has no matrix analogue). Let $\Omega_{m}(H, T)$ be the set of all φ satisfying (4) and (5). Clearly $\Omega_{m}(H, T)$ is a subspace of the vector space of all multilinear functionals symmetric with respect to H. We say φ is positive definite if

$$
\begin{equation*}
\varphi(x, \cdots, x)>0 \tag{6}
\end{equation*}
$$

for all nonzero x in V. The set of all positive definite φ in $\Omega_{m}(H, T)$ is denoted by $P_{m}(H, T)$. It is clear that $P_{m}(H, T)$ is a (possibly empty) convex cone in $\Omega_{m}(H, T)$.

The following result [1] was proved as a partial generalization of Theorem 1.

Theorem 2. Let $T: V \rightarrow V$ be linear. If $P_{m}(H, T)$ is nonempty, then
(a) m is even
(b) every eigenvalue γ of T has modulus 1
(c) elementary divisors of T corresponding to $\gamma= \pm 1$ are linear. Conversely, if m is even, all eigenvalues of T are ± 1, and all elementary divisors of T are linear, then $P_{m}(H, T)$ is nonempty.

We conjectured that if $P_{m}(H, T)$ is nonempty, then (c) can be replaced by (c ') "all elementary divisors of T over the complex field are linear." This would provide a complete generalization of Theorem 2, and thus justify (6) as a definition of a positive definite multilinear functional. The purpose of this paper is to prove this conjecture.

Theorem 3. If $P_{m}(H, T)$ is nonempty, then
(a) m is even
(b) all eigenvalues of T have modulus 1
(c') all elementary divisors of T over C are linear. Conversely, if (a), (b), and (c') hold, then $P_{m}(H, T)$ is nonempty.
2. Proof of Theorem 3. Assume that $P_{m}(H, T)$ is nonempty. Parts (a) and (b) follow from Theorem 2. We now prove two lemmas.

Lemma 1. If γ is an eigenvalue of T and $(x-\gamma)^{k}, k>1$, is a nonlinear elementary divisor of T corresponding to γ, then $\gamma^{m} \neq 1$ for any integer m.

Proof. Since T is a real transformation, it has a real elementary divisor

$$
\begin{equation*}
[(x-\gamma)(x-\bar{\gamma})]^{k} \tag{7}
\end{equation*}
$$

(By Theorem 2, γ cannot be real in this case.) Let W be the invariant subspace of T determined by (7), and let S be the restriction of T to W. Then S is an isometry of W with respect to φ, and hence S^{r} is also an isometry for any integer r. Now if $\gamma^{r}=1$, then all eigenvalues of S^{r} are 1, and hence Theorem 2 implies that all elementary divisors of S^{r} are linear. Therefore, S^{r} is the identity on W, and thus, the elementary divisors of S are linear, a contradiction.

Lemma 2. If Theorem 3 is true for the case $H=S_{m}$, then it is true for any subgroup H of S_{m}.

Proof. Let H be a subgroup of S_{m} and $\operatorname{let} \varphi \in P_{m}(H, T)$. For each $\sigma \in S_{m}$, define

$$
\begin{equation*}
\varphi_{\sigma}\left(x_{1}, \cdots, x_{m}\right)=\varphi\left(x_{\sigma(1)}, \cdots, x_{\sigma(m)}\right), \tag{8}
\end{equation*}
$$

$x_{1}, \cdots, x_{m} \in V$. In general, φ_{σ} is not symmetric with respect to H, but φ_{σ} is positive definite and T is an isometry with respect to φ_{σ}. Set

$$
\begin{equation*}
\psi=\sum_{\sigma \in S_{m}} \varphi_{\sigma} \tag{9}
\end{equation*}
$$

Clearly ψ is positive definite, and T is an isometry with respect to ψ. Moreover, for any $\tau \in S_{m}$, and $x_{1}, \cdots, x_{m} \in V$,

$$
\begin{aligned}
\psi\left(x_{\tau(1)}, \cdots, x_{\tau(m)}\right) & =\sum_{\sigma \in S_{m}} \varphi_{\sigma}\left(x_{\tau(1)}, \cdots, x_{\tau(m)}\right) \\
& =\sum_{\sigma \in S_{m}} \varphi\left(x_{\tau \sigma(1)}, \cdots, x_{\tau \sigma(m)}\right) \\
& =\sum_{\mu \in S_{m}} \varphi\left(x_{\mu(1)}, \cdots, x_{\mu(m)}\right) \\
& =\sum_{\mu \in S_{m}} \varphi_{\mu}\left(x_{1}, \cdots, x_{m}\right) \\
& =\psi\left(x_{1}, \cdots, x_{m}\right) .
\end{aligned}
$$

Thus $\psi \in P_{m}\left(S_{m}, T\right)$, and hence the elementary divisors of T are linear. This proves Lemma 2.

We may assume henceforth that $H=S_{m}$ and abbreviate $P_{m}\left(S_{m}, T\right)$ to P_{m}. If P_{m} is nonempty, and T has a nonlinear elementary divisor over C corresponding to the eigenvalue $\gamma=a+i b(b \neq 0)$, then there exist four linearly independent vectors v_{1}, \cdots, v_{4} in V such that

$$
\begin{align*}
& T v_{1}=a v_{1}-b v_{2} \\
& T v_{2}=b v_{1}+a v_{2} \\
& T x_{3}=v_{2}+a v_{3}-b v_{4} \tag{10}\\
& T v_{4}=b v_{3}+a v_{4} .
\end{align*}
$$

Let \bar{V} be the extension of V to an n-dimensional space over C, i.e., \bar{V} consists of all vectors of the form $x+i y, x, y \in V$. By linear extension, we regard T as a linear transformation of \bar{V}, and by multilinear extension, φ becomes a complex valued multilinear functional on $\times_{1}^{m} \bar{V}$. Equation (5) still holds in \bar{V}, but φ is no longer positive definite. Set

$$
\begin{align*}
& e_{1}=v_{1}+i v_{2}, e_{2}=v_{1}-i v_{2} \\
& e_{3}=v_{3}+i v_{4}, e_{4}=v_{3}-i v_{4} . \tag{11}
\end{align*}
$$

From (10) and (11),

$$
\begin{gather*}
T e_{1}=\gamma e_{1}, \quad T e_{2}=\bar{\gamma} e_{2} \\
T e_{3}=\gamma e_{3}+v_{2}, T e_{4}=\bar{\gamma} e_{4}+v_{2} . \tag{12}
\end{gather*}
$$

By Lemma $1, \gamma$ is not a root of unity; thus,

$$
\begin{align*}
\varphi\left(e_{1}, \cdots, e_{1}, e_{2}, \cdots e_{2}\right) & =\varphi\left(T e_{1}, \cdots, T e_{1}, T e_{2}, \cdots, T e_{2}\right) \\
& =\gamma^{k} \bar{\gamma}^{m-k} \varphi\left(e_{1}, \cdots e_{1}, e_{2}, \cdots, e_{2}\right) \tag{13}\\
& =0
\end{align*}
$$

unless $k=m-k$, where k is the number of times e_{1} occurs in (13). With $r=m / 2$, we set

$$
\varphi\left(e_{1}, \stackrel{r}{\cdots}, e_{1}, e_{2}, \stackrel{r}{\cdots}, e_{2}\right)=\nu
$$

Now $\nu \neq 0$; otherwise

$$
\begin{align*}
\varphi\left(v_{1}, \cdots, v_{1}\right) & =2^{-m} \varphi\left(e_{1}+e_{2}, \cdots, e_{1}+e_{2}\right) \\
& =0, \tag{14}
\end{align*}
$$

contradicting (6). (Note that we are using the assumption that φ is symmetric with respect to S_{m}; this gives us a convenient way of sorting expressions such as those on the right side of (14).)

Let $\mu=\varphi\left(v_{1}, \cdots, v_{1}, e_{3}\right)$. Using (13) and (14), we compute,

$$
\begin{aligned}
\mu & =2^{-m+1} \varphi\left(e_{1}+e_{2}, \cdots, e_{1}+e_{2}, e_{3}\right) \\
& =2^{-m+1} \varphi\left(\gamma e_{1}+\bar{\gamma} e_{2}, \cdots, \gamma e_{1}+\bar{\gamma} e_{2}, \gamma e_{3}+v_{2}\right) \\
& =2^{-m+1} \varphi\left(\gamma e_{1}+\bar{\gamma} e_{2}, \cdots \gamma e_{1}+\bar{\gamma} e_{2}, \gamma e_{3}+\frac{e_{1}-e_{2}}{2 i}\right) \\
& =-2^{-m} i\binom{m-1}{r}(\bar{\gamma}-\gamma) \nu+\gamma 2^{-m+1} \varphi\left(\gamma e_{1}+\bar{\gamma} e_{2}, \cdots \gamma e_{1}+\bar{\gamma} e_{2}, e_{3}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =-2^{-m} i\binom{m-1}{r}(\bar{\gamma}-\gamma) \nu+\gamma 2^{-m+1} \\
& \qquad \varphi\left(\gamma^{2} e_{1}+\bar{\gamma}^{2} e_{2}, \cdots, \gamma^{2} e_{1}+\bar{\gamma}^{2} e_{2}, \gamma e_{3}+\frac{e_{1}-e_{2}}{2 i}\right) \\
& =-2^{-m} i\binom{m-1}{r}\left(2 \bar{\gamma}-\gamma-\gamma^{3}\right) \nu+\gamma^{2} 2^{-m+1} \\
& \\
& \varphi\left(\gamma^{2} e_{1}+\bar{\gamma}^{2} e_{2}, \cdots, \gamma^{2} e_{1}+\bar{\gamma}^{2} e_{2}, e_{3}\right) .
\end{aligned}
$$

Continuing this procedure, we obtain for any positive integer s

$$
\begin{align*}
\mu=-2^{-m} i\binom{m-1}{r}\left(s \bar{\gamma}-\sum_{j=0}^{s-1} \gamma^{2 j+1}\right) \nu+\gamma^{s} 2^{-m+1} \tag{15}\\
\varphi\left(\gamma^{s} e_{1}+\bar{\gamma}^{s} e_{2}, \cdots \gamma^{s} e_{1}+\bar{\gamma}^{s} e_{2}, e_{3}\right)
\end{align*}
$$

Let

$$
f(z)=z \varphi\left(z e_{1}+\bar{z} e_{2}, \cdots, z e_{1}+\bar{z} e_{2}, e_{3}\right),
$$

where z is a complex variable. Then f is a continuous function of z on the complex plane, and hence f is bounded on the unit circle. Moreover, since γ is not a root of unity (in particular, $\gamma \neq \pm 1$),

$$
\sum_{j=0}^{s-1} \gamma^{2 j-1}
$$

is also bounded as s becomes large. Thus, letting s approach infinity in (15) forces μ to become infinite, a contradiction. This proves Theorem 3 in one direction.

Now suppose all eigenvalues of T are 1 in absolute value and all elementary divisors of T are linear over C. Let 1 (p times), -1 (q times) and $\gamma_{j}, \bar{\gamma}_{j}=a_{j} \pm i b_{j},\left|\gamma_{j}\right|=1, j=1, \cdots, t$, be the eigenvalues of T. Then there is a basis of $V, v_{1}, \cdots, v_{p}, u_{1}, \cdots, u_{q}, x_{1}, y_{1}, \cdots x_{t}, y_{t}$ such that

$$
\begin{align*}
& T v_{j}=v_{j}, j=1, \cdots, p \\
& T u_{j}=-u_{j}, j=1, \cdots, q \\
& T x_{j}=a_{j} x_{j}-b_{j} y_{j}, j=1, \cdots, t \tag{16}\\
& T y_{j}=b_{j} x_{j}+a_{j} y_{j}, j=1, \cdots, t
\end{align*}
$$

Set

$$
\begin{aligned}
& w_{j}=x_{j}+i y_{j} \\
& \bar{w}_{j}=x_{j}-i y_{j}, j=1, \cdots, t
\end{aligned}
$$

Then $v_{1}, \cdots, v_{p}, u_{1}, \cdots, u_{q}, w_{1}, \bar{w}_{1}, \cdots, w_{t}, \bar{w}_{t}$ form a basis of \bar{V} of eigenvectors of T. Let $f_{1}, \cdots, f_{p}, g_{1}, \cdots, g_{q}, h_{1}, k_{1}, \cdots, h_{t}, k_{t}$ be the corresponding dual basis. If l_{1}, \cdots, l_{m} are linear functionals on a space V, then $l_{1} \cdots l_{m}$ is the m-linear functional on $\times_{1}^{m} V$ such that

$$
l_{1} \cdots l_{m}\left(x_{1}, \cdots, x_{m}\right)=\prod_{i=1}^{m} l_{i}\left(x_{i}\right) .
$$

Define φ as follows:

$$
\begin{equation*}
\varphi=\sum_{j=1}^{p} f_{j}^{m}+\sum_{j=1}^{q} g_{j}^{m}+\sum_{j=1}^{t}\left[\left(h_{j} k_{j}\right)^{r}+\left(\bar{h}_{j} \bar{k}_{j}\right)^{r}\right], \tag{17}
\end{equation*}
$$

where $r=m / 2$ and $\bar{f}(v)=\overline{f(v)}$. Now \bar{h}_{j} and \bar{k}_{j} are not linear on the complex space \bar{V}, but they are complex valued linear functionals on V, i.e., they are linear functionals on V but are not in the dual space of V. Thus φ is a real multilinear functional on V. Set

$$
\psi=\sum_{\sigma \in S_{m}} \varphi_{o} .
$$

We assert that $\psi \in P_{m}(H, T)$. Clearly ψ is symmetric with respect to S_{m}, and thus with respect to any subgroup H of S_{m}. It remains to show that ir is positive definite and that T is an isometry with respect to ψ. It suffices to prove these last two properties for φ. Let

$$
x=\sum_{j=1}^{p} \alpha_{j} v_{j}+\sum_{j=1}^{q} \beta_{j} u_{j}+\sum_{j=1}^{t}\left(\delta_{j} x_{j}+\lambda_{j} y_{j}\right)
$$

be an arbitrary vector of V. Then from (17),

$$
\varphi(x, \cdots, x)=\sum_{j=1}^{p} \alpha_{j}^{m}+\sum^{q} \beta_{j}^{m}+2 \sum_{j=1}^{t}\left[\left(\frac{\delta_{j}}{2}\right)^{2}+\left(\frac{\lambda_{j}}{2}\right)^{2}\right]^{r} .
$$

Since m is even and $\alpha_{j}, \beta_{j}, \delta_{j}, \lambda_{j}$ are all real, φ is positive definite. Now let $z_{k}, k=1, \cdots, m$, be arbitrary vectors in V, with

$$
\begin{equation*}
z_{k}=\sum_{j=1}^{p} a_{k j} v_{j}+\sum_{j=1}^{g} b_{k j} u_{j}+\sum_{j=1}^{t}\left(c_{k j} x_{j}+d_{k j} y_{j}\right) . \tag{18}
\end{equation*}
$$

Then

$$
\begin{align*}
\varphi\left(z_{1}, \cdots, z_{m}\right)= & \sum_{j=1}^{m} \prod_{k=1}^{m} a_{k j}+\sum_{j=1}^{q} \prod_{k=1}^{m} b_{k j} \\
& +\sum_{j=1}^{t} \prod_{k=1}^{r}\left(\frac{c_{2 k-1, j}}{2}+\frac{d_{2 k-1, j}}{2 i}\right)\left(\frac{c_{2 k, j}}{2}-\frac{d_{2 k, j}}{2 i}\right) \tag{19}\\
& +\sum_{j=1}^{t} \prod_{k=1}^{r}\left(\frac{c_{2 k-1, j}}{2}-\frac{d_{2 k-1, j}}{2 i}\right)\left(\frac{c_{2 k, j}}{2}+\frac{d_{2 k, j}}{2 i}\right) .
\end{align*}
$$

From (16)

$$
\begin{align*}
T z_{k}= & \sum_{j=1}^{p} a_{k j} v_{j}+\sum_{j=1}^{q}\left(-b_{k j}\right) x_{j} \tag{20}\\
& +\sum_{j=1}^{t}\left(a_{j} c_{k j}+b_{j} d_{k j}\right) x_{j}+\left(a_{j} d_{k j}-b_{j} c_{k j}\right) y_{j}
\end{align*}
$$

$k=1, \cdots, m$. Let

$$
\begin{aligned}
e_{k j} & =a_{j} c_{k j}+b_{j} d_{k j} \\
f_{k j} & =a_{j} d_{k j}-b_{j} c_{k j}
\end{aligned}
$$

Then from (19) and (20)

$$
\begin{align*}
\varphi\left(T z_{1}, \cdots, T z_{m}\right)= & \sum_{j=1}^{p} \prod_{k=1}^{m} a_{k j}+\sum_{j=1}^{q} \prod_{k=1}^{m}\left(-b_{k j}\right) \\
& +\sum_{j=1}^{t} \prod_{k=1}^{m}\left(\frac{e_{2 k-1, j}}{2}+\frac{f_{2 k-1, j}}{2 i}\right)\left(\frac{e_{2 k, j}}{2}-\frac{f_{2 k, j}}{2 i}\right) \tag{21}\\
& +\sum_{j=1}^{t} \prod_{k=1}^{m}\left(\frac{e_{2 k-1, j}}{2}-\frac{f_{2 k-1, j}}{2}\right)\left(\frac{e_{2 k, j}}{2}+\frac{f_{2 k, j}}{2 i}\right) .
\end{align*}
$$

It is easily verified that

$$
\begin{align*}
& \frac{e_{k j}}{2}+\frac{f_{k j}}{2 i}=\bar{\gamma}_{j}\left(\frac{c_{k j}}{2}+\frac{d_{k j}}{2 i}\right) \tag{22}\\
& \frac{e_{k j}}{2}-\frac{f_{k j}}{2 i}=\gamma_{j}\left(\frac{c_{k j}}{2}-\frac{d_{k j}}{2 i}\right)
\end{align*}
$$

Using (22) in (21) and the fact that $\left|\gamma_{j}\right|=1$, we obtain

$$
\varphi\left(T z_{1}, \cdots, T z_{m}\right)=\varphi\left(z_{1}, \cdots, z_{m}\right) .
$$

This completes the proof of Theorem 3.

References

1. M. Marcus and S. Pierce, Positive defnite multilinear functionals, Pacific J. Math. (to appear)
2. S. Perlis, Theory of matrices, Addison-Wesley, 1958.

Received July 8, 1960. This work was done while the author was a National Academy of Sciences-National Research Council Postdoctoral Research Associate at the National Bureau of Standards, Washington, D. C., 1968-70.

National Bureau of Standards
Washington, D. C.

ON THE GROWTH OF ENTIRE FUNCTIONS OF BOUNDED INDEX

W. J. Pugh and S. M. Shah

Abstract

A class E of entire functions of zero order and with widely spaced zeros has been defined and it is proved that if $f \in E$ then $f^{\prime}, f^{\prime \prime}, \cdots \in E$. Furthermore f is of index one. This class includes many functions which are both of bounded index and arbitrarily slow growth. If f is any transcendental entire function then there is an entire function g of unbounded index with the same asymptotic behavior. When f is of infinite order then it is of unbounded index and we simply take $g=f$. When f is of finite order we give the construction for g.

Definition 1. An entire function $f(z)$ is said to be of bounded index if there exists an integer M, independent of z, such that

$$
\left|\frac{f^{(n)}(z)}{n!}\right| \leqq \max _{0 \leq s \leq M}\left\{\left|\frac{f^{(s)}(z)}{s!}\right|\right\}
$$

for all n and all z. The least such integer M is called the index of $f(z)$.
Although functions of bounded index have been the object of a number of recent investigations (cf: [3], [5], [6], [7]-[9]), little is known about their properties, and most of the following natural questions seem to require further study.
I. What are the growth properties of functions of bounded index:
(a) can they increase arbitrarily rapidly,
(b) can they increase arbitrarily slowly,
(c) is it possible to derive the boundedness (or the unboundedness) of the index from the asymptotic properties of the logarithm of the maximum modulus of $f(z)$, i.e., $\log M(r, f)$?
II. Classes of functions of bounded index:
(a) find classes of functions of bounded index,
(b) is the sum (or product) of two functions of bounded index also of bounded index?

Question I(a) was settled by Shah [8] who proved that the growth of functions of bounded index is at most of the exponential type of order one. (See also Lepson [6].) Shah [8] and Lepson [6] have constructed functions of arbitrarily slow growth and of unbounded index.

In the present note we derive a simple answer to Question I(b) from the consideration of

Functions with widely spaced zeros. Let $f(z)$ be an entire function of genus zero, and let $\left\{a_{j}\right\}_{j=1}^{\infty}$ be the sequence of its zeros. We say that $f(z)$ has widely spaced zeros if the zeros $\left\{a_{j}\right\}$ are all simple and

$$
\left|a_{1}\right| \geqq a=5,\left|a_{n+1}\right| \geqq a^{n}\left|a_{n}\right| \quad(n=1,2,3, \cdots)
$$

Using this definition we prove
Theorem 1. Let $f(z)$ have widely spaced zeros. Then, for all z,

$$
\left|f^{(n)}(z)\right|<\max \left\{|f(z)|,\left|f^{\prime}(z)\right|\right\} \quad(n=2,3,4, \cdots) .
$$

Corollary 1.1. Functions with widely spaced zeros are of bounded index.

Corollary 1.2. There exist functions of bounded index and of arbitrarily slow growth.

Corollary 1.1 may also be considered as a contribution to Question II(a). Corollary 1.2 answers Question I(b). Other contributions, due to separate efforts of the present authors, will be found elsewhere. In [9] Shah proves that all solutions of certain classes of linear differential equations are of bounded index. In his doctoral dissertation, Pugh shows that the functions

$$
F_{\sigma}(z)=\prod_{j=1}^{\infty}\left(1+\frac{z}{j^{\sigma}}\right) \quad(\sigma>8)
$$

and

$$
f_{q}(z)=\prod_{j=0}^{\infty}\left(1-q^{j} z\right) \quad\left(0<q<\frac{1}{16}\right)
$$

are of bounded index. As a contribution to II(b), Pugh [7] has shown that the sum of two functions of bounded index need not be of bounded index.

Our second result clarifies one aspect of Question $I(c)$. We prove
Theorem 2. Let $f(z)$ be any transcendental entire function of finite order. It is always possible to find an entire function $g(z)$, of unbounded index such that

$$
\log M(r, f) \sim \log M(r, g) \quad(r \rightarrow \infty)
$$

Choosing $f(z)$ to be of bounded index, we see that it is always possible to find functions of unbounded index with the same asymptotic behavior as $f(z)$.

The authors gratefully acknowledge the help of Professor Albert Edrei who suggested the class of functions with widely spaced zeros, and indicated the connection between Theorem 2 and the results of [2].

1. Successive derivatives of functions with widely spaced zeros.

Lemma 1. Let $f(z)$ be an entire function with widely spaced zeros $\left\{a_{j}\right\}_{j=1}^{\infty}$. Let $\left\{b_{j}\right\}_{j=1}^{\infty}\left(\left|b_{j}\right| \leqq\left|b_{j+1}\right|\right)$, be the zeros of $f^{\prime}(z)$.

Then

$$
\begin{equation*}
\frac{\left|a_{n+1}\right|}{b}<\left|b_{n}\right| \leqq\left|a_{n+1}\right|, \quad(n \geqq 2, b=1.6) \tag{1.1}
\end{equation*}
$$

and
(1.2) $\quad\left(1+\frac{2 R+d}{a}\right)\left|a_{1}\right|<\left|b_{1}\right| \leqq\left|a_{2}\right|,\left(R=2.4, d=10^{-3},\left|a_{1}\right| \geqq a=5\right)$.

Proof. In §§ 1-3, we shall write $1.6=b, 2.4=R, 10^{-3}=d$, $1+(2 R+d) / a=1.9602=c$. Put

$$
g_{n}(z)=\sum_{j=1}^{n} \frac{1}{z-a_{j}}, \quad(n \geqq 1)
$$

and

$$
\begin{equation*}
h_{n}(z)=\frac{f^{\prime}(z)}{f(z)}-g_{n}(z)=\sum_{j=n+1}^{\infty} \frac{1}{z-a_{j}} \tag{1.3}
\end{equation*}
$$

Our proof of the lemma depends on obvious applications of Rouchés theorem [4, p. 254].

Let $z=r e^{i \theta}$ and

$$
\begin{equation*}
\left|a_{n}\right|<r<\left|a_{n+1}\right|, \quad(n \geqq 1) . \tag{1.4}
\end{equation*}
$$

Clearly

$$
\begin{aligned}
\operatorname{Re}\left(z g_{n}(z)\right) & =\sum_{j=1}^{n} \frac{\operatorname{Re}\left(r^{2}-z \bar{a}_{j}\right)}{\left|z-a_{j}\right|^{2}} \\
& \geqq \sum_{j=1}^{n} \frac{r}{r+\left|a_{j}\right|}
\end{aligned}
$$

and hence

$$
\left|g_{n}(z)\right| i \geqq \sum_{j=1}^{n} \frac{1}{r+\left|a_{j}\right|} .
$$

In particular by the definition of widely spaced zeros we have

$$
\begin{equation*}
\left|g_{n}(z)\right| \geqq \frac{n}{\left|a_{n+1}\right|+\left|a_{n}\right|} \geqq \frac{n}{\left|a_{n+1}\right|} \frac{25}{26}, \quad(n \geqq 2), \tag{1.5}
\end{equation*}
$$

$$
\begin{align*}
\left|g_{n}\left(\frac{\left|a_{n+1}\right|}{b} 2^{i \vartheta}\right)\right| & \geqq 2\left(\frac{\left|a_{n+1}\right|}{b}+\left|a_{2}\right|\right)^{-1} \tag{1.6}\\
& >\frac{3}{\left|a_{n+1}\right|}, \quad(n \geqq 2) .
\end{align*}
$$

For $h_{n}(z)$ we have

$$
\begin{align*}
\left|h_{n}\left(\frac{\left|a_{n+1}\right|}{b} e^{i \theta}\right)\right| & \leqq\left(\left|a_{n+1}\right|-\frac{\left|a_{n+1}\right|}{b}\right)^{-1}+\left(\left|a_{n+2}\right|-\frac{\left|a_{n+1}\right|}{b}\right)^{-1}+\cdots \\
& <\frac{b}{b-1} \frac{1}{\left|a_{n+1}\right|}+\frac{1.25}{\left|a_{n+2}\right|-\left(\left|a_{n+1}\right| / b\right)} \tag{1.7}\\
& <\frac{2.8}{\left|a_{n+1}\right|} \quad(n \geqq 2) .
\end{align*}
$$

Now in the disc

$$
\begin{equation*}
|z| \leqq \frac{\left|a_{n+1}\right|}{b}, \tag{1.8}
\end{equation*}
$$

$g_{n}(z)$ has n poles, and, by the theorem of Gauss-Lucas [10, p. 6], exactly $(n-1)$ zeros. The function $h_{n}(z)$ is regular in the dise (1.8), and by (1.6) and (1.7)

$$
\left|g_{n}(z)\right|>\left|h_{n}(z)\right|, \quad\left(n \geqq 2,|z|=\frac{\left|a_{n+1}\right|}{b}\right) .
$$

Hence, by Rouché's theorem

$$
g_{n}(z)+h_{n}(z)=\frac{f^{\prime}(z)}{f(z)}
$$

has exactly ($n-1$) zeros in the dise (1.8).
We have thus proved

$$
\begin{equation*}
\frac{\left|a_{n+1}\right|}{b}<\left|b_{n}\right|, \quad(n \geqq 2) . \tag{1.9}
\end{equation*}
$$

Similarly, for

$$
\begin{equation*}
r=|z|=\gamma\left|a_{n}\right|, \quad(1<\gamma<1.01, n \geqq 2) \tag{1.10}
\end{equation*}
$$

we have

$$
\begin{aligned}
\left|h_{n}(z)\right| & <\left(\left|a_{n+1}\right|-\gamma\left|a_{n}\right|\right)^{-1}+\left(\left|a_{n+2}\right|-\gamma\left|a_{n}\right|\right)^{-1}+\cdots \\
& \leqq\left(\left|a_{n+1}\right|-\gamma\left|a_{n}\right|\right)^{-1}+(1.1)\left(\left|a_{n+2}\right|-\gamma\left|a_{n}\right|\right)^{-1} \\
& \leqq\left(\gamma\left|a_{n}\right|+\left|a_{1}\right|\right)^{-1}<\left|g_{n}(z)\right| .
\end{aligned}
$$

Again by Rouchés theorem $f^{\prime}(z) / f(z)$ has exactly ($n-1$) zeros in any disc with center at the origin and a radius r satisfying (1.10). Hence

$$
\left|b_{n-1}\right|<\gamma\left|a_{n}\right| \quad(n \geqq 2),
$$

and letting $\gamma \rightarrow 1+$, we obtain

$$
\begin{equation*}
\left|b_{n-1}\right| \leqq\left|a_{n}\right| \quad(n \geqq 2) \tag{1.11}
\end{equation*}
$$

The second of the inequalities (1.2) also follows from (1.11).
We complete the proof of the lemma by showing that

$$
\begin{equation*}
|z| \leqq c\left|a_{1}\right| \tag{1.12}
\end{equation*}
$$

implies

$$
\begin{equation*}
\left|\frac{f^{\prime}(z)}{f(z)}\right|>0 \tag{1.13}
\end{equation*}
$$

Thus $f^{\prime}(z)$ will have no zeros in the disc (1.12) and, therefore

$$
c\left|a_{1}\right|<\left|b_{1}\right|
$$

which is the first of the inequalities (1.2).
In order to verify (1.13) notice that (1.12) and the definition of widely spaced zeros imply

$$
\begin{aligned}
\left|\frac{f^{\prime}(z)}{f(z)}\right| & \geqq \frac{1}{\left|a_{1}\right|}\left\{\frac{1}{1+c}-\sum_{2}^{\infty} \frac{1}{a^{j(j-1) / 2}-c}\right\} \\
& >0
\end{aligned}
$$

This completes the proof of Lemma 1.

Lemma 2. If $f(z)$ has widely spaced zeros all the derivatives

$$
f^{\prime}(z), f^{\prime \prime}(z), \cdots
$$

have the same property.
Proof. It is sufficient to prove that if $f(z)$ has widely spaced zeros, the zeros of $f^{\prime}(z)$ are also widely spaced. By (1.2)

$$
\begin{equation*}
9.801 \leqq c\left|a_{1}\right|<\left|b_{1}\right| \tag{1.14}
\end{equation*}
$$

By (1.1) and (1.2)

$$
\begin{array}{rlrl}
\left|b_{n}\right| & \leqq\left|a_{n+1}\right|, & & (n \geqq 1) \\
\frac{1}{b}\left|a_{n+2}\right|<\left|b_{n+1}\right|, & & (n \geqq 1)
\end{array}
$$

Hence

$$
\begin{equation*}
\left|\frac{b_{n+1}}{b_{n}}\right|>\frac{\left|a_{n+2}\right|}{b\left|a_{n+1}\right|} \geqq \frac{a^{n+1}}{b}>a^{n} \quad(n \geqq 1) . \tag{1.15}
\end{equation*}
$$

The relations (1.14) and (1.15) show that the b 's are widely spaced.
2. Minimum distance between a zero of $f(z)$ and a zero of $f^{\prime}(z)$. The inequalities (1.1) do not preclude the possibility that $\left|a_{n+1}-b_{n}\right|$ be very small. In this section we show that

$$
\begin{equation*}
\inf _{\substack{1 \leq j<\infty \\ 1 \leqq k<\infty}}\left|a_{j}-b_{k}\right|>2 R+d \tag{2.1}
\end{equation*}
$$

I. From now on, we denote the zeros of $f^{(k)}(z)$, in order of ascending moduli by $\left\{a_{j}^{(k)}\right\}_{j=1}^{\infty}$. By definition $a_{n}^{(0)}=a_{n}$ and $f^{(0)} \equiv f$.
II. We consider systematically the sets

$$
D_{k}(\rho)=\bigcup_{j=1}^{\infty}\left\{z:\left|z-a_{j}^{(k)}\right| \leqq \rho\right\} \quad(\rho>0, k=0,1, \cdots)
$$

Lemma 3. If $f(z)$ has widely spaced zeros, and if $z \notin D_{0}(R)$, then

$$
\begin{equation*}
\left|\frac{f^{\prime}(z)}{f(z)}\right|<1,\left|\frac{f^{\prime \prime}(z)}{f(z)}\right|<1 \tag{2.2}
\end{equation*}
$$

Proof. The identities

$$
\frac{d}{d z}\left(\frac{f^{\prime}(z)}{f(z)}\right)=-\sum_{j=1}^{\infty} \frac{1}{\left(z-a_{j}\right)^{2}}=\frac{f^{\prime \prime}(z)}{f(z)}-\left(\frac{f^{\prime}(z)}{f(z)}\right)^{2}
$$

imply

$$
\left|\frac{f^{\prime \prime}(z)}{f(z)}\right| \leqq \sum_{j=1}^{\infty} \frac{1}{\left|z-a_{j}\right|^{2}}+\left(\sum_{j=1}^{\infty} \frac{1}{\left|z-a_{j}\right|}\right)^{2} \leqq 2\left(\sum_{j=1}^{\infty} \frac{1}{\left|z-a_{j}\right|}\right)^{2}
$$

Hence, the inequalities (2.2) follow from the single inequality

$$
\begin{equation*}
\sum_{j=1}^{\infty} \frac{1}{\left|z-a_{j}\right|}<\frac{\sqrt{2}}{2} \tag{2.3}
\end{equation*}
$$

If $z \notin D_{0}(R)$, and $|z|<\left|a_{1}\right|$, then

$$
\begin{equation*}
\left|z-a_{1}\right|>R \tag{2.4}
\end{equation*}
$$

and
(2.5) $\quad\left|z-a_{j}\right| \geqq\left|a_{j}\right|-|z|>\left|a_{j}\right|-\left|a_{1}\right|>\left|a_{1}\right|\left(a^{j-1}-1\right)>\frac{a^{j}}{2},(j \geqq 2)$.

Hence

$$
\sum_{j=1}^{\infty} \frac{1}{\left|z-a_{j}\right|}<\frac{1}{R}+2 \sum_{j=2}^{\infty} \frac{1}{a^{j}}<\frac{\sqrt{2}}{2},
$$

so that (2.3) holds if $|z|<\left|a_{1}\right|$.
In general, the relations

$$
\left|a_{n}\right| \leqq|z|<\left|a_{n+1}\right| \quad(n \geqq 1), z \notin D_{0}(R)
$$

imply

$$
\begin{equation*}
\left|z-a_{j}\right| \geqq|z|-\left|a_{j}\right| \geqq\left|a_{n}\right|-\left|a_{n-1}\right|>\frac{a^{n}}{2} \tag{2.6}
\end{equation*}
$$

provided

$$
\begin{equation*}
n \geqq 2, \quad j<n \tag{2.7}
\end{equation*}
$$

Similarly, for $j>n+1$

$$
\begin{align*}
\left|z-a_{j}\right| \geqq\left|a_{j}\right|-\left|a_{n+1}\right| & >\left(a^{j-1}-1\right)\left|a_{n+1}\right| \tag{2.8}\\
& >\frac{a^{j-1}}{2}\left|a_{n+1}\right|
\end{align*}
$$

Finally,

$$
\begin{equation*}
\frac{1}{\left|z-a_{n}\right|}+\frac{1}{\left|z-a_{n+1}\right|} \leqq \frac{1}{R}+\left(\max \left\{\left|z-a_{n}\right|,\left|z-a_{n+1}\right|\right\}\right)^{-1} \tag{2.9}
\end{equation*}
$$

with
(2.10) $\max \left\{\left|z-a_{n}\right|,\left|z-a_{n+1}\right|\right\} \geqq \frac{\left|a_{n+1}\right|-\left|a_{n}\right|}{2}>\frac{\left(a^{n}-1\right)\left|a_{n}\right|}{2}$.

Combining (2.6), (2.8), (2.9) and (2.10), we find, for $n \geqq 2$,

$$
\begin{align*}
& \sum_{j=1}^{\infty} \frac{1}{\left|z-a_{j}\right|}<\frac{2(n-1)}{a^{n}}+\frac{1}{R}+\frac{2}{\left(a^{n}-1\right)\left|a_{n}\right|}+ \tag{2.11}\\
& \frac{2 a}{\left|a_{n+1}\right|} \sum_{j=n+2}^{\infty} \frac{1}{a^{j}}<\frac{2(n-1)}{a^{n}}+\frac{1}{R}+\frac{2}{\left(a^{n}-1\right) a}+\frac{2}{(a-1) a^{n+2}}
\end{align*}
$$

It is easily seen that (2.11) holds for $n=1$ also and that (2.11) implies (2.3). Hence the lemma is proved.

Lemma 4. If $z \in D_{0}(2 R+d)$, then $f^{\prime}(z) \neq 0$.
Proof. If $z \in D_{0}(2 R+d)$, then for some n,

$$
\begin{equation*}
\left|z-a_{n}\right| \leqq 2 R+d=4.801 \tag{2.12}
\end{equation*}
$$

Hence, if $j<n$ and $n \geqq 2$,

$$
\begin{align*}
\left|z-a_{j}\right| & \geqq|z|-\left|a_{n-1}\right| \geqq\left|a_{n}\right|-\left|a_{n-1}\right|-(2 R+d) \\
& \geqq\left|a_{n}\right|\left(1-\frac{1}{a}-\frac{2 R+d}{a^{2}}\right)>\frac{6}{10}\left|a_{n}\right| \tag{2.13}
\end{align*}
$$

If $j>n$, then

$$
\begin{align*}
\left|z-a_{j}\right| & \geqq\left|a_{j}\right|-\left|a_{n}\right|-(2 R+d) \\
& >\left|a_{j}\right|\left(1-\frac{1}{a}-\frac{2 R+d}{a^{2}}\right)>\frac{6}{10}\left|a_{j}\right| \tag{2.14}
\end{align*}
$$

By (2.12), (2.13), and (2.14) we have, for $n \geqq 2$,

$$
\begin{align*}
\left|\frac{f^{\prime}(z)}{f(z)}\right| & \geqq \frac{1}{4.801}-\frac{10(n-1)}{6\left|a_{n}\right|}-\frac{10}{6} \sum_{j=n+1}^{\infty} \frac{1}{\left|a_{j}\right|} \tag{2.15}\\
& \geqq \frac{1}{4.801}-\frac{1}{3} \frac{(n-1)}{a^{n(n-1) / 2}}-\frac{5}{12} \frac{1}{a^{(n+1) n / 2}}
\end{align*}
$$

Again, it is easily seen that (2.15) holds for $n=1$ also. The expression on the right of (2.15) is positive and consequently in $D_{0}(2 R+d), f^{\prime}(z) \neq 0$ unless $f(z)=0$. On the other hand $f^{\prime}(z) \neq 0$ if $f(z)=0$ because all the zeros of $f(z)$ are simple. This completes the proof of Lemma 4.
3. Proof of Theorem 1. Because all the derivatives of $f(z)$ have widely spaced zeros, Lemmas 1 to 4 apply to all of the functions $f^{(k)}(z),(k=0,1,2,3, \cdots)$. In particular Lemma 4 shows that the sets $D_{n-2}(R)$ and $D_{n-1}(R)$ are disjoint for $n \geqq 2$.

Hence, by Lemma 3, at least one of the two inequalities

$$
\begin{equation*}
\left|\frac{f^{(n)}(z)}{f^{(n-2)}(z)}\right|<1,\left|\frac{f^{(n)}(z)}{f^{(n-1)}(z)}\right|<1 \quad(n \geqq 2) \tag{3.1}
\end{equation*}
$$

must hold.
Thus, for all z
(3.2) $\left|f^{(n)}(z)\right|<\max \left\{\left|f^{(n-1)}(z)\right|,\left|f^{(n-2)}(z)\right|\right\} \quad(n=2,3,4, \cdots)$.

Theorem 1 follows from (3.2) by an obvious induction over n.
4. Proof of Theorem 2. In this section we assume familiarity with the most elementary results and notations of Nevanlinna's theory of meromorphic functions.

Let $f(z)$ be a given entire, nonrational function of finite order. A theorem of Edrei and Fuchs [2; p. 384 and p. 390, formula (3.5)] asserts the existence of an entire function $h(z)$ such that $h(0)=1$ and

$$
\begin{equation*}
N\left(r, \frac{1}{h}\right) \sim \log M(r, h) \sim \log M(r, f) \quad(r \rightarrow+\infty) \tag{4.1}
\end{equation*}
$$

We take $g(z)$ to be of the form

$$
\begin{equation*}
g(z)=h(z) P(z) \tag{4.2}
\end{equation*}
$$

where

$$
\begin{equation*}
P(z)=\prod_{j=1}^{\infty}\left(1+\frac{z}{d_{j}}\right)^{j} \tag{4.3}
\end{equation*}
$$

The quantities d_{j} are positive and satisfy the following conditions:
(i) $d_{1}>e^{2}, d_{j+1}>d_{j}^{2}(j=1,2,3, \cdots)$;
(ii) for $t \geqq d_{j}$,

$$
\frac{j(j+1)}{2}<\left\{\frac{\log M(t, f)}{\log t}\right\}^{1 / 2}
$$

Since $f(z)$ is not rational

$$
\begin{equation*}
\frac{\log M(t, f)}{\log t} \longrightarrow+\infty \quad(t \rightarrow+\infty) \tag{4.4}
\end{equation*}
$$

and hence it is possible to satisfy condition (ii).
Putting

$$
n(t)=n\left(t, \left\lvert\, \frac{1}{P}\right.\right)
$$

we see that

$$
\begin{equation*}
n(t)=0\left(0 \leqq t<d_{1}\right), n(t)=\frac{k(k+1)}{2} \quad\left(d_{k} \leqq t<d_{k+1}\right) . \tag{4.5}
\end{equation*}
$$

Hence, if

$$
\begin{equation*}
d_{k} \leqq t<d_{k+1} \quad(k \geqq 1) \tag{4.6}
\end{equation*}
$$

(4.5) and condition (i) imply

$$
\begin{equation*}
n(t)<2^{k}<\log d_{k} \leqq \log t<t^{1 / 2} \quad(k \geqq 1) \tag{4.7}
\end{equation*}
$$

By (4.6), (i) and (4.5)

$$
t^{2}<d_{k+1}^{2}<d_{k+2}
$$

$$
\begin{equation*}
\frac{n\left(t^{2}\right)}{n(t)} \leqq 1+\frac{2}{k} \tag{4.8}
\end{equation*}
$$

By (4.6), (ii), (4.5) and (4.4)

$$
\begin{equation*}
n(t) \log t<\log M(t, f)\left\{\frac{\log t}{\log M(t, f)}\right\}^{1 / 2}=o(\log M(t, f)) \tag{4.9}
\end{equation*}
$$

By (4.1), (4.2) and the elements of Nevanlinna's theory

$$
\begin{aligned}
& (1+o(1)) \log M(r, f)=N\left(r, \frac{1}{h}\right) \leqq N\left(r, \frac{1}{g}\right) \\
& \quad \leqq \log M(r, g) \leq \log M(r, h)+\log M(r, P) \\
& \quad=\log M(r, f)\left\{1+o(1)+\frac{\log M(r, P)}{\log M(r, f)}\right\} \quad(r \rightarrow+\infty)
\end{aligned}
$$

Hence, in order to obtain Theorem 2 it is sufficient to show that

$$
\begin{equation*}
\frac{\log M(r, P)}{\log M(r, f)} \longrightarrow 0 \quad(r \rightarrow+\infty) \tag{4.10}
\end{equation*}
$$

and to remark that $g(z)$ cannot be of bounded index because it has zeros of arbitrarily high multiplicity.

The relation (4.10) follows readily from the identity [1, p. 48]

$$
\log M(r, P)=r \int_{0}^{\infty} \frac{n(t)}{t(t+r)} d t
$$

which, in view of (4.7), (4.8) and (4.9), leads to

$$
\begin{aligned}
\log M(r, P) & <n(r) \log r+r \int_{r}^{r^{2}} \frac{n\left(r^{2}\right)}{t^{2}} d t+r \int_{r^{2}}^{\infty} t^{-3 / 2} d t \\
& =o(\log M(r, f)) \quad(r \rightarrow+\infty)
\end{aligned}
$$

References

1. R. P. Boas, Jr., Entire functions, Academic Press, New York, 1954.
2. A. Edrei and W. H. J. Fuchs, Entire and meromorphic functions with asymptotically prescribed characteristic, Canad. J. Math. 17 (1965), 383-395.
3. Fred Gross, Entire functions of bounded index, Proc. Amer. Math. Soc. 18 (1967), 974-980.
4. E. Hille, Analytic function theory, Vol. 1, New York, 1959.
5. J. G. Krishna and S. M. Shah, Functions of bounded indices in one and several complex variables, Macintyre Memorial Volume (to appear)
6. B. Lepson, Differential equations of infinite order, hyper dirichlet series and entire functions of bounded index, Lecture Notes, Summer Institute on Entire functions, La Jolla, 1966.
7. W. J. Pugh, Sums of functions of bounded index, Proc. Amer. Math. Soc. 22 (1969), 319-323.
8. S. M. Shah, Entire functions of bounded index, Proc. Amer. Math. Soc. 19 (1968), 1017-1022.
9. - Entire functions satisfying a linear differential equation, J. Math. and Mech. 18 (1968), 131-136.
10. J. L. Walsh, The location of critical points of analytic and harmonic functions, Amer. Math. Soc. Coll. Publications 34 (1950).

Received October 16, 1968, and in revised form November 11, 1969. The first author (now deceased) gratefully acknowledges support by the National Science Foundation under grant GP-7507.

The research of the second named author was supported by the National Science Foundation under grant GP-7544. He regrets to announce the death of Mr. W. J. Pugh on April 17, 1969.

Syracuse University
University of Kentucky

EXISTENCE OF TRICONNECTED GRAPHS WITH PRESCRIBED DEGREES

S. B. Rao and A. Ramachandra Rao

Abstract

Necessary and sufficient conditions for the existence of a p-connected (linear undirected) graph with prescribed degrees $d_{1}, d_{2}, \cdots, d_{n}$ are known for $p=1,2$. In this paper we solve this problem for $p=3$.

Let $d_{1}, d_{2}, \cdots, d_{n}$ be positive integers and let $d_{1} \leqq d_{2} \leqq \cdots \leqq d_{n}$.
Lemma. If a triconnected graph G exists with degrees d_{1}, d_{2}, \cdots, d_{n}, then
(1) $d_{i} \geqq 3$.
(2) $d_{1}, d_{2}, \cdots, d_{n}$ is graphical, i.e., there exists a graph with these degrees.
(3) $d_{n}+d_{n-1} \leqq m-n+4$ where $2 m=\sum_{i=1}^{n} d_{i}$.
(4) If $d_{n}+d_{n-1}=m-n+4$, then $m \geqq 2 n-2$.

Proof. (1) and (2) are evident. To prove (3), let x_{n}, x_{n-1} be the vertices of G with degrees d_{n} and d_{n-1} respectively. Then the number of edges in $G-\left\{x_{n}, x_{n-1}\right\}$ is $m-\left(d_{n}+d_{n-1}-1\right)$ or $m-\left(d_{n}+d_{n-1}\right)$ according as x_{n}, x_{n-1} are adjacent or not adjacent in G. Also $G-\left\{x_{n}\right.$, $\left.x_{n-1}\right\}$ is connected, so (3) follows. If now $d_{n}+d_{n-1}=m-n+4$, then

$$
2 m \geqq d_{n}+d_{n-1}+3(n-2)=m+2 n-2
$$

This completes the proof of the lemma.
Theorem. Conditions (1) to (4) of the lemma are necessary and sufficient for the existence of a triconnected graph with degrees $d_{1}, d_{2}, \cdots, d_{n}$.

Proof. Necessity was proved in the lemma.
To prove sufficiency, first let conditions (1), (3) be satisfied and let $d_{n}+d_{n-1}=m-n+4=n+\lambda$ where $2 \leqq \lambda \leqq n-2$. Let k be the number of d_{i} such that $1 \leqq i \leqq n-2$ and $d_{i}=3$. Then define

$$
e_{i}=d_{i}-2 \text { for } i=k+1, \cdots, n-2 .
$$

Then we have

$$
\begin{aligned}
& \sum_{i=1}^{n-2} d_{i}=2 m-d_{n}-d_{n-1}=3 n+\lambda-8 \\
& \sum_{i=k+1}^{n-2} e_{i}=3 n+\lambda-8-3 k-2(n-2-k)=n+\lambda-k-4
\end{aligned}
$$

Define now $\eta=n-2-\lambda$ and $\varepsilon=k-\eta$. Then $\eta \geqq 0$, and $\varepsilon \geqq 2$ since

$$
\begin{aligned}
2 m & \geqq m-n+4+3 k+4(n-2-k) \\
& =m+3 n-k-4
\end{aligned}
$$

and so

$$
\lambda=m-2 n+4 \geqq n-k
$$

Write now

$$
e_{i}= \begin{cases}1 & \text { for } i=1,2, \cdots, \varepsilon \\ 2 & \text { for } i=\varepsilon+1, \cdots, k \\ d_{i}-2 & \text { for } i=k+1, \cdots, n-2\end{cases}
$$

Then $\sum_{i=1}^{n-2} e_{i}=2(n-3)$ and so there exists a tree T with degrees $e_{1}, \cdots e_{n-2}$, attained by the vertices x_{1}, \cdots, x_{n-2}, say, in that order [2]. Take two more vertices x_{n-1} and x_{n} and join them. Also join each of x_{n-1}, x_{n} to x_{i} for $i=1, \cdots, \varepsilon, k+1, \cdots, n-2$. Of the η vertices $x_{\varepsilon+1}, \cdots, x_{k}$, join $d_{n-1}-1-\varepsilon-n+2+k$ to x_{n-1} and the rest ($d_{n}-1-\varepsilon-n+2+k$ in number) to x_{n}. Note that

$$
d_{n-1}-1-\varepsilon-n+2+k=d_{n-1}-\lambda-1 \geqq 0
$$

The graph we thus obtain has degrees d_{1}, \cdots, d_{n} and is triconnected since any vertex of T with degree in T less than 3 is joined to either x_{n-1} or x_{n}.

Next let conditions (1), (2) be satisfied and let

$$
d_{n}+d_{n-1} \leqq m-n+3
$$

Then $d_{n}<m-n+2$, so there exists a biconnected graph G with degrees $d_{1}, d_{2}, \cdots, d_{n}$ [2]. If G is not triconnected, let x_{i}, x_{j} be two vertices such that $G-\left\{x_{i}, x_{j}\right\}$ is disconnected. Let C_{1}, C_{2}, \cdots be the components of $G-\left\{x_{i}, x_{j}\right\}$. By (1), $\left|C_{g}\right| \geqq 2$ for $g=1,2, \cdots$. Also by hypothesis,

$$
m-d_{i}-d_{j} \geqq n-3
$$

so it follows that one of the components, say C_{1}, contains a cycle.
We first prove that there exists an edge (x, y) in C_{1} and two chains $\mu_{1}, \mu_{1}^{\prime}$ of G connecting x and y such that $(x, y), \mu_{1}, \mu_{1}^{\prime}$ are disjoint except for x and y, and μ_{1} is contained in C_{1}. Since G is biconnected, there exists a chain connecting x_{i} and x_{i} with all intermediate vertices in C_{2}.

If now two vertices x, y with degree two in C_{1} are adjacent and belong to a cycle of C_{1}, the required edge is (x, y). So we may take
that no two vertices of degree two in C_{1} can belong to a block (on more than two vertices) and be adjacent. Let B be any block of C_{1} which is not an edge. If some cycle of B has a chord (x, y), then (x, y) is the required edge. Otherwise, by the results of [1], two vertices y, z of degree two in B will be adjacent to a vertex x of degree three in B. If w is another vertex of B adjacent to x, then there is a chain connecting w to y in $B-\{x\}$. This chain together with (x, w) may be taken as μ_{1}. To get μ_{1}^{\prime}, go from x to z along (x, z), from z to x_{i} or x_{j} (through another block of C_{1} at z if necessary), then to y. Thus (x, y) is the required edge.

Let now (x, y) be an edge of C_{1} chosen as explained above. If C_{2} is a tree, take any edge (u, v) of C_{2}. Then (u, v) is a chord of a cycle of G. If C_{2} is not a tree, choose an edge (u, v) of C_{2} such that there are chains $\mu_{2}, \mu_{2}^{\prime}$ of G connecting u and $v,(u, v), \mu_{2}, \mu_{2}^{\prime}$ are disjoint except for u, v, and μ_{2} is contained in C_{2}.

We define $f_{G}(s, t)$ to be the number of components of $G-\{s, t\}$. Now we will make a modification on G so that the degrees of the vertices are unaltered, $f\left(x_{i}, x_{j}\right)$ decreases and $f(s, t)$ does not increase for any two vertices s and t.

First we associate with x, a subset $A(x)$ of $\left\{x_{i}, x_{j}\right\}$ by the following rule. $x_{i} \in A(x)$ if and only if there is a chain ν connecting x to x_{i} with all intermediate vertices in C_{1} such that ν is disjoint with (x, y) and μ_{1} except for x. Similarly $A(y)$ is defined. If C_{2} is a tree, put $A(u)=A(v)=\left\{x_{i}, x_{j}\right\}$. Otherwise $A(u), A(v)$ are defined in a manner similar to that of $A(x)$ and $A(y)$. Now $A(x), A(y)$ are made nonempty by a proper choice of μ_{1}, and $A(u), A(v)$ are made nonempty by a proper choice of μ_{2} (in case C_{2} is not a tree).

Now suppress the edges $(x, y),(u, v)$ and join x to one of u, v and y to the other as follows. Join x to u if $A(x) \neq A(u)$ and $A(y) \neq A(v)$ whenever such a choice is possible. Let the new graph thus obtained be H. To be specific we take that x is joined to u in H.

First we show that H is biconnected. Obviously $G_{1}=G-(x, y)$ is biconnected. Now we show that (u, v) is a chord of a cycle of G_{1}. If C_{2} is a tree, then the cycle is

$$
(u, x)+\mu_{1}[x, y]+(y, v)+\left[v, \cdots, p_{1}\right]+\left(p_{1}, x_{i}\right)+\left(x_{i}, p_{2}\right)+\left[p_{2}, \cdots, u\right]
$$

where p_{1}, p_{2} are suitable pendant vertices of C_{2}. Otherwise the cycle is

$$
\mu_{2}[u, v]+\mu_{2}^{\prime}[v, u]
$$

where if μ_{2}^{\prime} contains the edge (x, y), then (x, y) is replaced by $\mu_{1}[x, y]$ and the resulting cycle is made elementary.

Trivially now $f_{G}\left(x_{i}, x_{j}\right)=f_{H}\left(x_{i}, x_{j}\right)+1$. Next we will show that

$$
\begin{equation*}
f_{G}(s, t) \geqq f_{H}(s, t) \tag{5}
\end{equation*}
$$

for any two vertices s and t. For this it is enough to show that x, y are connected and u, v are connected in $H-\{s, t\}$.

First let $s=x_{i}$. Now x, y, u, v belong to a cycle in $H-\left\{x_{i}\right\}$, so (5) follows. So we may take $\{s, t\} \cap\left\{x_{i}, x_{j}\right\}=\varnothing$.

Now let $s=x$. Then to prove (5) it is enough to show that u, v are connected in $H-\{x, t\}$ when $t \neq u$ and $t \neq v$. This is evident if C_{2} is a tree or $t \notin \mu_{2}$. So let $t \in \mu_{2}$ and C_{2} be not a tree. If $A(u) \cap$ $A(v) \neq \varnothing$, there is a chain connecting u, v in $H-\{x, t\}$. So we take without loss of generality $A(u)=x_{j}$ and $A(v)=x_{i}$. If now $x_{j} \in A(y)$, then u, v are connected through x_{j} and y in $H-\{x, t\}$. So we take $A(y)=x_{i}$. If $x_{j} \in A(x)$, then y would not have been joined to v, so $A(x)=x_{i}$. Now in G, x_{j} is connected to some vertex z of μ_{1} by a chain with all intermediate vertices belonging to C_{1} but not to μ_{1}. Now we obtain a chain connecting u, v in $H-\{x, t\}$ by going from u to x_{j}, x_{j} to z, z to y along μ_{1}, y to x_{i}, and x_{i} to v. Thus we may take $\{s, t\} \cap\left\{x_{i}, x_{j}, x, y\right\}=\varnothing$.

Next let $s=u$. If $t \notin \mu_{1}$, then (5) is trivial, so let $t \in \mu_{1}$. Suppose first that C_{2} is a tree. Then we obtain a chain connecting x, y in $H-\{u, t\}$ by going from x to x_{i} or x_{j}, then to v through a suitable pendant vertex of C_{2} and then to y. If C_{2} is not a tree, the situation is similar to that of the preceding paragraph. Thus we take $\{s, t\} \cap\left\{x_{i}, x_{j}, x, y, u, v\right\}=\varnothing$.

If none of s, t belongs to μ_{1}, then (5) is trivial. So let $s \in \mu_{1}$.
Suppose now that C_{2} is a tree. Then for any fixed vertex t, there are chains in $H-\{s, t\}$ from one of u, v to both x_{i} and x_{j}, and a chain from the other (of the vertices u, v) to x_{i} or x_{j}. Hence u, v are connected and (5) follows.

Suppose next that C_{2} is not a tree. Obviously we may take $s \in \mu_{1}$ and $t \in \mu_{2}$. If now $A(x) \cap A(y) \neq \varnothing$ or $A(u) \cap A(v) \neq \varnothing$, then again (5) follows. So we may take $A(x)=x_{i}, A(y)=x_{j}, A(u)=x_{j}$ $A(v)=x_{i}$. Now we obtain a chain connecting x, y in $H-\{s, t\}$ by going from x to u, u to x_{j}, x_{j} to y. This proves (5) completely.

Now by a repeated application of the above procedure we reduce the graph until finally $f(s, t)=1$ for any two vertices. The final graph has degrees $d_{1}, d_{2}, \cdots, d_{n}$ and is triconnected and this completes the proof of the theorem.

Perhaps necessary and sufficient conditions, similar to the conditions (1) to (4) above, for the existence of a p-connected graph with prescribed degrees $d_{1}, d_{2}, \cdots, d_{n}$ can be obtained for all $p \geqq 3$, but the authors have not yet succeeded in this.

References

1. M. D. Plummer, On minimal blocks, Trans. Amer. Math. Soc. 134 (1968), 85-94.
2. A. Ramachandra Rao, Some extremal problems and characterizations in the theory of graphs, a thesis submitted to the Indian Statistical Institute, Calcutta, 1969.

Received August 13, 1969.
Indian Statistical Institute, Calcutta

ON THE MAXIMAL MONOTONICITY OF SUBDIFFERENTIAL MAPPINGS

R. T. Rockafellar

The subdifferential of a lower semicontinuous proper convex function on a Banach space is a maximal monotone operator, as well as a maximal cyclically monotone operator. This result was announced by the author in a previous paper, but the argument given there was incomplete; the result is proved here by a different method, which is simpler in the case of reflexive Banach spaces. At the same time, a new fact is established about the relationship between the subdifferential of a convex function and the subdifferential of its conjugate in the nonreflexive case.

Let E be a real Banach space with dual E^{*}. A proper convex function on E is a function f from E to $(-\infty,+\infty$], not identically $+\infty$, such that

$$
f((1-\lambda) x+\lambda y) \leqq(1-\lambda) f(x)+\lambda f(y)
$$

whenever $x \in E, y \in E$ and $0<\lambda<1$. The subdifferential of such a function f is the (generally multivalued) mapping $\partial f: E \rightarrow E^{*}$ defined by

$$
\partial f(x)=\left\{x^{*} \in E^{*} \mid f(y) \geqq f(x)+\left\langle y-x, x^{*}\right\rangle, \forall y \in E\right\}
$$

where $\langle\cdot, \cdot\rangle$ denotes the canonical pairing between E and E^{*}.
A multivalued mapping $T: E \rightarrow E^{*}$ is said to be a monotone operator if

$$
\left\langle x_{0}-x_{1}, x_{0}^{*}-x_{1}^{*}\right\rangle \geqq 0 \quad \text { whenever } \quad x_{0}^{*} \in T\left(x_{0}\right), x_{1}^{*} \in T\left(x_{1}\right) .
$$

It is said to be a cyclically monotone operator if

$$
\begin{gathered}
\left\langle x_{0}-x_{1}, x_{0}^{*}\right\rangle+\cdots+\left\langle x_{n-1}-x_{n}, x_{n-1}^{*}\right\rangle+\left\langle x_{n}-x_{0}, x_{n}^{*}\right\rangle \geqq 0 \\
\text { whenever } \quad x_{i}^{*} \in T\left(x_{i}\right), i=0, \cdots, n
\end{gathered}
$$

It is called a maximal monotone operator (resp. maximal cyclically monotone operator) if, in addition, its graph

$$
G(T)=\left\{\left(x, x^{*}\right) \mid x^{*} \in T(x)\right\} \subset E \times E^{*}
$$

is not properly contained in the graph of any other monotone (resp. cyclically monotone) operator $T^{\prime}: E \rightarrow E^{*}$.

This note is concerned with proving the following theorems.

Theorem A. If f is a lower semicontinuous proper convex function on E, then ∂f is a maximal monotone operator from E to E^{*}.

Theorem B. Let $T: E \rightarrow E^{*}$ be a multivalued mapping. In order that there exist a lower semicontinuous proper convex function f on E such that $T=\partial f$, it is necessary and sufficient that T be a maximal cyclically monotone operator. Moreover, in this case T determines f uniquely up to an additive constant.

These theorems have previously been stated by us in [4] as Theorem 4 and Theorem 3, respectively. However, a gap occurs in the proofs in [4], as has kindly been brought to our attention recently by H. Brézis. (It is not clear whether formula (4.7) in the proof of Theorem 3 of [4] will hold for ε sufficiently small, because x_{i}^{*} depends on ε and could conceivably increase unboundedly in norm as ε decreases to 0 . The same oversight appears in the penultimate sentence of the proof of Theorem 4 of [4]). In view of this oversight, the proofs in [4] are incomplete; further arguments must be given before the maximality in Theorem A, the maximality in the necessary condition in Theorem B, and the uniqueness in Theorem B can be regarded as established. Such arguments will be given here.
2. Preliminary result. Let f be a lower semicontinuous proper convex function on E. (For proper convex functions, lower semicontinuity in the strong topology of E is the same as lower semicontinuity in the weak topology.) The conjugate of f is the function f^{*} on E^{*} defined by

$$
\begin{equation*}
f^{*}\left(x^{*}\right)=\sup \left\{\left\langle x, x^{*}\right\rangle-f(x) \mid x \in E\right\} . \tag{2.1}
\end{equation*}
$$

It is known that f^{*} is a weak* lower semicontinuous (and hence strongly lower semicontinuous) proper convex function on E^{*}, and that

$$
\begin{gather*}
f(x)+f^{*}\left(x^{*}\right)-\left\langle x, x^{*}\right\rangle \geqq 0, \forall x \in E, \forall x^{*} \in E^{*} \tag{2.2}\\
\text { with equality if and only if } x^{*} \in \partial f(x)
\end{gather*}
$$

(see Moreau [3, § 6]). The subdifferential ∂f^{*}, which is a multivalued mapping from E^{*} to the bidual $E^{* *}$, can be compared with the subdifferential ∂f from E to E^{*}, when E is regarded in the canonical way as a weak** dense subspace of $E^{* *}$ (the weak** topology being the weak topology induced on $E^{* *}$ by $\left.E^{*}\right)$. Facts about the relationship between ∂f^{*} and ∂f will be used below in proving Theorems A and B.

In terms of the conjugate $f^{* *}$ of f^{*}, which is the weak** lower semicontinuous proper convex function on $E^{* *}$ defined by

$$
\begin{equation*}
f^{* *}\left(x^{* *}\right)=\sup \left\{\left\langle x^{* *}, x^{*}\right\rangle-f^{*}\left(x^{*}\right) \mid x^{*} \in E^{*}\right\}, \tag{2.3}
\end{equation*}
$$

we have, as in (2.2),

$$
\begin{gather*}
f^{* *}\left(x^{* *}\right)+f^{*}\left(x^{*}\right)-\left\langle x^{* *}, x^{*}\right\rangle \geqq 0, \forall x^{* *} \in E^{* *}, \forall x^{*} \in E^{*}, \tag{2.4}\\
\text { with equality if and only if } x^{* *} \in \partial f^{*}\left(x^{*}\right) .
\end{gather*}
$$

Moreover, the restriction of $f^{* *}$ to E is f (see [3, §6]). Thus, if E is reflexive, we can identify $f^{* *}$ with f, and it follows from (2.2) and (2.4) that ∂f^{*} is just the "inverse" of ∂f, in other words one has $x \in \partial f^{*}\left(x^{*}\right)$ if and only if $x^{*} \in \partial f(x)$. If E is not reflexive, the relationship between ∂f^{*} and ∂f is more complicated, but ∂f^{*} and ∂f still completely determine each other, according to the following result.

Proposition 1. Let f be a lower semicontinuous proper convex function on E, and let $x^{*} \in E^{*}$ and $x^{* *} \in E^{* *}$. Then $x^{* *} \in \partial f^{*}\left(x^{*}\right)$ if and only if there exists a net $\left\{x_{i}^{*} \mid i \in I\right\}$ in E^{*} converging to x^{*} in the strong topology and a bounded net $\left\{x_{i} \mid i \in I\right\}$ in E (with the same partially ordered index set I) converging to $x^{* *}$ in the weak** topology, such that $x_{i}^{*} \in \partial f\left(x_{i}\right)$ for every $i \in I$.

Proof. The sufficiency of the condition is easy to prove. Given nets as described, we have

$$
f\left(x_{i}\right)+f^{*}\left(x_{i}^{*}\right)=\left\langle x_{i}, x_{i}^{*}\right\rangle, \forall i \in I
$$

by (2.2), where $f\left(x_{i}\right)=f^{* *}\left(x_{i}\right)$. Then by the lower semicontinuity of f^{*} and $f^{* *}$ we have

$$
\begin{aligned}
f^{* *}\left(x^{* *}\right)+f^{*}\left(x^{*}\right) & \leqq \lim \inf \left\{f^{* *}\left(x_{i}\right)+f^{*}\left(x_{i}^{*}\right)\right\} \\
& =\lim \left\langle x_{i}, x_{i}^{*}\right\rangle=\left\langle x^{* *}, x^{*}\right\rangle
\end{aligned}
$$

(The last equality makes use of the boundedness of the norms $\left\|x_{i}\right\|$, $i \in I$.) Thus $x^{* *} \in \partial f^{*}\left(x^{*}\right)$ by (2.4).

To prove the necessity of the condition, we demonstrate first that, given any $x^{* *} \in E^{* *}$, there exists a bounded net $\left\{y_{i} \mid i \in I\right\}$ in E such that y_{i} converges to $x^{* *}$ in the weak** topology and

$$
\begin{equation*}
\lim f\left(y_{i}\right)=f^{* *}\left(x^{* *}\right) \tag{2.5}
\end{equation*}
$$

Consider $f+h_{\alpha}$, where α is a positive real number and h_{α} is the lower semicontinuous proper convex function on E defined by

$$
\begin{equation*}
h_{\alpha}(x)=0 \quad \text { if } \quad\|x\| \leqq \alpha, h_{\alpha}(x)=+\infty \quad \text { if } \quad\|x\|>\alpha \tag{2.6}
\end{equation*}
$$

Assuming that α is sufficiently large, there exist points x at which f and h_{α} are both finite and h_{α} is continuous (i.e., points x such that $f(x)<+\infty$ and $\|x\|<\alpha$). Then, by the formulas for conjugates of
sums of convex functions (see Moreau [3, pp. 38, 56, 57] or Rockafellar [5, Th. 3]), we have $\left(f+h_{\alpha}\right)^{*}=f^{*} \square h_{\alpha}^{*}$ (infimal convolution), and consequently

$$
\begin{equation*}
\left(f+h_{\alpha}\right)^{* *}=\left(f^{*} \square h_{\alpha}^{*}\right)^{*}=f^{* *}+h_{\alpha}^{* *} . \tag{2.7}
\end{equation*}
$$

Moreover $h_{\alpha}^{*}\left(x^{*}\right)=\alpha\left\|x^{*}\right\|$ for ever $x^{*} \in E^{*}$, so that

$$
\begin{aligned}
h_{\alpha}^{* *}\left(x^{* *}\right) & =\sup \left\{\left\langle x^{* *}, x^{*}\right\rangle-\alpha\left\|x^{*}\right\| \mid x^{*} \in E^{*}\right\} \\
& = \begin{cases}0 & \text { if }\left\|x^{* *}\right\| \leqq \alpha \\
+\infty & \text { if }\left\|x^{* *}\right\|>\alpha\end{cases}
\end{aligned}
$$

Hence by (2.7), given any $x^{* *} \in E^{* *}$, we have

$$
\begin{equation*}
f^{* *}\left(x^{* *}\right)=\left(f+h_{\alpha}\right)^{* *}\left(x^{* *}\right) \tag{2.8}
\end{equation*}
$$

for sufficiently large $\alpha>0$. On the other hand, it is known that, for any lower semicontinuous proper convex function g on $E, g^{* *}$ is the greatest weak ${ }^{* *}$ lower semicontinuous function on $E^{* *}$ majorized by g on E (see [3, §6]), so that

$$
\begin{equation*}
g^{* *}\left(x^{* *}\right)=\liminf _{y \rightarrow x^{*}} g(y), \tag{2.9}
\end{equation*}
$$

where the "lim inf" is taken over all nets in E converging to $x^{* *}$ in the weak** topology. Taking $g=f+h_{\alpha}$, we see from (2.8) and (2.9) that

$$
f^{* *}\left(x^{* *}\right)=\liminf _{y \rightarrow x^{* *}}\left[f(y)+h_{\alpha}(y)\right],
$$

implying that (2.5) holds as desired for some net $\left\{y_{i} \mid i \in I\right\}$ in E such that y_{i} converges to $x^{* *}$ in the weak ${ }^{* *}$ topology and $\left\|y_{i}\right\| \leqq \alpha$ for every $i \in I$.

Now, given any $x^{*} \in E^{*}$ and $x^{* *} \in \partial f^{*}\left(x^{*}\right)$, let $\left\{y_{i} \mid i \in I\right\}$ be a bounded net in E such that y_{i} converges to $x^{* *}$ in the weak** topology and (2.5) holds. Define $\varepsilon_{i} \geqq 0$ by

$$
\varepsilon_{i}^{2}=f\left(y_{i}\right)+f^{*}\left(x^{*}\right)-\left\langle y_{i}, x^{*}\right\rangle
$$

Note that $\lim \varepsilon_{i}=0$ by (2.5) and (2.4). According to a lemma of Br ϕ ndsted and Rockafellar [1, p. 608], there exist for each $i \in I$ an $x_{i} \in E$ and an $x_{i}^{*} \in E^{*}$ such that

$$
x_{i}^{*} \in \partial f\left(x_{i}\right),\left\|x_{i}-y_{i}\right\| \leqq \varepsilon_{i},\left\|x_{i}^{*}-x^{*}\right\| \leqq \varepsilon_{i}
$$

The latter two conditions imply that the net $\left\{x_{i}^{*} \mid i \in I\right\}$ converges to x^{*} in the strong topology of E^{*}, while the net $\left\{x_{i} \mid i \in I\right\}$ is bounded and converges to $x^{* *}$ in the weak** topology of $E^{* *}$. This completes the proof of Proposition 1.
3. Proofs of Theorems A and B. In the sequel, f denotes a lower semicontinuous proper convex function on E, and j denotes the continuous convex function E defined by $j(x)=(1 / 2)\|x\|^{2}$. We shall make use of the fact that, for each $x \in E, \partial f(x)$ is by definition a certain (possibly empty, possibly unbounded) weak* closed convex subset of E^{*}, whereas $\partial j(x)$ is (by the finiteness and continuity of j, see [3, p. 60]) a certain nonempty weak* compact convex subset of E^{*}. Furthermore

$$
\begin{equation*}
\partial(f+j)=\partial f(x)+\partial j(x), \forall x \in E \tag{3.1}
\end{equation*}
$$

(see [3, p. 62] or [5, Th. 3]). The conjugate of j is given by $j^{*}\left(x^{*}\right)=$ (1/2) || $x^{*} \|^{2}$, and since

$$
(f+j)^{*}\left(x^{*}\right)=\left(f^{*} \square j^{*}\right)\left(x^{*}\right)=\min _{y^{*} \in E^{*}}\left\{f^{*}\left(y^{*}\right)+j^{*}\left(x^{*}-y^{*}\right)\right\}
$$

([3, § 9] or [5, Th. 3]) the conjugate function $(f+j)^{*}$ is finite and continuous throughout E^{*}.

Proof of Theorem A. Theorem A has already been established by Minty [2] in the case of convex functions which, like j, are everywhere finite and continuous. Applying Minty's result to the function $(f+j)^{*}$, we may conclude that $\partial(f+j)^{*}$ is a maximal monotone operator from E^{*} to $E^{* *}$. We shall show this implies that ∂f is a maximal monotone operator from E to E^{*}.

Let T be a monotone operator from E to E^{*} such that the graph of T includes the graph of ∂f, i.e.,

$$
\begin{equation*}
T(x) \supset \partial f(x), \forall x \in E \tag{3.2}
\end{equation*}
$$

We must show that equality necessarily holds in (3.2).
The mapping $T+\partial j$ defined by

$$
\begin{aligned}
(T+\partial j)(x) & =T(x)+\partial j(x) \\
& =\left\{x_{1}^{*}+x_{2}^{*} \mid x_{1}^{*} \in T(x), x_{2}^{*} \in \partial j(x)\right\}
\end{aligned}
$$

is a monotone operator from E to E^{*}, since T and ∂j are, and by (3.1) and (3.2) we have

$$
\begin{equation*}
(T+\partial j)(x) \supset \partial(f+j)(x), \forall x \in E \tag{3.3}
\end{equation*}
$$

Let S be the multivalued mapping from E^{*} to $E^{* *}$ defined as follows: $x^{* *} \in S\left(x^{*}\right)$ if and only if there exists a net $\left\{x_{i}^{*} \mid i \in I\right\}$ in E^{*} converging to x^{*} in the strong topology, and a bounded net $\left\{x_{i} \mid i \in I\right\}$ in E (with the same partially ordered index set I) converging to $x^{* *}$ in the weak** topology, such that

$$
x_{i}^{*} \in(T+\partial j)\left(x_{i}\right), \forall i \in I .
$$

It is readily verified that S is a monotone operator. (The boundedness of the nets $\left\{x_{i} \mid i \in I\right\}$ enters in here.) Moreover

$$
\begin{equation*}
S\left(x^{*}\right) \supset \partial(f+j)^{*}\left(x^{*}\right), \forall x^{*} \in E^{*}, \tag{3.4}
\end{equation*}
$$

by (3.3) and Proposition 1. Since $\partial(f+j)^{*}$ is a maximal monotone operator, equality must actually hold in (3.4). This shows that one has $x \in \partial(f+j)^{*}\left(x^{*}\right)$ whenever $x \in E$ and $x \in S\left(x^{*}\right)$, hence in particular whenever $x^{*} \in(T+\partial j)(x)$. On the other hand, one always has $x^{*} \in \partial(f+j)(x)$ if $x \in \partial(f+j)^{*}\left(x^{*}\right)$ and $x \in E$. (This follows from applying (2.2) and (2.4) to $f+j$ in place of f.) Thus one has $x^{*} \in \partial(f+j)(x)$ if $x^{*} \in(T+\partial j)(x)$, implying by (3.3) and (3.1) that

$$
\begin{equation*}
T(x)+\partial j(x)=\partial f(x)+\partial j(x), \forall x \in E \tag{3.5}
\end{equation*}
$$

We shall show now from (3.5) that actually

$$
T(x)=\partial f(x), \forall x \in E,
$$

so that ∂f must be a maximal monotone operator as claimed. Suppose that $x \in E$ is such that the inclusion in (3.2) is proper. This will lead to a contradiction. Since $\partial f(x)$ is a weak* closed convex subset of E^{*}, there must exist some point of $T(x)$ which can be separated strictly from $\partial f(x)$ be a weak* closed hyperplane. Thus, for a certain $y \in E$, we have

$$
\sup \left\{\left\langle y, x^{*}\right\rangle \mid x^{*} \in T(x)\right\}>\sup \left\{\left\langle y, x^{*}\right\rangle \mid x^{*} \in \partial f(x)\right\}
$$

But then

$$
\begin{aligned}
& \sup \left\{\left\langle y, z^{*}\right\rangle \mid z^{*} \in T(x)+\partial j(x)\right\} \\
= & \sup \left\{\left\langle y, x^{*}\right\rangle \mid x^{*} \in T(x)\right\}+\sup \left\{\left\langle y, y^{*}\right\rangle \mid y^{*} \in \hat{o j}(x)\right\} \\
> & \sup \left\{\left\langle y, x^{*}\right\rangle \mid x^{*} \in \partial f(x)\right\}+\sup \left\{\left\langle y, y^{*}\right\rangle \mid y^{*} \in o \partial j(x)\right\} \\
= & \sup \left\{\left\langle y, z^{*}\right\rangle \mid z^{*} \in \partial f(x)+\partial j(x)\right\},
\end{aligned}
$$

inasmuch as $\partial j(x)$ is a nonempty bounded set, and this inequality is incompatible with (3.5).

Proof of Theorem B. Let g be a lower semicontinuous proper convex function on E such that

$$
\begin{equation*}
\partial g(x) \supset \partial f(x), \forall x \in E \tag{3.6}
\end{equation*}
$$

As noted at the beginning of the proof Theorem 3 of [4], to prove Theorem B it suffices, in view of Theorem 1 of [4] and its Corollary 2 , to demonstrate that $g=f+$ const.

We consider first the case where f and g are everywhere finite and continuous. Then, for each $x \in E, \partial f(x)$ is a nonempty weak*
compact set, and

$$
\begin{equation*}
f^{\prime}(x ; u)=\max \left\{\left\langle u, x^{*}\right\rangle \mid x^{*} \in \partial f(x)\right\}, \forall u \in E, \tag{3.7}
\end{equation*}
$$

where

$$
f^{\prime}(x ; u)=\lim _{\lambda \downharpoonright 0}[f(x+\lambda u)-f(x)] / \lambda
$$

[3, p. 65]. Similarly, $\partial g(x)$ is a nonempty weak* compact set, and

$$
\begin{equation*}
g^{\prime}(x ; u)=\max \left\{\left\langle u, x^{*}\right\rangle \mid x^{*} \in \partial g(x)\right\}, \forall u \in E \tag{3.8}
\end{equation*}
$$

It follows from (3.6), (3.7) and (3.8) that

$$
\begin{equation*}
f^{\prime}(x ; u) \leqq g^{\prime}(x ; u), \forall x \in E, \forall u \in E \tag{3.9}
\end{equation*}
$$

On the other hand, for any $x \in E$ and $y \in E$, we have

$$
\begin{aligned}
& f(y)-f(x)=\int_{0}^{1} f^{\prime}((1-\lambda) x+\lambda y ; y-x) d \lambda \\
& g(y)-g(x)=\int_{0}^{1} g^{\prime}((1-\lambda) x+\lambda y ; y-x) d \lambda
\end{aligned}
$$

(see [6, §24]), so that by (3.9) we have

$$
f(y)-f(x) \leqq g(y)-g(x), \forall x \in E, \forall y \in E
$$

Of course, the latter can hold only if $g=f+$ const.
In the general case, we observe from (3.6) that

$$
\partial g(x)+\partial j(x) \supset \partial f(x)+\partial j(x), \forall x \in E,
$$

and consequently

$$
\partial(g+j)(x) \supset \partial(f+j)(x), \forall x \in E,
$$

by (3.1)(and its counterpart for g). This implies by Proposition 1 that

$$
\begin{equation*}
\partial(g+j)^{*}\left(x^{*}\right) \supset \partial(f+j)^{*}\left(x^{*}\right), \forall x^{*} \in E^{*} \tag{3.10}
\end{equation*}
$$

The functions $(f+j)^{*}$ and $(g+j)^{*}$ are finite and continuous on E^{*}, so we may conclude from (3.10) and the case already considered that

$$
(g+j)^{*}=(f+j)^{*}+\alpha
$$

for a certain real constant α. Taking conjugates, we then have

$$
\begin{equation*}
(g+j)^{* *}=(f+j)^{* *}-\alpha \tag{3.11}
\end{equation*}
$$

Since $(g+j)^{* *}$ and $(f+j)^{* *}$ agree on E with $g+j$ and $f+j$, respectively, (3.11) implies that

$$
g+j=f+j-\alpha
$$

and hence that $g=f+$ const.
Remark. The preceding proofs become much simpler if E is reflexive, since then ∂f^{*} and $\partial(f+j)^{*}$ are just the "inverses" of ∂f and $\partial(f+j)$, respectively, and Proposition 1 is superfluous. In this case, S may be replaced by the inverse of $T+\partial j$ in the proof of Theorem A.

References

1. A. Brondsted and R. T. Rockafellar, On the subdifferentiability of convex functions, Proc. Amer. Math. Soc. 16 (1965), 605-611.
2. G. J. Minty, On the monotonicity of the gradient of a convex function, Pacific J. Math. 14 (1964), 243-247.
3. J.-J. Moreau, Fonctionelles convexes, mimeographed lecture notes, Collège de France, 1967.
4. R. T. Rockafeller, Characterization of the subdifferentials of convex functions, Pacific J. Math. 17 (1966), 497-510.
5. —_, An extension of Fenchel's duality theorem, Duke Math. J. 33 (1966), 8190.
6. —— Convex analysis, Princeton University Press, 1969.

Received July 17, 1969. This work was supported in part by the Air Force Office of Scientific Research under grant AF-AFOSR-1202-67.

The University of Washington, Seattle

CONVERGENCE OF A SEQUENCE OF TRANSFORMATIONS OF DISTRIBUTION FUNCTIONS-II

R. Shantaram

Abstract

A previous paper of the present author was devoted to the study of the convergence properties of the iterates of a certain transformation of distribution functions (d.f.'s) of a random variable (r.v.). In this paper the definitions and some of the results are extended to the case of bivariate d.f.'s.

1. Definition and preliminaries. Throughout this paper $F(x, y)$ will denote the bivariate $d . f$. of a nonnegative random vector (X, Y). More precisely, (i) $F(x, y)$ is monotonic nondecreasing; i.e., for $a>c$, $b>d$ we have

$$
[F(x, y)]_{c, d}^{a, b}=F(a, b)-F(a, d)-F(c, b)+F(c, d) \geqq 0 .
$$

(ii) $F(x, 0)=F(0, y)=0$ for all x and y. (iii) $F(+\infty,+\infty)=\lim _{x, y \rightarrow \infty}$ $F(x, y)=1$ and (iv) $F(x, y)$ is left continuous in each variable; i.e.,

$$
\lim _{h \rightarrow 0-} F(x+h, y)=F(x, y)
$$

for all x and y with a similar left continuity in y.
We shall let $F_{1}(x)=F(x, \infty)$ and $F_{2}(y)=F(\infty, y)$ be the marginal $d . f$.'s of X and Y respectively and $\mu(i, j)=E\left(X^{i} Y^{j}\right)$ be a product moment of order $i+j$ when it exists finitely. Hence $\mu(i, 0)$ and $\mu(0, i)$ are the i-th moments of the marginal d.f.'s F_{1} and F_{2} respectively. For brevity we let $\mu=\mu(1,1)$.

Let us remark at this point that (1) all of the results of this paper (and more) follow immediately from the univariate case if F is the d.f. corresponding to a product measure; i.e., X and Y are independent and (2) although we are dealing explicitly with the bivariate case, the treatment and the results carry over in a direct way to distributions in the positive quadrant of $R^{n}, n \geqq 3$.

We develop now the requisite background material before introducing the bivariate transform in $\S 2$.

The following two lemmas for integration by parts are basic. These formulas are known [11], but apparently not readily available, and so we give them in a form convenient for our use.

Lemma 1.1. Assuming the existence of the double RiemannStieltjes integral we have

$$
\begin{align*}
\int_{0}^{a} \int_{0}^{b} f(x, y) d g(x, y)= & \int_{0}^{a} \int_{0}^{b}[1-g(x, b)-g(a, y)+g(x, y)] d f(x, y) \\
& -\int_{0}^{a}[g(x, b)-g(x, 0)] d f(x, 0) \tag{1.1}\\
& -\int_{0}^{b}[g(a, y)-g(0, y)] d f(0, y) \\
& +[g(x, y) f(x, y)]_{0, b}^{a, b}-[f(x, y)]_{0, b}^{a, b}
\end{align*}
$$

where

$$
[h(x, y)]_{0, b}^{a, b}=h(a, b)-h(a, 0)-h(0, b)+h(0,0) .
$$

Lemma 1.2.

$$
\begin{equation*}
\int_{0}^{a} \int_{0}^{b} f(x) d g(x, y)=\int_{0}^{a} f(x) d[g(x, b)-g(x, 0)] \tag{1.2}
\end{equation*}
$$

It is well known that the double Riemann-Stieltjes integral exists when, for example, one of the functions f and g is continuous and the other is of bounded variation (cf. [3]).

LEMMA 1.3. If $G(x, y)$ is continuous and the bivariate d.f. of a nonnegative random vector except that $G(\infty, \infty)$ is arbitrary, then

$$
\begin{equation*}
\int_{0}^{\infty} \int_{0}^{\infty} G(x, y) d F(x, y)=\int_{0}^{\infty} \int_{0}^{\infty}\left[1-F_{1}(x)-F_{2}(y)+F(x, y)\right] d G(x, y) \tag{1.3}
\end{equation*}
$$

Proof. Let $a>0, b>0$ and $S=[0, a] \times[0, b]$. Using (1.1) and simplifying we get

$$
\begin{align*}
\int_{S} G(x, y) d F(x, y)=A & +\int_{0}^{a}\left[F_{1}(x)-F(x, b)\right] d G(x, b) \\
& +\int_{0}^{b}\left[F_{2}(y)-F(a, y)\right] d G(a, y) \tag{1.4}\\
& -G(a, b)[1-F(a, b)] \\
& =A+B
\end{align*}
$$

where

$$
A=\int_{S} F^{*}(x, y) d G(x, y)
$$

and

$$
\begin{align*}
F^{*}(x, y) & =1-F_{1}(x)-F_{2}(y)+F(x, y) \tag{1.5}\\
& =\operatorname{Pr}(X \geqq x, Y \geqq y) \geqq 0 .
\end{align*}
$$

Now $B \leqq 0$. In fact, since $F_{1}(x)-F(x, b)$ and $F_{2}(y)-F(a, y)$ are
nondecreasing functions in x and y respectively we have

$$
\begin{aligned}
B \leqq G(a, b)\left[F_{1}(a)\right. & -F(a, b)]+G(a, b)\left[F_{2}(b)-F(a, b)\right] \\
& -G(a, b)[1-F(a, b)] \\
& =-G(a, b) F^{*}(a, b) \leqq 0
\end{aligned}
$$

Next, noting (1.2) and integrating by parts

$$
\begin{aligned}
\int_{0}^{a} \int_{b}^{\infty} G(x, y) d F(x, y) \geqq & \int_{0}^{a} G(x, b) d\left[F_{1}(x)-F(x, b)\right] \\
= & -\int_{0}^{a}\left[F_{1}(x)-F(x, b)\right] d G(x, b) \\
& +G(a, b)\left[F_{1}(a)-F(a, b)\right] .
\end{aligned}
$$

Similar lower bounds can be computed for $\int_{a}^{\infty} \int_{0}^{b}$ and $\int_{a}^{\infty} \int_{b}^{\infty}$. Combining these results we obtain

$$
\begin{equation*}
\left\{\int_{0}^{a} \int_{b}^{\infty}+\int_{a}^{\infty} \int_{0}^{b}+\int_{a}^{\infty} \int_{b}^{\infty}\right\} G(x, y) d F(x, y) \geqq-B \geqq 0 \tag{1.6}
\end{equation*}
$$

If now

$$
c=\int_{0}^{\infty} \int_{0}^{\infty} G(x, y) d F(x, y)<\infty
$$

the left side in (1.6) is

$$
c-\int_{S} G(x, y) d F(x, y) \geqq-B \geqq 0,
$$

and letting $a \rightarrow \infty, b \rightarrow \infty$ we get $B \rightarrow 0$. Hence $A \rightarrow c$ as a and b approach ∞. If, however, $c=+\infty$, since $B \leqq 0$ it follows from (1.4) that $A \geqq \int_{S} G(x, y) d F(x, y)$ and letting $a, b \rightarrow \infty$ we get $A=+\infty$. The lemma is proved in any case.

Corollary. For $m \geqq 1, n \geqq 1$

$$
\begin{equation*}
\mu(m, n)=m n \int_{0}^{\infty} \int_{0}^{\infty} x^{m-1} y^{n-1} F^{*}(x, y) d y d x \tag{1.7}
\end{equation*}
$$

where F^{*} is defined in (1.5). In particular,

$$
\begin{equation*}
\mu=\int_{0}^{\infty} \int_{0}^{\infty} F^{*}(x, y) d y d x \tag{1.8}
\end{equation*}
$$

We now recall that the characteristic function (c.f.) $f\left(t, t^{\prime}\right)$ of a d.f. $F(x, y)$ is called an analytic c.f. if there exists a function $A\left(z, z^{\prime}\right)$ of two complex variables which is defined and holomorphic in a neighborhood of the origin and which coincides with f for real values of z
and z^{\prime}. The lemma below is an extension of the necessity part of Theorem 7.2.1 in [5].

Lemma 1.4. If $F(x, y)$ has an analytic c.f. then there exists a positive constant R such that

$$
F^{*}(x, y)=o\left[e^{-\left(r x+r^{\prime} y\right)}\right], x, y \rightarrow \infty
$$

for all positive r, r^{\prime} smaller than R.
Proof. If f is holomorphic in $\left\{\left(z, z^{\prime}\right):|z|<p,\left|z^{\prime}\right|<p^{\prime}\right\}$ for some $p>0, p^{\prime}>0$, then it is holomorphic at least in the "band" $\left\{\left(z, z^{\prime}\right)\right.$: $\left.|\operatorname{Im} z|<p,\left|\operatorname{Im} z^{\prime}\right|<p^{\prime}\right\}$ (cf. [2], [8]). Put $R=\min \left(p, p^{\prime}\right)$ and $\operatorname{Im} z=t$, $\operatorname{Im} z^{\prime}=t^{\prime}$. Let $x>0, y>0$. Then

$$
\int_{x}^{\infty} \int_{y}^{\infty} \exp \left(t u+t^{\prime} v\right) d F(u, v)
$$

exists finitely for $\max \left(|t|,\left|t^{\prime}\right|\right)<R$. Pick positive numbers r, r^{\prime} such that $r<R, r^{\prime}<R$ and then s, s^{\prime} such that $r<s<R$ and $r^{\prime}<s^{\prime}<R$. Then there exists a positive constant C such that

$$
\begin{aligned}
C & \geqq \int_{x}^{\infty} \int_{y}^{\infty} \exp \left(s u+s^{\prime} v\right) d F(u, v) \\
& \geqq \exp \left(s x+s^{\prime} y\right) F^{*}(x, y) .
\end{aligned}
$$

Thus for $0<r<R, 0<r^{\prime}<R$

$$
\begin{aligned}
0 & \leqq F^{*}(x, y) \exp \left(r x+r^{\prime} y\right) \\
& =F^{*}(x, y) \exp \left(s x+s^{\prime} y\right) \exp \left[-(s-r) x-\left(s^{\prime}-r^{\prime}\right) y\right] \\
& \leqq C \exp \left[-(s-r) x-\left(s^{\prime}-r^{\prime}\right) y\right] \rightarrow 0 \text { as } x, y \rightarrow \infty
\end{aligned}
$$

2. The bivariate transform. We now define the bivariate transform and its iterates. Let $F(x, y)$ have finite moments $\mu(i, j)$ of all orders $(i \geqq 0, j \geqq 0)$. Define the sequence $\left\{G_{n}\right\}$ of absolutely continuous d.f.'s as follows. Put

$$
G_{1}(x, y)=\mu^{-1} \int_{0}^{x} \int_{0}^{y} F^{*}(u, v) d v d u
$$

for $x>0, y>0$ and zero elsewhere. For $n \geqq 1$ let

$$
G_{n+1}(x, y)=[\alpha(n, 1)]^{-1} \int_{0}^{x} \int_{0}^{y} G_{n}^{*}(u, v) d v d u
$$

for $x>0, y>0$ and zero elsewhere. Here

$$
\alpha(n, 1)=\int_{0}^{\infty} \int_{0}^{\infty} G_{n}^{*}(u, v) d v d u
$$

and $G_{n}^{*}(u, v)=1-G_{n}^{(1)}(u)-G_{n}^{(2)}(v)+G_{n}(u, v)$ where

$$
G_{n}^{(1)}(u)=G_{n}(u,+\infty) \text { and } G_{n}^{(2)}(v)=G_{n}(+\infty, v)
$$

In view of (1.8) $G_{n}(x, y)$ is indeed an absolutely continuous d.f. for $n \geqq 1$. Furthermore, if X and Y are independent so that $F(x, y)=F_{1}(x) F_{2}(y)$ we see that the bivariate transform of F is the product of the univariate transforms introduced in [10] of the marginal d.f.'s F_{1} and F_{2}. In the general case, however, no such simple relationship exists. This is important to the understanding of why a separate treatment of the two dimensional case is necessary and also helps explain the difficulty in strengthening part (v) of Theorem 4.1.

In this section we obtain the relation between the moments of F and of G_{n} for $n \geqq 1$.

THEOREM 2.1. If the moment generating function (m.g.f.) $M\left(t_{1}, t_{2}\right)$ of $F(x, y)$ exists in a neighborhood N of the origin then the m.g.f. $M^{*}\left(t_{1}, t_{2}\right)$ of $G_{1}(x, y)$ exists in N and

$$
\begin{align*}
M^{*}\left(t_{1}, t_{2}\right) & =\left(\mu t_{1} t_{2}\right)^{-1}\left[M\left(t_{1}, t_{2}\right)-M_{1}\left(t_{1}\right)-M_{2}\left(t_{2}\right)+1\right], t_{1} t_{2} \neq 0 \\
M^{*}\left(t_{1}, 0\right) & =\left(\mu t_{1}\right)^{-1}\left[\partial M /\left.\partial t_{2}\right|_{\left(t_{1}, 0\right)}-\partial M /\left.\partial t_{2}\right|_{(0,0)}\right], t_{1} \neq 0 \tag{2.1}\\
M^{*}\left(0, t_{2}\right) & =\left(\mu t_{2}\right)^{-1}\left[\partial M /\left.\partial t_{1}\right|_{\left(0, t_{2}\right)}-\partial M /\left.\partial t_{1}\right|_{(0,0)}\right], t_{2} \neq 0 \\
M^{*}(0,0) & =1
\end{align*}
$$

where the arguments of M^{*} are in N and M_{1} and M_{2} are the m.g.f.'s of the marginal d.f.'s F_{1} and F_{2}, respectively.

Proof. Clearly $M^{*}(0,0)=1$. Further, the existence of the m.g.f. M in N implies the existence of $M_{1}(u)$ and $M_{2}(u)$ for $(u, 0) \in N$ and $(0, u) \in N$ respectively. Consider first the case $t_{1}>0, t_{2}>0,\left(t_{1}, t_{2}\right) \in N$. The first assertion in the theorem follows at once from Lemma 1.3 by using $G(x, y)=\left(e^{t_{1} x}-1\right)\left(e^{t_{2} y}-1\right)$ and noting that

$$
M^{*}\left(t_{1}, t_{2}\right)=\int_{0}^{\infty} \int_{0}^{\infty} \exp \left(t_{1} x+t_{2} y\right) F^{*}(x, y) d y d x
$$

The result follows similarly when $t_{1} t_{2} \neq 0, t_{1}$ and/or t_{2} negative. We now turn to the second equation in (2.1) and merely sketch the proof. Since the m.g.f. M defines a holomorphic function in a "band" containing N, the integral

$$
\int_{0}^{\infty} \int_{0}^{\infty} \exp \left(t_{1} x+t_{2} y\right) d F(x, y)
$$

converges uniformly in compact subsets of N. Hence, for $\left(t_{1}, t_{2}\right) \in N$,

$$
\begin{aligned}
& \left(\partial / \partial t_{2}\right) \int_{0}^{\infty} \int_{0}^{\infty} \exp \left(t_{1} x+t_{2} y\right) d F(x, y) \\
& \quad=\int_{0}^{\infty} \int_{0}^{\infty}\left(\partial / \partial t_{2}\right) \exp \left(t_{1} x+t_{2} y\right) d F(x, y) \\
& \quad=\int_{0}^{\infty} \int_{0}^{\infty} y \exp \left(t_{1} x+t_{2} y\right) d F(x, y)
\end{aligned}
$$

Thus, the quantity in square brackets on the right side of the second equation in (2.1) reduces to

$$
\int_{0}^{\infty} \int_{0}^{\infty} y\left(e^{t_{1} x}-1\right) d F(x, y)
$$

Use of Lemma 1.3 again gives us the result. The third equation in (2.1) is proved in the same way. The theorem is completely proved.

We shall write $\mu(i, j ; n)$ to denote $E_{G_{n}}\left(X^{i} Y^{j}\right), i \geqq 0, j \geqq 0, n \geqq 1$. The following results are easily proved. If F has a m.g.f., these results are obtained as corollaries to Theorem 2.1.

Theorem 2.2. Let $m \geqq 1, n \geqq 1$. If $\mu(i, j)$ exists finitely for $0 \leqq i \leqq m, 0 \leqq j \leqq n$ then $\mu(i, j ; 1)$ exists finitely for $0 \leqq i \leqq m-1$, $0 \leqq j \leqq n-1$. In this case

$$
\begin{equation*}
\mu(i, j ; 1)=\mu(i+1, j+1) /(i+1)(j+1) \mu \tag{2.2}
\end{equation*}
$$

THEOREM 2.3. If $\mu(i, j)$ exists finitely for all nonnegative integers i and j, then for all such i and j and $n \geqq 1$,

$$
\begin{equation*}
\mu(i, j ; n)=\binom{n+i}{i}^{-1}\binom{n+j}{j}^{-1} \mu(n+i, n+j) / \mu(n, n) \tag{2.3}
\end{equation*}
$$

3. A convergence theorem for d.f.'s on a finite rectangle. In this section we prove the following theorem:

Theorem 3.1. If $F(x, y)$ is a finite distribution on the rectangle $[0, a] \times[0, b]$, i.e., $F(a, b)=1$, but $F(x, y)<1$ for $x<a$ or $y<b$. Then

$$
\lim _{n \rightarrow \infty} G_{n}(x / n, y / n)=G(x, y)=\left\{\begin{array}{lr}
{[1-\exp (-x / a)][1-\exp (-y / b)]} \\
0 & \min (x, y) \geqq 0 \\
0 & \text { elsewhere }
\end{array}\right.
$$

To prove the theorem we need several inequalities concerning the growth rates of moments which we now obtain. For every nonnegative real number m, n, p, q and real number t, we have
$\mu(2 m, 2 n)+2 t \mu(m+p, n+q)+t^{2} \mu(2 p, 2 q)=E\left(X^{m} Y^{n}+t X^{p} Y^{q}\right)^{2} \geqq 0$ so that, if the moments are positive and finite we get

$$
\begin{equation*}
\mu(2 m, 2 n) \mu(2 p, 2 q) \geqq \mu^{2}(m+p, n+q) . \tag{3.1}
\end{equation*}
$$

Let r, s be positive integers. Letting $2 m=r+1,2 n=s+1$, $2 p=r-1,2 q=s-1$ in (3.1) and then $s+1=r$ we obtain

$$
\begin{equation*}
\mu(r+1, s+1) / \mu(r, s) \geqq \mu(r, s) / \mu(r-1, s-1) \tag{3.2}
\end{equation*}
$$

$$
\begin{equation*}
\mu(r+1, r) / \mu(r, r-1) \geqq \mu(r, r-1) / \mu(r-1, r-2) . \tag{3.3}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\mu(s, s+1) / \mu(s-1, s) \geqq \mu(s-1, s) / \mu(s-2, s-1) \tag{3.4}
\end{equation*}
$$

Setting $2 m=2 p=r, 2 n=2 q=s$ in (3.1) we get

$$
\begin{equation*}
\mu(r+1, s) / \mu(r, s) \geqq \mu(r, s) / \mu(r-1, s) \tag{3.5}
\end{equation*}
$$

and its dual

$$
\begin{equation*}
\mu(r, s+1) / \mu(r, s) \geqq \mu(r, s) / \mu(r, s-1) . \tag{3.6}
\end{equation*}
$$

Lemma 3.1 through 3.4 are proved under the hypothesis of Theorem 3.1.

Lemma 3.1.

$$
\begin{gather*}
\lim _{n \rightarrow \infty} \mu^{1 / n}(n, n)=a b \tag{3.7}\\
\lim _{n \rightarrow \infty} \mu^{1 / n}(n+i, n+j)=a b, i \geqq 0, j \geqq 0 \tag{3.8}
\end{gather*}
$$

Proof. Similar to Boas [1].
Corollary.

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mu(n+1, n+1) / \mu(n, n)=a b \tag{3.9}
\end{equation*}
$$

Lemma 3.2.

$$
\begin{gather*}
\lim _{n \rightarrow \infty} \mu(n+i, n) / \mu(n+i-1, n)=a, i \geqq 1 \tag{3.10}\\
\lim _{n \rightarrow \infty} \mu(n+i, n) / \mu(n, n)=a^{i}, i \geqq 0 . \tag{3.11}
\end{gather*}
$$

Proof. It suffices to prove (3.10) since (3.11) follows from it. Let $i=1$. Clearly $\lim \sup _{n \rightarrow \infty} \mu(n+1, n) / \mu(n, n) \leqq a$. Since

$$
\mu(n, n+1) / \mu(n, n) \leqq b
$$

we have from (3.5), for $n \geqq 2$,

$$
\mu(n+1, n) / \mu(n, n) \geqq b^{-1} \mu(n, n) / \mu(n-1, n-1)
$$

which implies that the lim inf of the left side is at least $b^{-1} a b=a$. For a general i we use (3.5) and induction on i to get

$$
\begin{aligned}
& a \geqq \mu(n+i+1, n) / \mu(n+i, n) \\
& \quad \geqq \mu(n+i, n) / \mu(n+i-1, n) \rightarrow a, \text { as } n \rightarrow \infty
\end{aligned}
$$

Similarly we have the dual results

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mu(n, n+j) / \mu(n, n+j-1)=b, j \geqq 1 \tag{3.12}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mu(n, n+j) / \mu(n, n)=b^{j}, j \geqq 0 \tag{3.13}
\end{equation*}
$$

Lemma 3.3.

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mu(n-i, n) / \mu(n-i-k, n)=a^{k}, i \geqq 0, k \geqq 0 \tag{3.14}
\end{equation*}
$$

Proof. It suffices to consider $k=1, i \geqq 1$.

$$
\begin{aligned}
& \mu(n-i, n) / \mu(n-i-1, n) \\
= & \frac{\mu(n-i, n)}{\mu(n-i, n-i)} \frac{\mu(n-i-1, n-i-1)}{\mu(n-i-1, n)} \frac{\mu(n-i, n-i)}{\mu(n-i-1, n-i-1)} \\
\sim & \frac{\mu(n, n+i)}{\mu(n, n)} \frac{\mu(n, n)}{\mu(n, n+i+1)} \frac{\mu(n+1, n+1)}{\mu(n, n)} \\
\rightarrow & b^{i}\left(b^{-1}\right)^{i+1} a b=a, \text { as } n \rightarrow \infty
\end{aligned}
$$

in view of (3.10)-(3.13).
In a similar fashion

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mu(n, n-i) / \mu(n, n-i-k)=b^{k}, i \geqq 0, k \geqq 0 \tag{3.15}
\end{equation*}
$$

Lemma 3.4.

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mu(n+i, n+j) / \mu(n, n)=a^{i} b^{j}, i \geqq 0, j \geqq 0 \tag{3.16}
\end{equation*}
$$

Proof.

$$
\begin{aligned}
& \mu(n+i, n+j) \mu(n, n) \\
& \quad=[\mu(n+i, n+j) / \mu(n, n+j)][\mu(n, n+j) / \mu(n, n)] \\
& \quad \rightarrow a^{i} b^{j}, \text { as } n \rightarrow \infty
\end{aligned}
$$

by (3.14) and (3.15).

We are now ready to prove Theorem 3.1. The moment $E\left(X^{i} Y^{j}\right)$, $i, j \geqq 0$, of $G_{n}(x / n, y / n)$ is

$$
n^{i} n^{j}\binom{n+i}{i}^{-1}\binom{n+j}{j}^{-1} \mu(n+i, n+j) / \mu(n, n) \text { (Theorem 2.3) }
$$

which converges to $a^{i} i!b^{j} j$! (Lemma 3.4). This last quantity is the moment of order (i, j) of $G(x, y)$ given in the statement of the theorem. The result now follows by the bivariate moment convergence theorem. We observe that the limit distribution is the product of two univariate distributions; i.e., the limiting random variables are independent.

Examples 5.1 and 5.2 illustrate this theorem.
4. D.F.'s on an infinite range. In this section let F be distributed on the whole positive quadrant of the plane; i.e., $F(x, y)<1$ for all real x and y.

Let $\left\{c_{n}\right\}$, $\left\{d_{n}\right\}$ be sequences of positive real numbers and use the following abbreviations. (Superscripts indicate the appropriate marginal d.f.'s) $H_{n}(x, y)=G_{n}\left(c_{n} x, d_{n} y\right)$,

$$
\begin{aligned}
& H_{n}^{*}(x, y)=1-H_{n}^{(1)}(x)-H_{n}^{(2)}(y)+H_{n}(x, y) \\
& G^{*}(x, y)=1-G^{(1)}(x)-G^{(2)}(y)+G(x, y)
\end{aligned}
$$

$b_{n}=\int_{0}^{\infty} \int_{0}^{\infty} H_{n}^{*}(x, y) d y d x$, and $b=\int_{0}^{\infty} \int_{0}^{\infty} G^{*}(x, y) d y d x$. We note that $b_{n}=$ $E_{H_{n}}(X Y)$ and $b=E_{G}(X Y)$. We further recall that a d.f. is proper if there is no straight line in the $x y$-plane which contains the whole mass of the distribution. The main result of this section is the following theorem.

Theorem 4.1. Let positive real numbers c_{n} and d_{n} exist such that $\lim _{n \rightarrow \infty} H_{n}(x, y)=G(x, y)$ and $\lim _{n \rightarrow \infty} H_{n}^{*}(x, y)=G^{*}(x, y)$ where $G(x, y)$ is a proper d.f. Let $\lim \sup _{n \rightarrow \infty} c_{n} / c_{n \rightarrow 1}=l_{1}<\infty$ and $\lim \sup _{n \rightarrow \infty}$ $d_{n} / d_{n-1}=l_{2}<\infty$. Then
(i) $\left\{b_{n}\right\}$ is a bounded sequence.
(ii) $\lim _{n \rightarrow \infty} b_{n}=b<\infty$.
(iii) $\lim _{n \rightarrow \infty} c_{n} / c_{n-1}=l_{1}$ and $\lim _{n \rightarrow \infty} d_{n} / d_{n-1}=l_{2}$ exist.
(iv) $l_{1} l_{2} \geqq 1$ and equality holds if F has an analytic c.f.
(v) For $i \geqq 0, \mu_{i, i}\left(H_{n}\right) \rightarrow \mu_{i, i}(G)$ as $n \rightarrow \infty$ where

$$
\mu_{i, j}(\varphi)=E_{\varphi}\left(X^{i} Y^{j}\right)
$$

(vi) If $a_{n} \rightarrow a, a_{n}^{\prime} \rightarrow a^{\prime}$ as $n \rightarrow \infty$ where $a_{n}, a_{n}^{\prime}, a, \alpha^{\prime}$, are all positive, then $\lim _{n \rightarrow \infty} H_{n}\left(a_{n} x, a_{n}^{\prime} y\right)=G\left(a x, a^{\prime} y\right)$.
(vii) $\lim _{n \rightarrow \infty} H_{n}^{(1)}(x)=G^{(1)}(x)$ and $\lim _{n \rightarrow \infty} H_{n}^{(2)}(y)=G^{(2)}(y)$ uniformly in x and y.
(viii) $G(x, y)$ is continuous and the convergence $H_{n}(x, y) \rightarrow G(x, y)$ is uniform in x and y.

Proof. The first five parts of the theorem follow as in Theorem 4.1 in [10]. As for the remainder, we first prove that $G(x, y)$ is continuous. This involves several steps.

Step 1.

$$
\begin{equation*}
G(x, y)=b^{-1} \int_{0}^{l_{1} x} \int_{0}^{l_{2} y} G^{*}(u, v) d v d u, x>0, y>0 \tag{4.1}
\end{equation*}
$$

This is easily proved.
Step 2. $\sup _{y>0} y \int_{0}^{\infty} H_{n}^{*}(x, y) d x$ is uniformly bounded for n sufficiently large.

Proof. Since $b_{n} \rightarrow b<\infty$, there exists N and $M>0$ such that $n>N$ implies $\int_{0}^{\infty} \int_{y / 2}^{y} H_{n}^{*}(u, v) d v d u \leqq M$ for all $y>0$. Since $H_{n}^{*}(u, v)$ is monotonic decreasing in v, we have for $n>N$ and all $y>0$

$$
M \geqq \int_{0}^{\infty} \int_{y / 2}^{y} H_{n}^{*}(u, v) d v d u \geqq \frac{y}{2} \int_{0}^{\infty} H_{n}^{*}(u, y) d u
$$

which proves our result.
Step 3. $\sup _{x>0} x \int_{0}^{\infty} H_{n}^{*}(x, y) d y$ is uniformly bounded for n sufficiently large.

Step 4. Let

$$
g_{n}(x, y)=\int_{a}^{x} \int_{a}^{y} H_{n}^{*}(u, v) d v d u,(x, y) \in[a, \infty) \times[a, \infty), a>0 .
$$

Then there exists a subsequence $\left\{g_{n_{k}}(x, y)\right\}$ converging uniformly to

$$
g(x, y)=\int_{a}^{x} \int_{a}^{y} G^{*}(u, v) d v d u
$$

Proof. It is clear by the bounded convergence theorem that $g_{n} \rightarrow g$ pointwise. To obtain a subsequence converging uniformly we shall show that $\left\{g_{n}\right\}$ is uniformly bounded and equicontinuous and then appeal to the Arzela-Ascoli theorem [6, p. 242].

First $\left\{g_{n}\right\}$ is uniformly bounded since $\left|g_{n}(x, y)\right| \leqq b_{n} \leqq M$. Now we prove that it is equicontinuous. Let ε be given. $(\varepsilon<1)$. Choose N and $M>0$ such that for $n>N$

$$
\sup _{x>0} x \int_{0}^{\infty} H_{n}^{*}(x, y) d y<M \text { and } \sup _{y>0} y \int_{0}^{\infty} H_{n}^{*}(x, y) d x<M .
$$

This is possible by Steps 2 and 3. Next, pick $\delta<\min (\varepsilon, \varepsilon a / M), \delta>0$.

Let $\left|x-x^{\prime}\right|<\delta,\left|y-y^{\prime}\right|<\delta$ and for definiteness let $x^{\prime}<x, y^{\prime}<y$. (Other cases are similarly handled.) Then, for $n>N$

$$
\left|g_{n}(x, y)-g_{n}\left(x^{\prime}, y^{\prime}\right)\right| \leqq A+B+C
$$

where

$$
\begin{aligned}
C & =\left|\int_{x^{\prime}}^{x} \int_{y^{\prime}}^{y} H_{n}^{*}(u, v) d v d u\right| \leqq\left(x-x^{\prime}\right)\left(y-y^{\prime}\right)<\delta<\varepsilon \\
A & =\left|\int_{a}^{x^{\prime}} \int_{y^{\prime}}^{y} H_{n}^{*}(u, v) d v d u\right| \\
& \leqq \frac{\left(y-y^{\prime}\right)}{y^{\prime}} y^{\prime} \int_{a}^{x^{\prime}} H_{n}^{*}\left(u, y^{\prime}\right) d u \leqq\left(y-y^{\prime}\right) M / a<\delta M / a<\varepsilon
\end{aligned}
$$

using Step 2. In a similar fashion

$$
B=\left|\int_{x^{\prime}}^{x} \int_{a}^{y^{\prime}} H_{n}^{*}(u, v) d v d u\right|<\varepsilon
$$

Step 4 is proved.
We now turn to the proof of the continuity of $G(x, y)$. Clearly, G is continuous at $(c, 0), c>0$ since by Step $1 G(x, y) \leqq M x y$ and $G(c, 0)=\lim _{n \rightarrow \infty} H_{n}(c, 0)=0$. Similarly, G is continuous at $(0,0)$ and at $(0, d), d>0$. Hence let $c>0, d>0$ and consider continuity at (c, d). Let $\varepsilon>0$ be given, $\varepsilon<1$. Choose $a>0,4 a<\min \left(c, d, \varepsilon, 1 / l_{1}\right.$, $\left.1 / l_{2}, l_{1} c, l_{2} d\right)$ and let

$$
g(x, y)=b^{-1} \int_{a}^{l_{1} x} \int_{a}^{l_{2} y} G^{*}(u, v) d v d u
$$

Note that $g(c, d)$ is defined. Since $H_{n}^{*}(u, v)$ is continuous for each $n \geqq 1$, it follows from Step 4 that $g(x, y)$ is continuous in $[a, \infty) \times[a, \infty)$. Let $\eta>0$ be the delta needed for the given ε and (c, d) in the definition of continuity of g. Further by Step 1,

$$
\begin{aligned}
& G(x, y)=g(x, y)+\left\{\int_{0}^{a} \int_{a}^{l_{2} y}+\int_{a}^{l_{1} x} \int_{0}^{a}+\int_{0}^{a} \int_{0}^{a}\right\} \\
& b^{-1} G^{*}(u, v) d v d u, l_{1} x>a, l_{2} y>a
\end{aligned}
$$

This equation is also true for $x=c, y=d$. Choose $\delta<\min (\eta, a)$. Then, for $|x-c|<\delta,|y-d|<\delta$ we have that (x, y) belongs to the domain of g and

$$
\begin{aligned}
A & =|g(x, y)-g(c, d)|<\varepsilon \\
B & =\left|\int_{0}^{a} \int_{l_{2} y}^{l_{2}} G^{*}(u, v) d v d u\right|<a l_{2}|y-d|<\varepsilon \\
C & =\left|\int_{l_{1} x}^{l_{1} c} \int_{0}^{a} G^{*}(u, v) d v d u\right|<a l_{1}|x-c|<\varepsilon .
\end{aligned}
$$

Hence, $|G(x, y)-G(c, d)| \leqq A+B+C<3 \varepsilon$. The proof of the continuity of $G(x, y)$ is completed. Since $H_{n}(x, y)$ converges to $G(x, y)$ and these are all continuous d.f.'s, the bivariate version of a familiar result [9, p. 438] asserts that the convergence $H_{n} \rightarrow G$ is uniform. This uniform convergence now yields parts (vi) and (vii) of the theorem immediately. Theorem 4.1 is completely proved.

Remark 1. A consequence of (ii) is the asymptotic equivalence: $c_{n} d_{n} \sim \mu(n+1, n+1) / b(n+1)^{2} \mu(n, n)$ where $b=E_{G}(X Y)$. Thus, the theorem gives the asymptotic nature of only the product of the normalizing sequences in terms of the rate of growth of the moments of F. It might be natural to seek conditions under which the normalizers will be given by

$$
\begin{align*}
c_{n} & \sim k \mu(n+1, n) /(n+1) \mu(n, n) \tag{4.2}\\
d_{n} & \sim \mu(n, n+1) / b k(n+1) \mu(n, n)
\end{align*}
$$

for some constant $k>0$. If (4.2) holds, it is natural to expect $1 / k$ and $b k$ to correspond to the first moments of the marginal d.f.'s G_{1} and G_{2} of the limiting d.f. G. This is true and is seen as follows. By a straightforward calculation

$$
\mu_{1,0}\left(H_{n}\right) \sim \mu(n+1, n) / c_{n}(n+1) \mu(n, n) \rightarrow 1 / k
$$

under (4.2). Letting

$$
f_{n}(x)=1-H_{n}^{(1)}(x), f(x)=1-G^{(1)}(x), g_{n}(x)=\int_{0}^{x} f_{n}(u) d u
$$

and $g(x)=\int_{0}^{x} f(u) d u$ we have $g_{n} \rightarrow g$ by the bounded convergence theorem. In fact, applying the Arzela-Ascoli theorem to $\left\{g_{n}\right\}$, it is easy to conclude that $g_{n^{\prime}} \rightarrow g$ uniformly in x, where n^{\prime} is a suitable subsequence of the natural numbers. It now follows by the MooreOsgood theorem [7, p. 285] that

$$
\begin{gathered}
\lim _{n^{\prime} \rightarrow \infty} \lim _{x \rightarrow \infty} g_{n^{\prime}}(x)=\lim _{x \rightarrow \infty} \lim _{n^{\prime} \rightarrow \infty} g_{n^{\prime}}(x) \text {; i.e. } \\
\lim _{n^{\prime} \rightarrow \infty} \mu_{1,0}\left(H_{n^{\prime}}\right)=\int_{0}^{\infty}\left[1-G^{(1)}(u)\right] d u=\mu_{1,0}(G) .
\end{gathered}
$$

Since $\mu_{1,0}\left(H_{n}\right) \rightarrow 1 / k$ it follows that $\mu_{1,0}(G)=1 / k$. Similarly, $\mu_{0,1}(G)=b k$. Incidentally, we have proved that $\mu_{1,0}\left(H_{n}\right) \rightarrow \mu_{1,0}(G)$, and $\mu_{0,1}\left(H_{n}\right) \rightarrow \mu_{0,1}(G)$ under the condition (4.2).

Remark 2. Part (v) of the theorem asserts the convergence of $\mu_{i, j}\left(H_{n}\right)$ to $\mu_{i, j}(G)$ only for $i=j$. Remark 1 above extends this to the case $i=0, j=1$ and $i=1, j=0$ under the condition (4.2). It
might be interesting to investigate if the general moment convergence is a consequence of (4.2) but we shall not pursue that in this paper.

Remark 3. Under the conditions of the theorem and (4.2) the following relations for the growth rates of the moments of F are easily obtained:
(i) $\mu(n+1, n+1) \sim \mu(n+1, n) \mu(n, n+1) / \mu(n, n)$
(ii) $\mu(n+2, n+1) \mu(n, n) / \mu(n+1, n+1) \mu(n+1, n) \sim l_{1}$
(iii) $\mu(n+1, n+2) \mu(n, n) / \mu(\mu+1, n+1) \mu(n, n+1) \sim l_{2}$.

We observe that (4.2) is valid if, for example, X and Y are independent and the c_{n} and d_{n} are normalizers satisfying the conditions of Theorem 4.1 in [10] corresponding to the d.f.'s of X and Y respectively. Theorems 4.2 and 4.3 , below, illustrate situations where X and Y are dependent and (4.2) holds.

Theorem 4.2. Let U and V be independent positive r.v's having analytic c.f.'s. Then the n-th iterated transform of the joint d.f. of $X=U V$ and $Y=V$, suitably normalized converges to the product of simple exponential d.f.'s.

Proof. Uuder the stated conditions all the moments λ_{n} and σ_{n} respectively of U and V are finite and the moments of the d.f. of (X, Y) and of its nth iterated transform are given by

$$
\begin{aligned}
& \mu(i, j)=E\left(X^{i} Y^{j}\right)=E\left(U^{i}\right) E\left(V^{i+j}\right)=\lambda_{i} \sigma_{i+j} \\
& \mu(i, j ; n) \sim i!n^{-i-j}\left(\lambda_{n+i} / \lambda_{n}\right)\left(\sigma_{2 n+i+j} / \sigma_{2 n}\right)
\end{aligned}
$$

Choosing the c_{n} and d_{n} as in (4.2) with $b=1, k=1$ we see after some simplification that $\mu_{i, j}\left(H_{n}\right) \rightarrow i!j!$ as $n \rightarrow \infty$. (Here we have used Lemmas 4.2 and 4.3 in [10]). Such a choice of c_{n} and d_{n} is valid since c_{n+1} / c_{n} and d_{n+1} / d_{n} are bounded. Indeed they approach 1. The theorem is proved.

Remark. If U and V have independent exponential distributions then the joint probability density function (p.d.f.) of X and Y is the one considered in Example 5.3.

We close this section with the following result illustrating a situation where the normalizers are as in (4.2) but the limit d.f. is not necessarily a d.f. of independent r.v.'s. To prove the theorem we merely need to verify that the mements of $G(x, y)$ determine it uniquely. This follows readily from the following sufficient condition
for the determinateness of a moment sequence $\left\{m_{i j}\right\}$, namely, that the series $\sum_{i, j=0}^{\infty} m_{i j} x^{i} y^{j} / i!j$! have a nonvanishing radius of convergence (cf. [4, p. 217]).

In the present case

$$
m_{i j}(G)=\frac{a i!j!}{k_{1}^{i} k_{2}^{j}}+\frac{b i!j!}{k_{3}^{i} k_{4}^{j}}
$$

and this clearly satisfies the sufficiency condition.
Theorem 4.3. Let X and Y be independent positive r.v.'s with d.d.f.'s $f_{1}(x)$ and $f_{2}(y)$ respectively and having analytic c.f.'s (so that the moments λ_{n} and σ_{n} of X and Y respectively are all finite). Let further $\lambda_{n+1} \sigma_{n} / \lambda_{n} \sigma_{n+1} \sim \alpha$ where $0<\alpha<\infty$. Define the p.d.f.

$$
f(x, y)=a f_{1}(x) f_{2}(y)+b f_{1}(y) f_{2}(x)
$$

where $a+b=1$ and a, b are positive real numbers. Then the normalizers (4.2) lead to the limiting d.f.

$$
G(x, y)=\int_{0}^{x} \int_{0}^{y}\left(A e^{-u k_{1}-v k_{2}}+B e^{-u k_{3}-v k_{4}}\right) d v d u
$$

where $k_{1}=(a+b / \alpha), k_{2}=(a+b \alpha), k_{3}=(b+a \alpha)$, and $k_{4}=(b+a / \alpha)$ $A=a k_{1} k_{2}$ and $B=b k_{3} k_{4}$.

Corollary. If $\alpha \neq 1, G(x, y)$ is not the d.f. of independent r.v.'s. If $\alpha=1, G(x, y)$ is the product of exponential distributions.

The hypothesis of the theorem are satisfied if, for example,

$$
f_{1}(x)=\exp (-x), x>0 ; f_{2}(y)=\alpha \exp (-\alpha y), y>0
$$

where $\alpha>0$.
5. Examples. This section contains three examples. The first two examples illustrate Theorem 3.1; the third one illustrates Theorem 4.2.

Example 5.1. Let a, b, c be positive real numbers such that $a+b+c<1$. Then the d.f. of a bivariate Bernoullian random vector is:

$$
F(x, y)= \begin{cases}a & 0<x, y \leqq 1 \\ a+b & 0<x \leqq 1, y>1 \\ a+c & 0<y \leqq 1, x>1 \\ 1 & \max (x, y)>1 \\ 0 & \min (x, y) \leqq 0\end{cases}
$$

with $\mu=E(X Y)=\alpha$ where $\alpha=1-a-b-c$. It is easily verified that the n-th iterated transform of $F(x, y)$ is the joint d.f. of two independently distributed random variables with a common d.f. given by $\left[1-(1-x)^{n}\right.$] for $0<x<1$ and one for $x>1$. Thus $G_{n}(x, y)$ converges to the degenerate distribution (degenerate at the origin). But $G_{n}(x / n, y / n)$ converges to the product of exponential d.f.'s.

Example 5.2. Consider the bivariate distribution with p.d.f. $f(x, y)=x+y$ for $0<x, y<1$ and zero elsewhere. The computation of G_{n} is unwieldy but

$$
\begin{aligned}
\mu(i, j ; n)= & \frac{i!j!}{2}(n+1)^{-1}\left[(n+j+1)(n+2)_{(i)}^{-1}(n+3)_{(j)}^{-1}\right. \\
& \left.+(n+i+1)(n+3)_{(i)}^{-1}(n+2)_{(j)}^{-1}\right]
\end{aligned}
$$

where $(a)_{(r)}=a(a+1) \cdots(a+r-1)$ for a positive integer r and $(a)_{(0)}=1$. It follows that the moment of order (i, j) of $G_{n}(x / n, y / n)$ converges to $i!j$! and hence the limiting d.f. is the product of simple exponential d.f.'s.

Example 5.3. Let $f(x, y)=y^{-1} \exp (-y-x / y), \min (x, y)>0$ and zero elsewhere be a joint p.d.f. Here Theorem 4.2 applies and the limiting d.f. is again the product of simple exponential d.f.'s if we choose $c_{n} \sim 2 n, d_{n} \sim 2$ as given by (4.2).

Acknowledgment. The author is grateful to Professor W. L. Harkness for his help in the preparation of this paper.

The author is also thankful to the referee for his many valuable comments.

References

1. R. P. Boas, Entire functions, Academic Press, New York, 1954.
2. R. Cuppens, Decomposition des functions caracteristiques analytiques, C. R. Acad. Sci., Paris 263 (1966), A86-A88.
3. T. H. Hildebrandt and I. J. Schoenberg, On linear functional operations and the moment problem for a finite interval in one or several dimensions, Ann. of Math. (2), 34 (1933).
4. M. Loeve, Probability theory, D. Van Nostrand Co., Princeton 1963.
5. E. Lukacs, Characteristic functions, Hafner Publishing Co., New York, 1960.
6. I. P. Natanson, Theory of functions of a real variable, Frederick Ungar Publishing Co., New York, 1955.
7. J. M. H. Olmsted, Real variables, Appleton-Century-Crofts Inc., New York, 1959.
8. I. V. Ostrovskii, Decompositions of multidimensional probability laws, Soviet Math. 7 (1966), 1052-55.
9. E. Parzen, Modern probability theory and its applications, John. Wiley. and Sons, Inc., New York, 1960.
10. R. Shantaram and W. L. Harkness, Convergence of a sequence of transformations of distribution functions, Pacific J. Math. 31 (1969), 403-415.
11. W. H. Young. On multiple integration by parts and the second theorem of the mean, Proc. Lond. Math. Soc. (2) 16 (1917).

Received April 17, 1969.
The State University of New York at Stony Brook

RINGS OF ANALYTIC FUNCTIONS

Julianne Souchek

If F is an open Riemann surface and $A(F)$ is the set of all analytic functions on F, then $A(F)$ is a ring under pointwise addition and multiplication. This paper is concerned with proper subrings R of $A(F)$ which are isomorphic images of $A(G)$, the ring of all analytic functions on an open Riemann surface G, under a homomorphism \mathscr{D} which maps constant functions onto themselves. The ring R has the form $\{g \circ \phi$: $g \in A(G), \phi$ an analytic map from F into $G\}$, and will be denoted R_{ϕ}. Relations between ϕ, R_{ϕ} and the spectrum of R_{ϕ} are given as necessary and sufficient conditions for the existence of a Riemann surface G such that R is isomorphic to $A(G)$.

Open Riemann surfaces will be denoted by F and G, the rings of all analytic functions on F and G with pointwise addition and multiplication will be denoted by $A(F)$ and $A(G)$, and Φ will denote a homomorphism from $A(G)$ into $A(F)$ which maps constant functions onto themselves. Let Φ be such a homomorphism. In [5, pp. 272273] H. L. Royden shows there is an analytic mapping ϕ of F into G such that $\Phi(g)=g \circ \phi$, and that if Φ is an isomorphism onto $A(F)$ then ϕ is a one-to-one, onto analytic mapping. If ϕ is an analytic mapping of F into G, then Φ defined by $\Phi(g)=g \circ \phi, g \in A(G)$, is a homomorphism from $A(G)$ into $A(F)$ which preserves constant functions. When ϕ is one-to-one and onto, Φ is an isomorphism.

The image of $A(G)$ under Φ is the set $\{g \circ \phi: g \in A(G), \phi$ is an analytic map of F into $G\}$ denoted by $R_{\phi} . \quad R_{\phi}$ is a subring of $A\left(F^{\prime}\right)$ and contains the constant functions, since $\Phi(\lambda)=\lambda$ for λ a constant function. The following conditions are equivalent: R_{ϕ} properly contains the constant functions, Φ is an isomorphism, ϕ is not a constant function. Theorems 1 and 2 give other relations between ϕ and R_{ϕ}.

Theorem 1. If R_{ϕ} properly contains the constant functions, then R_{ϕ} contains $1 / f$ whenever $f \in R_{\phi}, f(z) \neq 0$ on F, if and only if $\dot{\phi}$ maps F onto G.

Proof. Let ϕ map F onto $G, f \in R_{\dot{\phi}}, f(z) \neq 0$ on F. Then $f=$ Φh for some $h \in A(G)$ and $1 / h \in A(G)$ if $h(y) \neq 0$ for $y \in G$. Suppose $h(a)=0$. Since $a=\phi(z)$ for some $z \in F, 0=h(a)=h(\phi(z))=\Phi h(z)=$ $f(z)$. This contradicts $f(z) \neq 0$ on F. Thus $h(a) \neq 0$ for $a \in G$, $1 / h \in A(G)$, and $1 / f=\Phi(1 / h) \in R_{\phi}$.

Suppose R_{ϕ} contains $1 / f$ when $f \in R_{\dot{\phi}}, f(z) \neq 0$ on F. Let $a \in G$.

There is $g \in A(G)$ such that $g(\alpha)=0$ and $g(w) \neq 0$ for $w \neq a[1$, pp. 591-592]. The function $\Phi g \in R_{\phi}$. If $\Phi g(z)=g \circ \phi(z) \neq 0$ for $z \in F$, then there is $h \in R_{\phi}$ such that $(\Phi g)(h)=1$. There is $k \in A(G)$ such that $h=\Phi k$. Then $(\Phi g)(\Phi k)=1$ and $\Phi(g k)=1$ but Φ is an isomorphism implies $g k=1$ and $g(\alpha) k(\alpha)=1$. This contradicts $g(\alpha)=0$. Therefore $g(\phi(z))=0$ and $\phi(z)=a$ for some $z \in F$.

A straightforward argument shows

Theorem 2. If R_{ϕ} properly contains the constant functions, then R_{ϕ} separates the points of F if and only if ϕ is one-to-one.

Let R be a ring of analytic functions defined on F. The spectrum of $R, \Sigma R$, is the set of nonzero homomorphisms π from R into the complex numbers such that $\pi(\lambda)=\lambda$ for λ a constant function. For $x \in F$ the point evaluation mapping $\pi_{x}=\{(f, f(x)): f \in R\}$ is a homomorphism from R into the complex numbers, and $\pi_{x}(\lambda)=\lambda$ for λ a constant function. Therefore ΣR always contains the point evaluation mappings defined on R. In [5, p. 272] H. L. Royden shows that the spectrum of $A(F)$ is the set of point evaluation mappings π_{x} defined on $A(F), x \in F$. For $f \in R$ let $\hat{f}=\{(\pi, \pi f): \pi \in \Sigma R\} ; \hat{f}$ is a function from ΣR into the complex numbers. Let \hat{R} denote $\{\hat{f}: f \in R\}$. With pointwise addition and multiplication \hat{R} is a ring containing the constant functions and is isomorphic to R under $f \rightarrow \hat{f}$.

For $y \in G$, let ψ_{y} denote an element of $\Sigma A(G)$. The mapping $P=\left\{\left(y, \psi_{y}\right): y \in G\right\}$ is a one-to-one function from G onto $\Sigma A(G)$. If $R=\Phi(A(G))$ and Φ is an isomorphism, $L=\{(\pi, \pi \circ \Phi): \pi \in \Sigma R\}$ is a one-to-one function from ΣR onto $\Sigma A(G)$. The mapping $\pi \rightarrow \pi \circ \Phi=$ $\psi_{y} \rightarrow y$ which is $P^{-1} \circ L$ defines a one-to-one correspondence between ΣR and G when Φ is an isomorphism.

Theorem 3. Let $R_{\phi}=\Phi(A(G))$, Φ be an isomorphism from $A(G)$ into $A(F)$ which preserves constant functions. Let M be the function from $\Sigma A(F)$ into ΣR_{ϕ} defined by $M\left(\pi_{x}\right)=\left.\pi_{x}\right|_{R_{\phi}}$. Then M is onto if and only if ϕ is onto, and M is one-to-one if and only if $\dot{\phi}$ is one-to-one.

Proof. The proof that M is one-to-one if and only if ϕ is one-to-one follows from Theorem 2 and the fact that $A(F)$ separates the points of F.

Let $\pi \in \Sigma R_{\phi}$. Then $\pi \circ \Phi \in \Sigma A(G)$ implies there is $y \in G$ such that $\pi \circ \Phi=\psi_{y}$, where $\psi_{y}(g)=g(y)$ for $g \in A(G)$. There are two cases: $y \in \phi(F), y \notin \phi(F)$. If $y \in \phi(F)$, then $y=\phi(x)$ for some $x \in F$ and $\pi(\Phi g)=g(y)=g(\phi(x))=\Phi g(x)$ for every $g \in A(G), \pi(\Phi g)=\Phi g(x)$ for
every $f=\Phi g \in R_{\phi}$. This implies $\pi=M\left(\pi_{x}\right)$. If $y \notin \phi(F)$, then $y \neq \phi(x)$ for $x \in F$, and it may be shown that for every $x \in F$ there is $f \in R_{\phi}$ such that $\pi(f) \neq f(x)$. Let $x \in F$. Then $\phi(x) \in G . \quad y \in G, y \neq \phi(x)$, and $A(G)$ separates the points of G implies there is a $g \in A(G)$ such that $g(y) \neq g(\phi(x))$. From $\Phi(g) \in R_{\phi}$ and $\pi(\Phi g)=g(y) \neq g(\phi(x))=\Phi g(x)$ it follows that $\pi \neq M\left(\pi_{x}\right)=\left.\pi_{x}\right|_{R_{\dot{\phi}}}$.

For $\pi \in \Sigma R_{\phi}, \pi \circ \Phi=\psi_{y} \in \Sigma A(G)$, and it has been shown $\pi \in M(\Sigma A(F))$ if and only if $y \in \phi(F)$.

From Theorem 3 and since ΣR_{ϕ} and G are in one-to-one correspondence, it follows that the point evaluation maps in ΣR_{ϕ} are in one-to-one correspondence with the points $\phi(x) \in \phi(F)$, and the elements of ΣR_{ϕ} which are not point evaluation maps are in one-to-one correspondence with the points in $G-\phi(F)$.

Theorem 4 contains a necessary condition which a subring R of $A(F)$ must satisfy if R is to be $\Phi(A(G))$, the isomorphic image of $A(G)$ under Φ for some open Riemann surface G. The corollary to Theorem 5 gives a set of sufficient conditions on R in order that R be $\Phi(A(G))$ when $\Phi g=g \circ \phi$ and $\phi: F \rightarrow G$ is an onto mapping.

Suppose F is an open Riemann surface, $p \in F, f$ is analytic at p and τ is a local uniformizer which maps a neighborhood of p onto $\{z:|z|<g\}$ for some $\rho>0, \tau(p)=0$. There is a number $r>0$ such that $f \circ \tau^{-1}(z)=\sum_{i=0}^{\infty} a_{i} z^{i}$ for $|z|<r$. The multiplicity of f at p is defined as $\inf \left\{k: k \neq 0\right.$ and $\left.\alpha_{i} \neq 0\right\}$, denoted $n(p ; f)$. The multiplicity $n(p ; f)$ of f at p does not depend on τ. If R contains functions other than constants, $m=\inf \{n(p ; f): \mathrm{f} \in R\}$ is defined, and $n(p ; f)=m$ for some $f \in R$.

Theorem 4. Let $p \in F, R_{\dot{\phi}}$ contain functions other than constants and let $m=\left\{\inf n(p ; f): f \in R_{\phi}\right\}$. There is a local uniformizer τ at p with the properties: $\tau(0)=p$, for some $\rho>0$, τ maps $\{z$: $|z|<\rho\}$ onto a neighborhood of p, and if $f \in R_{\phi}, f \circ \tau(z)=\sum_{i=0}^{\infty} a_{i}\left(z^{m}\right)^{i}$ for $|\boldsymbol{z}|<\rho$.

The proof of Theorem 4 is based on two lemmas:
Lemma 1. If $p \in F, m=\inf \left\{n(p ; f): f \in R_{\dot{p}}\right\}$ and $f \in R_{\phi}$, then $n(p ; f)=k m$, where k is a positive integer.

Lemma 2. Given $\sum_{i=m}^{\infty} c_{i} z^{i}$ convergent for $|z|<\rho, c_{m} \neq 0, m \neq 0$, there is $\sum_{i=1}^{\infty} b_{i} z^{i}$ convergent for $|z|<\rho, b_{1} \neq 0$, such that $\left(\sum_{i=1}^{\infty} b_{i} z^{i}\right)^{m}=$ $\sum_{i=m}^{\infty} c_{i} z^{i}$.

Lemma 1 follows from the two relations: For $f \in R_{\dot{\phi}}, f=g \circ \dot{\phi}$ for
some $g \in A(G)$, which implies $n(p ; f)=(n(p ; \phi))(n(\phi(p) ; g))$, and if $m=$ $\inf \left\{n(p ; f): f \in R_{\phi}\right\}$ then $n(p ; \phi)=m$. Lemma 2 is proved by defining W a subset of the natural numbers N as $W=\left\{n \in N: b_{1}, b_{2}, \cdots, b_{n}\right.$ can be defined in such a way that the coefficients of z^{i} for $1 \leqq m \leqq$ $i \leqq m+n-1$ of $\left(\sum_{i=1}^{\infty} b_{i} z^{i}\right)^{m}$ and $\sum_{i=m}^{\infty} c_{i} z^{i}$ are equal and using induction to show $W=N$.

Proof of Theorem 4. Let τ_{p} be a local uniformizer about p such that $\tau_{p}(0)=p$. If $m=\inf \left\{n(p ; f): f \in R_{\phi}\right\}$, there is $f_{p} \in R_{\phi}$ and $\rho>0$ such that $f_{p} \circ \tau_{p}(z)=\sum_{i=m}^{\infty} c_{i} z^{i}$ for $|z|<\rho, c_{m} \neq 0$, and the range of $\sum_{i=m}^{\infty} c_{i} z^{i}$ contains $|z|<\rho^{m}$.

There is a power series $\sum_{i=1}^{\infty} b_{i} z^{i}, b_{1}^{m}=c_{m}$, such that $\sum_{i=m}^{\infty} c_{i} z^{i}=$ $\left(\sum_{i=1}^{\infty} b_{i} z^{i}\right)^{m}$ for $|z|<\rho$ as stated in Lemma 2. $k(z)=\sum_{i=1}^{\infty} b_{i} z^{i}$ is defined for $|z|<\rho$, is one-to-one, and its range contains $|z|<\rho$. Thus $k^{-1}(y)$ is defined for $|y|<\rho$ and $f_{p} \circ \tau_{p} \circ k^{-1}(z)=\left(\sum_{i=1}^{\infty} b_{i}\left(k^{-1}(z)\right)^{i}\right)^{m}=$
 uniformizer about p and there is $f_{p} \in R_{\phi}$ such that $f_{p} \circ \tau(z)=z^{m}$ for $|z|<\rho$.

Let $f \in R_{\dot{\phi}}, f$ not a constant function. Then $f \circ \tau(z)=\sum_{i=0}^{\infty} a_{i} z^{i}$ for $|z|<\rho$. Let N denote the natural numbers and define $W=$ $\left\{n \in N: f \circ \tau(z)=\sum_{i=0}^{n} a_{m j_{i}} z^{m j_{i}}+z^{m j_{n}} h_{n}(z)\right.$, where $h_{n}(z)=\sum_{i=1}^{\infty} b_{n, i} z^{i}$ and j_{i} are nonnegative integers, $\left.0=j_{0}<j_{1}<\cdots<j_{n}\right\}$.

It follows from Lemma 1 that for $|z|<\rho, f \circ \tau(z)=\sum_{i=0}^{\infty} a_{i} z^{i}=$ $a_{0}+a_{m j_{1}} z^{m j_{1}}+z^{m j_{1}} h_{1}(z)$, where $h_{1}(0)=0$. If $k \in W$, then $f \circ \tau(z)=$ $\sum_{i=0}^{k} a_{m j_{i}} z^{m j_{i}}+z^{m j_{k}} h_{k}(z), h_{k}(0)=0$. Since $f \in R_{\phi}, z^{m} \in R_{\phi}$ and constants are contained in $R_{\phi}, z^{m j_{k}} h_{k}(z)=f(z)-\sum_{i=0}^{k} a_{m j_{i}} z^{m j_{i}} \in R_{\phi}$. If $h_{k} \neq 0$, $n\left(p ; z^{m j_{k}} h_{k}\right)=m j_{k+1} \quad$ and $\quad f \circ \tau(z)=\sum_{i=0}^{k+1} a_{m j_{i}} z^{m j_{i}}+z^{m j_{k+1} h_{k+1}}(z)$, where $h_{k+1}(z)=\sum_{i=1}^{\infty} b_{k+1, i} z^{i}$ on $|z|<\rho$ and $j_{k+1}>j_{k}$. If $h_{k}=0$, then the above statement is true with $a_{m j_{k+1}}=0, h_{k+1}=0$. By induction $W=N$ and $f \circ \tau(z)=\sum_{i=0}^{\infty} a_{m i} z^{m i}$ on $|z|<\rho$.

If R, a subring of $A(F)$, has the property that for every $a \in F$, $f \in R$, for some local uniformizer τ about $a, f \circ \tau(z)=\sum_{i=0}^{\infty} \alpha_{i}\left(z^{m(a)}\right)^{i}$ for $m(a)=\inf \{n(a ; f): f \in R\}$, then R has property (ξ). If R contains functions other than constants and has property (ξ), then for $a \in F$, $m(a)=\inf \{n(a ; f): f \in R\}=1$ if R separates the points of F.

THEOREM 5. If R is a subring of $A(F)$ which contains functions other than constants and has property (ξ), then there is an open Riemann surface G, an analytic mapping $\dot{\phi}$ of F onto G, and a separating subring S of $A(G)$ such that S is isomorphic to R under $\hat{f} \rightarrow \hat{f} \circ \phi, \hat{f} \in S .{ }^{1}$

Proof. Let $G=\left\{\pi_{p}: p \in F\right\}$ where $\pi_{p}=\{(f, f(p)): f \in R\}$ and $\phi=$
$\left\{\left(p, \pi_{p}\right): p \in F\right\}$. The topology on G will be that which makes ϕ continuous and open. If N_{p} is an open neighborhood of $p \in F$, then $N_{\pi_{p}}=\left\{\pi_{q}: q \in N_{p}\right\}$ is an open neighborhood of π_{p}. The set G with this topology is a connected Hausdorff space.

Let $p \in F, \pi_{p} \in G$ and $m=\inf \{n(p ; f): f \in R\}$. By the same argument used in the beginning of the proof of Theorem 4, there is a function $f_{p} \in R$ and a local uniformizer τ about p such that $\tau(0)=p$ and $f_{p} \circ \tau(z)=z^{m}$ for $|z|<\rho^{1 / m}$ for some $\rho>0$. Then for $f \in R$, $f \circ \tau(z)=\sum_{i=0}^{\infty} a_{i}\left(z^{m}\right)^{i}=g_{f}\left(z^{m}\right)$ for $|z|<\rho^{1 / m}, g_{f}$ analytic on $|z|<\rho$.

It will be shown that $\sigma_{\tau}=\left\{\left(z^{m}, \pi_{\tau(z)}\right):|z|<\rho^{1 / m}\right\}$ is a local uniformizer about π_{p}. If $z_{1}^{m}=z_{2}^{m}$, then $f \circ \tau\left(z_{1}\right)=g_{f}\left(z_{1}^{m}\right)=g_{f}\left(z_{2}^{m}\right)=$ $f \circ \tau\left(z_{2}\right)$, for $f \in R$ implies $\pi_{\tau\left(z_{1}\right)}=\pi_{\tau\left(z_{2}\right)}$, which implies that σ_{τ} is a function. If $\pi_{\tau\left(z_{1}\right)}=\pi_{\tau\left(z_{2}\right)}$ then in particular $f_{p} \circ \tau\left(z_{1}\right)=f_{p} \circ \tau\left(z_{2}\right)$, which implies $z_{1}^{m}=z_{2}^{m}$, and σ_{τ} is one-to-one. Since the relations $\boldsymbol{z}^{m} \rightarrow z \rightarrow$ $\tau(z) \rightarrow \phi(\tau(z))=\pi_{\tau(z)}$ are open and continuous, σ_{τ} is open and continuous. Thus σ_{τ} is a homeomorphism from $\{w:|w|<\rho\}$ onto $\phi \circ \tau\left(\left\{z:|z|<\rho^{1 / m}\right\}\right)=$ $N_{\pi_{p}}$.

If $\pi \in W=\sigma_{\tau_{2}}\left(|z|<\rho_{2}\right) \cap \sigma_{\tau_{1}}\left(|z|<\rho_{1}\right)$, there are points z_{1}, z_{2} such that $\pi_{\tau_{1}}\left(z_{1}\right)=\pi_{\tau_{2}}\left(z_{2}\right)$. Then $f \circ \tau_{1}\left(z_{1}\right)=f \circ \tau_{2}\left(z_{2}\right)$ for every $f \in R$, and $z_{1}^{m_{1}}=$ $f_{1}\left(\tau_{1}\left(z_{1}\right)\right)=f_{1}\left(\tau_{2}\left(z_{2}\right)\right)=g_{f_{1}}\left(z_{2}^{m_{2}}\right)$, so $g_{f_{1}}$ is analytic on $\left\{w:|w|<\rho_{2}\right\}$, which contains $\sigma_{\tau_{2}}^{-1}(W)$. This shows that $z_{1}^{m_{1}}=\sigma_{\tau_{1}}^{-1} \circ \sigma_{\tau_{2}}\left(z_{2}^{m_{2}}\right)$ is analytic on $\sigma_{\tau_{2}}^{-1}(W)$ to $\sigma_{\tau_{1}}^{-1}(W)$. The function σ_{τ} is a local uniformizer of a neighborhood of π_{p}, and G is a Riemann surface.

For $f \in R$, let $\widehat{f}=\left\{\left(\pi_{p}, f(p)\right): p \in F\right\}, S=\{\hat{f}: f \in R\}$. Since f is continuous and ϕ is open, \hat{f} is continuous. The function \hat{f} is analytic at π_{p}, because if $|w|<\rho, w=z^{m}$, then $\hat{f}_{\circ} \sigma_{\tau}(w)=\hat{f}\left(\pi_{\tau(z)}\right)=f(\tau(z))=$ $\sum_{i=0}^{\infty} a_{i}\left(z^{m}\right)^{i}=\sum_{i=0}^{\infty} a_{i} w^{i}$. The mapping ϕ is analytic at p, because $\sigma_{₹}^{-1} \circ \phi \circ \tau(z)=\sigma_{\tau}^{-1}\left(\pi_{\tau(z)}\right)=z^{m}$ for $|z|<\rho^{1 / m}$. With pointwise addition and multiplication, S is a ring and is isomorphic to R under the mapping $\hat{f} \rightarrow \hat{f} \circ \dot{\phi}=f$. The ring S separates the points of G. Since S contains functions which are not constant and are analytic on G, G is an open Riemann surface.

If S is to be $A(G)$, then by Theorem 3 the mapping $M\left(\pi_{p}\right)=\left.\pi_{p}\right|_{R}$ from $\Sigma A(F)$ to ΣR must be onto, since ϕ is an onto mapping of F to G. Thus ΣR may contain only point evaluation mappings and $\Sigma R=G$.

Corollary to Theorem 5. If R is a subring of $A(F)$ which properly contains the constant functions and has property (ξ), if ΣR contains only point evaluation mappings, and R contains all $f \in A(F)$ such that $f \circ \tau_{p}(z)=\sum_{i=0}^{\infty} a_{i}\left(z^{m}\right)^{i}$ for $|z|<\rho^{1 / m}, \quad p \in F, \quad m=$ $\inf \{n(p: f): f \in R\}$, then $\Sigma R=G$ is an open Riemann surface, and R is isomorphic to $S=A(G)$.

[^2]Proof. Everything except $S=A(G)$ was shown in the proof of Theorem 5. The function $\hat{f} \in A(G)$ if and only if for every $\pi_{p} \in G$, $\hat{f}_{\circ} \sigma_{\sigma_{p}}(w)=\sum_{i=0}^{\infty} a_{i} w^{i}$ for $|w|<\rho$. Let $\hat{f} \in A(G), \quad p \in F, \pi_{p} \in G$, and $f=\hat{f} \circ \phi$. Then $f \in A(F)$ and $f \in R$, because for $|z|<\rho^{1 / m}, f \circ \tau_{p}(z)=$ $\widehat{f} \circ \phi\left(\tau_{p}(z)\right)=\widehat{f}\left(\pi_{\tau_{p}(z)}\right)=\widehat{f} \circ \sigma_{\tau_{p}}\left(z^{m}\right)=\sum_{i=0}^{\infty} a_{i}\left(z^{m}\right)^{i}$.

If $R=\{\hat{f} \circ \phi: \hat{f} \in S\}$ and S separates the points of G, then R separates the points of F if and only if ϕ is a one-to-one function. If S separates the points of G, and $S=A(G)$, then R may not separate the points of F, because if it did ϕ would be a one-to-one, onto analytic function from F to G, and $R=A(F)$. If $S \neq A(G)$ there may be a surface H, a mapping ϕ_{1} and a separating subring T of $A(H)$ such that ϕ_{1} is analytic and one-to-one but not onto, and $T=$ $A(H)$.

In this part of the paper it is noted that if $R=\Phi(A(G))$, then ΣR with the Gelfand topology is an open Riemann surface, and \hat{R} which is isomorphic to R, is the ring of all analytic functions on ΣR. Theorem 8 gives sufficient conditions on a subring R of $A(F)$ and on \hat{R} in order that ΣR be an open Riemann surface and \hat{R} be a ring of analytic functions on ΣR. In conclusion sufficient conditions for \hat{R} to be $A(\Sigma R)$ are given.

If R is a ring of complex valued functions on F, then the Gelfand topology on ΣR is the weakest topology on ΣR which makes each element of \hat{R} continuous, where $\hat{R}=\{\hat{f}: f \in R\}, \hat{f}=\{(\pi, \pi f): \pi \in \Sigma R\}$. Let $\pi_{0} \in \Sigma R, K$ be a finite subset of $\hat{R}, \varepsilon>0$. An open neighborhood of π_{0} will be $\left\{\pi \in \Sigma R\right.$: $\left|\hat{f}(\pi)-\hat{f}\left(\pi_{0}\right)\right|<\varepsilon$ for $\left.\hat{f} \in K\right\}$. If $R=\Phi(A(G))$ and Φ is an isomorphism, then ΣR and $\Sigma A(G)$ with the Gelfand topology are homeomorphic under the mapping $L(\pi)=\pi \circ \Phi$ from ΣR onto $\Sigma A(G)$. The mapping $P(y)=\psi_{y}$ from G onto $\Sigma A(G)$ with the Gelfand topology is one-to-one, onto and continuous. The mapping P is also open. As Royden observes [4, pp. 287-288], this is a consequence of a theorem of Remmert that an open Riemann surface can be mapped one-to-one and holomorphically into C^{3} [3, p. 118]. Thus $P^{-1} \circ L$ is a homeomorphism from ΣR with the Gelfand topology onto G.

THEOREM 6. If R is a subring of $A(F)$ such that $R=\Phi(A(G))$, and if Φ is an isomorphism which preserves constant functions, then ΣR with the Gelfand topology is an open Riemann surface, and \hat{R} is the ring of all analytic functions on ΣR. Moreover \hat{R} is isomorphic to R.

Proof. The spectrum of R with the Gelfand topology is a Hausdorff space. It is homeomorphic to G under the mapping $L^{-1} \circ P$,
and is connected. Let $\pi_{q} \in \Sigma R$ where $q \in G, \psi_{q} \in \Sigma A(G)$, and $L^{-1} \circ P$ maps $q \rightarrow \psi_{q} \rightarrow \pi_{q}$. If N_{q} is a neighborhood of q then $N_{\pi_{q}}=L^{-1} \circ P\left(N_{q}\right)$ is a neighborhood of π_{q}. There exists $h_{q} \in A(G)$ which has a simple zero at q [1, pp. 591-592]. h_{q} is a local uniformizer on a neighborhood of $q, N_{q}=h_{q}^{-1}(|z|<\rho)$ for some $\rho>0$. If $\sigma_{q}=\left.h_{q}\right|_{N_{q}}$, then $h_{q} \circ \sigma_{q}^{-1}(z)=z$ for $|z|<\rho$. For $h \in A(G), y \in N_{q}, h(y)=\sum_{i=0}^{\infty} a_{i}\left(h_{q}(y)\right)^{i}$.

If $f_{q}=\Phi h_{q}$ then $\hat{f_{q}}$ is a local uniformizer on $N_{\pi_{q}}=L^{-1} \circ P\left(N_{q}\right)$. From $\hat{f}_{q}\left(\pi_{y}\right)=h_{q}(y)$ follows $\hat{f}_{q}\left(\pi_{y}\right)=h_{q} \circ P^{-1} \circ L\left(\pi_{y}\right), \pi_{y} \in N_{\pi_{q}}$, which implies \hat{f}_{q} is a homeomorphism of $N_{\pi_{q}}$ onto $|\boldsymbol{z}|<\rho$. If $\pi_{y} \in N_{\pi_{q_{1}}} \cap N_{\pi_{q_{2}}}$, then $\widehat{f}_{q_{1}}\left(\pi_{y}\right)=h_{q_{1}}(y)=\sum_{i=0}^{\infty} a_{i}\left(h_{q_{2}}(y)\right)^{i}=\sum_{i=0}^{\infty} a_{i}\left(\widehat{f}_{q_{2}}\left(\pi_{y}\right)\right)^{i} \quad$ since ${ }^{\pi_{q_{1}}} \pi_{y} \in N_{\pi_{q_{2}}}$ or $y \in N_{q_{2}}$. The function \hat{f}_{q} is a local uniformizer on $N_{\pi_{q}}$ and ΣR is a Riemann surface.

The ring \hat{R} is contained in $A(\Sigma R)$, because if $\hat{f} \in \hat{R}, \pi_{y} \in N_{\pi_{q}}$, $z=\hat{f}_{q}\left(\pi_{y}\right)$, then $\hat{f} \circ \hat{f}_{q}^{-1}(z)=\widehat{f}\left(\pi_{y}\right)=h(y)=\sum_{i=0}^{\infty} a_{i}\left(h_{q}(y)\right)^{i}=\sum_{i=0}^{\infty} a_{i}\left(\hat{f}_{q}\left(\pi_{y}\right)\right)^{i} \xlongequal{\tau^{i}}$ $\sum_{i=0}^{\infty} a_{i} z^{i}$. The function $T(q)=\pi_{q}$ is an analytic map of G onto ΣR. If θ is analytic on ΣR, then $\theta \circ T \in A(G)$ and $\theta \in \hat{R}$ because $\theta\left(\pi_{q}\right)=$ $\theta \circ T(q)=\psi_{q}(\theta \circ T)=\pi_{q}(f)$ for $f=\Phi(\theta \circ T)$. This implies $\theta=\widehat{f}$. Thus $\hat{R}=A(\Sigma R)$. Since \hat{R} contains functions which are analytic and are not constant on $\Sigma R, \Sigma R$ is an open Riemann surface.

Theorem 7. Let $R=\Phi(A(G))$. If $\hat{\pi} \in \Sigma R$, then $\hat{\pi}^{-1}(0)$ is a principal maximal ideal of R, and every principal maximal ideal of R is the kernel of $\pi \in \Sigma R$. If $\hat{\pi}^{-1}(0)$ is generated by f, then \hat{f} is a local homeomorphism on a neighborhood $N_{\hat{\pi}}$ of $\hat{\pi}$ and if $\pi \in N_{\hat{\pi}}$, $\hat{k} \in \hat{R}$, then $\hat{k}(\pi)=\sum_{i=0}^{\infty} a_{i}(\hat{f}(\pi))^{i}$.

Proof. If $\hat{\pi} \in \Sigma R$, then $\hat{\pi} \circ \Phi=\psi_{q} \in \Sigma A(G)$ and $\hat{\pi}^{-1}(0)=\Phi\left(\psi_{q}^{-1}(0)\right)$. The kernel of $\psi_{q}, M_{q}=\psi_{q}^{-1}(0)$, is a principal maximal ideal of $A(G)$, and every principal maximal ideal of $A(G)$ is a kernel of $\psi \in \Sigma A(G)$ [5, pp. 271-272]. If h generates M_{q}, then h has a single zero and it is a simple zero at q [5]. Thus h is a homeomorphism on a neighborhood of q, N_{q}. If $f=\Phi h$, then $\hat{\pi}^{-1}(0)$ is the ideal generated by f. Also \hat{f} is a uniformizer on $N_{\hat{\pi}}=L^{-1} \circ P\left(N_{q}\right)$, and if $\pi \in N_{\hat{\pi}}, \hat{k} \in \hat{R}$, then $\hat{k}(\pi)=\sum_{i=0}^{\infty} a_{i}(\hat{f}(\pi))^{i}$ as shown in the proof of Theorem 6 .

Lemma. Let S be a ring of continuous functions on X with identity. Then X is not connected if and only if S is contained in a ring Q of continuous functions on X, where $Q=I_{1}+I_{2}, I_{1}, I_{2}$ proper ideals of $Q, I_{1} \cap I_{2}=\{0\}$.

Theorem 8. Let R be a subring of $A(F)$ which properly contains the constant functions, and suppose \hat{R} is not contained in a ring Q of continuous functions on ΣR where $Q=I_{1}+I_{2}, I_{1}, I_{2}$ proper ideals of $Q, I_{1} \cap I_{2}=\{0\}$. If for $\hat{\pi} \in \Sigma R, \hat{\pi}^{-1}(0)$ is a principal ideal of R
generated by f and \hat{f}, the function in \hat{R} which corresponds to f in R, is a homeomorphism on a neighborhood of $\hat{\pi}$, and for π in this neighborhood, $g \in R, \pi g=\sum_{i=0}^{\infty} a_{i}(\pi f)^{i}$, then ΣR is an open Riemann surface and \hat{R} is a ring of analytic functions on ΣR.

Proof. The spectrum of R with the Gelfand topology is a Hausdorff space. By the lemma ΣR is connected. Let $\hat{\pi} \in \Sigma R$. There is \hat{f} a homeomorphism of $N_{\hat{\pi}}$ onto $|z|<\rho$ for some $\rho>0$. If $\pi \in N_{\hat{\pi}}$, $g \in R$, then $\hat{g}(\pi)=\sum_{i=0}^{\infty} a_{i}(\hat{f}(\pi))^{i}$. If $\pi \in N_{\pi_{1}} \cap N_{\pi_{2}}=W$ then $\hat{f}_{1} \circ \hat{f}_{2}^{-1}\left(\hat{f}_{2}(\pi)\right)=$ $\hat{f}_{1}(\pi)=\sum_{i=0}^{\infty} a_{i}\left(\hat{f}_{2}(\pi)\right)^{i}$ implies $\hat{f}_{1} \circ \hat{f}_{2}^{-1}$ is analytic on $\hat{f}_{2}(W)$. $\left\{\left(N_{\pi}, \hat{f}_{\pi}\right)\right.$: $\pi \in \Sigma R\}$ defines an analytic structure on ΣR. It is immediate that $\hat{R} \subset A(\Sigma R)$. Since \hat{R} contains functions which are not constant and are analytic on $\Sigma R, \Sigma R$ is an open Riemann surface.

If $\left\{R_{n}\right\}$ is a sequence of subrings of $A(F)$ such that R_{n} satisfies the conditions of Theorem $8,\left.\Sigma R_{n}\right|_{R_{1}}=\Sigma R_{1}, R_{n-1} \subset R_{n}$, then the chain has a maximal element, $\left\{\hat{f} \circ \phi: \hat{f} \in A\left(\Sigma R_{1}\right)\right.$ and $\left.\phi(x)=\pi_{x}, x \in F\right\}$. Let $\hat{\pi} \in \Sigma R_{1}$ and \hat{f} be a local homeomorphism at $\hat{\pi}$. If R_{1} satisfies the conditions of Theorem 8 and contains all functions g in $A(F)$ such that $\hat{g}(\pi)=\sum_{i=0}^{\infty} a_{i}(\hat{f}(\pi))^{i}$ for $\pi \in N_{\hat{\pi}}, \pi$ and $\hat{\pi}$ elements of ΣR_{1}, then $\hat{R}_{1}=A\left(\Sigma R_{1}\right)$, because if $\hat{g} \notin \hat{R}_{1}$, then there is $\hat{\pi} \in \Sigma R_{1}$ such that $\hat{g}_{\circ} \hat{f}^{-1}$ is not analytic on $\{z:|z|<\rho\}$ which implies $\hat{g} \notin A\left(\Sigma R_{1}\right)$.

The author wishes to thank Professors H. B. Curtis and H. E. Lacey for their suggestions and encouragement.

References

1. H. Behnke, and F. Sommer, Theorie der analytischen Funktionen einer komplexen Veränderlichen, Springer-Verlag, Berlin, 1962.
2. M. Heins, Algebraic structure and conformal mapping, Trans. Amer. Math. Soc. 89 (1958), 267-276.
3. R. Remmert, Sur les espaces analytiques holomorphiquement separables et holomorphiquement convexes, C. R. Acad. Sci. Paris 243 (1956), 118-121.
4. H. Royden, Function algebras, Bull. Amer. Math. Soc. 69 (1963), 281-298.
5. -, Rings of analytic and meromorphic functions, Trans. Amer. Math. Soc. 83 (1956), 269-276.

Received July 24, 1968, and in revised form October 14, 1969. This paper is part of the author's Ph. D. thesis submitted to the University of Texas at Austin.

Sam Houston State University
Huntsville, Texas

THE PRINCIPLE OF SUBORDINATION APPLIED TO FUNCTIONS OF SEVERAL VARIABLES

T. J. Suffridge

Abstract

In this paper we consider univalent maps of domains in $C^{n}(n \geqq 2)$. Let P be a polydisk in C^{n}. We find necessary and sufficient conditions that a function $f: P \rightarrow C^{n}$ be univalent and map the polydisk P onto a starlike or a convex domain. We also consider maps from

$$
\begin{align*}
D_{p} & =\left\{z:|z|_{p}<1\right\} \subset C^{n} \\
|z|_{p} & =\left|\left(z_{1}, z_{2}, \cdots, z_{n}\right)\right|_{p}=\left[\sum_{j=1}^{n}\left|z_{j}\right|^{p}\right]^{1 / p}, \quad p \geqq 1 \tag{1}
\end{align*}
$$

into C^{n} and give necessary and sufficient conditions that such a map have starlike or convex image.

In [4] Matsuno has considered a similar problem for the hypersphere $D_{2} \subset C^{n}$. His definition of starlikeness is different from that used in this paper, but the results show that the two definitions are equivalent. However, his definition of convex-like is not equivalent to geometrically convex.

1. Preliminary lemmas. For $\left(z_{1}, z_{2}, \cdots, z_{n}\right)=z \in C^{n}$, define $|z|=$ $\max _{1 \leqq j \leqq n}\left|z_{j}\right|$. Let $E_{r}=\left\{z \in C^{n}:|z|<r\right\}$ and $E=E_{1}$. Let \mathscr{P}^{r} be the class of mappings $w: E \rightarrow C^{n}$ which are holomorphic and which satisfy $w(0)=0, \operatorname{Re}\left[w_{j}(z) / z_{j}\right] \geqq 0$ when $|z|=\left|z_{j}\right|>0,(1 \leqq j \leqq n)$ where $w=$ $\left(w_{1}, w_{2}, \cdots, w_{n}\right)$. The following lemmas are generalizations of Theorems A and B of Robertson [5, p. 315-317].

Lemma 1. Let $v(z ; t): E \times I \rightarrow C^{n}$ be holomorphic for each $t \in I=$ $[0,1], v(z ; 0)=z, v(0, t)=0$ and $|v(z ; t)|<1$ when $z \in E$. If

$$
\begin{equation*}
\lim _{t \rightarrow 0^{+}}\left[(z-v(z ; t)) / t^{\rho}\right]=w(z) \tag{2}
\end{equation*}
$$

exists and is holomorphic in E for some $\rho>0$, then $w \in \mathscr{P}$.
Proof. The hypothesis (2) implies that $\lim _{t \rightarrow 0^{+}} v_{j}(z ; t)=z_{j}$ (here $v(z ; t)=\left(v_{1}(z ; t), v_{2}(z ; t), \cdots, v_{n}(z ; t)\right)$ so

$$
\frac{2 z_{j}\left(z_{j}-v_{j}(z ; t)\right)}{z_{j}+v_{j}(z ; t)} \equiv \psi_{j}(z ; t)
$$

is holomorphic for $z \in E, z_{j} \neq 0 \quad(1 \leqq j \leqq n)$. By Schwarz lemma, $|v(z ; t)| \leqq|z|$ and hence $\operatorname{Re}\left[\psi_{j}(z ; t) / z_{j}\right] \geqq 0$ when $|z|=\left|z_{j}\right|>0$. Setting $\psi(z ; t)=\left(\psi_{1}, \psi_{2}, \cdots, \psi_{n}\right),\left(z \in E, z_{1} z_{2} \cdots z_{n} \neq 0\right)$ we observe that

$$
\lim _{t \rightarrow 0^{+}} \psi(z ; t) / t^{\rho}=w(z)
$$

for these values of z and using continuity of w we conclude $w \in \mathscr{P}$.
Lemma 2. Let $f: E \rightarrow C^{n}$ be holomorphic and univalent and satisfy $f(0)=0$. Let $F(z ; t): E \times I \rightarrow C^{n}$ be a holomorphic function of z for each $t \in I=[0,1], F(z ; 0)=f(z), F(0, t)=0$ and suppose $F(z ; t) \prec f$ for each $t \in I$ (i.e., $F(E ; t) \subset f(E)$ for each $t \in I)$. Let $\rho>0$ be such that $\lim _{t \rightarrow 0^{+}} F(z ; 0)-F(z ; t) / t^{\rho}=F(z)$ exists and is holomorphic. Then $F(z)=J w$ where $w \in \mathscr{P}$. Here F and w are written as column vectors and J is the complex Jacobian matrix for the mapping f.

Proof. Since $F(z ; t) \prec f$ for each $t \in I$, there exists $v: E \times I \rightarrow E$ such that $f(v(z ; t))=F(z ; t)$ where $|v(z ; t)| \leqq|z|$. Writing f as a column vector we have $f(v(z ; t))=f(z)+J(v(z ; t)-z)+R(v(z ; t), z)$ where $|R(\zeta, z)| /|\zeta-z| \rightarrow 0$ as $|\zeta-z| \rightarrow 0$. Hence

$$
\frac{F(z ; 0)-F(z ; t)}{t^{\rho}}=J\left(\frac{z-v(z ; t)}{t^{\rho}}\right)-\frac{R(v(z ; t), z)}{t^{\rho}}
$$

and the lemma follows from Lemma 1.

2. Starlike and convex mappings of the polydisk.

Definition. A holomorphic mapping $f: E \rightarrow C^{n}$ is starlike if f is univalent, $f(0)=0$ and $(1-t) f \prec f$ for all $t \in I$.

Theorem 1. Suppose $f: E \rightarrow C^{n}$ is starlike and that J is the complex Jacobian matrix of f. There exists $w \in \mathscr{P}$ such that $f=J w$ where f and w are written as column vectors.

Proof. Apply Lemma 2 with $F(z ; t)=(1-t) f(z)$. Then

$$
f(z)=\lim _{t \rightarrow 0^{+}} \frac{f(z)-(1-t) f(z)}{t}=\lim _{t \rightarrow 0^{+}} \frac{F(z ; 0)-F(z ; t)}{t}
$$

and the theorem follows from Lemma 2.
We now consider the conclusion of Theorem 1 in component form. Let J_{j} be the matrix obtained by replacing the j th column in J by the column vector $f, 1 \leqq j \leqq n$. Then the j th component w_{j} of w is $\operatorname{det}\left(J_{j}\right) / \operatorname{det} J$. Theorem 1 therefore says that if f is starlike then $\operatorname{Re}\left[\operatorname{det}\left(J_{j}\right) / z_{j} \operatorname{det} J\right] \geqq 0$ when $|z|=\left|z_{j}\right|>0$. Also,

$$
\begin{equation*}
f_{j}=\frac{\partial f_{j}}{\partial z_{1}} w_{1}+\frac{\partial f_{j}}{\partial z_{2}} w_{2}+\cdots+\frac{\partial f_{j}}{\partial z_{n}} w_{n}, \quad 1 \leqq j \leqq n \tag{3}
\end{equation*}
$$

and equating coefficients in the power series using (3) we find

$$
w_{j}(z)=z_{j}+\text { terms of total degree } 2 \text { or greater } .
$$

Now suppose $\left|z^{(0)}\right|=\left|z_{j}^{(0)}\right|>0$ and let α_{k}, $(1 \leqq k \leqq n)$ be such that $z_{k}^{(0)}=$ $\alpha_{k} z_{j}^{(0)}$. Then $\left|\alpha_{k}\right| \leqq 1,(1 \leqq k \leqq n)$. Consider $w_{j}(z) / z_{j}=u\left(z_{j}\right)$ where z is restricted to the set,

$$
z=\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}\right) z_{j}, \quad\left|z_{j}\right|<1
$$

Then $\operatorname{Re} u\left(z_{j}\right) \geqq 0,0<\left|z_{j}\right|<1$ and $u\left(z_{j}\right) \rightarrow 1$ as $z_{j} \rightarrow 0$. Since $\operatorname{Re} u\left(z_{j}\right)$ is a harmonic function of z_{j}, we conclude $\operatorname{Re} u\left(z_{j}\right)>0,\left|z_{j}\right|<1$ and

$$
\begin{equation*}
\operatorname{Re}\left[w_{j}(z) / z_{j}\right]>0 \quad \text { when } \quad|z|=\left|z_{j}\right|>0 \tag{4}
\end{equation*}
$$

We now prove the converse of Theorem 1.

Theorem 2. Suppose $f: E \rightarrow C^{n}$ is holomorphic, $f(0)=0, J$ is nonsingular and that

$$
\begin{equation*}
f(z)=J w, w \in \mathscr{P} \tag{5}
\end{equation*}
$$

Then f is starlike.

Proof. Since det $J \neq 0$ when $z=0, f$ is univalent in a neighborhood of 0 . It is clear that $\left\{r: 0 \leqq r \leqq 1\right.$ and f is univalent in $\left.E_{r}\right\}=A$ is a closed subset of $[0,1]$. We will show that A is also open and that if f is univalent in E_{r} then $f\left(E_{r}\right)$ is starlike with respect to 0 .

Let $r>0$ be such that f is univalent in $E_{r},(0<r<1)$. Let z be fixed, $|z| \leqq r$ and let $v(z ; t)$ be such that $f(v(z ; t))=(1-t) f(z)$, $-\varepsilon<t<t_{0}$ where ε is small and positive and $t_{0}>0$. This is possible since $\operatorname{det} J \neq 0$.

Then

$$
\begin{align*}
v(z ; t) & =v(z ; 0)+J^{-1} \cdot(-f(z)) \cdot t+g(t) \\
& =z-J^{-1} \cdot J \cdot w \cdot t+g(t) \tag{6}\\
v(z ; t) & =z-t w+g(t)
\end{align*}
$$

by (5). Here $|g(t)| / t \rightarrow 0$ as $t \rightarrow 0$. Using (4), we conclude $|v(z ; t)|$ is a strictly decreasing function of t. Hence each point of the ray $(1-t) f(z), 0<t \leqq 1$ is the image of a point $v(z ; t) \in E_{r}$ for each z such that $|z| \leqq r$. We conclude that $f\left(E_{r}\right)$ is starlike with respect to 0 . We now show A is open. Observe that f is one-to-one in the closed polydisk \bar{E}_{r} for if $|z| \leqq|\zeta|=r, z \neq \zeta$ and $f(z)=f(\zeta)$ then by (6) and (4) we can conclude that for t positive and sufficiently small there are functions $v(\zeta ; t), v(z ; t)$ such that $v(\zeta ; t), v(z, t) \in E_{r}, v(\zeta ; t) \neq v(z ; t)$ and
$f(v(z ; t))=(1-t) f(z)=(1-t) f(\zeta)=f(v(\zeta, t))$ which is a contradiction.

We now define a continuous nonnegative function $\phi: E \times E \rightarrow R$ (R is the real numbers) such that $\phi(z, \zeta)=0$ if and only if $f(z)=f(\zeta)$, $z \neq \zeta$. We show that ϕ is positive on the closed set $\bar{E}_{r} \times \bar{E}_{r}$ and hence has a positive minimum on this set. This will imply f is univalent in $E_{r+\varepsilon}$ for some $\varepsilon>0$ and hence A is open. For $z, \zeta \in E$, define $G(z, \zeta)=\operatorname{det}\left(\alpha_{i j}\right)$ where

$$
a_{i j}=\left\{\begin{array}{l}
\frac{f_{i}\left(z_{1}, z_{2}, \cdots, z_{j}, \zeta_{j+1} \cdots, \zeta_{n}\right)-f_{i}\left(z_{1}, z_{2}, \cdots, z_{j-1}, \zeta_{j}, \cdots, \zeta_{n}\right)}{z_{j}-\zeta_{j}},\left(z_{j} \neq \zeta_{j}\right) \\
\frac{\partial f_{i}}{\partial z_{j}}\left(z_{1}, z_{2}, \cdots, z_{j}, \zeta_{j+1}, \cdots, \zeta_{n}\right), \quad\left(z_{j}=\zeta_{j}\right)
\end{array}\right.
$$

and $f=\left(f_{1}, f_{2}, \cdots, f_{n}\right)$.
Now set $\phi(z, \zeta)=|G(z, \zeta)|+\sum_{j=1}^{n}\left|f_{j}(z)-f_{j}(\zeta)\right|$. Then $\phi(z, z)=$ $\mid \operatorname{det}(J(z) \mid>0$ while

$$
\phi(z, \zeta)>0 \quad \text { when } \quad f(z) \neq f(\zeta) .
$$

If $f(z)=f(\zeta)$ for some $z, \zeta \in E, z \neq \zeta$ then the columns of $G(z, \zeta)$ are not linearly independent so $G(z, \zeta)=0$ and $\phi(z, \zeta)=0$. The proof is now complete.

Theorem 3. Suppose $f: E \rightarrow C^{n}$ is holomorphic, $f(0)=0$ and that J is nonsingular for all $z \in E$. Then f is a univalent map of E onto a convex domain if and only if there exist univalent mappings $f_{j}(1 \leqq j \leqq n)$ from the unit disk in the plane onto convex domains in the plane such that $f(z)=T\left(f_{1}\left(z_{1}\right), f_{2}\left(z_{2}\right) \cdots, f_{n}\left(z_{n}\right)\right)$ where T is a nonsingular linear transformation.

Proof. It is clear that if f satisfies the conditions given in the theorem, then f is univalent and $f(E)$ is convex. We will prove the converse.

Suppose f is a univalent map of E onto a convex domain. Let $A=\left(A_{1}, A_{2}, \cdots, A_{n}\right)$ where $A_{j} \geqq 0(1 \leqq j \leqq n)$ and let

$$
A_{t}(z)=\left(z_{1} e^{i A_{1} t}, z_{2} e^{i A_{2} t}, \cdots, z_{n} e^{i A_{n} t}\right)
$$

where $-1 \leqq t \leqq 1$. Then

$$
F(z ; t)=1 / 2\left[f\left(A_{t}(z)\right)+f\left(A_{-t}(z)\right)\right] \prec f \quad 0 \leqq t \leqq 1
$$

and $F(z ; t)$ satisfies the hypotheses of Lemma 2 with $\rho=2$. Using the same notation as in Lemma 2, we have

$$
\begin{align*}
F(z)= & \left(F_{1}, F_{2}, \cdots, F_{n}\right) \\
2 F_{j}= & \sum_{k=1}^{n} A_{k}^{2}\left(z_{k}^{2} \frac{\partial^{2} f_{j}}{\partial z_{k}^{2}}+z_{k} \frac{\partial f_{j}}{\partial z_{k}}\right) \tag{7}\\
& +2 \sum_{k=2}^{n} \sum_{l=1}^{k-1} A_{k} A_{l} z_{k} z_{l} \frac{\partial^{2} f_{j}}{\partial z_{l} \partial z_{k}}
\end{align*}
$$

and also $F=J w, w \in \mathscr{P}$. Hence we find that $w_{j}=\operatorname{det} J^{(j)} / \operatorname{det} J$ where $J^{(j)}$ is obtained from J by replacing the j th column by F written as a column vector. Fix $k, 1 \leqq k \leqq n$ and choose $A_{k}=1, A_{l}=0, l \neq k$, $1 \leqq l \leqq n$. Suppose $|z|=\left|z_{j}\right|>0, j \neq k$ and $z_{k}=0$. Then $w_{j} / z_{j}=0$ and since $\operatorname{Re}\left(w_{j} / z_{j}\right) \geqq 0$ when $|z|=\left|z_{j}\right|>0$ we must have $w_{j} \equiv 0$. We have therefore shown that for $1 \leqq j \leqq n$ and $1 \leqq k \leqq n$ we have

$$
\begin{equation*}
z_{k}^{2} \frac{\partial^{2} f_{j}}{\partial z_{k}^{2}}+z_{k} \frac{\partial f_{j}}{\partial z_{k}}=\frac{\partial f_{j}}{\partial z_{k}} \psi_{k} \tag{8}
\end{equation*}
$$

where $\operatorname{Re}\left[\psi_{k}(z) / z_{k}\right] \geqq 0$ when $|z|=\left|z_{k}\right|>0$. With k as before, fix l, $1 \leqq l \leqq n, l \neq k$ and choose $A_{k}=1, A_{l}=\varepsilon>0$ and $A_{m}=0,1 \leqq m \leqq n$, $m \neq k$, l.

Using (8) we conclude

$$
w_{j}=\varepsilon \frac{z_{k} z_{l} G_{j}}{\operatorname{det} J}+O\left(\varepsilon^{2}\right) \quad(j \neq k)
$$

where G_{j} is obtained from det J by replacing the j th column by the column $\partial^{2} f_{m} / \partial z_{l} \partial z_{k}(1 \leqq m \leqq n)$. Hence $\operatorname{Re}\left[z_{k} z_{l} / z_{j} \cdot G_{j} / \operatorname{det} J\right] \geqq 0$ when $|z|=\left|z_{j}\right|>0$. Since $\operatorname{Re}\left[z_{k} z_{l} / z_{j} \cdot G_{j} / \operatorname{det} J\right]=0$ when $z_{k} z_{l}=0$ we see that $G_{j} \equiv 0$ for each $j, 1 \leqq j \leqq n$.

Since the system of equations

$$
\sum_{j=1}^{n} \frac{\partial f_{m}}{\partial z_{j}} \dot{\phi}_{j}=\frac{\partial^{2} f_{m}}{\partial z_{l} \partial z_{k}}
$$

$$
1 \leqq m \leqq n
$$

has solution

$$
\dot{\varphi}_{j}=\frac{G_{j}}{\operatorname{det} J}=0 \quad 1 \leqq j \leqq n
$$

we conclude

$$
\frac{\hat{o}^{2} f_{m}}{\partial z_{l} \partial z_{k}}=0 \quad 1 \leqq m \leqq n
$$

This implies

$$
\begin{equation*}
f_{m}(z)=\sum_{j=1}^{n} a_{j, m} \dot{\phi}_{j, m}\left(z_{j}\right) \quad 1 \leqq m \leqq n \tag{9}
\end{equation*}
$$

where $\dot{\phi}_{j, m}$ is analytic on the unit disk in the complex plane. Using
(8) we conclude $\phi_{j, m}=\phi_{j, k}(1 \leqq m, k \leqq n)$ provided the constants $a_{j, m}$ in (9) are appropriately chosen. The theorem now follows readily from (8).

Example 1. Let $f: E \rightarrow C^{2}$ be given by $f(z)=\left(z_{1}+a z_{2}^{2}, z_{2}\right)$ where a is a complex number, $a \neq 0$. Clearly f is univalent. Letting $f=J w$, we find $w_{1}=z_{1}-a z_{2}^{2}, w_{2}=z_{2}$ so f is starlike provided $|a|<1$. Note that Theorem 3 implies the suprising result that none of the sets $f\left(E_{r}\right)$ is convex $(1>r>0)$.

Example 2. Let $f: E \rightarrow C^{2}$ be given by $f(z)=\left(z_{1} g(z), z_{2} g(z)\right), g: E \rightarrow$ C where g is holomorphic, $0 \notin g(E)$. Then $f=J w$ implies

$$
\begin{equation*}
w_{1} / z_{1}=w_{2} / z_{2}=1+\left[z_{1} \frac{\partial g}{\partial z_{1}}+z_{2} \frac{\partial g}{\partial z_{2}}\right] / g \tag{10}
\end{equation*}
$$

and f is starlike if and only if $\operatorname{Re}\left(w_{1}(z) / z_{1}\right) \geqq 0, z \in E$. Conversely, one can show that if $f: E \rightarrow C^{2}$ is holomorphic, $f=J w$ where $w \in \mathscr{P}$ and $w_{1} / z_{1}=w_{2} / z_{2}$ then there exists $g: E \rightarrow C, g$ holomorphic, $0 \notin g(E)$ such that (10) holds and $f=\left(\left(a_{1} z_{1}+a_{2} z_{2}\right) g,\left(b_{1} z_{1}+b_{2} z_{2}\right) g\right),\left(a_{1} b_{2} \neq a_{2} b_{1}\right)$. In these cases the intersection of the polydisk E with an analytic plane $\alpha z_{1}+\beta z_{2}=0$ maps into an analytic plane $\delta f_{1}+\gamma f_{2}=0$. Interesting choices of g are $g(z)=\left(1-z_{1} z_{2}\right)^{-1}$ and $g(z)=\left[\left(1-z_{1}\right)\left(1-z_{2}\right)\right]^{-1}$.
3. Extension to convex and starlike maps of D_{p}. Since the details of the proofs for the results in this section are similar to those in \S 's 2 and 3 , we omit the details. We wish to find lemmas which apply to D_{p} (D_{p} is defined in equation (1)) in the same way that Lemmas 1 and 2 apply to the polydisk. The crucial point is that given equation (6) with $0 \neq z \in D_{p}$ we wish to conclude

$$
|v(z ; t)|_{p} \leqq|z|_{p} \quad \text { when } \quad 0<t<\varepsilon
$$

for some $\varepsilon>0$. This will be true provided $\sum_{j=1}^{n}\left|z_{j}-t w_{j}\right|^{p}<\sum_{j=1}^{n}\left|z_{j}\right|^{p}$ for t sufficiently small. That is

$$
\sum_{\substack{j=1 \\ z_{j} \neq 0}}^{n}\left|z_{j}\right|^{p}\left(1-2 t \operatorname{Re} w_{j} / z_{j}+t^{2}\left|w_{j} / z_{j}\right|^{2}\right)^{p / 2}+\sum_{z_{j}=0} t^{p}\left|w_{j}\right|^{p}<\sum_{j=1}^{n}\left|z_{j}\right|^{p}
$$

or

$$
t\left(\sum_{\substack{j=1 \\ z_{j} \neq 0}}^{n}-p \operatorname{Re}\left|z_{j}\right|^{p} \operatorname{Re}\left(w_{j} / z_{j}\right)+\sum_{z_{j}=0} t^{p-1}\left|w_{j}\right|\right)<0
$$

when t is sufficiently small, $t>0$. Hence we define \mathscr{P}_{p} for $p \geqq 1$ by $w \in \mathscr{P}_{p}$ if $w: D_{p} \subset C^{n} \rightarrow C^{n}, w(0)=0, w$ holomorphic and

$$
\begin{align*}
& \operatorname{Re} \sum_{j=1}^{n} w_{j} \cdot\left|z_{j}\right|^{p} / z_{j} \geqq 0 \quad \text { if } p>1 \tag{11}\\
& \operatorname{Re} \sum_{\substack{j=1 \\
z_{j} \neq 0}}^{n} w_{j} \cdot\left|z_{j}\right|\left|z_{j}-\sum_{z_{j}=0}\right| w_{j} \mid \geqq 0 \quad \text { if } p=1,
\end{align*}
$$

$z \in D_{p}, w=\left(w_{1}, w_{2}, \cdots, w_{n}\right)$.
We now have the following lemmas and theorems which correspond to the lemmas and theorems of $\S \S 2$ and 3.

Lemma 3. Let $v(z ; t): D_{p} \times I \rightarrow C^{n}$ be holomorphic for each $t \in I$, $v(z, 0)=z, v(0, t)=0$ and $|v(z ; t)|_{p}<1$ when $z \in D_{p}$. If

$$
\lim _{t \rightarrow 0^{+}}\left[(z-v(z ; t)) / t^{\rho}\right]=w(z)
$$

exists and is holomorphic in D_{p} for some $\rho>0$, then $w \in \mathscr{P}_{p}$.
Lemma 4. Let $f: D_{p} \rightarrow C^{n}$ be holomorphic and univalent and satisfy $f(0)=0$. Let $F(z ; t): D_{p} \times I \rightarrow C^{n}$ be a holomorphic function of z for each $t \in I, F(z, 0)=f(z), F(0 ; t)=0$ and suppose $F(z ; t) \prec t$ for each $t \in I$. Let $\rho>0$ be such that $\lim _{t \rightarrow 0}+(F(z ; 0)-F(z ; t)) / t^{\rho}=F(z)$ exists and is holomorphic. Then $F(z)=J w$ where $w \in \mathscr{P}_{p}$.

Theorem 4. If $f: D_{p} \rightarrow C^{n}$ is starlike then there exists $w \in \mathscr{P}_{p}$ such that $f=J w$. Conversely, if $f: D_{p} \rightarrow C^{n}, f(0)=0, J$ is nonsingular and $f=J w, w \in \mathscr{P}_{p}$ then f is starlike.

Theorem 5. Let $f: D_{p} \rightarrow C^{n}, f(0)=0$ and suppose J is nonsingular. Then $f\left(D_{p}\right)$ is convex if and only if $F=$ Jw where $w \in \mathscr{P}_{p}$ for each choice of $A=\left(A_{1}, A_{2}, \cdots, A_{n}\right), A_{j} \geqq 0(1 \leqq j \leqq n)$ and F is given by (7) with $z \in D_{p}$.

Now set $p=2$. It is easy to see that Theorem 4 above is equivalent to Matsuno's Theorem 1 [4, p. 91]. Consider $f: D_{2} \rightarrow C^{2}$ given by $f(z)=\left(z_{1}+a z_{2}^{2}, z_{2}\right)$. Theorem 5 shows that $f\left(D_{2}\right)$ is convex if and only if $|a| \leqq 1 / 2$ while Matsuno's Lemma 3 [4, p. 94] implies f is convexlike if and only if $|a| \leqq 3 \sqrt{3} / 4$. This shows that convex-like is not equivalent to geometrically convex.

References

1. S. Bergman, The kernel function and conformal mapping, Mathematical Surveys, Vol. V., Amer. Math. Soc., New York, 1950.
2. S. Bochner and W. T. Martin, Several complex variables, Princeton Univ. Press, 1948.
3. R. Gunning and H. Rossi, Analytic functions of several complex variables, PrenticeHall, Englewood Cliffs, N. J., 1965.
4. Takeshi Matsuno, Star-like theorems and convex-like theorems in the complex vector space, Sci. Rep. Tokyo, Kyoiku Daigaku, Sect. A 5 (1955), 88-95.
5. M. S. Robertson, Applications of the subordination principle to univalent functions, Pacific J. Math. 11 (1961), 315-324.

Received May 19, 1969. This research was supported by the National Science Foundation, Grant GP 8225.

University of Kentucky
Lexington, Kentucky

ON SECONDARY CHARACTERISTIC CLASSES IN COBORDISM THEORY

Wei-Lung Ting

Abstract

This paper introduces into cobordism theory a new notion borrowed from ordinary cohomology theory. Specifically, let ξ be a $U(n)$-bundle over the $C W$-complex X. Let E and E_{0} be the total spaces of the associated bundles whose fibers are respectively the unit disc $E^{2 n} \subset C^{n}$ and the unit sphere $S^{2 n-1} \subset C^{n}$. The classifying map for ξ gives rise to an element $U_{\xi} \in \Omega_{U}^{2 n}\left(E, E_{0}\right)$. One defines the Thom isomorphism $\varphi: \Omega_{U}^{q}(X) \rightarrow$ $\Omega_{U}^{q+2 n}\left(E, E_{0}\right)$ by $\varphi(x)=\left(p^{*} x\right) U_{\xi}$ and Euler class, $e(\xi)$ of ξ, by $e(\xi)=$ $p^{*-1} j^{*}\left(U_{\xi}\right)$. For each $\alpha=\left(\alpha_{1}, \alpha_{2}, \cdots\right)$, let $c f_{\alpha}(\xi) \in \Omega_{U}^{2|\alpha|}(X)$ be the Conner-Floyd Chern class of ξ, and $S_{\alpha}: \Omega_{U}^{q}(X, Y) \rightarrow$ $\Omega_{U}^{q+2|\alpha|}(X, Y)$ be the operation defined by Novikov. Then one has the relation, $\mathbf{S}_{\alpha}(e(\xi))=c f_{\alpha}(\xi) \cdot e(\xi)$. Now if ξ is a bundle such that $e(\xi)=0$, then one can define a secondary characteristic class

$$
\Sigma_{\alpha}(\xi) \in \Omega_{U}^{*}(X) \bmod \left(S_{\alpha}-c f_{\alpha}(\xi)\right) \Omega_{U}^{*}(X)
$$

by using the above relation. The object of this paper is to study some of the properties of such secondary characteristic classes.

Secondary characteristic classes adapt particularly to the study of embedding and immersion problems. Massey and Peterson and Stein developed secondary characteristic classes in ordinary cohomology theory [4][7][8], and Lazarov has studied secondary characteristic classes in K-theory [3]. We hope the secondary characteristic classes given here, and the operations on cobordism, defined by Novikov, will have some applications on embedding and immersion problems.

The organization of the papers is as follows. In $\S 1$ we collect some results on cobordism theory and give the definition of secondary characteristic classes of cobordism theory. In §2 we give an example and carry out some computations of these characteristic classes.

1. Definition of secondary characteristic classes. Let ξ be a $U(n)$-bundle over the $C W$-complex X. Let E and E_{0} be the total spaces of the associated bundles whose fibres are respectively the unit disc $E^{2 n} \subset C^{n}$ and the unit sphere $S^{2 n-1} \subset C^{n}$. Then the Thom complex is the quotient space E / E_{0}. In particular, if we take ξ to be the universal $U(n)$-bundle over $B U(n)$, then the resulting Thom complex $M(\xi)$ is written $M U(n)$. The sequence of spaces

$$
(M U(0), M U(1), \cdots, M U(n), \cdots)
$$

is a spectrum. Associated with this spectrum we have a cohomology functor, the groups of this cohomology functor are written $\Omega_{V}(X, Y)$ and called complex cobordism groups. We know that $\Omega_{U}^{*}($.$) is a mul-$ tiplicative cohomology theory and $\Omega_{U}(P)$, where P is a point, is a polynomial ring $Z\left[x_{1}, x_{2}, \cdots, x_{i}, \cdots\right]$ where $x_{i} \in \Omega_{U}^{-2 i}(P)$.

Next for each $U(n)$-bundle ξ over X the classifying map for ξ induces a map

$$
\gamma: M(\xi) \longrightarrow M U(n) .
$$

The map γ represents an element $U_{\xi} \in \Omega_{U}^{2 n}\left(E, E_{0}\right)$. We define the Thom isomorphism

$$
\varphi: \Omega_{U}^{q}(X) \longrightarrow \Omega_{U}^{q+2 n}\left(E, E_{0}\right)
$$

by $\varphi(x)=\left(p^{*} x\right) U_{\xi}$.
Now we need the following known theorems:
Theorem 1 (Conner-Floyd) [1]. To each ξ over X and each $\alpha=\left(\alpha_{1}, \alpha_{2}, \cdots\right)$ we can assign classes $c f_{\alpha}(\xi) \in \Omega_{U}^{2|\alpha|}(X)$, called the Conner-Floyd classes, with the following properties:
(i) $c f_{0}(\xi)=1$;
(ii) $c f_{\alpha}\left(g^{*} \xi\right)=g^{*} c f_{\alpha}(\xi)$;
(iii) Whitney sum formula $c f_{\alpha}(\xi \bigoplus \eta)=\sum_{\beta+\gamma=\alpha}\left(c f_{\beta} \xi\right)\left(c f_{\gamma} \eta\right)$;
(iv) Let ξ be a $U(1)$-bundle over X, classified by a map $X \longrightarrow$ $B U(1)$, and let the composite $X \xrightarrow{f} B U(1) \longrightarrow M U(1)$ represent the element $w \in \Omega_{U}^{2}(X)$. Then $c f_{1}(\xi)=w$.

Theorem 2 (Novikov) [1]. For each $\alpha=\left(\alpha_{1}, \alpha_{2}, \cdots\right)$ there exists an operation

$$
S_{\alpha}: \Omega_{U}^{q}(X, Y) \longrightarrow \Omega_{U}^{q+2|\alpha|}(X, Y)
$$

with the following properties:
(i) $S_{0}=1$;
(ii) $S_{\alpha} f^{*}=f^{*} S_{\alpha}$;
(iii) S_{α} is stable: $S_{\alpha} \delta=\delta S_{\alpha}$;
(iv) Cartan formula

$$
S_{\alpha}(x y)=\sum_{\beta+\gamma=\alpha}\left(S_{\beta} x\right)\left(S_{\gamma} y\right)
$$

(vi) If $w \in \operatorname{Map}(X, M U(1)) \subset \Omega_{U}^{2}(X)$ then $S_{(k)}(w)=w^{k+1}$, and

$$
S_{\alpha}(w)=0 \text { if } \alpha \neq(k)
$$

(vii) Suppose that ξ is an $U(n)$-bundle over X then we have

$$
c f_{\alpha}(\xi)=\varphi^{-1} S_{\alpha} \varphi(1)
$$

where φ is the Thom isomorphism for Ω_{U}^{*}.
Definition 3. The Euler class of a $U(n)$-bundle ξ over X, denoted $e(\xi)$, is $p^{*-1} j^{*}\left(U_{\xi}\right)$, where $j^{*}: \Omega_{U}^{i}\left(E_{1}, E_{0}\right) \longrightarrow \Omega_{U}^{i}(E)$ is induced by the inclusion $j: E \longrightarrow\left(E, E_{0}\right)$, and the isomorphism $p^{*}: \Omega_{V}^{i}(X)-$ $\Omega_{U}^{i}(E)$ is induced by the projection $p: E \longrightarrow X$.

The following propositions are not difficult to prove:
Proposition 4. If ξ is a trivial, then $e(\xi)=0$.
Proposition 5. For the Euler class, the relation

$$
e(\xi \oplus \eta)=e(\xi) e(\eta)
$$

holds.

Proposition 6. If a $U(n)$-bundle has an nonzero cross section, then $e(\xi)=0$.

From Theorem 2 we have $c f_{\alpha}(\xi)=\varphi^{-1} S_{\alpha} \varphi(1)$ so that

$$
S_{\alpha} U_{\xi}=\varphi c f_{\alpha}(\xi)=p^{*}\left(c f_{\alpha}(\xi)\right) U_{\xi}
$$

Therefore we have $S_{\alpha} e(\xi)=c f_{\alpha}(\xi) e(\xi)$.
Now let ξ be a bundle such that $e(\xi)=0$, then the long exact sequence for (E, E_{0}) breaks up into short exact sequences.
$0 \longrightarrow \Omega_{U}^{i}(X) \longrightarrow \Omega_{U}^{i}\left(E_{0}\right) \xrightarrow{\delta} \Omega_{U}^{i+1}\left(E, E_{0}\right) \longrightarrow 0$. Let $a_{\xi} \in \Omega_{U}^{2 n-1}\left(E_{0}\right)$ such that $\delta\left(\alpha_{\xi}\right)=U_{\xi}$. Then every element in $\Omega_{V}^{i}\left(E_{0}\right)$ can be written uniquely as $x a_{\xi}+y$ where $x \in \Omega_{U}^{i-(2 n-1)}(X)$ and $y \in \Omega_{U}^{i}(X)$. In particular, write $S_{\alpha}(\alpha)=x a_{\xi}+y$. Then we apply δ and find that $x=c f_{\alpha}(\xi)$. If a^{1} is another element with $\left(a^{1}\right)=U_{\xi}$, then $S_{\alpha}\left(a^{1}\right)=c f_{\alpha}(\xi) a^{1}+y^{1}$. Then $y-y^{1} \in\left(S_{\alpha}=c f_{\alpha}(\xi)\right) \Omega_{U}^{2 n-1}(X)$. Thus we can define a natural transformation Σ_{α}, from $U(n)$-bundle whose $e(\xi)$-class vanishes, to a natural quotient of Ω_{U}^{*}. If ξ is a such bundle $\Sigma_{\alpha}(\xi)$ takes values in $\Omega_{V}^{*}(X)$ $\bmod \left(S_{\alpha}-c f_{\alpha}(\xi)\right) Q_{\dot{U}}^{*}(X)$ and is the coset of y.

The following property can be easily proved:
Proposition 7. If ξ has a nonzero cross section then $\Sigma_{\alpha}(\xi)=0$.
2. Example. Consider $U(n+1)$ as a principal $U(n)$-bundle over $S^{2 n+1}$ for $n>1$. Let ξ be the associated complex vector bundle. Then the sphere bundle is the complex Stiefel manifold $U(n+1) / U(n-1)$. Since $\Omega_{U}^{2 n}\left(S^{2 n+1}\right)=0$, then $\Sigma_{\alpha}(\xi)$ is defined.

Let t_{n} be the Thom space of $S^{2 n+1}$ with respect to ξ, we have the short exact sequence

$$
0 \longrightarrow \Omega_{U}^{2 n-1}\left(S^{2 n+1}\right) \longrightarrow \Omega_{U}^{2 n-1}(U(n+1) / U(n-1)) \longrightarrow \Omega_{U}^{2 n}\left(t_{n}\right) \longrightarrow 0 .
$$

Since $H^{*}(U(n+1) / U(n-1))=\Lambda\left[\gamma_{2 n-1}, \gamma_{2 n+1}\right]$ be the exterior algebra generated by $\gamma_{2 n-1}$ and $\gamma_{2 n+1}$ of dimensions $2 n-1,2 n+1$ respectively. Therefore by [2] we have $\Omega_{U}^{*}(U(n+1) / U(n-1)) \Lambda\left[\gamma_{2 n-1}, \gamma_{2 n+1}\right] \otimes \Omega_{U}^{*}(P)$. Let $\quad \tilde{\gamma}_{2 n-1} \in \Omega_{U}^{*}(U(n+1) / U(n-1)), \tilde{\gamma}_{2 n+1} \in \Omega_{U}^{*}(U(n+1) / U(n-1))$ such that $\mu_{z}\left(\tilde{\gamma}_{2 n-1}\right)=\gamma_{2 n-1}, \mu_{z}\left(\tilde{\gamma}_{2 n+1}\right)=\gamma_{2 n+1}$, where $\mu_{z}: \Omega_{U}^{*} \longrightarrow H^{*}(, Z)$ is the map defined by the Thom class (see [2] for definition), the group $\Omega_{U}^{2 n-1}(U(n+1) / U(n-1))$ is $Z+Z$ with generators $\widetilde{\gamma}_{2 n-1}$ and $\widetilde{\gamma}_{2 n+1}\left[C P^{1}\right]$ where $\left[C P^{1}\right] \in \Omega_{U}^{-2}(P)$ is a generator of $\Omega_{U}^{*}(P)$. The group $\Omega_{U}^{2 n-1}\left(S^{2 n+1}\right)$ is infinite cyclic with generator $\tilde{\gamma}_{2 n+1}\left[C P^{1}\right]$, and so $\delta\left(\widetilde{\gamma}_{2 n-1}\right)= \pm U_{\xi}$. We know that $S_{(1)} \tilde{\gamma}_{2 n-1}=c f_{(1)} \widetilde{\gamma}_{2 n-1}+b \widetilde{\gamma}_{2 n+1}$ where $\pm b \widetilde{\gamma}_{2 n+1}$ represents $\Sigma_{(1)}(\xi)$. Since $\Omega_{U}^{*}(U(n+1) / U(n-1))$ injects into $\Omega_{U}^{*}(U(n+1))$, we can compute it in $\Omega_{U}^{*}(U(n+1))$. Now by using the notation of [9, p. 40] we have the monomorphism

$$
\mu^{*}: \Omega_{U}^{*}(U(n+1)) \longrightarrow \Omega_{U}^{*}\left(Q_{n+1} \times U(n)\right)
$$

By induction, we can determine $S_{(1)}$ if we know $S_{(1)}$ in Q_{n+1} and its behavior under cross products. By [9] we have $Q_{n+1}=S C P^{n} V S^{1}$ and since $S_{(1)}$ commutes with the suspension map

$$
s: \Omega_{U}^{i}\left(C P^{n}\right) \longrightarrow \Omega_{U}^{i+1}\left(S C P^{n}\right),
$$

so we need only know $S_{(1)}$ in $\Omega_{U}^{*}\left(C P^{n}\right)$. By [2, p. 52] we know that $\Omega_{U}^{*}\left(C P^{n}\right)$ is a free $\Omega_{U}^{*}(P)$-module with basis $1, w_{n}, \cdots,\left(w_{n}\right)^{n}$ where $w_{n} \in \operatorname{Map}\left[C P^{n}, M U(1)\right] \subset \Omega_{U}^{2}\left(C P^{n}\right)$. Moreover, the inclusion

$$
i: C P^{n-1} \subset C P^{n}
$$

has $i^{*} w_{n}=w_{n-1}$. By Theorem 2 we have $S_{(1)}\left(w_{n}\right)^{j}=j\left(w_{n}\right)^{j+1}$, hence $S_{(1)} s\left(w_{n}\right)^{j}=s S_{(1)}\left(w_{n}\right)^{j}=s j\left(w_{n}\right)^{j+1}=j s\left(w_{n}\right)^{j+1}$, here $s\left(w_{n}\right)^{j}, s\left(w_{n}\right)^{j+1} \quad$ in $\Omega_{U}^{*}\left(S C P^{n}\right)$ are the images of $\left(w_{n}\right)^{i},\left(w_{n}\right)^{i+1}$ under the suspension map s respectively. From above data and an argument, similar to [9, p. 53], we obtain $S_{(1)} \tilde{\gamma}_{2 n-1}=(n-1) \tilde{\gamma}_{2 n+1}$, hence $c f_{(1)}=0$ and $b=n-1$. Now we compute $\left(S_{(1)}-c f_{(1)}\right) \Omega_{U}^{2 n-1}\left(S^{2 n+1}\right)=S_{(1)} \Omega_{U}^{2 n-1}\left(S^{2 n+1}\right)$, which is generated by $S_{(1)}\left(\widetilde{\gamma}_{2 n+1}\left[C P^{1}\right]\right)$. By [5] we have $S_{(1)}\left(\widetilde{\gamma}_{2 n+1}\left[C P^{1}\right]\right)=2 \widetilde{\gamma}_{2 n+1}$. Therefore $\Sigma_{(1)}(\xi) \neq 0$ if $n-1 \neq 0 \bmod (2)$.

References

1. J. F. Adams, S. P. Novikov's work on operations on complex cobordism, mimeographed notes, Chicago Univ., 1968.
2. P. E. Conner and E. E. Floyd, The relation of cobordism to K-theory, Lecture Notes in Math, Springer-Verlag, New York, 1966.
3. C. Lazarov, Secondary characteristic classes in K-theory, Trans. Amer. Math. Soc. 136 (1969), 391-412.
4. W. S. Massey, On the embeddability of real projective spaces in Euclidean space, Pacific J. Math. 9 (1959), 783-789.
5. S. P. Novikov, The methods of Algebraic topology from the viewpoint of cobordism theory, Math USSR-Izvestija 1 (1967).
6. F, P. Peterson, Functional Cohomology operations, Trans. Amer. Math. Soc. 86 (1957). 197-211.
7. F. P. Peterson and N. Stein, Secondary cohomology operations, Amer. J. Math. 81 (1959), 281-305.
8. -, Secondary characteristic classes, Ann. of Math. 76 (1962), 510-523.
9. N. E. Steenord, Cohomology operations, Ann. of Math. Study 50, Princeton, 1962.

Received August 29, 1969. Supported by the Research Foundation, State University of New York.

State University of New York
College of Arts \& Science at Plattsburgh

CONTINUOUS COMPLEMENTORS ON B^{*}-ALGEBRAS

Pak-Ken Wong

Abstract

This paper is concerned with continuous and uniformly continuous complementors on a B^{*}-algebra. Let A be a B^{*}-algebra with a complementor p and E_{p} the set of all p-projections of A. We show that if A has no minimal left ideals of dimension less than three, then p is uniformly continuous if and only if E_{p} is a closed and bounded subset of A. We also give a characterization of the boundedness of E_{p}.

Let A be a complex Banach algebra and let L_{r} be the set of all closed right ideals of A. Following [4], we shall say that A is a right complemented Banach algebra if there exists a mapping $p: R \rightarrow R^{p}$ of L_{r} into itself having the following properties:

$$
\begin{align*}
R \cap R^{p} & =(0) & & \left(R \in L_{r}\right) ; \tag{1}\\
R+R^{p} & =A & & \left(R \in L_{r}\right) ; \tag{2}\\
\left(R^{p}\right)^{p} & =R & & \left(R \in L_{r}\right) ; \tag{3}
\end{align*}
$$

$$
\begin{equation*}
\text { if } R_{1} \subset R_{2} \text {, then } R_{2}^{p} \subset R_{1}^{p}\left(R_{1}, R_{2} \in L_{r}\right) . \tag{4}
\end{equation*}
$$

The mapping p is called a right complementor on A. In this paper a complemented Banach algebra will always mean a right complemented Banach algebra. We also use $p(R)$ for R^{p}.

For any set S in a Banach algebra A, let S_{l} and S_{r} denote the left and right annihilators of S in A, respectively. Then A is called an annihilator algebra if, for every closed left ideal I and for every closed right ideal R, we have $I_{r}=(0)$ if and only if $I=A$ and $R_{l}=$ (0) if and only if $R=A$. If $I_{r l}=I$ and $R_{l r}=R$, then A is called a dual algebra.

We say that a Banach algebra A has an approximate identity if there exists a net $\left\{e_{\alpha}\right\}$ in A such that $\left\|e_{\alpha}\right\| \leqq 1$, for all α, and $\lim _{\alpha} e_{\alpha} x=$ $\lim _{\alpha} x e_{\alpha}=x$, for all $x \in A$. Every B^{*}-algebra has an approximate identity.

A minimal idempotent f in a complemented Banach algebra A is called a p-projection if $(f A)^{p}=(1-f) A$. If A is a semi-simple annihilator complemented Banach algebra, then every nonzero right ideal, no matter whether closed or not (see [4; p. 653]), contains a p-projection. Let A be a complemented B^{*}-algebra with a complementor p. Since, by [4; p. 655, Lemma 5], the socle of A is dense in A, A is dual (see [3; p. 222, Th. 2.1]). Let E (resp. E_{p}) be the set of all self-adjoint minimal idempotents (resp. p-projections) in A. Then, for each $e \in E$, there exists a unique $P(e) \in E_{p}$ such that $P(e) A=e A$. It
can be shown that P is a one-to-one mapping of E onto E_{p}. We call P the p-derived mapping of p. The complementor p is said to be continuous if P is continuous in the relative topologies of E and E_{p} induced by the given norm on A (see [1; p. 463, Definition 3.7]).

Let A be a dual B^{*}-algebra. It has been shown in $[1 ; \mathrm{p} .463$, Th. 3.6] that the mapping $p: R \rightarrow\left(R_{l}\right)^{*}$ is a complementor on $A\left(R \in L_{r}\right)$. In this case $E_{p}^{\prime}=E, P$ is the identity map, and therefore p is uniformly continuous.

The concept " p is continuous" can be defined for any semi-simple annihilator complemented Banach ${ }^{*}$-algebra in which $x x^{*}=0$ implies $x=0$. In fact, let A be such an algebra and p a given complementor on A. By [2; p. 155, Th. 1], every maximal closed right ideal of A is modular. Therefore [1, p. 462, Corollary 3.4] holds for A. Hence the mapping P exists as in the case of B^{*}-algebra and so the concept of continuity of p can be defined.

In this paper, all algebras and spaces under consideration are over the complex field C.
2. Lemmas. In this section, unless otherwise stated, H will denote a complex Hilbert space and $A=L C(H)$, the set of all compact operators on H. There exist many complementors on A. If H is infinite dimensional, then all complementors on A are continuous ([1; p. 471, Th. 6.8]). However if $\operatorname{dim} H$ is finite, this is not true in general as is shown in [1; p. 475]. If $\operatorname{dim} H \geqq 3$, then every continuous complementor on A is uniformly continuous (see [1; p. 471, Corollary 6.6]).

If u and v are elements of $H, u \otimes v$ will denote the operator on H defined by the relation $(u \otimes v)(h)=(h, v) u$, for all $h \in H$.

Lemma 1. Let A be any C^{*}-subalgebra of bounded operators on H and $E \subset A$ the set of all self-adjoint minimal idempotents. The E is a closed subset of $L(H)$, all bounded operators on H.

Proof. Let $\left\{e_{n}\right\} \subset E$ be a sequence converging to some $e \in A$. Clearly $e^{2}=e$ and $e^{*}=e$. In order that $e \in E$, it suffices to show that $e(H)$ is one dimensional. Since $(u \otimes v)^{*}=v \otimes u$ and since each e_{n} is a self-adjoint minimal idempotent, we can write $e_{n}=u_{n} \otimes u_{n}$, where $u_{n} \in H$ and $\left\|u_{n}\right\|=1(n=1,2, \cdots)$. Let $v, w \in H$ be such that $e(v) \neq 0$, $e(w) \neq 0$. Since $\left\{\left(v, u_{n}\right)\right\}$ is bounded, there exists a subsequence $\left.\left\{v, u_{k}\right)\right\}$. of $\left\{\left(v, u_{n}\right)\right\}$ and a nonzero constant $a \in C$ such that $\left(v, u_{k}\right) \rightarrow a$. Since

$$
\left\|a u_{k}-e(v)\right\| \leqq\left|a-\left(v, u_{k}\right)\right|\left\|u_{k}\right\|+\left\|e_{k}-e\right\|\|v\|,
$$

we have $a u_{k} \rightarrow e(v)$. Similarly we can show that there exist a subsequence $\left\{u_{t}\right\}$ of $\left\{u_{k}\right\}$ and a nonzero constant $b \in C$ such that $b u_{t} \rightarrow e(w)$.

It follows now that $b e(v)=a e(w)$, which shows that $e(H)$ is one dimensional. This completes the proof.

Lemma 2. Let H be finite dimensional, p a complementor on A and E_{p} the set of all p-projections in A. If E_{p} is a closed and bounded subset of A, then p is continuous.

Proof. Let $e \in E$ and let $\left\{e_{n}\right\}$ be a sequence in E such that $e_{n} \rightarrow e$. Write $e_{n}=u_{n} \otimes u_{n}, e=u \otimes u$, where $u_{n}, u \in H$ and $\left\|u_{n}\right\|=\|u\|=1$ ($n=1,2, \cdots$). Since H is finite dimensional, there exists a subsequence $\left\{u_{k}\right\}$ of $\left\{u_{n}\right\}$ such that $u_{k} \rightarrow u^{\prime}$ for some $u^{\prime} \in H$; clearly $\left\|u^{\prime}\right\|=1$ and $u^{\prime} \otimes u^{\prime}=u \otimes u$. Thus $u=a u^{\prime}$, where $a=\left(u, u^{\prime}\right)$ and $|a|=1$. Let $u_{k}^{\prime}=a u_{k}$. Then $e_{k}=u_{k}^{\prime} \otimes u_{k}^{\prime}$. Let P be the p-derived mapping of p. Since $P\left(e_{k}\right)$ is a minimal idempotent and since $P\left(e_{k}\right) A=e_{k} A$, we can write $P\left(e_{k}\right)=u_{k}^{\prime} \otimes v_{k}^{\prime}$, where $v_{k}^{\prime} \in H(k=1,2, \cdots)$. Similarly $P(e)=$ $u \otimes v$ with $v \in H$. Since E_{p} is bounded and since $\left\|u_{k}^{\prime}\right\|=1,\left\{v_{k}^{\prime}\right\}$ is bounded. Since H is finite dimensional, there exists a subsequence $\left\{v_{t}^{\prime}\right\}$ of $\left\{v_{k}^{\prime}\right\}$ such that $v_{t}^{\prime} \rightarrow v^{\prime}$ for some $v^{\prime} \in H$. As $\left\|P\left(e_{t}\right)\right\| \geqq 1, v^{\prime} \neq 0$. Since $P\left(e_{t}\right)=u_{t}^{\prime} \otimes v_{t}^{\prime} \rightarrow u \otimes v^{\prime}$ and since E_{p} is closed, it follows that also $u \otimes v^{\prime} \in E_{p}$. Then both $u \otimes v^{\prime}, u \otimes v \in E_{p}$. However, by [1, p. 466, Lemma 5.1] for any $u \in H$, there exists a unique such v. Thus $v=v^{\prime}$. Hence $P\left(e_{t}\right) \rightarrow P(e)$. Therefore P is continuous and so is p. This completes the proof.
3. Main theorem. Throughout this section A will be a B^{*} algebra with a complementor p. Then A is dual (see $\S 1$). Let $\left\{I_{t}: t \in T\right\}$ be the family of all minimal closed two-sided ideals of A. Then, by [3; p. 221, Lemma 2.3], $A=\left(\sum_{t} I_{t}\right)_{0}$, the $B^{*}(\infty)$-sum of I_{t}. Since each I_{t} is a simple dual B^{*}-algebra, $I_{t}=L C\left(H_{t}\right)$ for some Hilbert space $H_{t}(t \in T)$. It has been shown in [4; p. 652, Lemma 1] that p induces a complementor p_{t} on I_{t}, which is given by $p_{t}(R)=p(R) \cap I_{t}$ for all closed right ideals R of $I_{t}(t \in T)$.

Let E (resp. E_{t}) be the set of all self-adjoint minimal idempotents in A (resp. in I_{t}) and let E_{p} (resp. E_{p}^{t}) be the set of all p-projections in A (resp. in I_{t}). Clearly $E_{t}=E \cap I_{t}$ and $E_{p}^{t}=E_{p} \cap I_{t}(t \in T)$. It can be shown that, if $u \neq v(u, v \in T)$, then $\left\|e_{u}-e_{v}\right\|=1$, for all $e_{u} \in E_{u}$, and $e_{v} \in E_{v}$. Since each $e \in E$ belongs to some $I_{t}, E=\bigcup_{t} E_{t}$. Similarly, if $u \neq v(u, v \in T)$, then $\left\|f_{u}-f_{v}\right\|=\operatorname{maximum}\left(\left\|f_{u}\right\|,\left\|f_{v}\right\|\right) \geqq 1$, for all $f_{u} \in E_{p}^{u}$ and $f_{v} \in E_{p}^{v} ; E_{p}=\mathbf{U}_{t} E_{p}^{t}$. Thus p is continuous if and only if p_{t} is continuous for all $t \in T$ (see [1; p. 464]).

Theorem 3. Let A be a B^{*}-algebra which has no minimal left ideals of dimension less than three and p a complementor on A. Then the following statements are equivalent:
(i) p is uniformly continuous.
(ii) There exists an involution *' on A for which $R^{p}=\left(R_{l}\right)^{* \prime}$, for every closed right ideal R of A (and hence there exists an equivalent norm $\|\cdot\|^{\prime}$ on A which satisfies the B^{*}-condition for ${ }^{* \prime}$).
(iii) The set E_{p} of all p-projections in A is a closed and bounded subset of A.

Proof. (i) \rightarrow (ii). This is [1; p. 477, Th. 7.4].
(ii) \Rightarrow (iii). Suppose (ii) holds. Let E_{p}^{t} be the set of all p-projections in $I_{t}(t \in T)$. By [1; p. 465, Corollary 4.4], each $f_{t} \in E_{p}^{t}$ is selfadjoint in ${ }^{* \prime}$. Hence $\left\|f_{t}\right\|^{\prime}=1$. Since each E_{p}^{t} is the set of all selfadjoint (in ${ }^{* \prime}$) minimal idempotents in I_{t}, by Lemma $1, E_{p}^{t}$ is closed in $\|\cdot\|^{\prime}$. It is now easy to show that E_{p} is closed and bounded in $\|\cdot\|$. This proves (iii).
(iii) \Rightarrow (i). Suppose (iii) holds. If H_{t} is finite dimensional, then since $I_{t}=L C\left(H_{t}\right)$, it follows from Lemma 2 that p_{t} is continuous. If H_{t} is infinite dimensional, then by [$1 ; \mathrm{p} .471$, Th. 6.8], p_{t} is continuous. Therefore each p_{t} is continuous and so p is continuous. We now show that p is uniformly continuous. For each $t \in T$, let Q_{t} be a p_{t}-representing operator of H_{t} onto itself (see [1; p. 467, Definition 5.4]). By [1; p. 470, Th. 6.4], Q_{t} is a continuous positive linear operator with continuous inverse Q_{t}^{-1}. We may assume that $\left\|Q_{t}^{-1}\right\|=1$, where $\left\|Q_{t}^{-1}\right\|$ denotes the operator bound of Q_{t}^{-1} on $H_{t}(t \in T$) (see [1; p. 472, Corollary 6.10]). We claim that $\left\{\left\|Q_{t}\right\|\right\}$ is bounded above. On the contrary, we assume that there exists a sequence $\left\{Q_{n}\right\} \subset\left\{Q_{t}\right\}$ such that $\left\|Q_{n}^{1 / 2}\right\| \geqq 5 n$, where $Q_{n}^{1 / 2}$ denotes the square root of $Q_{n}(n=1,2, \cdots)$. Since $\left\|Q_{n}^{-1}\right\|=1$, we can choose $u_{n} \in H_{n}$ such that $\left\|u_{n}\right\|=1$ and $\left\|Q_{n} u_{n}\right\| \leqq 2$. Since $\left\|Q_{n}^{1 / 2}\right\| \geqq 5 n$, we can choose $v_{n} \in H_{n}$ such that $\left\|v_{n}\right\|=1,\left(u_{n}, v_{n}\right)=0$ and $\left\|Q_{n}^{1 / 2} v_{n}\right\| \geqq 5 n$. Let $a_{n}=\left\|Q_{n}^{1 / 2} v_{n}\right\|^{-1}$ and $h_{n}=$ $a_{n} v_{n}+u_{n}$. Then

$$
\begin{aligned}
\left(h_{n}, Q_{n} h_{n}\right)-\left(u_{n}, Q_{n} u_{n}\right)= & a_{n}^{2}\left(v_{n}, Q_{n} v_{n}\right)+a_{n}\left(Q_{n} u_{n}, v_{n}\right) \\
& +a_{n}\left(v_{n}, Q_{n} u_{n}\right) \\
\geqq & 1-2 a_{n}\left\|Q_{n} u_{n}\right\| \\
\geqq & 1-4 a_{n} .
\end{aligned}
$$

Since $a_{n} \leqq 1 / 5 n$, we have

$$
\left(h_{n}, Q_{n} h_{n}\right)-\left(u_{n}, Q_{n} u_{n}\right) \geqq 1-\frac{4}{5 n} \geqq \frac{1}{5} .
$$

Therefore

$$
\begin{aligned}
\frac{1}{5} \leqq\left(h_{n}, Q_{n} h_{n}\right)-\left(u_{n}, Q_{n} u_{n}\right) & =a_{n}\left(v_{n}, Q_{n} h_{n}\right)+a_{n}\left(u_{n}, Q_{n} v_{n}\right) \\
& \leqq a_{n}\left|\left(v_{n}, Q_{n} h_{n}\right)\right|+2 a_{n}
\end{aligned}
$$

Hence we get

$$
\left|\left(v_{n}, Q_{n} h_{n}\right)\right| \geqq \frac{1}{5 a_{n}}-2 \geqq n-2
$$

Now let

$$
f_{n}=\frac{h_{n} \otimes Q_{n} h_{n}}{\left(h_{n}, Q_{n} h_{n}\right)}
$$

By the definition of $Q_{n}, f_{n} \in E_{p}$. Since $\left\|h_{n}\right\| \geqq\left\|u_{n}\right\|=1$ and since

$$
\begin{aligned}
\left(h_{n}, Q_{n} h_{n}\right)= & a_{n}^{2}\left(v_{n}, Q_{n} v_{n}\right)+a_{n}\left(Q_{n} u_{n}, v_{n}\right) \\
& +a_{n}\left(v_{n}, Q_{n} u_{n}\right)+\left(u_{n}, Q_{n} u_{n}\right) \\
& <1+1+1+2=5
\end{aligned}
$$

it follows from (\#) that

$$
\left\|f_{n}\left(v_{n}\right)\right\|=\frac{\left|\left(v_{n}, Q_{n} h_{n}\right)\right|\left\|h_{n}\right\|}{\left(h_{n}, Q_{n} h_{n}\right)}>\frac{n-2}{5}
$$

Since $\left\|v_{n}\right\|=1,\left\|f_{n}\right\|>(n-2) / 5$, contradicting the boundedness of E_{p}. Therefore $\left\{\left\|Q_{t}\right\|\right\}$ and $\left\{\left\|Q_{t}^{-1}\right\|\right\}$ are bounded. By using the argument in [1; p. 479], it is easy to show that p is uniformly continuous. This completes the proof of the theorem.

Finally we give a characterization of the boundedness of E_{p}.
Let R be a closed right ideal of A and let P_{R} be the projection on R along R^{p}, i.e., $P_{R}(x+y)=x$ for all $x \in R, y \in R^{p}$. Since $R^{p}=$ $\left\{x \in A: P_{R}(x)=0\right\}, P_{R}$ is continuous. Now let $\left\{J_{\lambda}: \lambda \in \Lambda\right\}$ be the set of all minimal right ideals of A. Since A is dual, each J_{λ} is automatically closed. For every $\lambda \in \Lambda$, let P_{λ} be the projection on J_{λ} along $p\left(J_{\lambda}\right)$.

Theorem 4. Let A be a B^{*}-algebra with a complementor p. Then the following statements are equivalent:
(i) The set E_{p} of all p-projections in A is a bounded subset of A.
(ii) $\left\{\left|P_{\lambda}\right|: \lambda \in \Lambda\right\}$ is bounded, where $\left|P_{\lambda}\right|$ denotes the operator bounded of P_{2}.
(iii) There exists a constant k such that

$$
k\left\|x_{1}+x_{2}\right\| \geqq\left\|x_{i}\right\| \quad(i=1,2),
$$

for all $x_{1} \in J_{\lambda}, x_{2} \in p\left(J_{\lambda}\right)(\lambda \in \Lambda)$.
Proof. (i) \Rightarrow (ii). Suppose $\sup \left\{\|f\|: f \in E_{p}\right\} \leqq c$, where c is a constant. Let J be a minimal right ideal of A. Then there exists an $f \in E_{p}$ such that $J=f A$ and $J^{p}=(1-f) A$. Let $x \in A$. Since

$$
\left\|P_{\lambda}(x)\right\|=\|f x\| \leqq c\|x\|,
$$

$\left|P_{\lambda}\right| \leqq c . \quad$ This proves (ii).
(ii) \Rightarrow (iii). Suppose that $\sup \left\{\left|P_{\lambda}\right|: \lambda \in \Lambda\right\} \leqq k-1$, where k is a constant. Then, for all $x_{1} \in J_{\lambda}, x_{2} \in p\left(J_{\lambda}\right)(\lambda \in \Lambda)$, we have

$$
\left\|x_{1}\right\| \leqq(k-1)\left\|x_{1}+x_{2}\right\| \leqq k\left\|x_{1}+x_{2}\right\| .
$$

It now follows from $\left\|x_{2}\right\|-\left\|x_{1}\right\| \leqq\left\|x_{1}+x_{2}\right\|$ that $\left\|x_{2}\right\| \leqq k\left\|x_{1}+x_{2}\right\|$.
(iii) \Rightarrow (i). Suppose (iii) holds. Let $f \in E_{p}$ and $x \in A$. Since $x=$ $(1-f) x+f x$, by (iii), $k\|x\| \geqq\|f x\|$. As a B^{*}-algebra, A has an approximate identity $\left\{e_{\alpha}\right\}$. Since $\left\|e_{\alpha}\right\| \leqq 1,\left\|f e_{\alpha}\right\| \leqq k\left\|e_{\alpha}\right\| \leqq k$. It now follows from $\left\|f e_{\alpha}\right\| \rightarrow\|f\|$ that $\|f\| \leqq k$. This completes the proof of the theorem.

It is Professor B. J. Tomiuk who aroused my interest in this topic. I wish to express my hearty thanks to him. I also wish to thank the referee for discovering an error in my previous demonstration of Theorem 3.

References

1. F. E. Alexander and B. J. Tomiuk, Complemented B^{*}-algebras, Trans. Amer. Math.Soc. 137 (1969), 459-480.
2. F. F. Bonsall and A. W. Goldie, Annihilator algebras, Proc. London Math. Soc. (3) 4 (1954), 154-167.
3. I. Kaplansky, The structure of certain operator algebras, Trans. Amer. Math. Soc. 70 (1951), 219-255.
4. B. J. Tomiuk, Structure theory of completed Banach algebras, Canad. J. Math. 14. (1962), 651-659.

Received September 5, 1969.
University of Ottawa
Ottawa, Canada

ON A REGULAR SEMIGROUP IN WHICH THE IDEMPOTENTS FORM A BAND

Miyuki Yamada

This paper is a continuation of a previous paper, in which the structure of certain regular semigroups, called generalized inverse semigroups, has been studied. A semigroup is called strictly regular if it is regular and the set of all its idempotents is a subsemigroup. A generalized inverse semigroup is strictly regular, but the converse is not true. Hence, the class of generalized inverse semigroups is properly contained in the class of strictly regular semigroups. The main purpose of this paper is to establish some results which clarify the structure of strictly regular semigroups. The concept of a quasi-direct product of a band (that is, an idempotent semigroup) and an inverse semigroup is introduced, and in particular it is proved that any semigroup is strictly regular if and only if it is a quasi-direct product of a band and an inverse semigroup.

A regular semigroup S (for the definition, see [1]) is called strictly regular if the set E of idempotents of S is a subsemigroup of S. If the set E of a regular semigroup S satisfies a (nontrivial) permutation identity $x_{1} x_{2} \cdots x_{n}=x_{\pi(1)} x_{\pi(2)} \cdots x_{\pi(n)}$, where π is a (nontrivial) permutation of $1,2, \cdots, n$, then it can be proved (see [6]) that E is a subsemigroup of S (in fact, E is a normal band ${ }^{1}$) and hence S is strictly regular. In this case, S is particularly called a generalized inverse semigroup. Thus any generalized inverse semigroup is strictly regular, but the converse is not true. In the previous paper [6] the author studied the structure of generalized inverse semigroups and established the following theorem:

Theorem. A semigroup is a generalized inverse semigroup if and only if it is isomorphic to the quasi-direct product of a left normal band, an inverse semigroup and a right normal band.

The main purpose of this paper is to establish a similar result for the class of strictly regular semigroups. Any notation and terminology should be referred to [1], [6], unless otherwise stated.
2. Greatest inverse semigroup decompositions. In this section, we shall determine the greatest inverse semigroup decomposition of a given strictly regular semigroup.

[^3]Let R be a regular semigroup. Then for any $a \in R$, there exists $x \in R$ such that $a x a=a$ and $x a x=x$. Such an element x is called an inverse of a. An inverse of a is not necessarily unique.

Reilly and Scheiblich [4] has proved the following lemma:
Lemma 1. ([4], Lemma 1.3.) Let e be an idempotent of a strictly regular semigroup S. Then, every inverse of e is an idempotent.

According to a recent information, the following two lemmas have been also obtained by a paper of T. E. Hall submitted to the Bull. Australian Math. Soc., though the author did not see yet the paper.

Lemma 2. Let S be a strictly regular semigroup, and E the band (i.e., the idempotent semigroup) consisting of all idempotents of S. Let e, f be elements of E such that efe $=e$ and $f e f=f$. Then, for any $a, c \in S^{1^{2}}$, any inverse x of aec is also an inverse of afc.

Proof. By the assumption, we have (aec) $x(a e c)=a e c, x(a e c) x=x$, $e f e=e$ and $f e f=f$. Let a^{*}, c^{*} be any inverses of a, c respectively. (If $a=1$ or $c=1$, then we take 1 as 1^{*}.) Since $a e c c^{*}(c x a) a^{*} a e c=$ $a e c$, we have $a^{*} a e c c^{*}(c x a) a^{*} a e c c^{*}=a^{*} a e c c^{*}$. Moreover, cxa $\alpha\left(a^{*} a e c c^{*}\right) c x a=$ cxaecx $a=c x a$. Since $a^{*} a, c c^{*}$ and e are all idempotents and since S is strictly regular, the element a^{*} aecc* is an idempotent. Since $a^{*} a e c c^{*}$ is an inverse of $c x a$ and is an idempotent, it follows from Lemma 1 that $c x a$ is also an idempotent. This means that cxa is an inverse of $a^{*} a f c c^{*}$. (In general, let $E \sim \sum\left\{E_{\gamma}: \gamma \in \Gamma\right\}\left(\Gamma\right.$ semilattice; E_{γ} rectangular band) be the structure decomposition (for the definition, see [5] or [6]) of E. Since efe $=e, f e f=f$, there exists E_{r} such that $e, f \in E_{\gamma}$. Hence for any $\xi \in E_{\alpha}$ and $\eta \in E_{\beta}$, we have $\xi e \eta, \xi f \eta \in E_{\alpha \gamma \beta}$. Therefore any idempotent τ which is an inverse of $\xi e \eta$ is also an inverse of $\xi f \eta$.)

Hence we have

$$
a^{*} a f c c^{*}(c x a) a^{*} a f c c^{*}=a^{*} a f c c^{*}, a^{*} a f c x a f c c^{*}=a^{*} a f c c^{*}
$$

and accordingly

$$
\begin{equation*}
(a f c) x(a f c)=a f c \tag{2.1}
\end{equation*}
$$

Next, we shall consider about the element $x(a f c) x$.

$$
a f c(x(a f c) x) a f c=a f c(\text { by }
$$

and

[^4]$$
(x(a f c) x) a f c(x(a f c) x)=x(a f c) x(\text { by }(2.1))
$$

Therefore, $x(a f c) x$ is an inverse of $a f c$. Accordingly, by using the same method used to get the relation (2.1), we have

$$
\begin{equation*}
(a e c)(x(a f c) x)(a e c)=a e c \tag{2.2}
\end{equation*}
$$

Hence, $x(a e c) x(a f c) x(a e c) x=x(a e c) x$. Since x is an inverse of aec, we have

$$
\begin{equation*}
x(a f c) x=x \tag{2.3}
\end{equation*}
$$

Therefore, it follows from (2.1), (2.3) that x is an inverse of afc.
Let R be a regular semigroup. If a mapping $\varphi: R \rightarrow R$ satisfies the condition

$$
\begin{equation*}
\text { for any } x \in R, x \varphi(x) x=x \text { and } \varphi(x) x \varphi(x)=\varphi(x), \tag{2.4}
\end{equation*}
$$

then φ is called an inverse operator in R. It is obvious that R has at least one inverse operator. It is also easy to see that an inverse operator in a regular semigroup R is unique if and only if R is an inverse semigroup.

Now, let S be a regular semigroup. Let Ω be the set of all inverse operators in S. We define a relation σ on S as follows:

$$
\begin{equation*}
a \sigma b \text { if and only if }\{\varphi(c a d): \varphi \in \Omega\}=\{\varphi(c b d): \varphi \in \Omega\} \tag{2.5}
\end{equation*}
$$

for any elements c, d of S^{1}. Then, σ is clearly an equivalence relation on S.

Further, we have
Lemma 3. If S is strictly regular, then σ is a congruence relation on S.

Proof. Let a, b be elements of S such that $a \sigma b$. Let h be any element of S, and c, d any elements of S^{1}. Suppose that

$$
x \in\{\varphi(c(a h) d): \varphi \in \Omega\} .
$$

Then, $x \in\{\varphi(c a(h d)): \varphi \in \Omega\}$. Since $a \sigma b$,

$$
x \in\{\varphi(c b(h d)): \varphi \in \Omega\}=\{\varphi(c(b h) d): \varphi \in \Omega\} .
$$

Hence $\{\varphi(c(a h) d): \varphi \in \Omega\} \subset\{\varphi(c(b h) d): \varphi \in \Omega\}$. We can also easily prove the converse relation. Therefore, we have $a h \sigma b h$. By a similar method, we can prove that $h a \sigma h b$. Hence, σ is a congruence relation on S.

Lemma 4. If S is a strictly regular semigroup, then the factor
semigroup S / σ of $S \bmod \sigma$ is an inverse semigroup. Let E be the band consisting of all idempotents of S, and $E \sim \sum\left\{E_{\gamma}: \gamma \in \Gamma\right\}(\Gamma$ semilattice; E_{γ} rectangular band) the structure decomposition of E.

Then,
(1) for any $e \in E_{r}$, the congruence class $(\in S / \sigma)$ containing e is E_{r}, and
(2) the basic semilattice (i.e., the semilattice of idempotents) of S / σ is $E / \sigma_{E}=\left\{E_{\gamma}: \gamma \in \Gamma\right\}$, where σ_{E} is the restriction of σ to E.

Proof. It is obvious that S / σ is regular. Let \bar{x} denote the congruence class $(\in S / \sigma)$ containing x. If $\bar{s} \in S / \sigma$ is an idempotent, then $s \sigma s^{2}$. Hence an inverse s^{*} of s is also an inverse of s^{2}, and hence we have $s^{2}=\left(s s^{*} s\right)\left(s s^{*} s\right)=s\left(s^{*} s^{2} s^{*}\right) s=s s^{*} s=s$. Thus, s is an idempotent. It is clear that \bar{x} is an idempotent if x itself is an idempotent. Therefore, it follows that $\bar{x} \in S / \sigma$ is an idempotent if and only if x itself is an idempotent. Next for any $e, f \in E$, we shall show that eaf if and only if $e f e=e$ and $f e f=f$. Suppose at first that eaf. Then, $\{\rho(e): \varphi \in \Omega\}=$ $\{\varphi(f): \varphi \in \Omega\}$. Since $e \in\{\varphi(e): \varphi \in \Omega\}$, we have $e \in\{\varphi(f): \varphi \in \Omega\}$. Hence $e f e=e$ and $f e f=f$. Conversely, let efe $=e$ and $f e f=f$. Then, eof follows from Lemma 2. Thus, eof if and only if efe $=e$ and $f e f=f$. This means that σ gives the structure decomposition of E and accordingly that E / σ_{E} is isomorphic to Γ. Since the set E / σ_{E} of idempotents of S / σ is commutative, S / σ is an inverse semigroup having E / σ_{E} as its basic semilattice.

Let G be an inverse semigroup, and L the basic semilattice of G. Let S be a strictly regular semigroup, and E the band consisting of all idempotents of S. If there exists a homomorphism ξ of S onto G such that $\bigcup\left\{\xi^{-1}(t): t \in L\right\}=E$ and the structure decomposition of E is $E \sim \sum\left\{\xi^{-1}(t): t \in L\right\}$, then we say that S is a regular extension of E by G.

Remark. According to Clifford and Preston [2], the above mentioned ξ is unique if it exists. Further, we have the following result: Let G_{1}, G_{2} be inverse semigroups having L_{1}, L_{2} as their basic semilattices respectively. Let S be a strictly regular semigroup, and E the band consisting of all idempotents of S. Let ξ_{1}, ξ_{2} be homomorphisms of S onto G_{1}, G_{2} respectively such that $\bigcup\left\{\xi_{1}^{-1}(t): t \in L_{1}\right\}=$ $\mathbf{U}\left\{\xi_{2}^{-1}(u): u \in L_{2}\right\}=E$ and the structure decomposition of E is given as each of $\left\{\xi_{1}^{-1}(t): t \in L_{1}\right\}$ and $\left\{\xi_{2}^{-1}(u): u \in L_{2}\right\}$ (that is, $E \sim \sum\left\{\xi_{1}^{-1}(t): t \in L_{1}\right\}$ and $\left.E \sim \sum\left\{\xi_{2}^{-1}(u): u \in L_{2}\right\}\right)$. Then $G_{1} \cong G_{2}, L_{1} \cong L_{2}$, and ξ_{1}, ξ_{2} induce the same congruence relation on S.

Theorem 1. Let S be a strictly regular semigroup, and E the
band consisting of all idempotents of S. Then, S is a regular extension of E by an inverse semigroup.

Proof. Let σ be a congruence relation on S defined by (2.5). Then, it is easy to see from Lemma 4 that S is a regular extension of E by S / σ.

Now for σ defined by (2.5), we have the following theorem:
Theorem 2. If S is a strictly regular semigroup, then σ defined by (2.5) gives the greatest inverse semigroup decomposition of S.

Proof. Let δ be any congruence relation on S such that S / δ is an inverse semigroup. Let $\tilde{a}, a \in S$, denote the congruence class containing $a \bmod \delta$. Now, let x, y be elements of S such that $x \delta y$. Since $x \delta y$, any inverse x^{*} of x is also an inverse of y. Hence, $\widetilde{x} \tilde{x}^{*} \tilde{x}=\tilde{x}$, $\widetilde{x}^{*} \widetilde{x} \widetilde{x}^{*}=\widetilde{x}^{*}, \widetilde{y} \widetilde{x}^{*} \widetilde{y}=\widetilde{y}$ and $\widetilde{x}^{*} \widetilde{y} \widetilde{x}^{*}=\widetilde{x}^{*}$. Therefore, each of $\widetilde{x}, \widetilde{y}$ is an inverse of \tilde{x}^{*}. By the assumption, S / δ is an inverse semigroup and hence an inverse of \tilde{x}^{*} must be unique. Thus we have $\widetilde{x}=\widetilde{y}$, that is, $x \delta y$.
3. Quasi-direct products. In the previous paper [6], the author introduced the concept of quasi-direct products. We shall generalize that concept in this section.

Let R be an inverse semigroup, and L the basic semilattice of R. Let E be a band whose structure decomposition is $E \sim \sum\left\{E_{\alpha}: \alpha \in L\right\}$. Define equivalence relations π_{1}, π_{2} on E as follows:

$$
\begin{align*}
& e \pi_{1} f \text { if and only if } e f=f \text { and } f e=e . \tag{3.1}\\
& e \pi_{2} f \text { if and only if } e f=e \text { and } f e=f . \tag{3.2}
\end{align*}
$$

For an element $e \in E$, let \widetilde{e}, \tilde{e} be the equivalence classes containing e $\bmod \pi_{1}, \pi_{2}$ respectively. Put $\widetilde{E}=\{\widetilde{e}: e \in E\}, \widetilde{\widetilde{E}}=\{\tilde{e}: e \in E\}, \widetilde{E}_{\alpha}=\left\{\widetilde{e}: e \in E_{\alpha}\right\}$ and $\widetilde{\widetilde{E}}_{\alpha}=\left\{\widetilde{e}: e \in E_{\alpha}\right\}, \alpha \in L$. Then, clearly $\widetilde{E}=\sum\left\{\widetilde{E}_{\alpha}: \alpha \in L\right\}$ and $\widetilde{E}=$ $\sum\left\{\widetilde{E}_{\alpha}: \alpha \in L\right\}$ (where Σ means disjoint sum). Further, for any $e \in E_{\alpha}$, ($\widetilde{e}, \widetilde{e}$) is contained in the product set $\widetilde{E}_{\alpha} \times \widetilde{E}_{\alpha}$ of \widetilde{E}_{α} and \widetilde{E}_{α}. Conversely for any $(\widetilde{e}, \tilde{f}) \in \widetilde{E}_{\alpha} \times \widetilde{E}_{\alpha}$, there exists a unique element h of E_{α} such that $(\tilde{h}, \tilde{h})=(\widetilde{e}, \tilde{f})$. Since R is an inverse semigroup, every element ξ of R has a unique inverse. We shall denote it by ξ^{-1}.

To each ordered pair (ξ, η) of elements ξ, η of R, let correspond a mapping $\rho_{(\xi, \eta)}:\left(\widetilde{E}_{\xi \xi-1} \times \widetilde{\widetilde{E}}_{\xi-1 \xi}\right) \times\left(\widetilde{E}_{\eta \eta-1} \times \widetilde{E}_{\eta-1 \eta}\right) \rightarrow \widetilde{E}_{\xi \eta(\xi \eta)^{-1}} \times \widetilde{E}_{(\xi \eta)^{-1} \xi_{\eta}} . \quad$ If the system $\left\{\rho_{(\xi, \eta)}: \xi, \eta \in R\right\}$ of these mappings $\rho_{(\xi, \eta)}$ satisfies the follow-
ing condition (3.3), then this system $\left\{\rho_{(\xi, \eta)}: \xi, \eta \in R\right\}$ is called a set of quasi-direct factors of E with respect to R :

Hereafter, we shall use the following notations.

$$
\rho_{(\xi \eta, \nu)}{ }^{\circ}\left\llcorner\rho_{(\xi, \eta)}\left(\left(\widetilde{e}_{1}, \tilde{\tilde{f}}_{1}\right),\left(\widetilde{e}_{2}, \tilde{\tilde{f}}_{2}\right),\left(\widetilde{e}_{3}, \tilde{\tilde{f}}_{3}\right)\right)\right.
$$

means

$$
\rho_{(\xi \eta, \nu)}\left(\rho_{(\xi, \eta)}\left(\left(\widetilde{e}_{1}, \tilde{\tilde{f}_{1}}\right),\left(\widetilde{e}_{2}, \tilde{\tilde{f}}_{2}\right)\right),\left(\widetilde{e}_{3}, \tilde{\tilde{f}}_{3}\right)\right),
$$

and

$$
\rho_{(\xi, \eta \nu)}{ }^{\circ} R \rho_{(\eta, \nu)}\left(\left(\widetilde{e}_{1}, \tilde{f_{1}}\right),\left(\tilde{e}_{2}, \tilde{\tilde{f}}_{2}\right),\left(\widetilde{e}_{3}, \tilde{f}_{3}\right)\right)
$$

means

$$
\left.\rho_{(\xi, \eta)\rangle}\left(\left(\widetilde{e}_{1}, \tilde{\tilde{f}}_{1}\right), \rho_{(r, \nu)}\left(\widetilde{e}_{2}, \tilde{f}_{2}\right),\left(\widetilde{e}_{3}, \tilde{f}_{3}\right)\right)\right)
$$

for elements $e_{1}, f_{1}, e_{2}, f_{2}, e_{3}, f_{3}$ such that $e_{1} \in E_{\xi_{\xi}^{-1}}, f_{1} \in E_{\xi^{-1}}, e_{2} \in E_{\eta \eta-1}$, $f_{2} \in E_{\eta-1 \eta}, e_{3} \in E_{\nu \nu-1}$ and $f_{3} \in E_{\nu-1 \nu}$.

$$
\left\{\begin{array}{l}
\text { (1) If } \xi, \eta \in L \text {, then } \rho_{(\xi, \eta)}\left(\left(\widetilde{e}_{1}, \tilde{f}_{1}\right),\left(\widetilde{e_{2}}, \tilde{f_{2}}\right)\right)=(\widetilde{e f}, \widetilde{e f}) \text {, where } \\
e, f \text { are elements of } E_{\xi}, E_{\eta} \text { respectively such that } \widetilde{e}=\widetilde{e}_{1}, \\
\widetilde{e}=\tilde{f}_{1}, \widetilde{f}=\widetilde{e}_{2} \text { and } \tilde{f}=\tilde{f}_{2} . \tag{3.3}\\
\text { (2) } \rho_{(\xi \eta, \nu)}{ }^{\circ} \rho_{(\xi, \eta)}=\rho_{(\xi, \eta \nu)}{ }^{\circ} \rho_{(\eta, \nu)} \text { for all } \xi, \eta, \nu \in R \text {. } \\
\text { (3) For any } \xi \in R, e \in E_{\xi \xi-1} \text { and } f \in E_{\xi-1} \text {, there exist } \\
h \in E_{\xi-1 \xi} \text { and } k \in E_{\xi \xi-1} \text { such that } \\
\quad \rho_{(\xi, \xi-1 \xi)}{ }^{\circ}{ }^{R} \rho_{(\xi-1, \xi)}((\widetilde{e}, \tilde{f}),(\widetilde{h}, \tilde{\tilde{k}}),(\widetilde{e}, \tilde{f}))=(\widetilde{e}, \tilde{f}) \text {. }
\end{array}\right.
$$

The author does not know whether such a system $\left\{\rho_{(\xi, \eta)}: \xi, \eta \in R\right\}$ always exists or not for given R and E. However, we shall show later that a set of quasi-direct factors of E with respect to R always exists if E, R have some special types.

Now, suppose that $\left\{\rho_{(\xi, \eta)}: \xi, \eta \in R\right\}$ is a set of quasi-direct factors of E with respect to R. Let $E \times R=\left\{((\widetilde{e}, \tilde{f}), \xi): e \in E_{\xi^{-1}}, f \in E_{\xi^{-1}}, \xi \in R\right\}$, and define multiplication in $E \times R$ as follows:

$$
\begin{equation*}
\left(\left(\widetilde{e}_{1}, \tilde{f}_{1}\right), \xi\right)\left(\left(\widetilde{e}_{2}, \tilde{f}_{2}\right), \eta\right)=\left(\rho_{(\xi, \eta)}\left(\left(\widetilde{e}_{1}, \tilde{f}_{1}\right),\left(\widetilde{e}_{2}, \tilde{f}_{2}\right)\right), \xi \eta\right) . \tag{3.4}
\end{equation*}
$$

Then, $E \times R$ becomes a strictly regular semigroup which has R as its homomorphic image and embeds E as the band of its idempotents. It is easy to see from the definition of the multiplication in $E \times R$ and (1) of (3.3) that E is embedded in $E \times R$ as the band of idempotents of $E \times R$ and R is a homomorphic image of $E \times R$, while it follows from (2), (3) of (3.3) that $E \times R$ is a strictly regular semigroup. Hereafter, we shall call $E \times R$ the quasi-direct product of E and R determined by $\left\{\rho_{(\xi, \eta)}: \xi, \eta \in R\right\}$.

Examples. I. Let R be a weakly C-inversive semigroup (see [6]; Ljapin [3] has called R a completely regular inverse semigroup), that is a semigroup such that
(1) the idempotents of R form a semilattice L,
(2) there exists a subgroup $R(\alpha)$ of R containing α for every $\alpha \in L$, and the collection $\{R(\alpha): \alpha \in L\}$ of all $R(\alpha)$ satisfies (a) $R=$ $\sum\{R(\alpha): \alpha \in L\}$, and (b) $R(\beta) R(\gamma) \subset R(\beta \gamma)$ for all $\beta, \gamma \in L$.

Of course, R is an inverse semigroup and satisfies $\xi \xi^{-1}=\xi^{-1} \xi$ and $(\xi \eta)(\xi \eta)^{-1}=(\xi \eta)^{-1}(\xi \eta)=\xi \xi^{-1} \eta \eta^{-1}$ for all $\xi, \eta \in R$. Let E be a band having $E \sim \sum\left\{E_{\alpha}: \alpha \in L\right\}$ as its structure decomposition. Now, define a mapping $\rho_{(\xi, \eta)}:\left(\widetilde{E}_{\xi \xi^{-1}} \times \widetilde{\widetilde{E}}_{\xi \xi^{-1}}\right) \times\left(\widetilde{E}_{\eta \eta-1} \times \widetilde{\widetilde{E}}_{\eta \eta-1}\right) \rightarrow \widetilde{E}_{\xi \eta(\xi \eta)^{-1}} \times \widetilde{\widetilde{E}}_{(\xi \eta)^{-1 \xi \eta}}$ for every ordered pair (ξ, η) of elements of R as follows:

$$
\begin{equation*}
\rho_{(\xi, \eta)}\left(\left(\widetilde{e}_{1}, \tilde{\tilde{f}}_{1}\right),\left(\widetilde{e}_{2}, \tilde{\tilde{f}_{2}}\right)\right)\left(=\rho_{(\xi, \eta)}((\widetilde{e}, \tilde{e}),(\widetilde{f}, \tilde{f}))\right)=(\widetilde{e f}, \widetilde{e f}) \tag{3.5}
\end{equation*}
$$

where e, f are elements of $E_{\xi \xi^{-1}}$ and $E_{\eta \eta-1}$ respectively such that $\widetilde{e}=$ $\widetilde{e}_{1}, \tilde{e}=\tilde{\tilde{f}}_{1}, \tilde{f}=\widetilde{e}_{2}$ and $\tilde{\tilde{f}}=\tilde{\tilde{f}}_{2}$. The existence of such elements e, f and their uniqueness are easily verified.

Then the system $\left\{\rho_{(\xi, \eta)}: \xi, \eta \in R\right\}$ satisfies the conditions (1), (2), (3) of (3.3) and becomes a set of quasi-direct factors of E respect to R. Hence, there exists the quasi-direct product $E \times R$ of E and R determined by $\left\{\rho_{(\xi, \eta)}: \xi, \eta \in R\right\}$. That is,

$$
\left\{\begin{array}{l}
E \times R=\left\{((\widetilde{e}, \tilde{\tilde{f}}), \xi): e \in E_{\xi \xi^{-1}}, f \in E_{\xi^{-1}}, \xi \in R\right\}, \text { and multi- } \\
\text { plication in } E \times R \text { is given by } \\
\left(\left(\widetilde{e}_{1}, \widetilde{f_{1}}\right), \eta\right)\left(\left(\widetilde{e_{2}}, \tilde{f_{2}}\right), \nu\right)=\left(\rho_{(\eta, \nu)}\left(\left(\widetilde{e_{1}}, \tilde{f_{1}}\right),\left(\widetilde{e_{2}}, \tilde{f_{2}}\right)\right), \eta \nu\right) \\
\left(=\left(\rho_{(\eta, \nu)}((\widetilde{e}, \widetilde{e}),(\widetilde{f}, \tilde{f})), \eta \nu\right)\right)=((\widetilde{e f}, \widetilde{e f}), \eta \nu), \\
\text { where } e, f \text { are elements of } E_{\eta \eta-1} \text { and } E_{\nu \nu-1} \text { respectively } \\
\text { such that } \widetilde{e}=\widetilde{e_{1}}, \tilde{e}=\widetilde{\tilde{f}_{1}}, \tilde{f}=\widetilde{e}_{2} \text { and } \tilde{\tilde{f}}=\widetilde{f}_{2}
\end{array}\right.
$$

On the other hand, let $E \bowtie R(L)$ be the spined product (for the definition of spined products, see [5] or [6]) of E and R with respect to L. Then $E \bowtie R(L)=\sum\left\{E_{\alpha} \times R(\alpha): \alpha \in L\right\}$ by the definition of spined products. Define a mapping $\varphi: E \bowtie R(L) \rightarrow E \times R$ as follows: $\varphi(e, \xi)=$ $((\widetilde{e}, \tilde{e}), \xi),(e, \xi) \in E \bowtie R(L)$. Then it is easy to see that φ is an isomorphism of $E \bowtie R(L)$ onto $E \times R$. Hence, in this case the quasidirect product $E \times R$ means the spined product $E \bowtie R(L)$.
II. Let R be an inverse semigroup, and L the basic semilattice of R. Let E be a normal band having the structure decomposition $E \sim \sum\left\{E_{\alpha}: \alpha \in L\right\}$. Since E is a normal band, \widetilde{E} and \widetilde{E} are a left normal band and a right normal band respectively (see [6], [7]); hence $\widetilde{e} \tilde{f}=\widetilde{e f}$ for $\widetilde{e}, \tilde{f} \in \widetilde{E}$ and $\tilde{e} \tilde{\tilde{f}}=\widetilde{e f}$ for $\tilde{e}, \tilde{f} \in \widetilde{\tilde{E}}$.

Now, define a mapping $\rho_{(\xi, \eta)}:\left(\widetilde{E}_{\xi^{-1}} \times \widetilde{\widetilde{E}}_{\xi^{-1}}\right) \times\left(\widetilde{E}_{\eta \eta-1} \times \widetilde{\widetilde{E}}_{\eta-1 \eta}\right) \rightarrow$ $\widetilde{E}_{\xi \eta(\xi \eta)^{-1}} \times \widetilde{\widetilde{E}}_{(\xi \eta)^{-1} \xi \eta}$ for every ordered pair (ξ, η) of elements ξ, η of R as follows:

$$
\begin{equation*}
\rho_{(\xi, \eta)}\left(\left(\widetilde{e_{1}}, \widetilde{\tilde{f}_{1}}\right),\left(\widetilde{e_{2}}, \tilde{f_{2}}\right)\right)=\left(\widetilde{e_{1} h}, \widetilde{g_{2}}\right), \tag{3.6}
\end{equation*}
$$

where h, g are any elements of $E_{(\xi \eta)(\xi \eta)^{-1}}$ and $E_{(\xi \eta)^{-1}(\xi \eta)}$ respectively.
It was proved by [6] that $\widetilde{e_{1} h}$ and $\widetilde{g f_{2}}$ do not depend on the selection of h, g and hence $\rho_{(\xi, \eta)}$ is well-defined. It is also seen from [6] that the system $\left\{\rho_{(\xi, \eta)}: \xi, \eta \in R\right\}$ satisfies (1), (2), (3) of (3.3) and becomes a set of quasi-direct factors of E with respect to R. Hence, we can consider the quasi-direct product $E \times R$ of E and R determined by $\left\{\rho_{(\xi, \eta)}: \xi, \eta \in R\right\}$.

That is,

$$
\left\{\begin{array}{l}
E \times R=\left\{((\widetilde{e}, \tilde{f}), \nu): e \in E_{\nu \nu-1}, f \in E_{\nu-1}, \nu \in R\right\}, \text { and multi- } \\
\text { plication in } E \times R \text { is defined by } \\
\left(\left(\widetilde{e}_{1}, \widetilde{f_{1}}\right), \xi\right)\left(\left(\widetilde{e_{2}}, \tilde{f_{2}}\right), \eta\right)=\left(\rho_{(\xi, \eta)}\left(\left(\widetilde{e}_{1}, \widetilde{\tilde{f}_{1}}\right),\left(\widetilde{e}_{2}, \tilde{f}_{2}\right)\right), \xi \eta\right) \\
\quad=\left(\left(\left(\widetilde{e_{1} h}, \widetilde{g f_{2}}\right), \xi \eta\right)=\left(\left(\widetilde{\widetilde{e}_{1} h}, \widetilde{\tilde{g}} \tilde{f}_{2}\right), \xi \eta\right),\right. \\
\text { where } h, g \text { are any elements of } E_{\xi \eta(\xi \eta)^{-1}} \text { and } E_{(\xi \eta)^{-1} \xi \eta} \text { re- } \\
\text { spectively. }
\end{array}\right.
$$

On the other hand, we can also consider the quasi-direct product $Q(\widetilde{E} \otimes R \otimes \widetilde{E} ; L)$ of $\widetilde{E}, \widetilde{\widetilde{E}}$ and R in the sense of [6]. Define a mapping $\varphi: Q(\widetilde{E} \otimes R \otimes \widetilde{\widetilde{E}} ; L) \rightarrow E \times R$ by $\varphi((\widetilde{e}, \tilde{\xi}, \tilde{f}))=((\widetilde{e}, \tilde{f}), \xi), e \in E_{\xi \xi^{-1}}, f \in E_{\xi^{-1 \xi}}$, $\xi \in R$. Then, it is easy to verify that this φ is an isomorphism of $Q(\widetilde{E} \otimes R \otimes \widetilde{\widetilde{E}} ; L)$ onto $E \times R .^{3}$ Hence, the concept of quasi-direct products just introduced above is a generalization of the old concept of quasi-direct products introduced by [6].

Now, let R be an inverse semigroup whose basic semilattice is L. Let E be a band having L as its structure semilattice (for the definition of structure semilattices, see [6]). Examples I and II show that there exists a quasi-direct product of E and R if, in particular, R is a union of groups or E is a normal band. However, in case that R and E have no restriction we do not know whether there exists a quasi-direct product of E and R or not. Therefore, we state it as an open problem:

[^5]Problem. Let R be an inverse semigroup whose basic semilattice is L. Let E be a band having L as its structure semilattice. Is there a quasi-direct product of E and L ? In case that a quasi-direct product of E and L exists, is it unique?
4. A structure theorem. In this section, we shall show that any strictly regular semigroup is isomorphic to a quasi-direct product of a band and an inverse semigroup. More precisely, let S be a strictly regular semigroup and E the band consisting of all idempotents of S. Let σ be the congruence relation on S which gives the greatest inverse semigroup decomposition of S. Then as was shown in Theorem $1, S$ is a regular extension of E by S / σ. Further it will be shown in this section that such a regular extension of E by S / σ which is isomorphic to S can be obtained as a quasi-direct product of E and S / σ.

Let S be a strictly regular semigroup, and E the band consisting of all idempotents of S. Let $E \sim \sum\left\{E_{\alpha}: \alpha \in L\right\}(L$ semilattice) be the structure decomposition of E. Let σ be the congruence relation on S which gives the greatest inverse semigroup decomposition of S. Put $S / \sigma=R$. Let \bar{x} denote the congruence class containing $x \in S \bmod \sigma$. As was shown in the $\S 2, E / \sigma_{E}$ (where σ_{E} is the restriction of σ to E), is the basic semilattice of S / σ. Hence we can assume that $E / \sigma_{E} \equiv L$. Of course, in this case $E / \sigma_{E}=\left\{E_{\alpha}: \alpha \in L\right\}=\left\{E_{\bar{e}}^{-}: \bar{e} \in E / \sigma_{E}\right\} .^{4}$

Now, we construct a set of quasi-direct factors $\rho_{(\bar{x}, \bar{y})}$ of E with respect to R as follows: Let $\widetilde{E}=E / \pi_{1}$ and $\widetilde{E}=E / \pi_{2}$, where π_{1}, π_{2} are the equivalence relations on E defined by (3.1) and (3.2) respectively. Let $\widetilde{E}_{\bar{e}}=E_{\bar{e}} / \pi_{1}$ and ${\widetilde{E_{\bar{e}}}}^{\prime} / \pi_{2}$. For every ordered pair (\bar{x}, \bar{y}) of elements \bar{x}, \bar{y} of R, define a mapping

$$
\rho_{(\bar{x}, \bar{y})}:\left(\widetilde{E}_{\bar{x} \bar{x}-1} \times \widetilde{E}_{\bar{x}-1_{\bar{x}}}\right) \times\left(\widetilde{E}_{\bar{y} \bar{y}-1} \times \widetilde{E}_{\bar{y}-1 \bar{y}}\right) \longrightarrow \widetilde{E}_{\overline{x y}(\overline{x y})^{-1}} \times \widetilde{E}_{(\overline{x y})-1 \overline{x y}}
$$

by

$$
\begin{equation*}
\rho_{(\bar{x}, \bar{y})}\left(\left(\widetilde{e}_{1}, \tilde{\tilde{f}}_{1}\right),\left(\widetilde{e}_{2}, \tilde{f}_{2}\right)\right)=\widetilde{\left(u v(u v)^{*}\right.}, \overline{\left(\overline{u v)^{*} u v}\right)}, \tag{4.1}
\end{equation*}
$$

where u, v are elements of S such that $\bar{u}=\bar{x}, \bar{v}=\bar{y}, \widetilde{u u^{*}}=\widetilde{e_{1}}, \widetilde{u^{*} u}=$ $\widetilde{\tilde{f}_{1}}, \widetilde{v v}^{*}=\widetilde{e}_{2}$ and $\overline{v^{*} v}=\tilde{\tilde{f}_{2}}\left(u^{*}, v^{*},(u v)^{*}\right.$ are inverses of $u, v, u v$ respectively ${ }^{5}$). For an element x of a regular semigroup, hereafter we shall use the notation x^{*} to denote an inverse of x. Hence, for example, a^{*} means any inverse of a.

The existence of u, v in (4.1) and their uniqueness are obvious.

[^6]from the following result:
Lemma 5. For any elements \bar{x} of R, e of $E_{\bar{x} \bar{x}-1}$ and f of $E_{\bar{x}-1 \bar{x}}$, there exists a unique element u of S such that $\bar{u}=\bar{x}, \widetilde{u u^{*}}=\widetilde{e}$ and $\stackrel{\overline{u^{*} u}}{ }=\tilde{f}$. In fact, $u=\operatorname{exf}$ has these properties.

Proof. Let $u=e x f$. Since $\bar{x}=\overline{x x^{*}} \bar{x} \overline{x^{*} x}=\left(\bar{x} \bar{x}^{-1}\right) \bar{x}\left(\bar{x}^{-1} \bar{x}\right)=\bar{e} \bar{x} \bar{f}=$ $\overline{e f x}$, we have $\bar{x}=\overline{e x f}=\bar{u}$. Now, we can take $f x^{*} e$ as an inverse of u (see [4]). Hence, let $u^{*}=f x^{*} e$. Since $\bar{e}=\bar{x} \bar{x}^{-1}=\bar{x} \overline{x^{*}}=\bar{u} \overline{u^{*}}=\overline{u u^{*}}$, both e and $u u^{*}$ are contained in $E_{\bar{e}}^{-}$. Hence, $e=e u u^{*} e=e(e x f)\left(f x^{*} e\right) e=$ $(e x f)\left(f x^{*} e\right)=u u^{*}$. That is, $e=u u^{*}$. Similarly, we obtain $u^{*} u=f$. Therefore, of course $\widetilde{e}=\widetilde{u u^{*}}$ and $\tilde{\tilde{f}}=\overline{\overline{u^{*} u}}$. Next, we shall prove that such an element u is unique. Let v be any element of S such that $\bar{v}=\bar{x}, \overline{v v^{*}}=\widetilde{e}$ and $\overline{\overline{v^{*} v}}=\widetilde{\tilde{f}}$. Since $\widetilde{u u^{*}}=\widetilde{v v^{*}}, \overline{\widetilde{u^{*} u}}=\overline{\overline{v^{*} v}}$ and $\bar{u}=\bar{v}$, we have $v v^{*} u u^{*}=u u^{*}, u^{*} u v^{*} v=u^{*} u$ and $u \sigma v$. Since $u \sigma v, v^{*} u v^{*}=v^{*}$. Hence,

$$
\begin{aligned}
u & =u u^{*} u=\left(v v^{*} u u^{*}\right) u=v v^{*} u\left(u^{*} u\right)=v v^{*} u\left(u^{*} u v^{*} v\right) \\
& =v v^{*}\left(u u^{*} u\right) v^{*} v=v\left(v^{*} u v^{*}\right) v=v v^{*} v=v .
\end{aligned}
$$

Consequently, $u=v$.
When we consider an element \bar{x} of R as a subset of S, we shall denote it by $S_{\bar{x}}$. Of course $S_{\bar{x}}=S_{\bar{y}}$ if and only if $\bar{x}=\bar{y}$, i.e., $x \sigma y$.

Lemma 6. For $\bar{x} \in R$,
(1) $S_{\bar{x}}=\left\{e x f: e \in S_{\bar{x} \bar{x}-1}\left(=E_{\bar{x} \bar{x}-1}\right), f \in S_{\bar{x}-1 \bar{x}}\left(=E_{\bar{x}-1 \bar{x}}\right)\right\}$,
(2) $\left|S_{\bar{x}}\right|=\left|\widetilde{E}_{\bar{x} \bar{x}-1}\right|\left|\widetilde{E}_{\bar{x}-1 \bar{x}}\right|^{6}$, and
(3) for $e, e^{\prime} \in E_{\bar{x} \bar{x}-1}$ and for $f, f^{\prime} \in E_{\bar{x}^{-1} \bar{x}}$, exf $=e^{\prime} x f^{\prime}$ if and only if $\tilde{e}=\widetilde{e}^{\prime}$ and $\tilde{\tilde{f}}=\widetilde{f^{\prime}}$.

Proof. Let exf be an element of $\left\{\right.$ exf $\left.; e \in S_{\bar{x} \bar{x}-1}, f \in S_{\bar{x}-1 \bar{x}}\right\}$. Then since $\overline{e x f}=\bar{x} \bar{x}^{-1} \bar{x} \bar{x}^{-1} \bar{x}=\bar{x}$, exf is an element of $S_{\bar{x}}$. Conversely let $y \in S_{\bar{x}}$, and put $y y^{*}=e^{\prime}$ and $y^{*} y=f^{\prime} . \quad \bar{y}=\bar{x}$ implies y^{*} is an inverse of x. Hence $y=y y^{*} y=y y^{*} x y^{*} y=e^{\prime} x f^{\prime}$. Therefore, y is contained in the set $\left\{e x f: e \in E_{\bar{x} \bar{x}-1}, f \in E_{\bar{x}-1 \bar{x}}\right\}$. Thus (1) is satisfied. Since (2) is obvious from (1) and (3), we next prove only the part (3). Suppose that $e x f=e^{\prime} x f^{\prime}, e, e^{\prime} \in E_{\bar{x} \bar{x}-1}$ and $f, f^{\prime} \in E_{\bar{x}-1 \bar{x}}$. Then $\overline{e x f}=\overline{e^{\prime} x f^{\prime}}=\bar{x}$. As is seen from Lemma 5, these elements satisfy $\widehat{(e x f)(e x f)^{*}}=\widetilde{e}$, $\left(\widetilde{\left(e^{\prime} x f^{\prime}\right)\left(e^{\prime} x f^{\prime}\right)^{*}}=\widetilde{\tilde{e}^{\prime}}, \overline{(e x f)^{*}(e x f}\right)=\tilde{\tilde{f}}$ and $\overline{\left(e^{\prime} x f^{\prime}\right)^{*}\left(e^{\prime} x f^{\prime}\right)}=\widetilde{\tilde{f}^{\prime}}$. Since exf= $e^{\prime} x f^{\prime}$, it follows from the above that $\widetilde{e}=\widetilde{e^{\prime}}$ and $\tilde{f}=\widetilde{f^{\prime}}$. Conversely,
${ }^{6}$ If A is a set, the notation $|A|$ means the cardinality of A.
suppose that $\tilde{e}=\widetilde{e^{\prime}}, \tilde{f}=\tilde{f^{\prime}}, e, e^{\prime} \in E_{\bar{x} \bar{x}-1}$ and $f, f^{\prime} \in E_{\bar{x}-1 \bar{x}}$. Then, we have $\overline{e x f}=\bar{x}=\overline{e^{\prime} x f^{\prime}},\left(\overline{e x f)(e x f)^{*}}=\widetilde{e}=\widetilde{e^{\prime}}=\widehat{\left(e^{\prime} x f^{\prime}\right)\left(e^{\prime} x f^{\prime}\right.}\right)^{*}$ and

$$
\overline{\left(\overline{e x f)^{*}(e x f)}\right.}=\tilde{\tilde{f}}=\tilde{\tilde{f}^{\prime}}=\overline{\left(\overline{\left.e^{\prime} x f^{\prime}\right)^{*}\left(e^{\prime} x f^{\prime}\right.}\right)} .
$$

Hence by Lemma 5, two elements exf, $e^{\prime} x f^{\prime}$ must be the same.
Corollary. If R is finite, then $|S|=\sum_{\bar{x} \in R}\left|\widetilde{E}_{\bar{x} \bar{x}-1} \| \widetilde{\widetilde{E}}_{\bar{x}-1 \bar{x}}\right|$.
Proof. Obvious.
For every ordered pair (\bar{x}, \bar{y}) of elements \bar{x}, \bar{y} of R, anyway $\rho_{(\bar{x}, \bar{y})}$ is well-defined. Let $\Omega=\left\{\rho_{(\bar{x}, \bar{y})}: \bar{x}, \bar{y} \in R\right\}$ be the collection of all these $\rho_{(\bar{x}, \bar{y})}$. Then, it is easy to see that Ω becomes a set of quasi-direct factors of E with respect to R, that is, Ω satisfies the conditions (1), (2), (3) of (3.3). We shall give a proof only for the condition (2) which is the most complicated condition among the three.

We should prove

$$
\begin{aligned}
(2) \text { of }(3.3): & \rho_{(\widetilde{x} \bar{y}, \bar{z})}\left(\rho_{\langle\widetilde{x}, \bar{y})}\left(\left(\widetilde{e}_{1}, \tilde{\tilde{f}}_{1}\right),\left(\widetilde{e}_{2}, \tilde{f}_{2}\right)\right),\left(\widetilde{e}_{3}, \tilde{f}_{3}\right)\right) \\
& =\rho_{(\bar{x}, \bar{z} \bar{z})}\left(\left(\widetilde{e}_{1}, \tilde{f}_{1}\right), \rho_{(\bar{y}, \bar{z})}\left(\left(\widetilde{e}_{2}, \tilde{f}_{2}\right),\left(\widetilde{e}_{3}, \tilde{f}_{3}\right)\right) .\right.
\end{aligned}
$$

By Lemma 5, there exist unique u, v, w such that $\bar{u}=\bar{x}, \widetilde{u u^{*}}=\widetilde{e_{1}}$, $\overline{\overline{u^{*} u}}=\tilde{f}_{1}, \bar{v}=\bar{y}, \widetilde{v v^{*}}=\widetilde{e}_{2}, \overline{\widetilde{v^{*} v}}=\tilde{f}_{2}, \bar{w}=\bar{z}, \widetilde{w w^{*}}=\widetilde{e}_{3}$ and $\widetilde{w^{*} w}=\tilde{\tilde{f}}_{3}$. Hence $\rho_{(\widetilde{x}, \bar{y})}\left(\left(\widetilde{e}_{1}, \tilde{f}_{1}\right),\left(\widetilde{e}_{2}, \tilde{f}_{2}\right)\right)=\overline{\left(u v(u v)^{*}\right.}, \overline{\left.(u v)^{*} u v\right)}$, and hence

$$
\begin{aligned}
\rho_{(\bar{x} \bar{y}, \bar{z})}\left(\rho_{(\bar{x}, \bar{y})}\left(\left(\widetilde{e}_{1}, \tilde{f}_{1}\right),\left(\widetilde{e}_{2}, \tilde{f}_{2}\right)\right),\left(\widetilde{e}_{3}, \tilde{f}_{3}\right)\right) & =\rho_{(\bar{x} y, \bar{z})}\left(\widetilde{\left(u v(u v)^{*}\right.}{ }^{\left.(u v)^{*} u v\right)},\left(\widetilde{e}_{3}, \tilde{f}_{3}\right)\right) \\
& =\widetilde{\left(u v w(u v w)^{*}\right.}, \widetilde{\left.(u v w)^{*} u v w\right)} .
\end{aligned}
$$

On the other hand, $\rho_{(\bar{y}, \bar{z} \mid}\left(\left(\widetilde{e}_{2}, \tilde{\tilde{f}_{2}}\right),\left(\widetilde{e}_{3}, \tilde{\tilde{f}}_{3}\right)\right)=\left(\widetilde{\left(v w(v w)^{*}\right.}, \widetilde{(v w)^{*} v w}\right)$. Hence $\rho_{(\bar{x}, \bar{y})}\left(\left(\widetilde{e}_{1}, \tilde{f}_{1}\right), \rho_{(\bar{y}, \bar{z})}\left(\left(\widetilde{e}_{2}, \tilde{\tilde{f}}_{2}\right),\left(\widetilde{e}_{3}, \tilde{f}_{3}\right)\right)\right)=\rho_{(\bar{x}, \bar{z})}\left(\left(\widetilde{e}_{1}, \tilde{\tilde{f}}_{1}\right),\left(\widetilde{\left(v w(v w)^{*}\right.}, \widetilde{(v w)^{*} v w}\right)\right)=$ $\widetilde{\left(u v w(u v w)^{*}\right.},\left(\begin{array}{l}\left.u v w)^{*} u v w\right)\end{array}\right.$. Accordingly, (2) of (3.3) is satisfied. Since Ω is a set of quasi-direct factors of E with respect to R, we can consider the quasi-direct product $E \times R$ of E and R determined by Ω.

Now,

$$
\begin{equation*}
E \times R=\left\{((\widetilde{e}, \tilde{\tilde{f}}), \bar{x}): \bar{x} \in R, e \in E_{\bar{x} \bar{x}-1}, f \in E_{\bar{x}-1 \bar{x}}\right\} \tag{4.2}
\end{equation*}
$$

and multiplication in $E \times R$ is of course given by

$$
\left.\left(\left(\tilde{e}_{1}, \tilde{\tilde{f}}_{1}\right), \bar{x}\right)\left(\left(\widetilde{e}_{2}, \tilde{\tilde{f}}_{2}\right), \bar{y}\right)=\left(\rho_{(\bar{x}, \bar{y})}\left(\left(\widetilde{e}_{1}, \tilde{\tilde{f}}_{1}\right)\right),\left(\widetilde{e}_{2}, \tilde{\tilde{f}}_{2}\right)\right), \bar{x} \bar{y}\right)
$$

As to the connection between these S and $E \times R$, we have the following theorem which is the main result of this paper:

Theorem 3. Let S be a strictly regular semigroup, and E the band consisting of all idempotents of S. Let R be the greatest inverse
semigroup homomorphic image of S. Then, S is isomorphic to a quasi-direct product of E and R.

Proof. Take the quasi-direct product $E \times R$ obtained by (4.2), and consider the mapping $\varphi: S \rightarrow E \times R$ defined by $\varphi(x)=\left(\overline{\left(x x^{*}\right.}, \widetilde{\left.\widetilde{x^{*} x}\right)}, \bar{x}\right), x \in S$. It is obvious from Lemmas 5 and 6 that φ is one-to-one and onto. Further, we have

$$
\left.\left.\left.\begin{array}{rl}
\varphi(x) \varphi(y) & =\left(\widetilde{\left(x x^{*}\right.}, \widetilde{x^{*} x}\right)
\end{array}\right), \bar{x}\right)\left(\left(\widetilde{\left(y y^{*}\right.}, \widetilde{\widetilde{y^{*} y}}\right), \bar{y}\right) \quad, \quad\left(\widetilde{\left.\widetilde{y^{*} y}\right)}\right), \bar{x} \bar{y}\right)\left(\left(\left(\widetilde{x y)(x y)^{*}}, \widetilde{(x y)^{*}(x y}\right)\right), \overline{x y}\right)
$$

Hence, φ is an isomorphism.
Finally the author is indebted to Professor Naoki Kimura for valuable discussions and for substantial help in the development of the material of this paper.

References

1. A. H. Clifford and G. B. Preston, Algebraic theory of semigroups, Vol. I, Amer. Math. Soc., Providence, Rhode Island, 1961.
2. -, Algebraic theory of semigroups, Vol. II, Amer. Math. Soc., Providence, Rhode Island, 1967.
3. E. S. Ljapin, Semigroups, Amer. Math. Soc., Providence, Rhode Island, 1963.
4. N. R. Reilly and H. E. Scheiblich, Congruences on regular semigroups, Pacific J. Math. 23 (1967), 349-360.
5. M. Yamada, Strictly inversive semigroups, Science Reports of Shimane University 13 (1964), 128-138.
6. -, Regular semigroups whose idempotents satisfy permutation identities, Pacific J. Math. 21 (1967), 371-392.
7. M. Yamada and N. Kimura, Note on idempotent semigroups, II, Proc. Japan Acad. 34 (1958), 110-112.

Received May 12, 1969. This research has been partially supported by the National Science Foundation under Grant GP-7429.

University of Arkansas, Fayetteville, Arkansas and
Shimane University, Matsue, Japan
Pacific Journal of MathematicsVol. 33, No. $1 \quad$ March, 1970
Mir Maswood Ali, On some extremal simplexes 1
Silvio Aurora, On normed rings with monotone multiplication 15
Silvio Aurora, Normed fields which extend normed rings of integers 21
John Kelly Beem, Indefinite Minkowski spaces 29
T. F. Bridgland, Trajectory integrals of set valued functions 43
Robert Jay Buck, A generalized Hausdorff dimension for functions and sets 69
Vlastimil B. Dlab, A characterization of perfect rings 79
Edward Richard Fadell, Some examples in fixed point theory 89
Michael Benton Freeman, Tangential Cauchy-Riemann equations and uniform approximation 101
Barry J. Gardner, Torsion classes and pure subgroups 109
Vinod B. Goyal, Bounds for the solution of a certain class of nonlinear partial differential equations 117
Fu Cheng Hsiang, On C, 1 summability factors of Fourier series at a given point 139
Lawrence Stanislaus Husch, Jr., Homotopy groups of PL-embedding spaces 149
Daniel Ralph Lewis, Integration with respect to vector measures 157
Marion-Josephine Lim, $\mathscr{L}-2$ subspaces of Grassmann product spaces 167
Stephen J. Pierce, Orthogonal groups of positive definite multilinear functionals 183
W. J. Pugh and S. M. Shah, On the growth of entire functions of bounded index 191
Siddani Bhaskara Rao and Ayyagari Ramachandra Rao, Existence of triconnected graphs with prescribed degrees 203
Ralph Tyrrell Rockafellar, On the maximal monotonicity of subdifferential mappings 209
R. Shantaram, Convergence of a sequence of transformations of distribution functions. II 217
Julianne Souchek, Rings of analytic functions 233
Ted Joe Suffridge, The principle of subordination applied to functions of several variables 241
Wei-lung Ting, On secondary characteristic classes in cobordism theory 249
Pak-Ken Wong, Continuous complementors on B^{*}-algebras 255
Miyuki Yamada, On a regular semigroup in which the idempotents form a band 261

[^0]: 1 The work of Kudo, Richter, Aumann and Hermes cited previously is to be found in references [13], [18], [1] and [11] respectively.

[^1]: 2 I.e., an absolutely continuous function satisfying $\dot{x}(t) \in R(t, x(t))$ a.e. on an interval containing t_{0} in its relative interior and satisfying $x\left(t_{0}\right)=x_{0}$.

[^2]: 1 This result and proof are similar to one given by M. Heins for a subfield of the field of all meromorphic functions on a Riemann surface [$\mathbf{2}, \mathrm{pp}$. 268-269].

[^3]: ${ }^{1}$ An idempotent semigroup T is called a band. If $a b c d=a c b d$ is satisfied for any elements a, b, c, d of T, then T is said to be normal.

[^4]: ${ }^{2} S^{1}$ means the adjunction of an identity 1 to S if S has no identity. If S has an identity, then S^{1} means S itself.

[^5]: ${ }^{3}$ Moreover, we have the following result: If R, E are the inverse semigroup and the normal band given in II, then a quasi-direct product of E and R is uniquely determined up to isomorphisms and is isomorphic to $Q(\widetilde{E} \otimes R \otimes \widetilde{\tilde{E}} ; L)$ (hence of course to the above-mentioned $E \times R$). A proof of this result will be given later elsewhere.

[^6]: ${ }^{4}$ When we regard \bar{e} as a subset of E, we denote it by $E_{\bar{e}}$. Hence, $E_{\bar{e}}=E_{\alpha}$ if and only if $\bar{e} \equiv \alpha$, i.e., $E_{\alpha} \ni e$.
 ${ }_{5}$ For any two inverses u_{1}, u_{2} of $u, \widetilde{u u_{1}}=\widetilde{u u_{2}}$ and $\widetilde{u_{1} u}=\widetilde{u_{2} u}$. Hence, $\widetilde{\sim} u^{*}$ and $\widetilde{u^{*} u}$ do not depend on the selection of an inverse u^{*} of u.

