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ON SOME EXTREMAL SIMPLEXES
Mir M. ALl

Let A be a fixed point in n-dimensional Euclidean space.
Let B, B, -+, B,+; be the vertices of a simplex S, of =n-
dimensions, that is, the n + 1 vertices do not lieon a (n — 1)
dimensional subspace. Let d;, assumed to be positive, be the
distance of B; from A, and let I;; be the cosine of the angle
between the straight lines AB; and AB; for ¢,7=1,2, - -,
n + 1. Let n; denote the (n — 1)-dimensional hyperplane pass-
ing through all the vertices of S, except B;, let p;, assumed
positive, be the perpendicular distance of =; from A, and let
m;; denote the cosine of the angle between the normals from
A to z; and r; for 4,5=1,2,---,n + 1, The present paper
deals with the following problems.

(a) An expression for the content of S,, C(S,) say, in terms
of d; and [l;; for 7,5=1,2,---,n + 1 is first obtained. Then
leaving di, d, -, d,+, fixed, values of l;;, say l5;, are deter-
mined in such a manner that C(S,) is a maximum, and the
maximum value of C(S,) is obtained for the two cases that
arise: (i) when A is inside S,, (ii) when A is outside S..
The latter case does not arise when d, = d; = --+ = dy1.

(b) An expression for C(S,) is obtained in terms of p; and
mij, 1,5 =1,2,-+-,n + 1. Then leaving p,, ps, - -, Pn+: fixed,
values for m,;, say m;, are determined in such a manner that
C(S,) is a minimum, and such C(S,) is computed for the two
cases that arise depending on (i) whether A is inside S, or (ii)
A is outside S,. The latter case does not arise when

Pr=DP2= "+ = Pnt1 .

The results are stated below.
(a) The content of S,, max C(S,) and [; are given by

LD n!C(Sy) = | (Lisdid; + 1) |12
(1.2) max (n!C(S,)? = —u T[ (d} — u)

1.3) UG =ulddy) for 4,5 =1,2,---,m+1; i+,

where u satisfies the equation
n+2

(1.4) 1+uddi—ut=0.
i=1

The unique negative root for u in (1.4) corresponds to the
case when A is inside S,. When the relation
d,=d2: :dn+1

is not satisfied, the smallest positive root for » in (1.4) cor-
responds to the case when A is outside S,. Other roots for
% in (1.4), if any, are inadmissible,

1



2 MIR M. ALI

(b) The content C(S,), min (C(S,)) and m;; are given by

1.5) (IO, = | (pep + mas)IY1T | M
where | M;;| is the cofactor of m;; in |(m;;)| and
(1.6) min (IC(S,) = —v-n [ (9} — 0)
and -

1.7 mb=v/(pp;) for i+35;4,5=1,2 -, n+1;

where v satisfies the equation
n+1
(1.8) 1+vY (pi—v)t=0.
=1
The unique negative root for v in (1.8) corresponds to the
case when A is inside S,. When the relation

P1= P2 = *** = Pnt1

is not satisfied, the smallest positive root for » in (1.8) cor-
responds to the case when A is outside S,. All other roots,
if any, are inadmissible,

When d, =d; = -+ = d.+;,, we obtain the special result
that the largest simplex inscribed in a sphere of n-dimensions
is a regular one, while when p, = p; = --- = p,4; the smallest

simplex circumscribing a sphere is a regular one,

The coordinates of B; referred to a n-dimensional Cartesian co-
ordinate system with origin at A will be denoted by (., %5 ***, ®;0)-
(2, X5 -+, ®,) will denote a general point in the n-space.

2. Extremal simplex determined by the distance of vertices.
The content of S, is given by (Sommerville, p. 124) x!C(S,) = | V|
where

Ly, c0 T 1

XL,y cee 1
2.1 V=" U

-xn+1,1 et xn-}-l,n 1

so that (n!C(S,))! = | VV’'| = |(w,;;)| say, where
(2.2) wi;; =1+ s; for 1,7 =1,2,---,n + 1; and

’
.1 c0e Xyp Ty et Xy

Lo,1 =0 Loy Loy 00 Lo

(2.3) (s:5) =

xn+1,l e xn+l,n an+1,l b Un+1,n

(2-4) = (lijdidj) .
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Hence we have proved (1.1).

We note that s; =dj, fori=1,2, ..., n + 1. From (2.3) we also
note that the rank of (s;;) is less than # + 1 so that |(s;;)| = 0 and
(s;;) is semi-positive definite. Further we note that both (s;;) and
(w;;) are symmetric matrices and since B,, ---, B,,, do not lie on a
(n — 1)-dimensional subspace, we must have |(w;;)|= 0, in fact,
[(w;;)| > 0 since (w;;) is positive definite. Our problem of maximizing
C(S,) with respect to the [;;, 7 == j, for given values of d;, d; > 0, may
be re-stated as follows.

We must maximize |(w;;)| over the class of symmetric matrices
(si;) or (w;;) with respect to s;;,%,7=1,.--,n + 1, subject to the
conditions: [(s;;)| =0 and s; =d; for =1, ---,n + 1. Further (s;;)
should be semipositive definite and |w;;| + 0.

Let 6 and g, -+, ¢t,., be Lagrange multipliers. We seek the
extreme values of the function L with respect to s, 2,7 =1, ---,
n -+ 1, where

L:|wijl“9[3ia‘[+§#¢(8n—d3).
Hence s;; must satisfy
LOL w1 —01S;=0for i%j, 04, =1, ooy n+1
2 0sy;

and 2L — W — 08yl +p=0fori=1,---,m+1;

i1

where | W, | and | S,,| denote co-factors of w,, and s, in | (w;;)| and
| (si;) | respectively.
This implies that

nil 1 oL oL
Wyj+— + W =0
Zf"x "2 Bsy; S

80 that
n+1 n+1
2w | Wi | — 0Zwkilsﬁl + taw,; = 0.
J=1 j=1

Let k = 4; then using (2.2), w,; =1 + s,; and by the well-known
property that expansions in terms of alien co-factors vanish identically
(Aitken, p. 51) we finally obtain

—ﬁgilsmﬂ + paw; =0
80 that s,; = wy; — 1 =0/p; 334 S;;] — 1, for all k- 4. Since the

above expression for s,; is constant for values of £ =1, ---, 2 + 1,
k% + 1, we conclude that the elements of the ¢th column of (s;;), except
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s; = di, must be equal. Since s;; is a symmetric matrix, the above
property extends to the rows of (s;;) and it is easily seen that the
extreme values of L correspond to values s} of s;; where

(2.5) si=ufor i#4,4,7=1,-+,n+1
while
Sé:d%,’é:l’.-o,n_i_l_

Now w can be determined from the relation |s;;| = 0 so that we must
have

a uw - - u

w o odi e -
(2.6) =0.

w o ow - - di

Let us define the determinant

a,
@ Q.
(2.7) Dy(x;ay + 0, a0) = :

XX . .l

From the relation due to Grabeiri (1874) (see Muir, vol. 3, 4, p. 110),
or by subtracting the first row of the above determinant from the
remaining rows and by the use of Cauchy expansion in terms of the
first row and first column, we have

k k
@8)  Diwia, - a) = (1+o3@— o) [ @-0.
Hence from (2.6) v must satisfy the equation
n+1 n+1
2.9) (1 + S (d - u)“) I@-w=0.

From (2.2) and (2.5) the extreme value of (n!C(S,))* for any u
satisfying (2.9) is equal to

D, 1 +wul+d-e,14+d2)
2.10) - (1 L+ u)’g(dz — u)~)(f[ (@ — u))
= (S @ - w)(I é - w)

by the use of (2.9).
Since » = 0 does not satisfy (2.6), we immediately obtain from
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(2.9) that the expression (2.10) is equal to
@.11) —u 1 (& — w)

which is the extreme value of (n!C(s,))* in terms of w. In order that
the content is nonzero we must have w #d: for 1 =1, ---, n + 1.
This statement along with (2.9) implies that % must satisfy the equa-
tion

(2.12) 1+uS@—wt=0.

The roots for u, temporarily assuming that d, ---, d,,, are distinct,
can be located by Decartes rule of signs by checking the signs of the
left-handside of (2.12) for values of u, equal to — o, 0, +c and in
the neighborhood of di, 7 =1, ---,n + 1. Relabelling d; such that
d <d,< -+ <d,,, it is easily verified that all the roots for w are
real, say u,, --, %,., and may be labelled in such a manner that

(2.13) U <0< <u, <di< v <y, < iy

Consider the characteristic roots of (s}) given by |s} — M| = 0. By
(2.5) and (2.7) » must satisfy D, ,(u;d? — A, -+, d2,, — \) = 0. Hence
from (2.9)

n+1 n+1
(1+ug(d§—x—u)—l)_ﬂ(d:-x—u):o.
By similar method as used to obtain (2.13) we find that the roots
for N may be so labelled that A\, = 0 and
@ < Ny + u < diy, t=1,--,10.

In order that all the roots for \ are nonnegative it is easily seen
that the relation

(2.14) i —u>xN=0

must be satisfied so that we must have u < d2. From (2.13) we find
that the only admissible roots for # are u, and u,.

To establish (1.4) it only remains to show that u, corresponds to
the case when A is inside the extremal simplex whereas u, corres-
ponds to the case when A is outside the extremal simplex.

Consider the equation of 7;, passing through all the vertices of
S, except B; having the coordinates (x;,, .-, 2;,), given by

Li(wn "'yxn) =0 ’

where
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T 20 Tu 1

= eee

Wig,y o0t Ly
Ly, «++@,) =2, -, 1

Lit1,1 *** Liti,m 1

Cnt1,1 *** Lutiyn 1].

Now A and B; lie on the same side of x; if and only if L,(«;,, ++-, %;,.).
L0, +--,0) > 0 while 4 and B; lie on opposite sides of x; if and only
if Li(xi,u M xi,n)' Lz(oy ] 0) < 0.

Now by direct multiplication of the determinant L;(x;., «--, @;,,)
with the transpose of the determinant L,(0, 0, --., 0) we obtain

Li(xi,u "'9mi,n)'Li(0y 09 *t O)
14 sy 148, ceeleeel 48,0
1+ s 148, +oeleeel+ 8,0

148 1+ 8peee1 1+ 8susinnaf -

We now assume that S, is an extremal simplex so that from (2.5)
s, =d*,v=1, .-, n+1and s,, =u, v~k v,k=1,+.--,n-+1. Then
in the last determinant each entry in the ¢-th column is 1, the jth
diagonal entry is d% + 1 for j # 4,5 =1, ---, 7 + 1 while the remaining
entries are 1 + w. Subtracting (1 + u) times the ¢-th column from the
remaining columns we immediately obtain

Li@oss + o+ %0) Li(0, ==+, 0) = (d2 — w)= TI (d% — w)
j=1

—u I (2 — )
(—w (@i — )

Since from (2.11) the numerator of the last expression is positive, we
find that A and B; lie on the same side of x; if and only if

—u—l(d% - u) > 0 ’

while they lie on opposite sides of z; if and only if —u~'(d? — u) < 0.

Since —u; (d: — u,) < 0 and —u*(d? — u,) > 0, it is readily checked
that we have proved (1.2), (1.3) and (1.4) in the case when d,, ---, d,,,
are distinct.

Necessary modifications are easily made when some or all of the
d; are not distinct.

Finally we remark that the simplex corresponding to #, has larger
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content than that for w,. This is because

@—u>d—u>0fri=2-+..,n—1

and
—urd =) =1 - D1~ i, =~ — ),
Uy
so that
n+1 n+1
(2.15) —urt T @ = w) >~ T1 @ — )

We also note that when d, =d, = .-+ = d,., (1.4) has a unique nega-
tive root for w and the point A corresponding to this value of u must
lie inside the extremal simplex.

3. Simplex determined by distances of faces. We recall that
the (n — 1)-dimensional hyperplane 7; passes through all the vertices
of S, except B;. The distance of 7; from A is p;. The point B; does
not lie on 7; but does lie on all the remaining n hyperplanes

Tipj#+4,J=1, e ,m+1.
Let 7; be given by (in normal form)
3.1) it €0, + €5, + oo + €;,,8, = € nis
where for notational convenience we have written

(3.2) Di = €intr s

and ¢, ---, ¢;n are the direction cosines of the normal to 7;, so that
we have

k
(3.3) 2 ei,jek,j = mik; 7:, k = 1, 2, ey n + 1; ’Vn“ = 1 .
j=1

The notations used in this section will be listed first and some rela-
tions needed later will be established in order to avoid future digres-
sion.

We define the (r + 1) X (= + 1) matrix £ in double suffix notation
as

(3.4) E = (e

and E;; will denote the co-factor of e;; in E. We also define the
(n + 1) X (n + 1) matrix M as

(3.5) M = (my;)
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and M;; as co-factor of m;; in M.
Let o; denote the signature of | E;,,,| so that

1if [Epn| >0
(3.6) o; = for 1 =1,«ee,n+1.
—1if [E;,.| <0
We remark here that E;,., is nonsingular. This is because
Ty ooy Mgy Wiy ** %y Wpty

have one and only one point in common, namely (x;, -+, 2;,). Since
7; does not pass through the above common point, it is easily seen
that the matrix F is also nonsingular, so that

3.7 |E|#0and |E;,,,|#0,1=1,---,m +1,
Furthermore it is easily seen that

(3.8) | Eipnir | = 0| By By [P = 05| M |
fort=1,.--,n+1

where the radical above as well as all radicals appearing in this paper
will be always taken as positive. Hence from (8.2) and (3.4) we have

(3.9 Bl = S0l Bu | = 30 Ma | = p (say) -
D will denote the diagonal matrix

(3.10) D = Diag. Dy, ***y Dn+1)

and let

(3.11) R = (ry;) = D'MD™

so that »;, =p;2for 1 =1, ---, n + 1. Since

’
€,1 "0 €, €1 "t €

en-H,l e en-!—x,n en+1,1 e en+1,n

we also remark that M and consequently B are symmetric positive
semi-definite matrices, so that |M| =0 and |R| = 0.
Finally, it follows that

(3.1 M| = | Rl (T 92) o

To obtain the content C(S,), we will use the formula (2.1). Since
(@;,, *++x;,) lies on 7;; 5 #14,5 =1, -+, n + 1, we may directly solve
for x;,; from the following 7 linear equations:
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’_el,u ccy € ~~xi,1 7 Pe1,n+1 T
. . @ .
€i1,19 **y €iin * _ €i1,n+1
Cit1,1y * %y Giti,n . €it1,m+1
. . .
‘en+1,1’ Tty en+1,n _,_xi,n, _en+1,n+1_, .

A simple calculation shows that (see (3.4))
Ty = (=1 (=D)"™ | By | /(1) | By ) -
Hence we obtain
;= —|Eiil[| Binsi ;%0 =1, oo ,m + 1.

Substituting these values in | V| of (2.1) and factoring out —1 from
each of the first n columns of V and also factoring out |E;,. |~
from the <th row of V for 4 =1, ..., n 4+ 1, we readily obtain

nIC(S,) = (~1)° | Adj B|[T1 | B
(3.13) o
= (=1 | BP[IT | o]

where |Adj E| is the adjoint determinant of |E|. In order to avoid
the ambiguity of sign in C(S,) we consider (!C(S,))? instead and from
(3.9) and (3.12) we obtain

n+1
@IC(S)F = | B[ 1L | Eows
n+1 2n [n-+1
= (Sows M) [T M)
n+1 2n [n+1
= (Sl Ral) [T 1 Rl -
Our problem of minimization is equivalent to minimizing
n+1 2 In+1
il (S0 R ) [T1 1R ]
1=1 i=1

with respect to r;;, ¢,5 =1, ---, » + 1, subject to the restriction that
ry =pi5,1=1---,m+1and |R| =0 over the class of symmetric
matrices R.

Let N, ¢, ++ ¢, tt,, be Lagrange multipliers and we seek the ex-
treme value of

n+1

L= zn(g o.| R ;1/2)2 - % _

1

n+1
In|R;| — N R| + é#i(m - pi?) .

]
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r;; must satisfy:

L _ iR o 1% 1 3R _ AR g
a’l‘i,- y=1 81"‘-_,; ‘Ryy Il/2 n v=t Ryy a'r” a’r,-j
t#5,%5=1-,n+1
and
OL _ % o, 0R, _ 1% 10R., _, Rl _, _,
arii = v=1 lRw |1/2 arii n ;RW a’rit 0 @ + H

where o is as defined in (3.9).
These equations reduce to

L0L _ 5 (070, R |7 = m| Ry | )] Runiss | — M Rig| = 0
2 a’l"ij v=L
Vi, J
for i #j;4,7=1+,n+1
and
oL

nt1
or. S (70| R, [T =R, [T R | — M By |+ £ =0
i s

where | R,,;;;| is the co-factor of r;; in |R,,|.
Hence the minimizing values of =, r¥, say, must satisfy the
equations in 7;;:

Ty = D7’
and

& 10L . oL _

14 oLy 9L
@.19) iz Ty ors; e ory;
JFi
and
(3.15) S 9L | 0L
g;i 2 a’r‘,-j a’rii

After obvious simplification (3.14) yields
n+1
3. (70| R, |7 = n7'| R, [ R, | + ppi* =0,
s

or

(3.16) Y = pip~'oiR;; .

From (8.15) we obtain for & = 1,
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n4+1n+1
(3.17) ,ZE 2, (0] R, 7207 — 7 Ry [7)res| RBosiig | 4 pars = 0

vki, §
After some calculations we obtain
(3.18) Tee = U7 (On] B [707 — 07 By [7)| R |
It is easily seen from (3.11) that | R;.| = pp.| M, | and
My = | Eipss || Byt |
and hence from (3.8),
| Bii| = ul i [ Ry [
so that substituting for g, from (3.16) in (3.18) we obtain
(8.19) Diris = 1 — 0700, Ry |72 .

In obtaining (3.18) from (3.17), we illustrate the case for ¢ =1,
n+1=4 and k = 2, for the expression, for example:

S35 0 B 10| B |
vl §
= 730(0s| Boany || Boo |7 + 03] Ryguy || Roa |72 + 04| Ry || B |77)
+ 755(05| Bagpyp || Ry |_1/2 + 04 Rygz || Rig |71%)
+ 75(0s| Rogjs || Roa |7 + 04| Rygpis || Ry |77)
+ 724(0s| Bogpss || Roo [T + 04| Rigg || Rs [77)
= 02, R, ” R, 1_1/2 .

The last expression is obtained from the coefficients of |R, |~
the coefficients of | R, |~'* or | R, |~"/* are easily seen to vanish identic-
ally, since they represent expansion by alien co-factors.

In the summation appearing in (3.17) only the term with v =k

survives;
7n+1

JZ_“{ il Brgiis |

e
is the expansion of the determinant obtained by replacing the elements
of the i-th row of | R| by those of the k-th row of | R| with the k-th
row and k-th column deleted. Transferring the elements »,; appearing
in the ¢-th row to the k-th row, there results the minor of r;; in | R|.
Hence multiplying by (—1)"-* and (—1)"** we obtain | R;;|. It is thus
seen that

n+1
]Zf Tiil Bewrai | = | Bii| = iRmJ .

Ik
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From (3.19) it is easily checked that we have
(3.20) DiDiT = DiDT 5k »

for all 4,5 =1, -+, m + 1, with ¢ =k, j + k.
Since the matrix

(p¥r:;9%) = D’RD* = D*'D"*MD~'D* = DMD = (p;m;;p;)

is symmetric, and (3.20) implies that nondiagonal elements of each
row or column of this matrix are equal we conclude, (in a manner
analogous to (2.5)) that »§ =p;%,¢=1,-.-,7n + 1 and

piriip; = pp;mi = v,
say, for 7 #75;4,7 =1, ---,n + 1 so that

‘mi = 1 fore=1,.--,n+1

3.21 .
( ) mf; = @'forz;ﬁg;z,g=1,---,n+1.

pipj

We obtain values of v by equating |7} | = 0 or equivalently by sett-
ing | DMD | = | (p;p;m¥) | = 0, where p;p;m¥; = v, 1 # j and pimf = p,
and it is seen from (2.7) that v must satisfy

Dn—i—l(v; p%) c p?m+1) =0.
and hence
n+1 n+1
(3.22) (1+ oS @ —o) T e-v=0.
We also note from (3.13), (3.8), (3.9) and (3.12) that
n+1
(n!C(8S,))* = P”'E (| By |7+ 0%

(3.23) i
= Pl Bu 7+ 1L (0] Bis [T

But from (3.19) we have
00| Ry, |71 = n(l — piri;)

so that po,| R;;|'* = n(p} — v)/p;, from (3.21). Also from (3.21), since
r¥ = v/(pip:) and ri = p;* it is easily seen that

n+1
| R, | 121210% = D, (v; P} <+, Diyy)
w1 n+1
=(1+ oS @ - o) 1 ot -0

= vt — o~ ot — o) +
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n+1 n+1
14030 — 07Tt - )
n+1
= —v@: — o) I (® —v) from (3.22).
Substituting in (3.23) we readily find that

(3.24) (C(S,) = v 11 (% — 0) .

Thus (1.6) is proved.

In order that S, is nondegenerate v # p%, ¢ =1, ---, n + 1. Hence
from (3.22) v must satisfy

(3.25) 1+03 (@ -0 =0.

Thus we have exactly the same equation as (2.12) with d; replaced
by »; and u replaced by v. By exactly the same argument that follows
(2.12) we conclude that, when p,, ---, p,,, are distinct, if the roots of
(3.25) are so labelled that the unique negative root of (3.25) is v, and
the smallest positive root for » is v, and if the p, are labelled so that
P, is the smallest and p, the second smallest p;,, ¢ =1, ---, n + 1, we
have the two eligible roots of (3.26) as », and v, satisfying

(3.26) v, <0< < v, <P

It remains to prove that v, corresponds to the case when A is
inside S, while v, corresponds to the case when A is outside S,.

We will prove that, for the extremal simplexes obtained above,
the vertex B; and the fixed point A lie on the same side of x; if

p:—v>0

while A and B; lie on opposite sides if p? — v < 0.
Let

Li(xu "ty xn) =€, @ + v+ €,,%, — € nyy o
Then L0, --+,0) = —e;,:, = —p;, and

Ly, » -+, i)

= —gei,j]Ei,j I Ei i | (by virtue of (3.5))

= —’}EmEi,nﬂf

= —pp/o| Ry; |'° (from (3.8) and (3.12))
= —np(l — pirk) (from (3.19))

= —npi(l — o/p}) (from (3.21))
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Hence L0, ---,0)-Ly(x;,;, ++-, %;,,) = n(p? — v). Now the equation of
w; is Ly, ++-,2,) = 0. Hence p? — v > 0 implies that A and B, lie
on the same side of 7; while p2 — v < 0 implies that A and B; lie on
opposite sides of 7;,. Since p? — v, is positive for 1 =1, .-+, n + 1 we
conclude from (3.26) that corresponding to », A is inside S,. Also
from (3.26) we find p? — v, is negative so that corresponding to v, the
point A lies outside S,. Hence it is readily checked that we have
proved (1.5), (1.6), (1.7) and (1.8).

Finally, using an argument analogous to that used to obtain (2.15)
we find that

n-+1 n+1
—vf‘g (pi — v) > — v;* 1;[1 (P} — v2)

so that from (3.24) we conclude that the content of S, corresponding
to v, is greater than the content of S, corresponding to v,.

Obvious modifications in the foregoing proofs are easily made .
when some or all the p, ---, p,., are equal.

When p, = p, = +++ = p,4, (3.25) has a unique negative solution
for v and in this case A must lie inside the extremal simplex.

The author expresses his thanks to Professor H. S. M. Coxeter
for his valuable association which led to this problem and for his
keen interest in this work.
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ON NORMED RINGS WITH MONOTONE
MULTIPLICATION

SILVIO AURORA

It is shown that if a normed division ring has a norm
which is ‘“‘multiplication monotone” in the sense that N(x) <
N(z") and N(y) < N(y') imply N(zy) < N(x'y’), and if the norm
is ‘““commutative’’ in the sense that N(---xy---) = N(---yz--:)
for all x and y, then the topology of that ring is given by an
absolute value, A consequence of this result is that if the norm
of a connected normed ring with unity is multiplication mone-
tone and commutative then the ring is embeddable in the
system of quaternions,

Pontrjagin has shown [7] that the only locally compact connected
fields are the field of real numbers and the field of complex numbers.
A theorem of A. Ostrowski [6] implies that if the topology of a con-
nected field is given by an absolute value then the field is (isomorphic
to) a subfield of the field of complex numbers. Both results are con-
tributions toward the solution of the problem of determining what
connected fields exist.

In this note the more restricted question of studying connected
normed fields is considered. (It is recalled that a normed ring has
its topology induced by a norm function N; that is, N is a real-valued
function defined on the ring such that: (i) N(0) =0 and N(x) >0
for = 0, (ii) N(—«) = N(z) for all », (iii) N(x + ¥) < N(z) + N(y)
for all x and y, (iv) N(zy) < N(x)N(y) for all = and y.) Ostrowski’s
results may be regarded as the treatment of the special case of this
problem in which the norm N satisfies the additional condition

N(zy) = N(x)N(y)

for all « and y. This extra requirement is replaced here by the
weaker condition that N be multiplication monotone in the sense that
whenever N(x) < N(z') and N(y) < N(y') then N(zy) < N(x'y).

Specifically, it is shown in the corollary of Theorem 3 that if a
commutative connected normed ring with unity has a multiplication
monotone norm then that ring is (algebraically and topologically is-
omorphic to) a subring of the field of complex numbers. (The version
of this statement which appears below actually includes the noncom-
mutative case as well.) The basic device employed in obtaining this
result is Theorem 2, which asserts that if a normed division ring has
a multiplication monotone norm N such that

N(---xy-++) = N(oeoyz-++)

15
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for all # and y then there is an absolute value which induces the
topology of the ring.

2. Preliminaries. It is recalled that a norm for a ring A is a
real-valued function N on A such that: (i) N(0) = 0 and N(x) > 0 for
all nonzero ¢ in A, (ii) N(—x) = N(x) for all x in 4, (iii) N(x + ») <
N(x) + N(y) for all 2,y in A, (iv) N(zy) < N(@x)N(y) for all x,y
in A. If a norm N for a ring A also has the property that
N(xy) = N(2)N(y) for all x, y in A then N is called an absolute value
for A.

By a normed ring is meant a ring A, together with a norm N
for A. The norm for a normed ring induces a metric, and therefore
a topology, in A.

A topological ring is called a Q-ring of its set of quasiinvertible
elements is open; for a topological ring A with unity to be a @-ring
it is necessary and sufficient that the set of invertible elements be
open. In particular, it can be shown that every complete normed
ring with unity is a Q-ring.

Further details on these concepts can be found in [1] and [4],
where the term metric ring is employed for a normed ring.

If a norm N for a ring A has the property that N(---zy--:) =
N(---yx---) for all z,y in A then N will be called a commutative
norm. For instance, absolute values are always commutative, and
every norm for a commutative ring is also commutative.

In addition to the above notions, we shall also refer to the con-
cepts which figure in [5], and we shall make use of the criteria given
by Kaplansky in that paper for a topological division ring to admit
an equivalent absolute value.

Two elementary lemmas will help to translate Kaplansky’s criteria
to the special case of normed division rings. The proofs are routine.

LEMMA 1. An element x of a mormed ring is topologically nil-
potent if and only if there exists a matural number n such that
N(z*) < 1.

LEMMA 2. The set of topologically nilpotent elements of a normed
ring 1S OpPen.

Kaplansky’s criteria can now be rephrased to fit the needs of the
present discussion.

THEOREM 1. Let K be a normed division ring whose norm 1ts
commutative. In order for K to admit an equivalent absolute value
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(that 1s, an absolute value whose induced topology coincides with
the topology induced by the morm for K), it is mecessary and suf-
ficient that the set of elements which are either topologically nilpot-
ent or neutral be right bounded.

Proof. The necessity of the conditions is obvious. For the suf-
ficiency of the conditions, we first note that the commutativity of the
norm implies that N(x) = N(1) whenever z is an element of the com-
mutator subgroup of the multiplicative group of nonzero elements of
K; this commutator subgroup is therefore metrically bounded and is
consequently right bounded. Lemma 2 and [5; Th. 2] imply that there
is an equivalent absolute value for K.

3. Rings with maultiplication monotone norm. We shall
subject the norm for a normed ring to a monotonicity condition which
is of interest because it implies the existence of an absolute value
equivalent to the given norm.

DEFINITION. A norm N for a ring A is said to be multiplication
monotone provided that whenever N(z) < N(2') and N(y) < N(y') then
N(»y) = N(@'y').

Clearly every absolute value is multiplication monotone, while the
following theorem indicates that under suitable conditions a multiplica-
tion monotone norm for a division ring must have an equivalent absolute
value.

THEOREM 2. Let K be a mormed division ring whose mnorm 1is
commutative and multiplication monotone. Then there is an equiv-
alent absolute value for K.

Proof. The theorem obviously holds for discrete division rings,
8o we may confine our attention to nondiscrete division rings.

Let « be a fixed element of K such that 0 < N(z) < N(1)~'. Then
if N(y) > N(x7*) it follows that N(y~*) < N(x) < 1, and y is therefore
inversely nilpotent. Thus whenever y is topologically nilpotent or
neutral we have N(y) < N(x?), so that the set of elements of K
which are topologically nilpotent or neutral is metrically bounded and
therefore right bounded. Theorem 1 yields the desired result.

It is possible to relax the requirement that the ring in question
be a division ring, provided that the ring is connected. In order to
achieve this we introduce the notion of generalized zero-divisors.
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DEFINITION. An element b of a normed ring A will be called a
generalized left zero-divisor (generalized right zero-divisor) provided
that the greatest lower bound of the set {N(bz)/N(x)|x == 0} ({N(xb)/
N(z)|x + 0}) is zero.

These are essentially the definitions which were employed in [1],
but we may also note that b is a generalized left zero-divisor (gener-
alized right zero-divisor) if and only if there exists a sequence {z,} of
nonzero elements of A such that

lim N(bx,)/N(x,) = 0 (lim N(x,b)/N(z,) = 0) .

Although normed rings usually have many generalized zero-divisors
it can be shown that a connected normed ring whose norm is multi-
plication monotone has no generalized zero-divisors other than zero.

LEMMA 8. Let A be a connected normed ring with unity such
that the norm for A 1is multiplication wmonotone. Then A has no
generalized left zero-divisors or gemeralized vright zero-divisors other
than zero.

Proof. Suppose b is a generalized left zero-divisor in A. Let
{z,} be a sequence of nonzero elements of A such that

lim N(bz,)/N(z,) = 0 .

Choose a sequence {y,} in A such that (1/2)N(x,) < N(y.) < N(z,) for
every natural number «.
If I is the set of all elements ¢ of A such that

lim N(ey,)/N(y,) = 0

then I is clearly a left ideal in A. Also, whenever ¢ is an element
of A such that N(c¢) < N(b) then N(cy.)/N(y.) < N(bz,)/((1/2)N(zx,)) for
all n, so that ¢ is an element of I. Thus, if & were not zero then
an entire neighborhood of zero would be contained in the left ideal I,
and I would therefore be open and closed in the connected ring A;
consequently I would coincide with A, in contradiction to the fact
that I can not contain the unity of A. We conclude that b is zero.
Similarly, every generalized right zero-divisor is zero.

In order to obtain the desired results concerning connected normed
rings we first dispose of a special case in the following lemma.

LEMMA 4. Let A be a connected ring with unity such that the
set A* of nonzero elements of A is disconnected. Then A is a division
ring.
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Proof. If ¢ is a nonzero element of A then the mapping = — cx
is clearly a continuous endomorphism of the additive group of A, so
that its image H is a connected nonzero subgroup of the additive
group of A. But it can be shown that the additive group of A is
continuously isomorphic to the additive group of real numbers (for
instance, a proof is outlined in [3; Chap. 5, p. 28, Exercise 4]), and H
must therefore coincide with the additive group of A. Thus, 1 is in
H, so that 1 = ¢d for some d in A, and ¢ has a right inverse in A.

Since every nonzero element of A has a right inverse in A we
conclude that A is a division ring.

It is now possible to pass to the general case.

THEOREM 3. Let K be a connected mormed Q-ring with unity
such that the worm for K is commutative and multiplication monot-
one. Then A 1is algebraically and topologically isomorphic to the
Sield R of real numbers, a dense comnected subfield of the field € of
complex numbers, or a dense connected division subring of the division
ring Q of all real quaternions.

Proof. If the set A% of nonzero elements of A is not connected
then Lemma 4 implies that A is a division ring. On the other hand,
if A* is connected then A is a division ring according to [1; Th. 1]
since Lemma 3 implies that 4 has no generalized zero-divisors other
than zero. In either case A is a division ring.

There is an equivalent absolute value for the normed division ring
A by Theorem 2. Ostrowski’s characterization of connected division
rings with absolute value (see for instance [2; Th. 2, p. 131]) may
then be applied to obtain the desired result.

COROLLARY. Let A be a connected normed ring with unity such
that the morm for A 1is commutative and multiplication monotone.
Then A ts algebraically and topologically isomorphic to R, to a dense
connected subring of €, or to a dense commected subring of Q.

The corollary is obtained by applying the theorem to the comple-
tion of A.

REMARK. Another kind of monotonicity condition could be in-
troduced in normed division rings. The norm of a normed division
ring can be described as inwversion monotone provided that whenever
N(2) < N(y) for nonzero elements z, ¥y then N(z~*) = N(y~'). Theorem
2 remains valid if “multiplication monotone” is replaced by “inversion
monotone” in the hypothesis, although some details of the proof must
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be modified. Similarly, the corollary of Theorem 3 continues to hold
if “multiplication monotone” is replaced by “inversion monotone” in
the statement of the corollary, provided that it is assumed that the
ring is a division ring.

This note evolved from the consideration of some peripheral ques-
tions related to a problem which was investigated with the support
of the Research Council of Rutgers University; the author wishes to
express his appreciation to the Research Council for that support.
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NORMED FIELDS WHICH EXTEND NORMED
RINGS OF INTEGERS

SILVIO AURORA

It is shown that if the ring of integers is made a normed
ring by using a ‘‘reasonable’’ norm, such as the ordinary
absolute value or some power thereof, then every normed field
which extends such a normed ring is a subfield of the field of
complex numbers,

The development of the foundations of analysis involves the con-
struction of the normed field of complex numbers, with the ordinary
absolute value as norm, from the normed ring of integers, with the
ordinary absolute value as norm, by a process of successive enlarge-
ments of algebraic systems. (By a normed ring is meant a ring A
which 1s provided with a norm function N; that is, N is a real-valued
function defined on A such that: (i) N(0) = 0 and N(x) > 0 for every
nonzero x in A, (ii) N(—wx) = N(x) for all z in A4, (iii) N + %) £
N(z) + N(y) for all =,y in 4, (iv) N(zy) < N(x)N(y) for all z, y in
A.) Although some treatments of this construction create only positive
numbers in the early stages of the passage from the system of natural
numbers to the complex number system, such approaches could easily
be modified to retain their basic features while still producing the
ring of integers at the outset; thus, all such procedures essentially
involve the extension of the normed ring of integers to produce the
normed field of complex numbers.

One might ask what normed fields could be produced by enlarg-
ing the normed ring of integers, with the ordinary absolute value or
some power thereof as norm, if no restriction whatever were placed
upon the method of extension. It is shown in Theorem 3 that the
only normed fields which can be thus obtained must be (continuously
isomorphic to) subfields of the field of complex numbers.

Somewhat similar results are given in §4 for the situation in
which the normed field of rational numbers, with a suitably “natural”
norm, is enlarged to create a new normed field. For instance, the
corollary of Theorem 6 indicates that if the field of rational numbers
is provided with a norm which coincides with a power of the ordinary
absolute value over a suitable neighborhood of zero, then every normed
field which extends this normed field is (continuously isomorphic to)
a subfield of the field of complex numbers.

2. Preliminaries. It is useful to recall some of the concepts
which are employed in [1] and [2].

21
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A norm for a ring A is a real-valued function N defined on 4
such that: (i) N(©) =0 and N(x) >0 for all nonzero x in A, (i)
N(—2z) = N(z) for all  in A, (iii) N + y) < N(x) + N(y) for all z, y
in A, (iv) N(@y) < N(@x)N(y) for all =,y in A. If a norm N for a
ring A has the property that N(zy) = N(x)N(y) for all z, ¥ in A then
N is called an absolute value for A.

By a normed ring is meant a ring A, together with a norm N
for A; the norm for a normed ring A defines a metric, and therefore
a topology, for A.

If N is a norm for a ring A and ¢ is an element of A such that
N(ex) = N(¢)N(x) for all x in A then N is said to be homogeneous at
¢. A norm N for a ring A is said to be power multiplicative at an
element ¢ of A provided that N(c") = N(c¢)" for every natural number
n. When a norm N for a ring A is homogenecus (power multiplica-
tive) at every element of a subset C of A then N is said to be homo-
geneous (power multiplicative) on C.

In case N and N’ are norms for a ring A such that N'(z) < N(x)
for all « in A then we shall write N’ < N. The relation < in the
get of norms for a ring A constitutes a partial ordering of that set.

An example will serve to illustrate some of these concepts. Let
A be the ring of all real functions which are defined and have a
continuous derivative on the closed unit interval [0, 1}. If N'(z) =
sup {|=(t)| |0 =t =1} and

N(@) =supf{la@)] |0 =t =1} +sup{[2’()| 0=t =1}

for all  in A, then N’ and N are norms for A, with N’ < N. It
is also easily established that N’ is power multiplicative on A and
that N is homogeneous at each constant function which belongs to A.

When N is a norm for a field K and ¢ is a nonzero element of

K, then for all « in K:
N(@) = N@e)/N(e) = N@e)/N(e) = N@e)/N(ef = - »
Thus
N, (z) = inf {N(xc")/N(c)"|n a natural number} = }g}g N(zce™)/N(c)"

is a well-defined nonnegative real number for all  in 4. It can be
shown that the function N, is identically zero on A if and only if N
fails to be power multiplicative at ¢. On the other hand, if N is
power multiplicative at ¢ then N, is a norm for K, with N, < N, as
the following lemma indicates. (It is recalled that by a semigroup
in a ring is meant a nonempty subset of that ring such that the
subset is closed under multiplication.)
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LEMMA 1. Let N be a norm for a field K, and let ¢ be a non-
zero element of K such that N 1is power multiplicative at ¢. Then
N, 1s a norm for K such that:

(i) N.=N,

(i) N(e) = N(e),

(iii) N, is homogenegous at c,

(iv) whenever S is a semigroup in K, with ¢ in S, such that
N s power multiplicative on S then N, is power multiplicative on S.

It is easily established that N, possesses properties (ii), (iii), (iv)
of a norm, so that the set I of all x in A for which N,(x) = 0 is an
ideal in the field K, and N, is therefore a norm for K. The remain-
ing details of the proof are routine.

The lemma permits us to replace the norm N by a new norm
which has properties similar to those of N and is homogeneous at ¢
as well, It is possible to sharpen this result so that the new norm
is homogeneous on an entire semigroup on which the original norm is
power multiplicative.

THEOREM 1. Let K be a normed field with norm N, let S be a
semigroup 1 K such that N s power multiplicative on S, and let
¢ be a nonzero element of S. Then there exists a norm N’ for K
such that:

(i) N'=N,

(ii) N'(¢) = N(o),

(iii) N’ is homogeneous on S.

Proof. Let 27 be the set of all norms N” for K such that
N" < N, N"(¢) = N(¢), N” is homogeneous at ¢, and N’ is power
multiplicative on S. Then 2£# is not empty since it contains N,;
also, 27 is partially ordered by the relation <. It is easily shown
that every totally ordered subset of 57 has a lower bound in 5%
so that Zorn’s Lemma implies the existence of a minimal element,
N’, of o~

If d is a nonzero element of S then Lemma 1 implies that (N'),
belongs to 57, with (N’)(dz) = (N')q(d)+-(N')o(z) for all 2 in K. Since
N’ is a minimal element of 57, and since N’ and (N’); both belong
to 57, with (N"); < N’, it follows that N’ = (N’),. Thus, N'(dx) =
N'(d)N'(z) for all x in K. We conclude that N’ is homogeneous at
every element d of S, and the theorem follows.

REMARK. In order to apply Theorem 1 it is useful to have a
criterion to determine when a norm for a ring is power multiplicative
on a semigroup in that ring. It is easily established that a norm N
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for a ring A is power multiplicative on a semigroup S in A if and
only if for every element « in S there is an integer n(x), with
w(x) > 1, such that N(x"*) = N(x)»*®. In particular, N is power
multiplicative on S if and only if N(2%) = N(x)® for all  in S. (Any
integer exponent greater than 1 could be used instead of 2 in the
preceding statement.)

3. Extensions of the normed ring of integers. We are inter-
ested in normed fields which extend the ring of integers when the
latter is provided with a norm which is a power of the ordinary
absolute value. It will be shown that such fields are (continuously
isomorphic to) subfields of the field of complex numbers. First a
more general result is obtained which implies that if the ring of in-
tegers is given a norm which is power multiplicative and takes a value
greater than 1 at least once then any normed field which extends this
normed ring must be (continuously isomorphic to) a subfield of the
field of complex numbers.

For convenience, whenever n is an integer the symbol n will be
used to denote the m-fold of the unit element of the field which is
under consideration.

THEOREM 2. Let K be a mormed field for which there is a
natural number n,, with N(n,) > 1, such that N(n*) = N(n)* whenever
n s a natural number for which n = n,. Then K is continuously
algebraically isomorphic to a subfield of the field € of complex
numbers.

Proof. If S is the set of all elements n of K such that = is a
natural number with #n = n,, then S is a semigroup in K such that
N is power multiplicative on S. Theorem 1 can be applied to the
semigroup S and the element %, in order to obtain a norm N’ for K
such that N’ < N, N'(n,) = N(x,) > 1, and N’ is homogeneous on S.

If n is an arbitrary natural number greater than 1 then there is
a natural number » such that #” and »"** both belong to S; the in-
equality N'(w)N'(n)N'(x) = N'(n)N'(x) = N'(n*x) < N'(n")N'(nx)
implies that N'(nx) = N'(n)N'(x) for all x in K. From the condition
N'(ngx) = N'(n)N’(x) with x =1 we obtain N’(1) =1, and conse-
quently N’ is homogeneous at every “integer” in K. Thus N’ is
homogeneous on the prime field, P, of K. Since N'(n,) > 1, the re-
striction of N’ to P is an archimedean absolute value for P; therefore
Ostrowski’s results [4] imply that P is algebraically isomorphic to the
field of rationals (and can be identified with that field), and there is
a real number s, with 0 < s < 1, such that N'(x) = |z|° for all z in P.

Let A be the completion of K relative to the norm N’, so that
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A is a complete commutative normed ring with unity, and there is
an obvious continuous isomorphism ¢ of K into A. We have in fact
N"(p(x)) = N'(x) < N(x) for all  in K if N’ is the norm for A. The
closure, R, of o(P) in A is the completion of ¢(P) and can be identi-
fied with the completion of P. Therefore R can be identified with
the field of real numbers, and we have N”(y) = |y|* for all y in R.

There is a maximal ideal M in A4, and M is closed since the set
of invertible elements of a complete normed ring with unity is open.
Thus, A/M is a complete normed field and has its norm N given by
the rule N(X) = inf {(N"(x)|x € X} for all X in A/M. The natural
homomorphism v of A onto A/M is continuous since N(¥(y)) < N”(y)
for all ¥ in A, and y(R) is therefore identifiable with the field R.
Then A/M may be considered a complete commutative normed division
algebra over R, where R is the field of real numbers with a power
of the ordinary absolute value as its absolute value. The Gelfand-
Mazur Theorem, as it appears in [3; Chap. 6, p. 127, Th. 1], implies
that A/M is continuously isomorphic to the field of real numbers or
the field of complex numbers, so that there is a continuous isomorphism
A of A/M into the field € of complex numbers.

It is easily seen that the mapping +ovoqp is a continuous iso-
morphism of the field K into €, and the theorem follows.

Note. An alternative means of stating Theorem 2 is that if the
ring of integers is given a norm which is power multiplicative at
every integer which is sufficiently large, and if the norm takes a
value greater than 1 for at least one of those integers, then every
normed field which is an extension of this normed ring must be a
subfield of € with a topology at least as fine as its ordinary relative
topology in €.

The simplest norms which satisfy the hypothesis of Theorem 2
are those which coincide with some power of the ordinary absolute
value at all natural numbers which are sufficiently large. We thus
obtain the following theorem.

THEOREM 3. Let K be a mormed field for which there exist a
natural number n, and a positive real number s such that N(n) = n
whenever n is a natural number with n = n,. Then K is continuously
algebraically isomorphic to a subfield of €.

It should be noted that s is necessarily less than or equal to 1.
A special case of Theorem 3, that in which s = 1, has been given in
[2; Corollary 2 of Th. 5]. Another result of some interest can be ob-
tained as a corollary of the theorem, and has appeared in [2; Th. 6].
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COROLLARY. Let K be a mormed field such that N(n) = nN(1)
for infinitely many natural numbers n. Then K is continuously
algebraically isomorphic to a subfield of €.

The proof involves replacement of the norm N by a new norm
N’ defined by N'(x) = sup {N(z¢c)/N(c)|ce K, ¢ #= 0} for all # in K.

Note. Theorem 3 implies that if the ring of integers is provided
with a norm which is a power of the ordinary absolute value (or if
the norm merely coincides with some power of the ordinary absolute
value at integers which are sufficiently large) then every normed field
which extends this normed ring must be a subfield of € with a topology
at least as fine as its ordinary relative topology.

An interesting consequence of these results concerns normed fields
which satisfy the parallelogram law.

DEFINITION. A normed ring A is said to satisfy the parallelogram
law if Nz + y)* + N(x — y)* = 2N(x)* + 2N(y)* whenever 2z, y belong
to A.

The parallelogram law is characteristic of Euclidean distance and
can hold for a normed field only if that field is continuously embed-
dable in the field of complex numbers.

THEOREM 4. Let K be a normed field which satisfies the paral-
lelogram law. Then K 1is continuously algebraically isomorphic to
a subfield of €.

Proof. The parallelogram law with « = y yields the relation
N(2x) = 2N(z) for all  in K. Thus, N(27x) = 2"N(x) for all  in K
and for every natural number ». The corollary of the preceding
theorem then leads to the desired result.

4. Extensions of the normed field of rational numbers. The
fields of the preceding section were all necessarily of infinite charac-
teristic although the hypotheses employed in the statements of the
results did not explicitly make such an assumption. We now confine
our attention to fields of infinite characteristic, and the discussion is
simplified by identifying the prime field of each such field with the
field of rational numbers. The results of this section then indicate
that if the field of rational numbers is given a norm which is “reason-
able” in an appropriate sense, then every normed field which extends
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such a normed field must be (continuously isomorphic to) a subfield
of €.
We first obtain an analogue of Theorem 2.

THEOREM 5. Let K be a normed field of infinite characteristic
for which there is a natural number n, with N(1/n) < 1, such that
N(1/n?) = N(1/n)* whenever n is a natural number with n = n,. Then
K s continuously algebraically isomorphic to a subfield of C.

Proof. If S is the semigroup which consists of the elements 1/n
of K for which = is a natural number with n = n,, then N is power
multiplicative on S and we may apply Theorem 1 to S and the ele-
ment 1/n,. Thus, there is a norm N’ for K, with N’ < N, such that
N’ is homogeneous on S and N’'(1/n,) = N(1/n) < 1. We have
N'(n,) > 1 since N’(1/n,) < 1. Also, whenever, n is a natural number
with n = n, then N'(1/n’)N'(%*) = 1 = N'(1/n)*N’'(n)* = N'1/n*)N'(n)?,
so that N'(n*) = N’'(n)>. Thus, K with the norm N’ satisfies the
hypothesis of Theorem 2, and the theorem follows since K is con-
tinuously algebraically isomorphic to this normed field.

When the norm for a normed field of infinite characteristic coin-
cides with some power of the ordinary absolute value at the reciprocals
of all natural numbers which are sufficiently large, we obtain an an-
alogue of Theorem 3.

THEOREM 6. Let K be a normed field of infinite characteristic
for which there exist a natural number n, and a positive real number
s such that N(1/n) = 1/n° whenever n 1s a natural number with
n=n,. Then K is continuously algebraically isomorphic to a sub-
field of €.

COROLLARY. Let K be a normed field of infinite characteristic
for which there exist positive real numbers v, and s such that
N(r) = r* whenever » 1s a rational number with 0 < r < r,. Then
K s continuously algedbraically isomorphic to a subfield of €.

We note that the corollary implies that if the field of rational
numbers is provided with a norm which coincides with some power
of the ordinary absolute value over a suitable neighborhood of zero,
then every normed field which can be obtained by extending this
normed field must be a subfield of € with a topology at least as fine
as its ordinary relative topology in €. The special case of this corol-
lary which occurs when s = 1 has already been given in [2; Th. 7].
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REMARK. Theorems 2, 3, 5, and 6 and their corollaries identify
the normed field K with a subfield of the field € of complex numbers,
but with a topology finer than the ordinary topology inherited from
€. That the topology for K may be strictly finer than the ordinary
topology is shown by taking as K the field of complex numbers with
the norm N given by N(x) = max (|z], |o(x)|) for every complex number
x, where ¢ is a fixed discontinuous automorphism of the field of com-
plex numbers.
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INDEFINITE MINKOWSKI SPACES

JoHN K. BEEM

The purpose of this article is to characterize Minkowski
general G-spaces, The unit sphere K is shown to have at
most four components,

Assume the space R is not reducible, If K has one com-
ponent, K is an ordinary Minkowski G-space, If K has two
components they are quadrics and R is nearly pseudoeuclidean,
When K has three components, one is a quadric and the other
two are strictly convex, The unit sphere has four components
only in dimension two.

The axioms of a general G-space have been given in [4] and the
interesting two dimensional spaces have been investigated in [1]. We
will denote the indefinite distance from x to y by xy. We refer to vy
as a metric even though it is not in general a true metric.

DEFINITION 1.1. The general G-space R is called a Minkowski
space if R is the real n-dimensional affine space A”, the family of Arcs
A consists of the affine segments and w = (1/2)(x + y) implies wx =
wy = (1/2)zy.

If L" is an r-dimensional flat in R, then L" is an 7r-dimensional
Minkowski space with the induced distance.

Let e(x, y) be an associated euclidean metrization of A”. Then for
each line L in R there is a number ¢(L) such that zy = ¢(L)e(x, v)
forallz,ye L. If ¢(L) = 0, we call L a null line. The number ¢(L)
depends continuously on L and ¢(L) = ¢(L,) if L, is parallel to L, see
[1]. It follows that the affine translations preserve the distance xy.

Let z always denote the origin in 4. We call C = {z|xz = 0}
the light cone and K = {x|xz = 1} the unit sphere. If K is given
the distance xy is uniquely determined.

For x = y let L(xz, ¥) denote the line through x and y and let
a(x, y) denote the affine segment from x to y. When S c A" define
—S={x|—-xeS}. If S= —S the set S is called symmetric about
z or simply symmetric. The sets C and K are symmetric.

Two general G-spaces R, and R, are said to be topologically iso-
metric if there exists a topological map of R, onto R, that preserves
the indefinite distance xy.

It is easily seen that if R, and R, are Minkowski spaces defined
on A" with unit spheres K and K* respectively, then R, and R, are
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topologically isometric if and only if there is an affinity mapping K
onto K*.

2. Two dimensional spaces. If R is A% then by [4, p. 241]
one of the following must hold: (1) no null lines exist in R, (2) there
is exactly one null line through each point of R, (3) there are exactly
two null lines through each point of R, or (4) all lines in R are null.

In case (1) we call R a spacelike plane. By [4, p. 239], a space-
like plane is an ordinary Minkowski G-space with unit sphere a strictly
convex closed curve.

In case (2) we call R a neutral plane. A neutral plane is topo-
logically isometric to the (s, t) plane with distance from (s,, t,) to (s, t.)
given by |t, — &,].

When R has exactly two null lines through each point it is called
a doubly timelike (Minkowski) plane, see [1]. The unit sphere has
four components each of which is strictly convex and not compact.

If all lines in R are null, we call R a null plane.

3. Reducible spaces. Let R be an n-dimensional Minkowski
space. Then R is reducible to R" x N for r < m, provided affine
coordinates x,, x,, - -+, €, may be chosen such that

(1) R is given by 2,,, = 2,4, = -+ =2, = 0 and N" " is given
by ,=--- =2, =0.

(2) The projection of R onto R" preserves the metric xy.

The maximum possible value of n — 7 is called the index of redu-
cibility of R. A null plane has index 2 and a neutral plane index 1.
Spacelike and doubly timelike planes are not reducible.

Nonreducible spaces often contain reducible subspaces. In the
three dimensional Lorentz space any plane tangent to the light cone
is neutral and hence reducible.

Given a line N the parallel to N through x will always be denoted
by N..

DEFINITION 3.1. A line N through z is called a line of reduction
of R if xe K implies N,C K.

LEMMA 3.2. The space R is reducible if and only if R has a
line of reduction.

Proof. If N is a line of reduction of R and L™ is a hyperplane
with L™* N N = z, the projection of R onto L" ' along parallels to N
preserves the metric.

On the other hand if R is reducible to R” x N* " any line N through
z and in N™" is a line of reduction of R.
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4. The r-flat topology. If {M,} is a sequence of closed subsets
of R,we say M, converges to the closed set M if lim M, = M in the
sense of Hausdorft’s closed limit, see [2]. This limit induces a topology
on the closed subsets of R. If L"is an r-flat and W(L") is a neighbor-
hood of L" in this topology, let W,.(L") denote the r-flats in W(L").

LEMMA 4.1. Let {L%} be a sequence of doubly timelike planes,
each containing z, such that {L%} converges to the two flat L*. As-
sume xre KN L% and x™ — x; for © =1, 2,

(1) Let L? be doubly timelike and let x,, x, lie on the same com-
ponent [opposed components] of K. Then for sufficiently large m
the points x™ and x always lie on the same component [opposed com-
ponents] of KN L..

(2) If L* is neutral, then for sufiiciently large m the points x™
and xr are always on the same or else always on opposed components
of Kn L.

Proof. The proofs are similar and consequently we only consider
statement (2) in which L* is neutral.

Without loss of generality assume 2, and z, are on the same com-
ponent of K N L* since if 2™ — x, then —a" — —z,.

If yea(x, x,) then ye K and zy = 1. Therefore, there exists an
open set V containing the set a(x,, #,) such that all pe V have zp > 0.
For sufficiently large m all points of a(x”, 27*) lie in V and have posi-
tive distance from z. It follows that a™ and 22 lie on the same com-
ponent of K N L for large m.

The components of K are arcwise connected since they are con-
nected and locally arcwise connected.

LEMMA 4.2. Let 2, and x, lie on the same component of K and
let L* be a two flat containing z,x, and x,. If S, and S, are the
components of KN L* containing x, and x, respectively then either
S, =38, or else S, = —8,.

Proof. Let x(t) for 0 < ¢t <1 be a curve on K connecting x, and
2, with x(0) = 2, and 2(1) = x,.

Call the two flat L*(¢) admissible if z, z,, (¢t) € L*t) and KN L)
has components S, and S(f) containing «, and x(t) respectively such that

either S, = S(¢) or else S, = —S(t). For sufficiently small ¢ there must
exist admissible L*t). Set M = {t€|[0, 1]|there exists an admissible
L)}

We now show M is closed. If {L%t,)} is a sequence of admissible
planes and ¢, — ¢, then there is a convergent subsequence {L(t,)}C
{L*t,)} such that L*t,) — L: Clearly z, z,, x(t,) € L*t,). Statement (1)
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of Lemma 4.1 implies L: cannot be doubly timelike with x, and x(z,)
neither on the same nor on opposed components of K N L2. Therefore,
t,e M.

To show M is open let 7€ M and L*7) be admissible. If L*7) is
spacelike there must exist a neighborhood W,(L?) containing only space-
like planes. But this implies the existence of a neighborhood U(z) of
the number ¢ with U(z) c M. If L*z) is a doubly timelike plane state-
ment (1) of Lemma 4.1 implies the existence of a neighborhood
U(z)c M. In case L*7) is a neutral plane first construct a neigh-
borhood W,(LXz)) in which no null planes exist. If only spacelike
and neutral planes exist in W,(L*z)) there is nothing to show. If
there is a sequence of doubly timelike planes L%¢,) converging to
L*(t), statement (2) of Lemma 4.1 guarantees that for large m the
planes L*(t,) are admissible. It follows that there is a neighborhood
U(t) c M. Therefore, M is open as well as closed. Since M = ¢, M =
[0, 1] and the lemma is established.

THEOREM 4.3. Let K, and K, be distinct components of K that
are opposed (t.e., K,= —K,). Then K, and K, are convex hypersurfaces.

Proof. Let K! = {y|a(z, y) N K, # ¢}. Then K has boundary K,
and y e K implies zy = 1. If y, v, K? let L? be a two flat through
2,9, and y,. Then L* must either be neutral or doubly timelike. In
either case a(y, y, c K!? if y, and y, lie on the same component of
K, n L* Clearly y, and ¥, lie on the same component for L? neutral.
If L? is doubly timelike, then K, # K, and Lemma 4.2 imply y, and
9, lie on the same component of K, N L?. It follows that K! is convex
and that its boundary K, is a convex hypersurface. In the same
fashion one may show K, is a convex hypersurface.

LEMMA 4.4. Let K have a component K, that is symmetric about
z. Then for each x € K, there is a two flat L* through z and x that
1s spacelike.

Proof. Assume the statement is false. Any two flat containing
L(z, x) is then either neutral or doubly timelike. Orient L(z, z) to
get L*(z,x). If L, is a line parallel to L*(z, z), orient L;" in the same
direction. This gives an ordering < on each line parallel to L(z, x).

Let x(t) for 0 < ¢t <1 be a curve on K, with 2(0) = z, 2(1) = —=
and «(t) ¢ L(x, —x) for 0 < t < 1. Let L*(¢) be the oriented line con-
taining «(t) and parallel to L*(z, ). The line L*(¢) is never a null line.

In the ordering < along L*(t) let p(t) be the first element in
{ylye L*(t) and zy = 0}. Let f(¢) be the signed euclidean distance
from «(t) to p(t) where f(t) < 0 if x(t) < p(t). If z <« then f(0) <O
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and f(1) > 0.

The function f(¢) is continuous at 0 and 1 since p(¢) — 2 for ¢ —0
and t—1. To show f(t) is continuous on (0,1) let 0 < ¢, <1 and
t,—t. For 0<t<1 let L*t) denote the unique plane containing
L+(t) and z. Clearly if L(t,) is neutral we have L(z, p(¢t.)) — L(z, p(t,)).
If L*t,) is doubly timelike, one can show using (1) of Lemma 4.1 that
L(z, p(t,)) — L(z, p(t,)). In either case p(t,) — p(t,) and f(t) is continu-
ous. But then f(r) = 0 for some 0 < 7 < 1 which implies x(z) = p(7).
This is impossible since zx(z) = 1 and zp(z) = 0.

5. Three dimensional spaces. In this section we only consider
three dimensional Minkowski spaces.

LEMMA 5.1. Let K have three components K,, K, and K, with
K,= —K,. Then K, = —K, and K, (hence also K,) is strictly convex.

Proof. By Lemma 4.4 there is a two flat L? through z that is
spacelike with L*N K, = ¢. This flat separates A4°® and does not in-
tersect K,. Hence K, # —K,. Consequently, K, = —K,.

To see that K, is strictly convex let ¢, ye K,. If L? is a two flat
through 2, ¥ and z it must be doubly timelike since L: N L? # ¢. Then
L:N K, is a strictly convex curve. It follows that wea(x,y) —x — ¥
implies zu > 1. Therefore, K, must be strictly convex.

If K, is a component of K then so is —K,. Consequently, if K
has exactly three components there is always one, say K, that is
symmetric about z.

Extend A® to the real three dimensional projective space P?® by
adding a plane L% at . The projective lines that the light cone C
determine intersect L% in a curve C.. Let K have exactly three com-
ponents. Since spacelike planes exist in this case, there is a line
L,c Lt with LyNC. = ¢. The set L — L, is an affine plane with
L, the line at oo.

Let p,qeC. with p = q. Let L* be two flat in P?® that contains
2, p,q. Then L*N A® cannot be a null plane, since if it were it would
separate A4°® and K, could not be symmetric. Consequently, L*N A®
must be a doubly timelike plane.

It follows that L*N (L% — L,) is an affine line in L% — L, that
intersects C. in only the two points p and ¢. But C. is a closed
curve. Hence, C., is a strictly convex curve in L% — L.

THEOREM 5.2. Let dim R = 3. If K has three components K,, K,
and K, with K, = —K;, then K, is a hyperboloid of one sheet.

Proof. Let weL: — L, and let v be exterior to the convex set
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in L2, — L, whose boundary is C.. Then there are lines L, and L,
through » that are supporting lines of C.. Let L2 be the projective
plane containing z and L; for ¢ =1, 2. Then LN C. is a single point
and hence LN A® is a neutral plane.

The set LN A* N K consists of two parallel lines which must be
on K, since K, and K, are strictly convex. For any ¢e K, let u =
L(z, q) N L% and without loss of generality assume w ¢ L,. Then u
must be exterior to C.,. By the above arguments there must be two
straight lines on K, through ¢. By [5, p. 272] the set K, is a hyper-
boloid of one sheet.

Notice that the above theorem gives the additional information that
C is elliptic and C. is an ellipse in L% — L,.

LEMMA 5.3. K can have at most four components. If K does
have four components, R 1s reducible and no component of K is sym-
metric about z.

Proof. Let K, be a component of K. Assume K, = —K,, then
there is a spacelike plane L} through z with L2 N K, # ¢. Take K, # K,
and ze K,. Let L*60) be a two flat containing L(z, ) that revolves
continuously in 6 and sweeps out A® for 0 < 0 < 7. Each L*0) inter-
sects L2 in a line through z so that L*#) N K, = ¢ for all . There-
fore, each L) is doubly timelike and intersects K in four components.
Two of these components lie on K,, and the other two are subsets of
K, and —K,. Since this holds for all #¢]0, 7], K can have at most
three components. Therefore, K,  —K, if K has four components.

By the above, it must be possible to find at least two components
K, and K, of K with K, +# — K, K, # — K, and K, # —K,. Set K, =
—K, and K, = —K,. Let ye K, and let L*+) be a two flat through
L(z, y) that sweeps out A°® continuously for 0 < + < 7. It can be as-
sumed without loss of generality that L*(0) N K, = ¢. Therefore, let
x, belong to L*0) N K,. L*~r) cannot be doubly timelike for all ++ or
else z, and —x, would be on the same component of K. Therefore,
there is a first +, with L*(y,) neutral. Let N < L*+,) be the null
line through z. Claim N is a line of reduction of R.

It is clear that if xe K, U K, then N,C K, U K, since these are
convex surfaces and N,C K, as well as N_,C K,. For ve¢K,UK,
consider the following argument. Let L*(v) be a plane through L(z, «,)
sweeping out A°® continuously for 0 < v <7 with ye L*0). By the
same reasoning as before, there is a first v, with L*(v,) neutral. The
above N must be in L*7,) since N, C K, and K, is not flat. This im-
plies N, c K, U K, whenever ¢ K, U K,.

It is now possible to show K has at most, four components. If
L? is a two flat containing the above N either L? is neutral or null.
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If it is null, it intersects L*(v) for ¥ = 0 in a null line. If it is neutral,
it intersects either K, and K, or else K, and K,. In any case it can-
not contain a point of K not on K, U K, U K, U K,.

An immediate consequence is that if K has four components R =
R* x N’ where R*? is a doubly timelike plane.

Consider now the case of K having one component. If R has no
null lines, then by [4, p. 239] it is a Minkowski G-space and K must
be strictly convex.

LemMMA 5.4. Let K have one component and mot be strictly con-
vex. Then K s a cylinder and R = R* x N*' where R? 1is a spacelike
plane.

Proof. Let K contain a segment « and consider the two flat LZ
through z and «. L must be neutral, hence the line containing «
must lie on K. Let N be the null line in L through z. Since K
has only one component, there is a spacelike plane L? through z. Any
two flat L? containing N must intersect L* in a line through =z.

The plane L? cannot be a doubly timelike because of Lemma 4.2
and the fact that K has only one component. Therefore, L? is neutral
and contains two lines on K parallel to N. It follows K must be a
cylinder with generators parallel to NV.

Projecting R onto L* along parallels to N gives R = R* x N* for R®
the spacelike plane L.

If K has two components K, and K, in dimension three, then K, =
— K, since otherwise there would be a spacelike plane L* through z
intersecting only one component of K yet separating A4°. Both K, and
K, must be flat since if z, y € K, with z % y, the two flat L? contain-
ing 2, y and z would have to be neutral.

It can easily be shown that for K having two components, the
space is always topologically isometric to (z,, a,, %,)-space with the
distance from (a,, a, a;) to (b, b, b;) given by |a, — b,|. K consists of
two parallel planes and R = R' x N? for R' the real line.

6. Higher dimensional spaces. The 7 dimensional situation is
now investigated by the use of r-flats.

LemMA 6.1. K, K,, K, be three distinct components of K, then
two are reflections through z of each other.

Proof. Consider p;e K, for ¢ =1, 2,3 and let L*® be a three flat
containing z, p, ¥, and p,. Let S; = K, N L% then S, S,, and S; are
disjoint components of K N L°. By the last section K N L* has either
three or four components, and in any case, any three of the components
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of KN L* contain a pair that are symmetric to each other. If we as-
sume S, = — S, then clearly K, = —K,.

LEMMA 6.2. K has at most four components. If K does have
four components K, K,, K, and K, without loss of genmerality, one
may assume K, = — K, and K, = —K,.

Proof. Assume K has five components K, K, K;, K, and K,.
Then lemma 6.1 applied to K,, K, and K, allows the assumption K, = — K,.
Applying Lemma 6.1 to K,, K, and K, yields K, = —K,.

Let », € K, p,€ K, and p,c K, then let L, be a three flat contain-
ing p, 2, s and z. KN L* then contains five disjoint components,
which is impossible by Lemma 5.3.

LEMMA 6.3. Let N,C K then if one of the following holds, N,
18 a line of reduction.

1) K has exactly one component.

(2) K has exactly two components K, and K, that are symmetric
to each other.

(8) K has exactly three components K, K,, K, with K, = —K,
and N,C K, U K,.

(4) K has four components.

Proof. The proofs of the above four cases all follow the same
general pattern. Therefore, the first case is the only one discussed.

If N,c K and K has one component, consider y ¢ R and let L® be
a three flat containing z, ¥ and N,. Either N, c K or else K N L* has
three components. If K N L® has three components, there is a two
flat L*c L? through z that is doubly timelike. But then K N L* has
four components, and Lemma 4.2 would imply K had more than one
component.

For convenience the following notation is adopted. If k, p, «-+, m
are 7 distinct integers from the set 1, 2, ---, n let Lj,..., be the unique
p-flat through the z,, x,, -+, x, axes. If L, is a line with L, & Lj,...,,
let L7;)...,, be the » 4+ 1 flat containing L, and L,...,. Here we assume
Lo Liyin # 6.

Repeated application of the last lemma gives the following partial
description of the nonreducible spaces:

THEOREM 6.4. In all cases K has at most four components. Let
R be monreducible.

(1) If K has one component, then R is a Minkowski G-space.

(2) If K has two components that are opposed to each other then
R is isometric to the real line.

(8) If K has three components, then one is symmetric about z



INDEFINITE MINKOWSKI SPACES 37

and the other two are strictly convex.
4) If K has four components, then R is a doubly ttmelike plane.

The case where K has two components which are not opposed is
discussed in Theorem 6.13 and additional information on the case of
three components is found in Theorem 6.8.

LEMMA 6.7. Let n = 3 and K have three components. Assume
coordinates x, x,, ; are chosen such that the light cone is given by
2} + a2 = xi. Then the plane x, = 0 intersects K, tn a set a2 + 22 = a?
for some a > 0.

Proof. Let p lie on K, and in the plane z, = 0. For some a >0
the point p lies on 2%+ 22 — a2 =a® We claim that the only hyperboloid
of one sheet containing p that has C as light cone is x? -+ o} — x} = @’

Since p is contained in exactly two planes tangent to C, the two
lines on K, through p are determined. For any ¢ on one of these two
lines, the same argument yields that the two lines on K, through ¢
are determined. It follows K, is determined by p and C.

Consider now » > 3 and extend A" to P™ by adding a hyperplane
L' at . Let the projective lines that contain the lines of the light
cone C intersect L~ in a set C..

If R is nonreducible and K has three components, let L:~' be a
supporting hyperplane to K,. If L"*' is the hyperplane parallel to
Ly~ through z, then L"* N C = z. Otherwize L*' N C would contain
a line N. For peL}* N K, then the two flat L* through p and N
would be neutral or doubly timelike. It could not be neutral because
of Lemma 6.3. It could not be doubly timelike since then N, would
not be a supporting line of K.

Set L**' N L' = L% an n — 2 dimensional flat. By taking L2 as
the » — 2 flat at « of L™ the set Lx™ — L>* becomes an » — 1 dimen-
sional affine space. Let x,y e C,, for x == y and let L? be the two flat con-
taining «, ¥ and 2. Then LN A" is a doubly timelike plane. In the
same manner as the argument after Lemma 5.1, we conclude C.. is a
strictly convex n — 2 dimensional surface in the space L~ — L™

LeEMMA 6.6. C. s an ellipsoid im L~ — L.

Proof. Let L% be a two flat in L% with Lt N C. containing
more than one point. Let L? be the three flat containing z and LZ.
Then L’ N A" is an indefinite metric space whose unit sphere has three
components. By Theorem 5.2, L% N C., is an ellipse and hence by [2,
p. 91] C., is an ellipsoid.

Take now coordinates x,, @,, -+-, «, in A" such that C has the form
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22 =a!+ .- +22_, and let L** be the hyperplane z, = 0.
Lemma 6.7. LN K has the form o+ -+ +22_, = a* for a>0.

Proof. Let L* be any two flat in L' passing through 2. Let
L? be the three flat containing L? and the x, axis. Since L?N K always
has three components, L* N K is always an ellipse of center z. There-
fore, L**' N K is an ellipsoid in L' of center z.

If L* contain#'the z; and x; axis Lemma 6.5 implies L*N K, has
the form 2% + o% = a};. If p;, and p; are points of L*N K, that lie on
the ™ and j™ axes respectively, |p;|* = |p;|* = a};. Therefore, a;; is
independent of ¢ and j. Setting a = a;; yields the desired result.

THEOREM 6.8. Let R be monreducible and K have three com-
ponents. If K, is the components of K symmetric about z it is a
quadric. In proper affine coordinates K, is given by

e F 2, — 2 =a”.
Proof. Using the same notation as in Lemma 6.9 define
S = {(mlrmm "',.’)Cn)le—f— e ok, — @ = az} .

If L? contains the x, axis then LN S = L* N K,. The result follows
by letting L*® sweep out A".

In order to investigate nonreducible spaces in which K has two
components, we first consider nondegenerate central quadrics that have
z as a center. The general form in affine space is

i aij:)()ixj - 1 Where a”- - aj,; and det (a/“) * O .

1,5=1

If two such quadrics E, and E, are given respectively by
Sa;vx; =1 and 3 aee; = =N for v >0,

they will be called semiconjugate. We will refer to E, as the A
semiconjugate to E,. For A =1 the quadrics are conjugate in the
usual sense. Notice that one of the quadrics does not have a real
locus if the quadric form is definite.

LEMMA 6.9. Suppose the nonempty sets B, and B, contained in
Uiz; Li; are such that the locus B, N Li; 1s always the N semiconju-
gate quadric to B, N L:; for fized n. Then there are exactly two
central quadrics E, and E, such that E,NL%; = B, N L% and E,NL}; =
B,NL;; forall © #j. Furthermore, E, is the N semiconjugate to K.

LEMMA 6.10. Let n = 4 and K have two components K, and K,
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each symmetric about z. Let L* be a three flat through z such that
L*N K has three components. Then L*N K consists of two semi-
conjugate quadrics.

Proof. By Theorem 5.2 one component of L* N K must be a hyper-
boloid of one sheet. Choose coordinates z,, «,, ¢, in L® such that L*NC
takes the form 2+ 23 = a2. Let L*N K have components S, S,, S,
with S; = —S,. For some a > 0, S, is given by a? + «} — a2 = a® Let
L, be a line through z in L.

In R let L* be a spacelike plane containing the x, axis, so L*¢ L.
Choose the wx, axis in L?®. Assume K has components K, and K, with
S,c K,, then L%, N K, is a hyperboloid of one sheet in Li,. Conse-
quently, L% N K, is a hyperbola. This hyperbola is determined given
only the intersection of K, with the x, axis and the intersection of L,
with the surface x} + 2! = a3 in L°.

Revolving L, in the plane L2, shows L? (O K, consists of a hyper-
boloid of two sheets that is a semiconjugate of L*N K,.

LEMMA 6.11. If n =4 and K has two symmetric components,
they are semiconjugate quadrics.

Proof. Let the notation and coordinates be the same as in the
last proof. Set B, = U..; (Li; N K)) and B, = Uix; (L} N K).

If L) N K, is the A semiconjugate to L’ N K, in L?, then Li, N K,
is the )\ semiconjugate to L}, N K, in L}, for the same A. This follows
since L3, is common to both three flats and intersects both components
of K. Therefore, B, and B, satisfy the hypothesis of Lemma 6.9. Let
E, and E, be the semiconjugate quadrics determined by B, and B,.

LPNE =L*NK, since each are quadrics in L* determined by
B, N L* and B,N L°. By the same reasoning, L* N E, = L* N K,. Also
L.nNK,=L,NK, for 1 =1, 2.

Therefore, L}; N K; = L, N E; for 1 =1,2 and j = 3, 4. But then
using Lemma 6.11 one last time, we find Li, N E; = L}, N K;. By
revolving L, in L, it follows E; = K, for 7= =1, 2.

LEMMA 6.12. Let n =5 and K have two components K, and K,
symmetric about z. If R 1is not reducible, K, and K, are semiconju-
gate quadrics.

Proof. Two cases are considered.

Case 1. Let there exist a three flat L® through z such that L* N K
has one component. Assume L°*N K, # ¢. Choose coordinates x,, x,, x,
in L’°. We may assume that L%, L%, L2, are spacelike planes. Choose
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coordinates x,, ©; such that L2 is spacelike and intersects K,. By
arguments as in Lemma 6.10 and Lemma 6.11, it is possible to
show L} NK, and L};N K, are always semiconjugate quadrics for fixed
N.  Therefore, B, = Ui.; (Li; N K,) and B = U..; (L% N K,) satisfy the
hypothesis of Lemma 6.9.
Let E, and E, be the quadrics determined by B, and B,. Let L,
be a line through z in L}. Since L},; N E; = L},; N K;, clearly Li;N E; =
L NK, for 1 =1,2 and j = 8,4,5. Therefore Li, N E; = L, N K.
By revolving L, in L3 it follows that E; = K,.

Case 2. Assume no L® through z exists with L* N K having only
one component. We will show this leads to a contradiction.

Choose coordinates x,, x,, @,, @, ¥; such that L, and L}, are space-
like planes intersecting respectively K, and K,. By Theorem 6.8, the
set K N L%, cannot have exactly three components. Consequently,
L, N K consists of two symmetric components. The same must also
be true of L, N K.

By Lemma 6.11 the sets Li, N K, Ly, N K and Li; N K each
consists of two quadrics. In each of the three sets one quadric is
the semiconjugate of the other for some fixed A. Define

B, = Ui (L} N K) and B, = Ui#j (ng nkK,).

Let E, and E, be the quadrics determined.

Let L, be a line through z in Li,. Then Lj; N K; = L{; N E; for
j=38,4,5 and 7 = 1,2. Therefore, L, N E; = L, N K; and revolv-
ing L, in L? gives E;, = K, for 1 =1, 2.

Then in proper affine coordinates v,, ¥,, ¥s ¥s ¥s the components of
Karegivenby i + i +yi —vi—ws=1and i + 42 + ¥ — i — ¥ =
—\% This contradicts the assumption of Case 2.

The n dimensional case now follows using induction.

THEOREM 6.13. If R is not reducible and K has two components
which are not opposed, then n = 4 and the components are semiconju-
gate quadrics.

Proof. Assume n» = 6. Take L"*' to be a hyperplane containing
L? and L2, which are spacelike two flats through z with L: N K # ¢.
Then L' K has exactly two symmetric components. Because of
Lemma 6.12, there exists an L® through 2z and contained in L*~' with
L?* N K having one component. Take the z,, x,, , affine coordinates in
L? and x, %, ---, x,_, affine coordinates in L™'. For pe K — L™ let
the x, axis be L(z, p). Take L, to be a line through 2z in L%. By
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induction L., N K; must consist of two semiconjugate quadrics.
The argument is the same as before, letting L, revolve in L.

An interesting result of this section is the following.

COROLLARY 6.14. If R s a monreducible Minkowski space and
not a G-space, then any spacelike plane in R is euclidean.
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TRAJECTORY INTEGRALS OF SET
VALUED FUNCTIONS

T. F. BRIDGLAND, JR.

Let I be a compact interval of the real line and for each
t in I, let F'(t) denote a nonvoid subset of euclidean n-space
Er, Let %;(F) be the collection of all Lebesgue summable
functions % ; I — E* having the property that u(t)c F'(f) almost
everywhere on I, Following the lead of Kudo and Richter,
Aumann defines the integral of F over I by

SIF(t)dt -——{Slf(t)dt |fe %(FU}

and, in addition to other results, establishes a dominated
convergence theorem for such integrals, Hermes has pursued
Aumann’s line of thought to obtain results concerning some-
thing akin to a “derivative” for set valued functions,

It is certainly also valid (and for control theoretic appli-
cations essential) to define the trajectory integral of F to be
the set &7 (F) of all functions which vanish at the left end-
point of I and have derivatives in < (F), The purpose of
this paper is taken to be the study of the trajectory integrals
of nonvoid, compact set valued functions. A primary goal
is the extension of the results of Aumann to include the
trajectory integral. A secondary goal is the provision of an
intuitively meaningful definition of “derivative” for set valued
functions,

Whereas | F(t)dt is a subset of K", .S4(F') is a subset of a space
I
of functions on I to E~. Taking note of the relation

(1) S[O,”Fmdr = () | e FEFY, tel,

the validity of which is obvious when & (F') is nonvoid, it is clear
that the distinction between .&4(F') and g F(t)dr is essentially that
between “function” and “value of a func[toign”. In view of this dis-
tinction, one necessarily anticipates that a study of the trajectory
integral would, in some sense, subsume that of the integral defined
by Aumann." Concrete justification for this point of view already
exists in control theory [4].

Further motivation for the study of the trajectory integral arises
in connection with the existence theory of the generalized differential
equation

t The work of Kudo, Richter, Aumann and Hermes cited previously is to be
found in references [13], [18], [1] and [11] respectively.

43



44 T. F. BRIDGLAND, JR.
(2) d" € R(tr x)! x(to) = xo ’

in the case in which the set valued function satisfies, in particular,
a condition of measurability in its first argument. Here one anticipates
that a suitably formulated dominated convergence theorem for the
trajectory integral would provide the means for a constructive proof
of existence, along classical lines, thereby providing at same time a
method of approximation to solutions. This is a question of no little
importance inasmuch as the general existence theorem of Pli§ [17]
and Castaing [5] has been established by nonconstructive methods.

The goals of this paper are achieved in the following way. After
developing, in §1, the pertinent algebraic and topological properties
of the space 2" of nonvoid compact subsets of E”, in § 2 we establish
several fundamental structural properties of Lebesgue measurable
functions on E' to Q. The concept of Lebesgue measurability for
functions on E' to 2" is due to Pli§ [16] and is a natural generali-
zation of the concept of measurability of functions with range in E”.
As Hermes has pointed out [11], Aumann’s “Borel measurability”
implies measurability in the sense defined by Plis. Some of the
theorems of §2 have already been stated, without proof and in a
somewhat less general form, by Filippov [9]. The central result of
§ 2 is Theorem 2.3 which is the counterpart of the theorem for point
valued functions which asserts that almost every point in the domain
of a summable function is a Lebesgue point of the function. This
theorem plays an essential role in the proofs of two of the major
results of the paper: Theorems 3.1 and 5.1.

Theorems 3.1 and 3.2 are the principal results of interest in § 3.
In the former, conditions are stated—the chief one of which is
measurability of F—under which .$%(F') is a nonvoid compact subset
of each of two linear topological (function) spaces. One of these
compactness properties, together with Hermes’ refinement [12, Lemma
1.2] of Filippov’s “measurable selection” lemma [8], permits a short
proof of the dominated convergence theorem (Theorem 3.2) in a form
suited to the proof of the existence theorem (Theorem 4.1) for (2).
In §3 we also devote some attention to the relationship between
Aumann’s results and our own.

Finally, in §5, we define a derivative for an element of a certain
function space which, owing to its obvious relationship to Huygen’s
principle of wave propagation, we have styled “the Huygens deriva-
tive”. The principal result (Theorem 5.1) of this section asserts,
loosely speaking, that the Huygens derivative of the trajectory
integral of a measurable function F' is almost everywhere the convex
hull of F(f). As easy corollaries to this theorem we obtain generali-
zations of some of the results of Hermes [11] mentioned previously.
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1. Algebraic and topological preliminaries. In this paper we
shall need the following Banach spaces.

E": euclidean n-space, with the scalar product of a, be E*
denoted by aob and with norm denoted by ||z|| =
(o)™

= "(I): space of continuous functions on I to E", with

supremum norm <x> = max {||z(¢)|||tel};
N e "(I). space of absolutely continuous functions on I to E*,
vanishing at the left endpoint of I, with norm % =
NECIEE
M) space of Lebesgue summable functions on I to E*,
with norm (x) = S [l x(t) || dt.
In each instance, I denotes a nondegelnerate compact interval of E'.
Throughout this paper the symbol ¢ will be used to denote the null
set. We shall also need the following classes of subsets of E" and
& "(I):
o class of nonvoid, compact subsets of E";
I class of nonvoid, compact, convex subsets of E*;
o7 "(I): class of nonvoid, compact subsets of & "(I);
27 "(I). class of nonvoid, compact, convex subsets of &< "(I).

DEFINITION 1.1. Given a field, @, of scalars and a set, K, of
vectors, together with functions + : K x K— K and X : 0@ x K— K,
K is called a quasilinear space over @ if and only if all the axioms
for a linear space obtain except (i) the distributivity of x over scalar
addition and (ii) the existence of an inverse under .

DEFINITION 1.2. For ac k', A, Be 2",

A+B={a+blacA;beB},
aA = {aa|acA}.

The following result is easy to verify.

LEMMA 1.1. With the foregoing definition (Definition 1.2) of
addition and scalar multiplication, 2" and I'" are quasilinear spaces
over the real field.

DEFINITION 1.3. Let A,BeQ",Y,Zecsz"(I)andxec E",yec &z "(I);
then we may define:
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a(x, A) = min{||z — a|| |ac A}

By, Z) = min Ky — 2)|z€e Z}
0(B, A) = max {«a(z, 4) | x € B}

o(Y,Z) =max {8y, Z)|ye Y}
0(4, B) = max {0(4, B), p(B, A)}

oY, Z) =max {6(Y, Z), 6(Z, Y)}
v(A, p) = max {poo | o e A}

Al = p(4, {0})
A(A, B) = max {v(4, p) — v(B, p) | [|p|| = 1}
A, ={xecE" | ax, A) < 9}

A(A, B) = max {4(A, B), 4(B, A)}

S, p) ={ieE"|[|§—z]|=php=0.

LEmMMA 1.2. (1) {2, o}, {{'", o}, {&Z"(1), 0} and {2"™(I), o} are
metric spaces.

(i) If AeQ™(el™) then A,cQ(el™) for all » >0 and A, =
A + 5(0, ).

(iliy If A, BeI'™ then p(A, B) = 4(A, B) and

4(A, B) = max {|v(4, p) — v(B, p)|||Ip|l = 1} .
(iv) If A, B,Cel™ then p(A + B, A + C) = 5(B, C).

Proof. The proofs of (i), (ii) and (iii) are to be found in [4].
For (iv), we have, by virtue of (iii),

0(A+ B, A+ C)=max{¥(4 + B,p) —v(A+C,p)||pll =1}
= max {V(A, p) + ¥(B, p) — v(4, p)—V(Cy D) ] ”pH = 1}
= p(B, C).

Henceforth we shall use 2, ", 57"(I), .2¢""(I) to denote the metric
spaces obtained by virtue of Definition 1.8 and Lemma 1.2 (i) and in
the cases of 2", I'" we shall suppose that the algebraic structure of
Definition 1.2 has been imposed. For a point Aec 2" we shall denote
by A* the convex hull of A; it is well known that A*el™". More-
over, if pe E* and A, Be Q*(e ™) then nA and A + B are in 2" (in
'™ |6, V. 1.4].

LEmMMA 1.3. (i) If npeE' and A,BeQ" then p(nA,7nB) =
|710(4, B).

(ii) If A, B,CeQ" then p(B*, C*) < p(A + B, A + C) < (B, C).

(ifiy If A, B,C, De Q" then p(A+ B, C+ D)< p(A4, C) + (B, D).

Proof. The proof of (i) is trivial. Part (iii) is an easy con-
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sequence of (ii) and the “relaxed” triangle law [4, Lemma 1.1]. The
second inequality of (ii) follows readily from the definitions and only
the first inequality remains to be proved. By [6, V. 2.4]

p(A* + B*, A* + C*) = p((A + B)*, (A + C)")
and then by Lemma 1.2 (iv)
p(B*, C*) = p((A + B)*, (A + C)*) .

Now for D, Ee 2" we have D c F + S(0, v), where v = p(D, E); hence
D*c E* + S(0,v) or D*C(E*), by Lemma 1.2 (ii) from which we
conclude p(D*, E*) < p(D, E). Setting D= A + B, E=A + C, the
first inequality of (ii) follows from this result and the last formula
line.

COROLLARY 1.1. Let n,ve E', A, Be Q"; then

(1) [InAll =9Il Al

(ii) JJA]l =0 and ||A|| =0 iof and only if A = {0};
(iii) [|[A+ Bli=[[All +IIBl;

(iv) [[|A]l =Bl =04, B) = |lA]l + |Bl;

(v) PpMA,vA) = |n—7|llA].

Proof. (i) through (iv) follow easily from the definitions and
Lemma 1.3. For (v) we have from Lemma 1.3 (i), (ii)

p(nA, vA) = |1 — ”/lﬁ((l T3 - 7>A’ <,OZA/>A>

= —vIp(4,{0) =inp —v]I|All.

DEFINITION 1.4. (Kuratowski.) Let _~ denote a metric space and
let _#* denote the space of all nonvoid, compact subsets of _#
metrized by the Hausdorff metric, o (cf. Definition 1.3). For a
sequence {4;} c _~Z*, lim,,, A; is the set of all xe_~ having the
property that each neighborhood of x intersects all but a finite num-
ber of the A;, whereas lim;.. A4; is the set of all x € _# having the
property that each neighborhood of 2z intersects infinitely many A,.
If lim,... A; = lim;_.. A;, the common value will be denoted by lim,_.. 4,.

LEMMA 1.4. ([14, p. 248]) If {A)c . 2% and Ae_2%, with
]imi_,.x, [O(Ai’ A) = 0, the’n limi_)m Al - A-

LEMMA 1.5. Let {A}c _#Z* and let Ac _#* be a cluster point
(in the Hoausdorfl metric topology) of {A;}; then

limAd,c Aclim4;.

j—ca i—00
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Proof. Let {A;} satisfy lim,..po(4;, A) = 0. By [14, pp. 242-
243]

lim 4; clim 4;, clim 4;, c lim 4, ;

4—00 Koo k—oo i—00

but by Lemma 1.4, 4 = lim, .. 4,,.

COROLLARY 1.2. Let {A;}CI™ satisfy || Aill =N, for some a= 05
if A=1lim;..A; then Ael'™ and lim,;... p(4;, A) = 0.

Proof. By Blaschke’s Auswahlsatz, the set U={4 NS0, \) | Ae ™}
is a compact subset of ' so that {4} has a cluster point in U. By
hypothesis and Lemma 1.5, A is the only cluster point of {4} and
then Ae'". Again since U is compact, the assertion of the lemma
follows.

LEmMMA 1.6, Let {4} C Q" satisfy, for some x =0, ||A;l| £ N\ of
A=1mA; and A=+ ¢ then AcQ" and lim AF = A*e ™.

Proof. Since [14, pp. 242-243] A is closed, the fact that Ae Q"
follows easily from the hypotheses. We shall prove that

A* = (lim A)* Clim A7 clim A7 < (lim 4,)* = 4%,

the second inequality being trivial. For the proof of the first
inequality, let xe A*; by Carathéodory’s theorem [7, p. 85] there
exist w*e 4, k=1, ---,n + 1, such that x = 31+ a,x*,

Zakzlyalcgo!k:]-’"'177/+1'

Despite Lemma 1.1, it is trivial to establish that

(o), = ) + 50,7) = Sl + SO, 7] = Y afar), -

It is easy to see that there exists K =0, independent of k=1, ..., n--1,
such that {zt}, N A, = ¢ for all ¢ = K. Letting alc{z*}, N A; there
follows >iitaale{z}, for all 7 = K; but clearly 32 a,afe AF and
we conclude that xelim Af.

For the proof of the third inequality, let #elim A}; then by
[14, p. 243] there exists a subsequence {A}} and a sequence {,}
satisfying x, € A} and lim«, = . Now for each index %, there exist
vectors §{e A4;,,5 =1, -+, n + 1 and numbers &t >0, =1, ---, k + 1,
satisfying >}l at =1 and », = 3"l a%&]. Setting X, = (&, -« -, &)
and o, = (af, ---, ak,))”, the superscript denoting transpose, we may
write ¥, = X,«;. By virtue of the fact that || 4, || <\ for all £, it
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is clear that {X,} is contained in a compact subset of the cartesian
product (n + 1 factors) E™ x --- x E". Moreover, the compact set
Si={peE"|p"=0, =1, .--,n +1; #lpt =1} contains {a,).
Hence {X,} and {«,} have cluster points X, @ respectively with @e %,
and now there follows readily z = Xa. Writing X = (&, .., &**),
it is clear that £e¢ A, =1, ---, n, so that Te A* and the proof is

complete.
2. Lebesgue measurable functions on I to 2%

DEFINITION 2.1 (Pli§ [16].) A function F:I— Q" is measurable if
and only if the set E(F, D) = {tc I| F(t) N D # ¢} is Lebesgue measur-
able for each open set D E™.

Filippov [9] has stated without proof the following easily
established result.

LEMMA 2.1. Let <& be the class of all open balls in E™ having
positive rational radii and centers with rational coordinates; then a
function F:I— Q" is measurable if and only if the set E(F, D) is
measurable for every De <.

LEMMA 2.2. If P is a closed subset of I and F:P— Q" is
continuous then there exists @: I — Q™ having the following properties:

(i) @ s continuous on I;

(ii) @) = F(t) on P;

(iii) for tel, ||@@)|| = sup{|| F(o)|||ce P}

(iv) if the range of F is in I'", so is that of @.

Proof. Define @ on P by setting @(t) = F(t) there; without loss
of generality one many assume that P is properly contained in I and
that I is the smallest interval containing P. If (¢, ¢,) is one of the
at most countably many complementary intervals of P, define @ on

(t, t,) by

o0 = (L= e+ (=)o

1 0

For any points 7, 7, in [{, £,] there follows
0(2(7), (7o) = (8, — t)'O(T(F'(t) — F(L,), To(F(t) — F(t,)))

|T - Tol _
ﬁllff’(to F(t,) ||

IA

the last inequality being a consequence of Corollary 1.1(v). The
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availability of this estimate makes possible the proof that @ is
continuous on I by means of an argument like that of Natanson
[15, pp. 102-104].

LEMMA 2.8. (Plis [16].) If F:I— Q" 4s continuous it is
measurable.

Filippov [9] has stated the next theorem, without proof, again
for bounded functions.

THEOREM 2.1. If F,.I—Q", k=1,2,8, .-, are measurable and
if lim p(F(t), F(t)) = 0 almost everywhere (a.e.) on I, where F: I— 2",
then F' is measurable.

Proof. (After Natanson [15, Th. 2, p. 94].) Let a,r be fixed
and such S°%a, r) e =7, the class defined in Lemma 2.1, where the
superscript denotes interior. For positive integers m satisfying mr > 1
define

Tn = B, S, r —m™), k=1,2,3,---,
Zi =Tk n=1,23"".
2n

We shall prove that
(3) EF, Sa, ) = U Z» .

Certainly 7'F is measurable by hypothesis and Lemma 2.1; thus Z7
and the right member of (3) are measurable. Then by Lemma 2.1, (3)
implies the measurability of F.

Let ¢, € E(F, S'(a, r)); then F(t) N S%a, r) # ¢ and there exists an
integer m,, m > 2, such that F(t) N Sa, r — 2m;?) #= 6. Since
O(F(t,), Fiu(t,)) — 0, it follows that p(F'(t) N S(a, » — 2m;™), F(t,)) — 0.
Consequently there exists n, = n,(m, such that if k£ =mn, then
Fy(t) N Sa, r — m;") # ¢. Hence t,e Ty for k= mn, which implies
t,e Zy and then of course t,e U, . Zn.

Now let ¢ € U.,» Z;; then there exist n, m, such that ¢, Z..
Hence t,e Ty, for k = n,; i.e., Fi(t) N Sa,r —m;") # ¢ for k = n,.
Now since p(F(t,), F'(t,)) — 0 it follows that

O(F(t) N S(a, r — m;?), F(t,)) —0 .

This in turn implies that S(a, r — m;") N F(t,) # ¢ so that certainly
F(t)n S%a, r) # ¢. Thus t,e€ E(F, Sa, r)) and (3) follows.

The necessity of the condition of the next theorem (generalized
Lusin theorem) was established, for bounded, measurable F, by Pli§
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[16]. The entire theorem, again restricted to bounded functions, was
stated without proof by Filippov [9]. For a measurable set Bc I,
let p(B) denote its Lebesgue measure.

THEOREM 2.2. A function F:I— Q" is measurable if and only
of for each 17 > 0 there exists E,C I which is closed, p(l — E,) <7
and the restriction of F to K, is continuous.

Proof. (Necessity, using a device of Natanson [15, p. 10].) Let
T, = E(F, S™(0, k)), where k is a positive integer and the tilde denotes
complementation. Now () T, = ¢ for otherwise, if t,e N T\,

F(t) N S™(0, k) = ¢

for all k, contradicting the assumption that F({,) € 2*. Hence p(N T) =
0 and since T;C T; for ¢ > j it follows that lim y#(T,) = 0. Thus for
7 > 0 there exists k, such that p(T,) < 7/4; moreover, there exists
open T D T, such that

w(T*) < p(Ty) + 7/4 < 7/2 .
Defining F*: I— 2" by

F*(ty = F(t),tel — T*,
Fr(t) = {0}, te T,

the measurability of F* follows from that of F; in addition || F*(¢) || <
k, for all teI. Hence, by the aforementioned theorem of Pli§ [16],
there exists closed E} c I such that the restriction of F™* to Ej is
continuous and p(I — Ej}) < n/2. Consequently, the restriction of F'
to the set E, = (I — T*) N E} is continuous and F, is certainly closed.
Moreover,

ol — EB) = w(T* U — E) < (T + pd — Bp) <7,

and the argument is complete.

(Sufficiency.) For each 7 > 0, denote by ®@(o,7) the continuous
extension of F, from FE, to I, guaranteed by Lemma 2.2. Let
N =27", m=1,2,3, --+; then setting

S,=1-E,
it follows that x(S,) < 2™™. Define
M; = kLZJiSk; Q=NM.

Now M, D> M, > --- so that lim p(M;) = p(Q); but since p(M;) < >, 27F
there follows p(Q) = 0. Let t,el — @; then ¢, e U — M;) so that

i1
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toceI — M;, for some 4. But then t,elI— S, for all k=1, ie.,
o(F'(t,), D(t,, 1)) = 0 for all £ = 4, and this in turn implies

lim o(F(t,), @(to, 7)) = 0 .

By Lemma 2.3, @(-, 7,) is measurable for each k& so that by Theorem
2.1 and the result just obtained, F' is measurable.

COROLLARY 2.1. If F:I— Q" 1is continuous (measurable) then
the function F*:1—I" defined by F*(t) = (F(t))* is continuous
(measurable).

Proof. The assertion concerning continuity is immediate from
Lemma 1.3 (ii). Now suppose F' is measurable; by Theorem 2.2, for
n > 0 there exists closed E,cI such that p(I — E,) <7 and the
restriction of F to E, is continuous. But by Lemma 1.3 (ii), the
restriction of F'* to E, is continuous. Another application of Theorem
2.2 yields the measurability of F*.

The next two lemmas were originally stated for bounded functions;
an examination of their proofs (vide [12]) reveals, in the light of
Theorem 2.2, that this boundedness restriction is superfluous.

LEmMA 2.4. (Hermes-Filippov.) Let g: E™— E* be continuous
and let H:I— Q" be measurable. If r:I— E™ is measurable and
r(t) € g(H(t)) on I then there exists measurable v:I— E™ satisfying
v(t) € H(t) and r(t) = g(¥(t)) on I.

LEMMA 2.5. (Hermes.) Let R:I1— Q" be measurable and let
w: I— E" be measurable; them there exists measurable r:I1— E™
satisfying r(t) € B(t) and || w(t) — ()| = a(w(t), R(t)) on I.

The next lemma was originally stated by Hermes [11, Lemma
1.1] for bounded functions; again by virtue of Theorem 2.2, the
boundedness restriction is superfluous. A function F:I— Q" is
approximately continuous at te I if and only if there exists a measur-
able set Bc I for which ¢ is a point of density and such that the
restriction of F' to B is continuous at ¢.

LemMA 2.6, If F:1— Q" is measurable then F 1s approximately
continuous a.e. on I.

DEFINITION 2.2. (i) Let F:I— Q" if there exists a Lebesgue
summable function A: I— E' such that || F(¢)|| < h(t) on I then F is
integrably bounded.
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(ii) Let A be an index set and let F,:I— Q" for all ve 4; if
there exists a Lebesgue summable function h:I— E' such that
|| F.(t) || = h(t) for all tel and all vye A then {F,|ve A} is uniformly
integrably bounded.

The next lemma has an easy proof which will be omitted.

LEMMA 2.7. (i) If F:I— Q" is continuous it 1is integrably

bounded.
(ii) If F:I— Q" 1is integrably bounded then the function F*
defined in Corollary 2.1 has the same integrable bound as F.

DEFINITION 2.3. Let F:I— Q" be such that for each ¢el the
function o(F'(e), F(t)) is summable on I. A point te I for which

lim 7;~lg“”p(F(r), F(t)dr = 0
n—0 t

is called a Lebesgue point of F.

THEOREM 2.3. If F:I— Q" is measurable and integrably bounded
then almost all tel are Lebesgue points of F.

Proof. Theorem 2.2 and the continuity of o(c, o), together with
Lusin’s theorem for real valued functions, implies that o(F(c), F(t))
is measurable for each ¢el. Let h be an integrable bound for F}
without loss of generality one may suppose that #Z(¢) > 0 on I. By
Corollary 1.1 (iv), o(F(z), F(t)) < h(z) + h(t) for all z,tel. Hence
o(F(o), F(t)) is summable on I for each tel. Now by Lemma 2.6
and [15, Th. 5, p. 255] almost all points of I are, at once, points of
approximate continuity of F' and Lebesgue points of k. Let ¢ be
such a point and let B I be a measurable set for which ¢ is a point
of density and such that the restriction of F' to B is continuous at
t. For » >0, set

Bn) =1[t,t + 71N - B).

Then, given ¢ > 0, one may choose 7 = 7(¢, t) > 0 sufficiently small
that the following three conditions are satisfied:
(i) for e B,\(n), o(F(7), F(t)) < ¢/6;
(ii) (By(n)) < en/6h(t);
t+
(iif) S, "I h(e) — h(t) | de < 1e/3 .
By virtue of (i), (i), (iii) and Corollary 1.1 (iv) there follows
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W“ISIHP(F&), F(t))dr = 77“153 o, PE @), F®)dr + v“‘SBﬂ(v)p(F(z'), F(t))dr

<3+ [IFE |+ 1) e

1

<3+ 77| 710 — ho)| de + 2hOT RB0)
<€gB8+¢8+¢83=c¢.

Thus lim,_,, 7}“ISW(O(F(T), F(t))dr = 0, and a similar argument shows
t
that the left hand limit is also zero.

We close this section with the following important lemma on the
measurability of composite functions.

LEMMA 2.8. Let D be a monwvoid, open subset of E'* x E™ and
let R: E* x E*»— Q" satisfy:

(i) for each t im the projection of D on E*, R(t, o) is continu-
ous on the set D, = {xc E* | (¢, x) € D};

(ii) for each x in the projection of D on E™ and each compact
interval I E* for which I X {x} C D, R(o, x) is measurable on I;

(iii) for each compact C C D there exists a Lebesgue summable
function h,: E*— E*' such that || R(t, x)|| < h(t) on C.

If I is a compact interval in E' and S is a compact ball in E™
satisfying I x S D then for each continuous function x:I— S the
function R(e, 2(0)) is integrably bounded and measurable on I.

Proof. If the assertion of the lemma is true with “continuous”
replaced by “step” as the restriction on x: I— S then the validity of
the original statement, insofar as measurability is concerned, follows
by virtue of (i) and Theorem 2.1 since a continuous function x: I— S
may be uniformly approximated by step functions. Hence suppose
that for ¢, e S, k=1, ---, m, 2*: I— S is defined by

x*(t) = Cp, teIk: k=1, e, M,

where I=UI, I;NI,=¢ for j+#k and each I, is an interval.
Then for an open set K < E*, E(R(c, x*(c)), K) = U M;,

MJ:{teIJ|-R(tyc,)nK7& ¢}, ,7=1, cee, M.

But by (ii), each M; is measurable so that E(R(c, 2*(c)), K) is measur-
able. Integrable boundedness of R(o, #(c)) is an easy consequence of

(iii).

3. Trajectory integrals of measurable functions. In this
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section we set I = [0, 1] without loss of generality and suppose that
F:I— Q" is a given function. As in the introduction we denote by
Z(F) the set of all Lebesgue summable functions w:I— E" having
the property that u(t) € F(t) a.e. on I. Let .7~ on <°*(I) be defined by

(70t = | a@z, tel,

and define
) = T F(F) .

S (F) may be considered as a subset of any of a number of Banach
spaces but the ones we shall be primarily concerned with here are
z™(I) and 1" ().

Lemma 3.1. (i) If F:I— Q" 1is measurable and integrably
bounded then Z (F) +# ¢.
(ii) If F: I—1TI™ then 7 (F) is a convex subset of £ 7(I).

Proof. That there exists a measurable v:I— E" satisfying
y(t) € F(t) a.e. on I follows from Lemma 2.4 by taking g =0, » =0,
and H = F. The assertion of (i) then follows by the integrable
boundedness of F. The proof of (ii) is trivial.

THEOREM 3.1. If F:I— I'" is measurable and integrably bounded
then A4 (F)e 27 "(I); moreover, S (F) is a weakly compact subset of
N e (I).

Proof. From Lemma 3.1 and the linearity of .7~ follow the facts
that .&4(F) is nonvoid and convex; that .&%(F') is conditionally compact
follows readily from the integrable boundedness of F' together with
the Arzela-Ascoli theorem. The first assertion of the theorem will
be established if we show that S4(F') is closed in &"(I). To this end
let we F(F) and let {w,}C .S(F) satisfy lim (w,, — w> = 0. Now
W,(t) e F(t) a.e. on I so that with % denoting the integrable bound
on F' we obtain

Hw(t) — wt) || = [[w(t) — wa(t) [| + || w(t) — walt) ||

F [ walty) — wa(t) || < & + H:ik(r)df ‘

for ¢ > 0 and m sufficiently large. Thus w is absolutely continuous
on I and it is easy to see that there exists measurable UcC I, u(I— U) =
0, having the following properties:

(i) (¢) exists on U;

(ii) each te U is a Lebesgue point of F.
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The validity of (ii) is of course a consequence of Theorem 2.3. With
v being the function defined in Definition 1.8, by virtue of Theorem
2.2, the Lusin theorem for real valued functions and the continuity
of y(e,°) on I' x E™ [3, Lemma 1] there follows the fact that
Y(F'(o), p) is measurable for each pe E". By virtue of Lemma
1.2 (iii) and Corollary 1.1 (iv) there obtains |v(F(t), p)| < h(t) for all
(t, p) eI x E™ and thus v(F(c), p) is summable for pc E”. Moreover,
there exists measurable VI, (I — V) =0, such that for all
(t, p) e V x E™ and all m,

Wa(t)op = V(F (), D) -
Thus for all m, all pc £ and all ¢, ¢, ¢ 1,

[walt) = wat)]ep < | FE), piic ;

in particular for te U, » > 0, all m and all p such that ||p|| =1,

7 lwalt + 1) — wa)]ep < 77| UEE), p)dE
= w(F(), p) + 77| "o E), Foyz

the final inequality being a consequence of Lemma 1.2 (iii). For all
» > 0 such that ¢ + pe I, the convergence of w, to w implies that

77wt +7) — w®)] = im 77w, +7) — wa®)] .

This and the last formula line imply that for ||p|| =1, teU, >0
and t + nel,

t
t

7t + 1) = wlop < 9FO, p) + 7] 0EE), Fe)ds

Letting 7 — 0+ in this inequality yields, for ||p|| =1,
W(t)ep = V(F(2), p)

and in turn this implies [19, Th. 5.3] that @ (¢) € F(¢). Thus is S (F')
closed.

For the proof of the second assertion of the theorem, let x be a
weak limit point (i.e., a limit point relative to the weak topology in
N e (I)) of “(F). By [6, 1V. 13.31] there exists a sequence
{z,.} © F(F) which converges pointwise to « on I. But by the first
assertion of the theorem, there is a subsequence {x,,} which converges
in #*(I) to « so that necessarily e .S(F). Thus is .(F) weakly

closed. Now ”S q(T)dt “ < S h(z)dz for all ¢ € & (F') and all measurable
E E
E cI; hence by [6, IV. 8.11] and the absolute continuity of the set
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function g h(z)dr, Z(F') is weakly sequentially compact in &2*(I).
Since .7~ ig linear and continuous with respect to the metric topologies
in &ZrI) and ¥ vz ™(I), by [6, V. 8.15] S(F) is weakly sequentially
compact in 4z "(I). Now the weak compactness of S4(F) is a
consequence of [6, V. 6.1].

THEOREM 3.2. Let F,F,.I—I", k=1,2,3, ---, satisfy
lim o(F(¢t), F(t)) = 0

on I, if {F,} is uniformly integrably bounded and each F) is measur-
able then A (F,) and A (F) are in 27 "(I) and lim o( 4 (F}), S45(F)) =0.

Proof. That 4(F,) e 2 ") is a consequence of Theorem 3.1.
That F is measurable is implied by Theorem 2.1. Let & be a uniform
integrable bound for {F,} and let teI be fixed; by hypothesis and
Corollary 1.1 (iv) we find that, given ¢ > 0, there exists K = K (¢, t)
such that for k> K, ||F@)||<e+ ||Fu@®)|| <¢+ k(). Thus F is
integrably bounded by % and from Theorem 8.1 there follows
F(F) e o ™(I). Now there exists w, € .&(F) such that B(w,, SA(F'))=
d(FAF), SH(F)). Let q,e F(F,) be such that w, = .77q, and, by
Lemma 2.5, let u,e F(F') satisfy || u,(t) — q.(?)]|] = a(q.(t), F(t) <
B(F.(t), F(t) on I Then 5(A(Fy), S(F) = <wy — .7 u; but

<.~ 7y = (10 = wE@) | &= = | ataue), Fee)ds

and since «a(q,(t), F(t)) —0 on I and a(q.(t), F(t)) < 2h(t) on I it
follows from [6, III. 6.16] that lim <w, — .Zu,> = 0. Hence

lim 6((F), S(F)) = 0.

There also exists y, € S(F') such that B(y,, S5(F})) = (HAEF), FAF,)).
Let u,e & (F) satisfy y, = Zu, and, by Lemma 2.5, let g, e F/(F)
satisfy || wu(t) — qu(®) || = a(u,(t), F(t)) = p(F (1), Fi(t)) on I.  Then
G(AF), AF) = yr — T qip; but

W= 71 = | lu®) — 0@l dr = | (@), Fule)ds .

Arguing as in the preceding part of the proof we conclude
lim 6(A(F), SA(F,) =0

and the proof is complete.

DEFINITION 3.1. Let .o be a set of functions on I to E"; then
G(t; &) ={p(t) | pe S}, tel.
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LemMA 3.2. If either of the following conditions is satisfied
then for all tel, G(t; &¥)e ™

(i) Lezx);

(ii) & 1is a mnonvoid, convex, weakly compact subset of
A e ™(I).

Proof. (i) is an immediate consequence of [4, Th. 1.4]. For (ii)
we observe first of all that by [6, IV. 12.3] there is a unique nonvoid,
convex, weakly compact subset &# < &?(I) such that & = 7.7,
By virtue of [6, V. 6.1], & is weakly sequentially compact; from [6,
IV. 8.8] it then follows that F'is bounded. The function 7;: &< »(I)— E*
defined for each fixed tc I by

t
7 =\ a@ye

i3 linear and continuous with respect to the metric topologies in
ZuI), E™; hence by [6, V. 8.15] it is continuous with respect to the
weak topologies in these spaces. Consequently .7, is bounded, convex
and weakly compact, hence, by [6, V. 3.13], closed. We conclude
that G(t; &) = 7.9 e ™.

The next lemma generalizes a result due to Hermes [12, Th. 1.2].

LemmA 3.3, If F: I— Q" is measurable and integrably bounded
then G(t; SUF)) = G(t; AF*))el™ for all tel.

Proof. By Corollary 2.1, Lemma 2.7 (ii), Theorem 3.1 and Lemma
3.2, G(t; HAEF*)el™. Certainly G(t; SHF))  G(t; LUF*)) and the
remainder of the proof coincides with the second part of Hermes’
proof for [12, Th. 1.2].

Hermes [11] has observed that: if F: I — Q" 4s Borel measurable
[1] then it ts measurable. Our next result is the combined assertion
of Theorems 1 through 4 of [1] for Borel measurable, integrably
bounded F:I— Q. It is an immediate consequence of Lemma 3.3
and Hermes’ observation.

COROLLARY 8.1. If F:I-— 2" is Borel measurable and integrably
bounded then for each te I, G(t; SA(F))el™ .

Lemma 3.3 provides the instrument for establishing the following
corollaries to Theorem 3.2.

COROLLARY 3.2. Let F,F,:I— Q" k=1,23, -, satisfy
lim p(Fu(t), F(£)) = 0
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on I; if {F,} is uniformly integrably bounded and each F, is measur-
able then for each tel, G(t; S(F}) and G(t; SA(F)) are in '™ and

lim o(G(t; SA(FW), Gt SA(F)) =0,

uniformly on I.

Proof. By Corollary 2.1 and Lemma 2.7, each F; is measurable
and {F7} has the same uniform integrable bound as {F,}. By Theorem
2.1, F' is measurable and, by an argument like that used in Theorem
3.2, F is integrably bounded. Thus by Corollary 2.1 and Lemma 2.7,
F* is measurable and integrably bounded and, by hypothesis and
Lemma 1.3 (ii), lim o(Fy*(¢), F*(t)) =0. From Theorem 3.2 there
follows lim o(SA(F), S4(F*)) = 0 and this result together with [4,
Th. 1.5] implies

lim o(G(t; FA(FY)), G(¢; SAF) =0,

uniformly for ¢ e I. The proof is completed by application of Lemma
3.3.

COROLLARY 3.3. Let F,:I— Q" k=1,2,38, .-, satisfy the follow-
ing conditions:

(1) {F.} 1s uniformly integrably bounded;

(ii) for each k, F, is Borel measurable;

(iii) F(t) = lim F,(t) extsts and is nonvoid for each tel. Then
F:I— Q" and, for each tel,

lim G(¢; S(F) = G(t; AF) el™ .

Proof. By virtue of (i), (iii) and Lemma 1.6, F:I— Q" and
lim F7(t) = F*(t). Lemma 2.7 implies that {F} has the same uniform
integrable bound as {F} so that Corollary 1.2 yields lim o(F'(¢), F**(t)) =
0. The observation of Hermes quoted above, together with (ii) and
Corollary 2.1, yields the measurability of F;*. Now Corollary 3.2 and
Lemma 1.4 permit the assertion

lim G(t; A(FY)) = G(t; AF*)el™;
hence Lemma 3.3 yields
(7) lim G(t; SA(F) = G(t; AF*) el™ .

But the assertion of [1, Th. 5] is that the left member of this
equation is equal to G(¢; S4(F")); the proof is complete.

Discussion. It is easy to see that in Corollary 3.3, the require-
ment that F, be nonvoid, compact valued for each % can be replaced
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by the requirement that it be nonvoid, closed valued for each k.
The corresponding replacement can be made in Corollary 3.1. It is
noteworthy that Corollary 3.1 bears out the anticipation, expressed in
the introduction that a study of $4(F') subsumes, in an obvious sense,
a study of Aumann’s integral. Corollary 3.3 shows that our expecta-
tions in this direction cannot be too high; indeed, under hypotheses
of this corollary, (7) appears to be the strongest result we can obtain
within the confines of the theory developed in this paper. The
utilization of [1, Th. 5] in this corollary could be supplanted by a
counterpart of Theorem 2.1 in which Hausdorff convergence is replaced
by Kuratowski convergence. However, we have not been successful
in obtaining such a counterpart of Theorem 2.1; moreover, in view of
the proof of Theorem 2.1 it does not appear likely that such a counter-
part is valid. It is also noteworthy that the lack of such a counter-
part for Theorem 2.1 prevents the inference from [1, Th. 5] alone
that G(t; SA(F)) + ¢ for some tcl even under the hypotheses of
Corollary 3.3.

The weak compactness of S4(F') in . wz""(I) may be shown to
follow directly from the hypotheses of Theorem 3.1; the device of
using the compactness of .S4(F') in & "(I) to establish weak compact-
ness of S4(F') was a matter of convenience in the proof of that
theorem. Taking this observation into account, it is not difficult to
see that Corollary 3.2 may be established independently by means of
an argument which depends only on weak compactness of .S4(F),
Lemma 3.2 (ii), Lemma 3.3 and Lemma 2.5. Thus Corollaries 3.1,
3.2 constitute a theory which is a direct counterpart of Aumann’s
theory, the major distinction between the two theories being that
between Hausdorff and Kuratowski convergence. The discussion of
the preceding paragraph indicates that whereas these theories are
supplementary, neither implies the other.

The proof of [12, Corollary 1.1] applies with trivial modification,
taking into account Lemma 3.3, to yield

LEMMA 3.4. Let F: I— Q" be measurable and integrably bounded,
and let y e & (F*); then for each n > 0 there exists z,€ A(F') satisfy-

ing <y — z,y <.

This lemma has the following immediate consequence.

COROLLARY 3.4. If F:I— Q" 1is measurable and integrably
bounded then S(F*) is the closure of SA(F') in = "(I).

REMARK 3.1. [12, Example 2.3.] shows that with the hypotheses
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of Corollary 3.4 .&4(F') need not be closed in &*(I); there thus appears
to be no possibility of generalizing Theorem 3.2 by requiring that
F, F, have values in Q~.

Let us denote by .&7; (F') the closed (in .#.o7z"(I)) convex hull
of Z4(F') and by S7%(F'), the weak closure of .S4(F) in A4 r& ™).

THEOREM 3.3. If F:I— Q" is measurable and integrably bounded
then

FIEF) = FIEF) = AFY) .

Proof. By means of an argument like that for the second asser-
tion of Theorem 3.1 it may be inferred that .S4(F) is weakly
sequentially compact. Now there follows from [6, V. 3.13, 3.14] and
Theorem 3.1,

) C FI(F) C AT .

But from these inclusions, Lemma 3.4 and [6, IV. 13.31], the theorem
follows.

REMARK 3.2. It is easy to see that S7}(F) = % ;(F'), where
&, *(F') is the closed convex hull of & (F).

Arguing again as in the proof of the second assertion of Theorem
3.1, it follows that if F: I — Q" is measurable and integrably bounded
and if S4(F') is closed in Z"(I) then .S4(F') is weakly closed in
N re™(I).

In view of this result, Theorem 3.3 yields

COROLLARY 3.5. If F:I— Q" 1is measurable and integrably
bounded then A (F)e 7)) only if AF) = F(F*).

The final result of this section provides a marked strengthening
of Theorem 3.1 and of the assertion of Remark 3.1.

THEOREM 3.4. Let F:I— Q" be measurable and integrably
bounded; then the following statements are equivalent:

(i) AF)ezz"1).

(ii) FAF) is a nonvoid, weakly compact subset of AN o7& ™(I).

(iii) F'(t) vs convex a.e. on I.

Proof. That (iii) implies both (i) and (ii) is an easy consequence
of Theorem 3.1. For the remainder of the proof, consider the func-
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tion o(F'*(c), F(c)). By virtue of Corollary 2.1, an argument similar
to that of the first part of the proof of Theorem 2.3 permits the
assertion that this function is measurable on I. Hence the set

M= {tellpF*@), F¥) >0} = {tel|pF*(), F() > 0}

is measurable. We need prove only that if (M) > 0 then S4(F') is
a proper subset of S4(F'*). Indeed, in this event it follows from
Corollary 3.5 that .S45(F') ¢ 2#*(I) and, from Theorem 3.3, that .S45(F)
is not weakly compact. Now we observe that minor modification of
Hermes’ proof [12] of Lemma 2.4 produces the following result: there
exists a measurable function w:I— E" satisfying w(t) e F'*(t) and
a(w(t), F(t)) = p(F*(t), F(t)) for all tel. A function w so determined
thus satisfies a(w(t), F(t)) > 0 on M. Hence, if p(M) > 0 it follows
that Z#;(F') is a proper subset of & (F'*) and this in turn implies that
S(F) is a proper subset of .4(F*) and the proof is complete.

4. An existence theorem.

THEOREM 4.1. Let D be a nonvoid open subset of E' x E™ and
let R: E* x E™— I satisfy conditions (i), (i), (iii) of Lemma 2.8 on
D; then for each (t, x,)€ D there exists a solution® of
(2) Ee R(tr x)y x(to) =Xy
and every solution of (2) may be continued to the boundary of D.

Proof. There is no loss of generality in assuming that (0, 0)e D
and proving the theorem in the case (¢, x,) = (0, 0). The proof is

based on that of Hartman [10, Th. 2.1, p. 10]. Let a,b >0 be
sufficiently small that C < D, where

C={tx)eE* X E*"|0=tZa;]lz] £0).
Define a = max {t e [0, a] ’ Sthc(f)df < b}; evidently «e(0,a]. Let
7€ (0, a] be fixed; then on [0, ] the function whose value is R(t, 0)

is measurable and integrably bounded. By Theorem 3.1 there exists
w, € Fo,n(R(, 0)) and we define a function ¥, on [0, n] by

Xv(t) = wl(t)’ te [07 77] .
There follows easily
(d0) Izl = hEde < b telo 71

2 J.e. an absolutely continuous function satisfying ()€ R({, #(f)) a.e. on an
interval containing fo in its relative interior and satisfying x(fo) = o.
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(4b) 12:68) = 2t [ = || h@)de ], £, e 0,71

If » < a, let ' = min {«, 29}; then by Lemma 2.8 the function whose
value is R(t, x,(t — 7)) is measurable and integrably bounded on
[7, 9']. Hence by Theorem 3.1 there exists w, e 4, 1 (R(e, %s(c — 9))).
We extend yx, to [7, #'] by defining

Xi(t) = () + we(b), ten, 9 ;

it is easy to see that y, satisfies (4) on [7, '], hence on [0, 7']. If
7' < a the foregoing process may be iterated at most a finite number
of steps to extend the definition of y, to [0, «] in such a way that
the following property obtains:

*) Yn € SHo,a1(R7(0)), where R7”: [0, a] — ' is defined by

R7(t) = R(t, 0), t[0, 1] ,
Rﬂ(t) = R(t, Xn(t - 77))) te (7]: a]

with the family {R”|7ne (0, «]} being uniformly integrably bounded
and each member of the family measurable on [0, «].

Now let {n,} be a monotone null sequence of points in [0, a];
then by property (*) and the Arzela-Ascoli theorem {x, } contains a
subsequence (assume it is the original) which converges uniformly on
[0, «] to a limit function, yx, which is easily shown to be absolutely
continuous (cf. the proof of Theorem 3.1). Equicontinuity of {¥,.}
implies

lim y,,, (¢ — 7.) = x(®), te[0, a] ,
so that by condition (i)
(5) lim p(R™(t), R(t, x(¢))) = 0, te[0, a] .
Thus from (*), (5) and Theorem 3.2 there follows
(6) lim 0 (Ao, c(B7™), So,a(B(, 2(<)))) = 0 .
Since y, — % and .S, ,(R(e, x(°))) is compact, (*) and (6) imply that
(7) X € Fo,a(B(o, %())) .
But (7) is equivalent to the assertion that y(0) = 0 and, a.e. on [0, «],
x() € (¢, ()

and the proof of existence is complete. The continuability assertion
follows in a straightforward way from [2, Th. 4].

COROLLARY 4.1. If in the statement of Theorem 4.1 conditions
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(1), (ii), (iii) of Lemma 2.8 are replaced by (iv) R is continuous on D,
then the conclusion of that theorem remains valid.

Proof. That (iv) implies (i) is obvious; that (iv) implies (ii) is a
consequence of Lemma 2.3. Finally, (iii) follows from (iv) by setting

h(t) = max {max {|| £||| ¢ e R(z, ®)}| (z, x) e C}, te E* .

REMARK 4.1. The demonstration that all solutions of (2) may be
continued over the interval [0, «], defined in the proof of Theorem
4.1, is exactly like the corresponding proof for ordinary differential
equations. The compactness of the solution family as a subset of
Z"(]0, «]) is then an easy consequence of Theorem 3.2; this again is
a parallel to the corresponding argument for ordinary differential
equations. Invoking [5, Th. 1] and Corollary 2.1, only slight modi-
fication of the proof of Theorem 4.1 is needed to establish the more
general Pli§-Castaing existence theorem [17], [5].

5. The Huygens derivative.
DEriNITION 5.1. Let .&2e 5#"(I); given tel, if there exists
S(t) e I'" such that
lirgv“‘p(G(t + ;. ), G(t; &) + 1nS(t)) =0
7=

then S(¢) is called a right hand (Huygens) derivative of & at t. If
there exists V(t) e I'* such that

lim 7~ o(G(t — n; &) + nV(t), G(t; &) =0
70+
the V(¢) is called a left hand (Huygens) derivative of & at t.

LEMMA 5.1. The one-sided Huygens derivatives of & € 27 "(I)
are unique.

Proof. We give the proof for right hand derivatives, the proof
for left hand derivatives being similar. Let R(t), S(f) be right hand
derivatives of & at ¢; then for » > 0 it follows from Lemma 1.3 and
the triangle law that

O(R(t), S(t)) = 77 p(mR(t), 7S(t)) = 17" 0(G(t; &) + nR(t),G(t; &) +nS(1))
= 90(G(t+n; &), G(t; &) + nR())
+ 770Gt + 75 &), G(t; &) + 9S(D)) .

By hypothesis, the limit, as 7 — 0+, of the rightmost member is
zero so that o(R(t), S(¢)) = 0.
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DEFINITION 5.2. When these exist, the right hand and left hand
derivatives at t of .&¥ ¢ H™(I) will be denoted by (D*.57)(t) and (D~.&°)(t)
respectively. If the one-sided derivatives of .&” at ¢ both exist and
are equal, their common value is called the Huygens derivative of &
at t and is denoted by (D.S7)(t).

LEMMA 5.2. If F:I—TI" is measurable and integrably bounded
then

VGt FF), D) = | 9FE), D)z, tel, pe B .

Proof. Let us condense notation by defining

Mty p) = v(F(t), p) .

Then the assertion of the lemma is that w(¢, p) = St)\,(‘f, p)dz, tel,
pe E". By an argument similar to that for Theorem 3.i it follows that
Mo, p) is summable for each p e E* so that Stx(r, p)dz is well defined.
If 0eG(t; &(F)) then there exists u* e %(FQ) such that o = S:u*(z')dz-;
hence

t t
gop = gu*(r)opdf < S Mz, p)dz, tel, pe E".

We infer that w(t, p) < Stk(r, p)dr. For the proof of the reverse
0

inequality let h be the integrable bound on F’; then for » >0 and
llpll =1, (h(t) + )¢ F(t) on I. For suppose the contrary; then

h(t) < W) + 7 = ([ (M(?) + PPl = k() ,

which is absurd. Let q(¢, , p) be the unique point in the boundary
of F'(t) nearest (h(t) + n)p; then by virtue of Lemma 2.5, q(o, 1, p)
is summable and

t t t
(™ e = a7, ez = ([ 7, Dac)ep < 0t p) -
This completes the proof.

THEOREM b.1. If F:I— Q" is measurable and integrably bounded
then a.e. on I, (D.A(F))(t) = F*(¢).

Proof. By virtue of Corollary 3.4, (D.S4(F'))(t) exists if and only
if (D.S(F*))(t) exists; moreover, the two have the same value. It is
thus sufficient to show that (D.S4(F*))(t) = F*(t) a.e. on I, we shall
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carry out the proof for D+, the proof for D~ being similar. For
7 >0 we find that with , A being as defined in the proof of Lemma
5.2,

P o(G(E + 1, AEFF)), G(t; FAF*) + nF*(t))
=77 max {| o + 1, p) — [w(t, p) + M@ D] |2l =1}
= max{l§i+”x(r, pyde — nt, p)‘ { Ipl| = 1} (by Lemma 5.2)

=y max {| | Ive p) = Mt wlaz | (121 =1}
<77 aE @, Fronde = 0] R ), Foyde
(by Lemma 1.3 (ii)).

The proof is completed by invoking Theorem 2.3.

COROLLARY 5.1. If Fp:I—Q" +=1,2, are measurable and
integrably bounded, a mecessary and sufficient condition that the
closures of SA(F)) and S4(F,) be equal is that F*(t) = F.*(t) a.e. on I.

Proof. (Sufficiency.) Evidently .4(F*) = .S4(F,*) and the asser-
tion follows from Corollary 3.4.

(Necessity.) By hypothesis, Corollary 3.4 and Theorem 5.1, a.e.
on I we have

Fr(t) = (DLFE)@) = (DAE)E) = FF (1) .

For ¢, t,e I, let us set
| Pz = {[ sz g e 7))
where F:[— Q. It is not difficult to verify that for » > 0
Gt + 73 SAF)) = Gt; SAF)) + SZMF(r)dr, tt+nel,
and
Gt — 7 SAF) + | FE)ds = Gt AN, 1, ¢ 7T,

Thus if F:I— Q" is measurable and integrably bounded there follow
from Lemma 3.3, Lemma 1.3 and the foregoing identities, both

TG + 73 SAF), Gt SF)) + 97+ 0) = o7 Fe)de, Fr0)

and
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770G — 73 SUFN) + 1P ®), 6t AP = (7| F@)de, Fr0)

when 7 > 0. Together with Theorem 5.1, these last formulae establish
the following generalization of [11, Lemmas 1.2, 1.3].

COROLLARY 5.2. If F:I— Q" 4s measurable and integrably
bounded then, a.e. on I,

lim p<n~lgi+”F(f)dz, F*(t)> ~0.

REMARK 5.1. Note that now Corollary 5.1 appears as a generali-
zation of [11, Th. 1.1}.
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A GENERALIZED HAUSDORFF DIMENSION
FOR FUNCTIONS AND SETS

RoBERT J. Buck

A generalization of the Hausdorff dimension of sets is given
by restricting the lengths of the intervals in the covering
family. The dependence of this dimension on the choice of
covering family is studied by considering the set of points in
the countable unit cube I© whose coordinates are the values
of the dimensions of some set for a fixed, countable collection
of covering families, General conditions are given in order
that two families yield the same dimension on each set, and
that a covering family give the ordinary Hausdorff dimension.

In 1919, Hausdorff [3] introduced a notion of dimension for sub-
sets of the unit interval. For any set E, this dimension is H(&) =
sup {v: M, (E) > 0}, where N(E) = inf {J(I(I;)): UIl; 2 E}; and it can
take any value between 0 and 1, being 1 in the case that F has posi-
tive Lebesgue outer measure. This notion of dimension can be genera-
lized in various directions and the approach taken here follows Bill-
ingsley [1]. In particular, consider the dimension H’(E) given by the
outer measure \N(E) = inf {Z(m(C))): UC; 2 E & C;c _F£}, where m
denotes Lebesgue measure and _# is any collection of m-measurable
sets containing sets of arbitrarily small measure. If _# contains the
intervals and their finite unions, then H'(E) assumes only the values
0 and 1, as m(E) = 0 or not. Thus for the study of sets of Lebesgue
measure zero, it appears that # cannot be too large with respect to
the family of all intervals. Accordingly, the dimension H'(F) is studi-
ed only where _# is any collection of intervals containing intervals
of arbitrarily small length and where _# is closed under translations,
i.e., where _# is completely determined by the length of its members.
Rather than use the set of these lengths to describe _Z it is more
convenient to use the set S of their negative logarithms, which is
unbounded in (0, «). The dimension then becomes a function S(E) of
the set E and the unbounded set S. In §2, dimension is defined for
a certain family # of nondecreasing functions, c.f. [2], [4], [5], which
greatly facilitates the study.

The principal results concern the dependence of S(E) on the choice
of the covering set determined by S, and are obtained by considering
the set (S, T') of points in the unit square whose coordinates are
respectively S(&) and T(E), for some set E. If 2 denotes the pro-
duct of the closed unit interval with itself countably many times,
Theorem 5 shows that the set of points in 2, whose coordinates are
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S.(E) for some E and fixed sequence of unbounded sets {S,}, is pre-
cisely the intersection of all cylinders in 2 determined by the sets
(S, Si), 5 < k. A characterization of ZZ(S, T') directly in terms of
the relative gaps in the sets S and T is given by Theorem 6. The
set #(S, T) is closed and star-shaped with respect to the diagonal
0<®=y=1 and Theorem 7 shows that these are characteristic pro-
perties. Theorem 9 gives an especially simple necessary and sufficient
condition on S and T for the equivalence: S(¥) = T(E) for all sets
E. The remaining theorems of §4 show that for this equivalence, an
unbounded set S may be replaced by an increasing sequence {s,} and
that lim s, ,,/s, = 1 is a necessary and sufficient condition that {s,} give
the ordinary Hausdorff dimension for all sets E.

1. Preliminaries. Let & be the collection of all real-valued
functions f, defined on (— o, ) with the property that <y —
0= fly) — flx) £y —x. The following elementary properties of &
will be continually used without mention:

fe F —f+ ae Z a any constant ;

feZ and 0sa=<l—afes;

frge s and 0=, B=l,a+B=1l—af+BgecF;
Vsi.e 7 for f,e 7 if Y f.(x,) < = for some «, ;
ANf.e 7 for f,e Z if Nfu(x) > —co for some , .

Let S, T, ete., denote unbounded sets in (0, «) and let fe . &7 .
Define S(f) = lim inf f(x)/x, over — ,xe S. For fe & S(f) satis-
fies: 0 < S(f) £ 1. The number S(f) is called the Hausdorff dimen-
sion of f with respect to S. The following properties are immediate
consequences of the definition:

S(Af.) = AS(f,) over finite collections {f.} ;
S(f+ a) = S(f);

S(af + Bx) = aS(f) + B ;

S(fVv Bx)y=8(f)VEB.

LEMMA 1. Given ¢ >0, fe &, and unbounded sets S, «++,S,,
there is ge Z# such that (i) g(0) = 0, g(x) = (Su(f) — &)z, for xeS,,
k=1,2,-..,p; and (ii) S(g) = S(f) for all unbounded S.

Proof. Choose x, > 0 large enough so that f(x) = (S.(f) — ¢)x for
x=®, x€S,k=1,.--,p. Write g(&) = (f(x) V 0) + x,. Then ge. &
and ¢g(0) = 0. Moreover, if 0 < © < x,, then g(x) = x = (S(f) — &)z.
For =, and xeS,, g(®)= f(x) = (S,(f) — e)x, which proves (i).
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Finally, from the construction of g(x) it is clear that S(g) = S(f) for
all unbounded S.

LEMMA 2. Let f,e & n=1,2, --- and unbounded sets S, S,, + -+
be given. There is fe F such that S,(f) = liminf S,(f,) as n— oo,
for each k=1,2, .-,

Proof. By Lemma 1, it can be assumed that for each =, £,(0) =
0 and f.(x) = (Si(f.) — &)z, for xe S,k <n and ¢, —0 as n — oo,
For each k£ and n choose #,,¢ S, such that #,,— « as n— o and
Fa(@np) = (Si(f2) + €)% Liet C, = Vo, (2,0 — fu(@,,:)) and put g,(x) =
fu(®) vV (x — C,). Finally write f = Ag,. Since ¢,(0) = 0, it follows
that fe # Moreover, S.(¢g,) = 1 for each ¥ and n implies S.(f) =
Si(Anzm 9,) for all m. If k < m, then Ag, = A(Su(f.) — ¢.)x over
n = m, so that S,(f) = liminf S,(f,) as n— c. On the other hand,
from the construction of C,, it follows that for k < =, f(x,,) =
(Su(fy) + €)%y Since 2z, ,— o0 as % — oo, Si{(f) < liminf S, (f,) as

N —> o,

2. The Hausdorff dimension of sets. Let _/#Z be the set of
all continuous, real-valued, nondecreasing functions y defined on [0, o)
such that ¢#(0) = 0 and g(x) =1, for x = 1. Let _#,, be the subset
of _# consisting of those g in _# which are sub-additive, i.e.,
s +y) < p(x) + p(y). Finally, given a subset E of [0, 1], let _Z(E)
be the subset of _# consisting of all functions g in _# supported
by E, i.e., (a,b) N E = ¢ implies p(a) = p(b). The set _# (E) may be
void. The operator 4, defined on _#Z by Au(x) = sup (#(y + =) — (#(y))
over all ¥ =0, is clearly a projection of _# onto _#,. The proper-
ties of subadditive functions needed here are given by

LemMmA 3. If pe #,, then (1) p(te) = pm(x)t/E + 1) for t,x = 0;
and (ii) p(x) > 0 for x > 0.

Proof. If t =0, (i) is obvious. Otherwise

p(x) = pltat™) = (el + [67]) = (L + 7))

where [z] denotes the greatest integer <z. This shows (i). Part (ii)
follows from (i), since p(¢) = ¢/(t + 1).

Corresponding to each ¢ in _#, there is f. €. defined by f.(x) =
V(x — y — log 4u(e7)) over y = x. The following estimates for f.(x)
will be needed:

LemMMA 4. For pe #, —log Adpu(e™™) = fu(x) < log 2 — log 4p(e™).
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Proof. The first inequality is trivial. By Lemma 3 dp(e~) <
2¢*~"4u(e~?), which establishes the second inequality.

Using the correspondence ¢ — f,, the Hausdorff dimension of func-
tions pte _# can be defined by writing S(#) = S(f.), for each unbound-
ed set S. Given any set E < [0,1], the Hausdorff dimension of FE
with respect to S is defined to be the number:

S(E) = sup (S(x): pre A (E)}
taking S(E£) = 0 in the case that _# (F) = @. The connection between
S(E) and the classical Hausdorff dimension of E is given by

THEOREM 1. ([2],[4]) S(E) = sup {7: \s,,(E) > 0}, where g, (E)=
inf {F(UI;)): U; 2 E & —log lI(I;) e S}.

Proof. Let B < S(E) and {I,} be a covering of E by intervals
such that —log I([;)¢S. By Lemmas 1 and 4, 2¢~°* = dp(e=*) for
se S and some pe _#(K), so in particular

S(UL)) = 1/2 S4p(dL) = 1/2 .

It follows that A :(E) > 0, and hence S(&) =< sup {v: rg, (&) > 0}. To
show the reverse inequality, \g (E) > 0 implies that

1) = (vs, () Ns, (B ([0, 2])

belongs to _#(E). Moreover p(x + =) — p(x) < (\g,(E))~'e7 for all
%, so that by Lemma 3, f.(s)/s — (log (\s,(E))/s = v for all seS; and
it follows that S(E) = sup {v: \s,(F) > 0}.

The fact that \g, is a sub-additive and monotone set function
implies
THEOREM 2. Given any countable collection {E,} of subsets of

[0,1], S(UE,) = VS(E,) for all unbounded sets S.

Let & be the collection of all sets E of the form: E = {{: & =
Y&, &, e, =0 or 1} for some positive, nonincreasing sequence {&,} with
Y&, < 1. For such sets E, the function p;, defined on [0, =) by pz(®) =
sup {Je,27%: & = Ye,&,}, belongs to _#Z(F) and is sub-additive.

THEOREM 3. If Ee <&, then S(E) = S(yz) for all unbounded
sets S.

Proof. Let ne _#(FE) and consider se S such that &, e =<
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&.. Since F is contained in the union of the 2**' intervals:
I(ely *t ek+1) = [2521555,-, 2?:}5353 + 5k+1] y

and any two of these intervals intersect in at most one point, it fol-
lows that An(e™*) = 27%' = dp(e~*)/2. By Lemma 4, fi(s) < log 4+ f.(s)
for se S, so that S(\) = S(xz).

Since S(z¢) = S(f.), Theorem 3 shows that for Ke &, there is
fe & such that S(E) = S(f) for all S. The converse is also true.

THEOREM 4. For each fe &, there is E,e % such that S(f) =
S(E;) for all unbounded sets S.

Proof. If f is bounded, then S(f) = 0 and E, can be taken to
be void. Thus assume f(x) — ~ as £ — o« and without loss of genera-
lity, f(0) = 0. Select a positive, nonincreasing sequence &, satisfying
f(=log &) = klog 2. Such sequences exist since f is continuous non-
decreasing and tends to <« as x-— . Moreover, since f(x) — x is
nonincreasing, &, < 1/2 and §&,,, < &,/2, which implies Y&, < 1. Let
E = FE; be the set {&:& = J¢,&,6, =0 or 1}, and let g = pz. For
seS and &, S e <&, logpe™) = —log2 — f(s), so that f(s) =
—log 4 + f.(s) by Lemma 4. Also log p¢(e*) < log 2 — f(s), which shows
f(s) = log 2 + f.(s). Since these inequalities hold for all se S, this

proves S(f) = S(E).

If 27 = {(as): for some F e &, ay = S(KE) for all S}, and if &2 =
{(Bs): for some fe & Bs = S(f) for all S}, then Theorems 3 and 4
show 57 = <2 .-. The situation for arbitrary subsets of [0, 1] is more
difficult and the results are restricted to countable collections {S,} of
unbounded sets.

For any pair of unbounded sets S and T, let (S, T) = {(«, B):
a = S8(f),B8=T(f) for some fe & }. From the properties of & and
S(f) for fe & listed in §1, it is clear that <Z(S, T) is star-shaped
with respect to each point (a, @), 0 < a < 1. Moreover, Lemma 2 im-
plies that .<2(S, T) is always closed. Let

Q:{(xr):oéxrél,T:1,2,...}.

For each pair of natural numbers j, k£ with j <k, let 4;, be the cy-
linder in 2: A4;, = {(®,): (x;, x,) € Z(S;, Sp)}. Finally, let SZ[{S,}] =
{(a)): for some E < [0,1],, = Su(E), k =1,2, ---}.

THEOREM 5. Given any countable collection of umbounded sets
{Si}, 2ZU{Si}] = NA;,. over j < k.

Proof. Suppose (a,)e S#[{S;}]. Let j <k and E < [0,1] such
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that «; = S;(E), a, = Sy (F). If a; = a, then (a;, a,) e F#(S;, Si) so
(a,)e A, . Thus assume «; # «, and by symmetry, consider only the
case a; < a;. Then given any € > 0, there is fe . & such that

SuB) — e < Si(f) = SuE) and Si(f) = S,(E).
The function g = Vv S;(E)x belongs to .# and
Si(9) = Si(H), S(E) — ¢ < S(9) = SW(E) .

Since #(8S;, S;) is closed, this shows («,) € 4;,;, and hence SZ[{S,}] &
NA4;, over j <k. Now suppose (¢,)€ NA;,. Then for every pair
Jj <k, there is f;,c .7 with x; = S;(f;) and x, = S.(f;.). For each
pair of natural numbers p, n, write

o = NSFivik=porj=p,k+j=p+n}.

By Lemma 2, for each p, there is g,€.# such that S,(g,) = lim inf
Si(95,,) a8 m— oo, for each k =1,2,.... Now write &' = UL, over
p=12,.-.. By Theorems 2 and 4, for each k, S.(E) = VS.(g,) =
lim, inf S,(g,,,) = ;. On the other hand, if p # k, then either g¢,, <
Siw OF Gpn = for for m = k, depending whether p <% or p>k. Thus
SuE) = Su(g:) V V i lim, inf Si(g,.,) < »,, for each k, which shows
(x,) € ZZ[{Si}].

In general, if the sequence {S,} contains more than two terms,
the set S#~°[{S,}] properly contains the set {(x;): for some fe & v, =
Sk(f)lk = 1’ 2y °"}'

3. The set (S, T). The results of §2 show that the set
SZ[{S:}] is determined by the sets .Z2(S;, S:),J < k. This section
lists a few of the properties of .Z#(S, T). The first of these is a
characterization of .ZZ(S, T) solely in terms of the sets S and T.

For each x, let A(x, S, T') consist of all pairs (&, 8) with 1 >a =
8 >0 and (xB/a, x(1 - B)/(L—a)NS=@. Let B(x, S, T) be the set
of all pairs (a,8) with (8, @)ec A(x, T, S). Finally let &7 (S,T) =
limsup A(¢, S, T) as t — o,te T, and <& (S, T) = limsup B(s, S, T') as
§— o0, 8€E S.

THEOREM 6. For every pair of unbounded sets S and T,
A(S, T)=CL( (S, T)u (S, T)) .

Proof. Suppose («,B8)e .7 (S, T). If «=p, then (a,8)e #(S, T).
Thus assume B < «. Then for some unbounded subset T, of 7, the
intervals I, = (t8/a, t(1 — B)/(1 — «)) do not intersect S for te€ T,. De-
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fine a function f in &% by

fl) = BtV (@ —1—p¢), if zel,teT,

ax, otherwise .

Then S(f) =« and f(t)/t =8 for te T, and so T(f) < B. It follows
that 8S(f) = aT(f) and (1 — B)(1 — S(f)) = (1 — &)L — T(f)). Since
(S, T) is closed and star-shaped with respect to (0, 0) and (1, 1) it
follows that Cl(7 (S, T)) & <#(S, T). A similar argument shows
Cl( (S, T)) < (S, T). On the other hand, let f belong to .Z If
S(f) = T(f), then (S(f), T(f)), belongs to Cl(s7 (S, T)U <& (S, T)).
Thus assume S(f) = T(f) and by symmetry in S and T, assume S(f) >
T(f). It suffices to show that S(f)>a>B> T(f) implies (a, B) ¢ &7 (S, T).
In this case, it can be assumed by Lemma 1, that f(s) > as for all
se S and that there is an unbounded subset T, of 7" on which f(¢)<
Bt. Since fe F f(s) = (s —1t) Vv 0) + f(¢) for all pairs s and ¢ If
te T, and s < t, this implies as < ft. If s = ¢, then as<<s —t + Bt.
These last two inequalities imply (¢8/a, t(1 — B)/(1 —a) NS = @ or
(o, B) e A(t, S, T) for each te T,. It follows that (a, B) e .7 (S, T).

As was noted before ZZ(S, T') is always closed and star-shaped
with respect to all points (a,«),0 < a < 1. These two properties
actually characterize the shape of ZZ(S, T) as is seen by

THEOREM 7. Let <Z be a closed set in the unit square, 0 <
a, B <1, star-shaped with respect to (0,0) and (1,1). There are un-
bounded sets S and T such that # = 2 (S, T).

Proof. The theorem is obvious if .27 is the diagonal 0 < =8 <1,
since for S =T, 22(S, T) is this diagonal. Otherwise, there is a
sequence («,, 8,),0 < a,, B, <1, «a, =+ B, which is everywhere dense
in <2 Select a sequence of intervals (a,, b,) such that a,— « as
n-— c0,b, < a,., and

bn/an = (a;1 - 1)/(18;1 - 1)! 1f a, < Ien
bn/a/n = (/8;1 - 1)/(6¥;7:l - 1)’ if an > B?L .

If a, < B,, the interval (a,,b,) is called an interval of type I. If
a, > ,, the interval (a,, b,) is said to be of type II. In each interval
of type I, let s, = a,8./a,, and in each interval of type II, let ¢, =
a,,./B8,.. In either case the constructed point belongs to (a,,b,). Let
S consist of all the points a,, b, and the points s,. Let T consist
of all the points a,, b, and the points ¢,. Assume first that («, 8) e .2
If «a =28, then (a,8)e Z(S, T). Thus suppose a = £ and by sym-
metry in S and T assume « > S. Select a sequence of intervals I, =
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(@, b,) of type II, such that o, — a and B,— B. Define f in & by

aa, \ (€ — (1 — a)b,), if xel,,n=12,...
oz, otherwise .

fl@) =

Then S(f) = « and for t,¢ L, f(t.)/t. = aB.ja, vV 1 — (1 —a)1 - B,)/
(1 — «,)) which tends to 8 as n— . Thus T(f) = £, which shows
H < A(S, T). To show the reverse containment it is sufficient, by
Theorem 6, to show &7 (S, T) & £ If (a,8) e . (S, T), then for a
subsequence ¢, of {¢,}, (t.8/a, t,(1 — B)/A —a))N S = @. This implies
Bija, < Bl and (1 — B)/(1 —a) < (1 — B,)/(1 — ). Since 2 is star-
shaped with respect to (0,0) and (1, 1), this shows (a, 8B) e &

4. Equivalence of unbounded sets. By Theorem 5 of §2 the
statement, S(E) = T(#) for all £ < [0, 1], is the same as, S(f) = T(f)
for all fe . # The induced equivalence relation, S = T, deserves some
study.

THEOREM 8. For all unbounded sets S, S = Cl(S).

Proof. Since S = CI(S), it is clear that S(f) = CI(S)(f) for all
fe . On the other hand, there is a map +: Cl(S) — S such that
|1 — 2/y(x)| < 1/x for each xeCl(S). If fe.Z then

fs) =[(s —2) vV 0] + flw)

for every pair s, . Hence f(4(®))/y(®) < 1/ + (1 + 1/x)f(x)/z for all
x ¢ CI(S). It follows that S(f) < CI(S)(f) for fe . and so S = CI(S).

The related partial ordering: S < T, if and only if, S(f) < T(f)
for all fe . & again equivalent to S(F) < T(E) for all £ < [0, 1], has
the following characterization.

THEOREM 9. A mnecessary and sufficient condition that S< T, is
that there exist a function ¢: T— S such that lim t/p(t) = 1, as t — oo,
teT.

Proof. If ¢: T— S and t/p(t)—1ast— co,te T, then for fe &,
Ap@®) = [(@(t) — t) v 0] + f(t), which implies

Fe@)/p(t) = |1 — t/p) | + /) fE)/1) -

Hence S(f) < o(T)(f) =< T(f). On the other hand, assume S(f) < T(f)
for all fe # In particular this is true for g(x) = V(s/2 A (& — s/2))
over seCl(S). Here, S(g) = 1/2 < T(9). For each te T, let s(t) =
sup {s:seS,s <t} and s'(t) = inf {s:se€ S,s = t}. Then s(¢) and s'(?)
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belong to Cl(S) and it is easy to see that g(¢) = s(¢)/2 V (¢t — s'(t)/2).
Now let 6: T — Cl1(S) be defined by

o0t s(8), if t/s'(¢) < s(t)/t
= §'(t), otherwise .
If 0 <e<1/2, then for ¢t e T, t sufficiently large, 1/2 — ¢ < g(¢)/t, which
means 1 — 2¢ < s(f)/t or s'(¢)/t <1 + 2¢. Since ¢ satisfies: 1 < ¢/0(t) <
s'(t)/t or 1 = t/6(t) = s(t)/t, it follows that |1 — ¢/6(t)| < 2¢ and so
t/0(t)—1 as t— oo, te T. If 4:Cl1(S)— S is the mapping introduced
in the proof of Theorem 8, then the composition, ¢ = 0, satisfies
the required property, i.e., t/p(t) —1 as t — o, te T.

Given any unbounded S, let I, = [n,, n, + 1), for %, nonnegative
integers, be a sequence of intervals such that ScC U, and I, N S is
nonempty. Let s, = inf {s:se SN I}. Then {s,} = CI(S) and so {s,} =
S. On the other hand the map ¢: S — {s;} defined by @(s) = s, if
se SN I,, clearly satisfies the condition of Theorem 9. This proves

THEOREM 10. Given any unbounded S, there is am increasing
sequence {s,} such that S = {s,}.

The final result concerns the classical Hausdorff dimension H(f),
where H = (0, o).

THEOREM 11. If S ={s,} and s, < s,,,, then S = H, if and only
if, lims,.,/s, =1, as n— oo,

Proof. If s, =« < 8,4, then for fe 7, f(s,1) = $prs — @ + f(®),
so that f(S,+1)/Sn+1 = Suii/Sw — 1 + f(x)/x. In the case that s,,,/s,—1
as n— oo, it follows that S(f) < H(f) for all fe . Since S & H, this
shows S = H. Conversely, if S < H, then for g = V(asA(x—(1—a)s)
over se€ S, H(g) = S(f) = «, for a fixed «,0 < @« < 1. Thus, in par-

ticular for the points

z, = as, + (1 — a)s,,, liminf g(z,)/x, = lim inf a/(a +
1 — a)s,1/s,) = a as w— . Thus s,,./s,—1 as n— oo,

5. Connection with other dimension functions. Dimension
can be defined for more general classes of intervals, _# ef. [1], i.e.,
where _# need not be closed under translations. It is known that
if _# is the class of r-adic intervals, then the dimension H'(E) de-
termined by _# coincides with the usual Hausdorff dimension H(E),
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as an easy application of Theorem 11 shows, taking
S={-log ¥x):Ic_g}.

For which classes _/#, does the dimension S(E), where
S ={-log x):Ic_7},

coincide with that determined by _#? More generally, for which _Z,
do there exist unbounded sets S, such that S(&) coincides with H'(F)
determined by _#? In general, the solution of these problems is not
known. Notice that for such classes _#, the dimension H'(F) is neces-
sarily a translation invariant dimension, so that one might ask if this
property is also sufficient.

The author is indebted to Professor F. Bohnenblust for his advice
and guidance during the preparation of this paper, which formed a
part of the author’s Doctoral dissertation submitted to the California
Institute of Technology.
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A CHARACTERIZATION OF PERFECT RINGS

VLASTIMIL DLAB

J. P, Jans has shown that if a ring R is right perfect,
then a certain torsion in the category Mod R of left R-modules
is closed under taking direct products, Extending his method,
J. S. Alin and E. P. Armendariz showed later that this is true
for every (hereditary) torsion in Mod R. Here, we offer a very
simple proof of this result. However, the main purpose of this
paper is to present a characterization of perfect rings along
these lines: A ring R is right perfect if and only if every
(hereditary) torsion in Mod R is fundamental (i.e., derived
from “prime” torsions) and closed under taking direct products;
in fact, then there is a finite number of torsions, namely 2
for a natural number n. Finally, examples of rings illustrat-
ing that the above characterization cannot be strengthened are
provided, Thus, an example of a ring R, is given which is
not perfect, although there are only fundamental torsions in
Mod R;, and only 4 = 22 of these. Furthermore, an example
of a ring R., is given which is not perfect and which, at the
same time, has the property that there is only a finite number
(namely, 3) of (hereditary) torsions in Mcd R all of which are
closed under taking direct products, Moreover, the ideals of
R,y form a chain (under inclusion) and Rad R:. is a nil idem-
potent ideal; all the other proper ideals are nilpotent and R,
can be chosen to have a (unique) minimal ideal.

In what follows, R stands always for a ring with unity, <~ for
the set of all left ideals of R and Mod R for the category of all (unital)
left R-modules and R-homomorphisms. Given Le . and peR, L: o
denotes the (right) ideal-quotient of L by p, i.e., the left ideal of all
yx € R such that yoe L. We shall call a subset 2% of &~ a Q-set if
it is closed with respect to this operation, i.e., if Ke€.2 and peR
implies K:pe . 27; obviously, ¥ and {R} are the greatest and the
least @-sets, respectively. Thus, a topologizing idempotent filter
(briefly, a T-set) of left ideals of P. Gabriel [4] is a Q-set .27 satis-
fying, in addition to the filter properties, also the following “radical”
condition: If L is a left ideal of R such that L:xe . for every
element £ of Ke .2, then Le o, as well.

By a torsion T in Mod R we shall always understand a hereditary
torgion; thus, a torsion T in Mod R is a full subcategory of Mod R
such that

(a) T is closed under taking submodules,

(b) for every M e Mod R, there is the greatest submodule (the 7-
torsion part) T(M) of M belonging to 7 and

79
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(¢) T(M/T(M)) =0 for every M e Mod R.

As a consequence, every torsion in Mod B is closed under taking
quotients, direct sums and inductive limits. There is a one-to-one cor-
respondence between the torsions in Mod B and the T-sets of left ideals
of R:

If % is a T-set, then the class T(2%") of all R-modules whose
elements have orders from .2¢” is a torsion in Mod R; on the other
hand, if T is a torsion in Mod R, then the T-set % (T) = {L|Le &¥
and Rmod L e T} satisfies T = T[22 (T)]. Given an R-module M, let
us always denote the T-torsion part of it by T(M).

Thus, given a torsion T, we can define the following two-sided
ideals I, and J,21I, of R:

L= N L

Le o (T)

and
I/l = T(R/I;) .

Using this notation, we can prove easily

PropoOSITION 1. The following four statements are equivalent:
(i) A torsion T in Mod R 1s closed under taking direct products.
(ii) For every subset & of 27 (T),

Ir_] Le o (T).

(iii) I, e 27(T)
(iv) JR == R .

Proof. The equivalence of (ii), (iii), and (iv) is trivial. Also the
implication (ii) — (i) follows easily; for, the order of an element of a
direct product is evidently the intersection of the orders of its com-
ponents. Finally, in order to show that (i) — (iv), we consider the
monogenic submodule of the direct product

II Rmod L
Leo (T)
generated by the element whose components are generators of R mod L;
it is obviously R-isomorphic to R/I,.

PROPOSITION 2. Let every proper (i.e., # R) two-sided ideal J
of R satisfy the following condition: There is k¢ J such that, for
every pe€ R with ok ¢J, there exists 0 € R with ook = k. Then every
torsion im Mod R s closed under taking direct products.
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Proof. Let T be a torsion and J, the two-sided ideal defined
above. Assume that J, # R. Thus, there exists £¢J, with the
properties stated in our assumption. Since

L = IT < J, T

Le(T)

there is L,e .2 °(T) such that k¢ L,. Hence
Like=ReNL):kSJ k&,

and therefore J,: k€ 2 (T), in contradiction to the fact that R/J, has
no nonzero element of order belonging to .2#°(T'). Consequently, J, = R
and Proposition 2 follows in view of Proposition 1.

THEOREM A. If a ring R satisfies the minimum condition on
principal left ideals, t.e., if R is right perfect (¢f. H. Bass [2]),
then every torsion in Mod R is closed undertaking direct products.

Proof. Given an ideal J = R, consider the (nonempty) set of all
principal left ideals which are not contained in J; take a minimal
element K of this set, x € K\J and apply Proposition 2.

REMARK 1. We can see easily that if R satisfies the minimum
condition on principal left ideals, then every R-module M has a non-
zero socle; the latter property is, in turn, obviously equivalent to either
of the following two statements:

(i) Every monogenic R-module has a nonzero socle.

(ii) For every proper left ideal L of R, there is p€ R\L such
that L: o # R is maximal in R.

Before we proceed to establish the characterization of perfect rings,
left us introduced the following convenient notation and terminology.
Denote by %7~ = & the Q-set of all maximal left ideals of R (R itself
including). Obviously, for every We <7, W = R, the subset

{W:0lpeR}

is a minimal @-set contained in 97°. Denoting by 9%,, w € 2, all such
(distinct) minimal Q-sets, it is easy to see that {97, |w e 2} is a cover-
ing of 977, i.e.,

7 = U %, and %, N7, ={R} for w #o,.

weQ

Furthermore, for every 2,< 2, put

Fo= 0N s

weQ;
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of course, % = %, and %, = %, for each we 2. Now, for every
2,9, denote the smallest T-set containing 97, by 7#7*. It can be
easily shown (cf. [3]) that 97,* is the unique T-set ~-equivalent to
%5, in the sense that, for every proper left ideal L e 775/,

{L:plpoe R} N7, + (R} .
As a consequence,
Waf N = Wg

Let us call the torsions T(27,*), ® € 2, the prime torsions in Mod R
and, more generally, torsions T(27;*) corresponding to the subsets 2,
of 2, the fundamental torsions (i.e., derived from prime ones) in Mod R.

On the basis of the above characterization of the T-sets 77, one
can derive very easily the following well-known

PROPOSITION 3. For any ring R, all the fundamental torsions
T(75F) in Mod R are distinct and form a lattice ideal of the com-
plete lattice of all torsions in Mod R, which 1is isomorphic to the
lattice 2° of all subsets of Q.

Proof. In order to complete the proof we need only to show that
every torsion T in Mod R contained in T(37 *) is fundamental. But
this follows from the fact that the T-set .o (T)< 97 * is evidently
~-equivalent to .2%(T)N 97" and since 2 (T)N W = %, for a
suitable 2, Q, we have, in view of the fact that there is unique T-
set ~-equivalent to %73,

ST = a7

as required.
REMARK 2. We can see easily that the assertion that every torsion
in Mod R is fundamental is equivalent to the assertion that 77 ™* = &,

which in turn is equivalent to any of the statements of the previous
Remark 1 (for, o77* ~ 9%).

Now, let us formulate the following

THEOREM B. Let R be a ring such that every fundamental torsion
in Mod R is closed under taking direct products. Then R/Rad R is
semisimple (i.e., artinian); in particular, Q is finite.

Proof. For each we 2, put
W= N w

Wew
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and notice that the intersection

RadR = N W?

weR

is, according to Proposition 3, irredundant. For, 2#.* (for each w € Q)
and 97 * are the smallest T-sets containing W2 and Rad R, respectively.

In order to prove our theorem, it is sufficient to show that the
socle of R/Rad R is the whole quotient ring R/Rad R; for, R/Rad R is
a ring with unity. First, observe that, in view of the fact that
Rad Re 9 *, the socle of R/Rad R is essential in R/Rad R in the sense
that it intersect every nonzero left ideal of R/Rad R nontrivially. Write

S/Rad R = Socle (R/Rad R)
with the two-sided ideal S2Rad R of R and assume
S+R.
Then, there is a (proper) maximal left ideal W of R such that
SESWcR;
and, We %7, for a suitable w, ¢ 2. Moreover, clearly

ScSw) .

g

Hence, since N, W is irredundant,

nwe + ( n W£1> AW =Rad R ;

weQ
wFEw) wFEw]

on the other hand, since Rad R SS W,

(n W,3>ﬂS:RadR,

we
w#wl

and thus
AN W!=RadR,

weR
Au;éwl

a contradiction.
The proof of the theorem is completed.

Now, the main result of the present paper, namely the character-
ization of perfect rings, follows straight forward from Theorem A,
Remarks 1 and 2, Theorem B and the fact that a (right) perfect rings
can be characterized as a ring R with unity such that every (left) R-
module has a nonzero socle and that R/Rad R is artinian (H. Bass [2]):
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COROLLARY. A 7ring R is right perfect if and only if all torsions
in Mod R are fundamental and are closed under taking direct products.

In conclusion, let us remark that the above characterization can-
not be strengthened, even if we take into account the additional con-
dition that there is a finite number of fundamental torsions in Mod R
(the fact which is a consequence of our characterization). To show
this, we present the following two examples of rings (which can easily
be generalized):

ExaMPLE 1. Let N be the set of all natural numbers, F a field.
Denote by R, = R,(¥, F') the ring of all countable “bounded” matrices
over F, i.e., the ring of all functions f: N x N — F satisfying the
condition that there is a natural number n, such that

f@,7) =0 for v 7,1 > n,; or j > n,
and
f@, %) = fny, + 1, n, + 1) for all ¢ > #n,,

with matrix addition and multiplication. It is easy to verify that, for
every n € N,

C,={fIfeR, and f(3,7) = 0 for j # n}
are minimal left ideals in R, and that the socle

S=@eC,

neN

of R, is a (two-sided) maximal ideal in R,; obviously, R,/S = F. Further-
more, 77, = {S, R} is a minimal @-set of left ideals of R,. Also, for
every ne N, the left ideals

W. ={f|fekR, and f(i,n) = 0}

are maximal in R, and belong to the same minimal @Q-set 97;'. It is
easy to see that the set of all maximal left ideals of R,

V=W J
and that there are 4 torsions in Mod R, all of them fundamental, namely
0 = T{RY), T77*), T(%,*) and Mod R = T(% %) .

Only T(57,*) is not closed under taking direct products. Of course, R,
is not perfect.

ExaAMPLE 2. Denote by Qt the set of all nonnegative rational
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numbers endowed with the usual order <. Let F be a field. Denote
by R, = R(Q*, F') the ring of all functions f: Q" — F' such that the
support

Supf = {r|re@* and f(r) # 0}

is contained in a well-ordered (with respect to <) subset of @t which
has no finite limit point, with the addition and multiplication defined
by

(fi + F)(r) = Si(r) + fulr)

and

(forfd) = SA@)-Filr = 1),
respectively.

It is a matter of routine to verify that R, is a (commutative) ring.
Now, for every fe R,, denote by r, the least nonzero rational number
such that f(r;) # 0. Moreover, for every te @+, denote by f the
function of R, defined by

FO@) = jl for r =1¢,
|

0 otherwise .
Now, we can see easily that, for every fec R,,
f=Fonef,
where f(r) = f(r + r;) for reQ* (and thus, r; = 0). First, we are

going to prove the following

LEMMA. If fe R, such that r; = 0, then there is § € R, satisfying
f*g = (= unity of R,) .

Proof. In order to ease the technical difficulties of the proof,
observe first that having a well-ordered subset S of @* with no finite
limit point, we can consider the subsemigroup S of Q* generated by
S: S is again well-ordered and has no finite limit point. Hence, we
may consider, for a moment, that our function f is defined on a well-
ordered subsemigroup S of @+ with no limit point and try to find §
defined on the same set S, i.e., with Supg<S. Write

S={rJz,with 0 =r, <r, <1, < er <1, < oo

Let us proceed by induction: Denoting by g, the function defined by
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7.(0) = [F(0)]7, §.(r) = —[F(0)] 2 f(r,) and g.(r) = O otherwise,
we can see easily that

*g, =0+ hy

~

where
Sup g, E {r;}i, and Sup 1, & {r;}. .
Assuming that, for a natural » = 1, we have g, e R, and %, € R, with
Sup g, < {r:}i-, and Sup h, S{r},.
such that
g, =+ h,,
let us define
Gutr = Gn + Gus1 s
where
Gnis(Pus) = —[F(0)]h,(r,+,) and g,.,(r) = 0 otherwise .
Then,
F5Gues = [5G0 + [5gass = FO + by + Fr g,
and, writing
Buii = by + Figuss s
we can easily check that

Sup 7y S {13)inse -

For,
hoesr) = (Fgu2) () = 3, F(Oguns(r — ) = 0 for r <7y
and
Pwis(Fusd) = ha(ras)) + Oétgrlwf(t)gm(mﬂ — 1)

= h/n(rn+1) + .f_(o)grﬁ—l(/rn-l-l) = hn(rn+1) - hn(,rn-i—l) = 0 ’

as required.
Finally, to complete the proof of our lemma, denote by g the function

defined by

g:(r,) for r =r,1=0,1, ...

gr) = 0 elsewhere .
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Then,
Feg =10
for, if 1 =1,2, -+
(f*g_)(Tt) = (f* [9: + (@ — g)D(r)
= (f_*gi)(ﬁ) =+ [JF*(g — g)l(ry)
= (f 4 h)(r) + [Fx@ — g1

=0+ oggzg%f(t)(g — g)(r; — t)

=0.

As a consequence, fe R, is a unit in R, if and only if », = 0.
Moreover, for every r e @, there exist two ideals

I, ={fIfeR, and r; = 7}
and

I, ={f|feR, and r; >0} ;
these are all ideals of R,. Notice that,

I.c1I,

and that

r. <7, implies IO, ;
in particular,

I,=R, and I,=RadR,.
It is also easy to see that there are no divisors of zero in /R, and that

(Rad R,)* = Rad R, .
For, if feRad R,, then r; > 0 and obviously,
£=fepig,

where
_ 1 + .
Q(T)—f<7’+—2rf> for re @+ ;

here, both f‘»79 and ¢ evidently belong to Rad R,.
Finally, given a positive rational number q, define

qu = 2/Iq

(similarly, we can consider R,, = R,/I,). It is easy to see that
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Rad R,, = I,/I,
satisfies again
(Rad R,,)* = Rad R,, ,

but that every other proper ideal (which is isomorphic to either I,/1,
or I,/I, for » = q) is nilpotent; besides,

Socle (R,,) = I,/I, .
Thus, there are only three torsions in Mod R,,, namely
0 = T{R}), T{R,;, Rad R,;}) and Mod R,, = T(F ") .

All of them are evidently closed under taking direct products; but, only
the first two are fundamental. And, R,, is not perfect.
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SOME EXAMPLES IN FIXED POINT THEORY

E. FADELL

It is known that the fixed point property (f.p.p.) is not
invariant under suspension and join in the category of simply
connected polyhedra. In this paper we exhibit examples to
show that £,p.p. is not invariant under suspension and join in
the category of simply connected polyhedra satisfying the Shi
condition and more strongly, in the category of simply con-
nected compact manifolds. We also exhibit a simply connected
polyhedron X such that the smash product X A X fails to have
£.p.p. if one choice of base point is used to form X A X, while
X A X has f.p.p. using another choice of base point. In the
last section we prove that f.p.p. is invariant under Cartesian
products in very special circumstances,

It is known that the fixed point property (f.p.p.) in the category
of simply connected polyhedra is not an invariant under cartesian pro-
ducts, smash products, suspension, join or homotopy type (Lopez [3] and
[1]). In all cases the counterexamples are based upon polyhedra which
fail to satisfy the Shi condition, namely that for each vertex v, oStv
(boundary of the star of v) be connected and the dimension is =8. It
is therefore natural to consider the behavior of f.p.p. in more restric-
tive categories. As suggested in [1], one should look at f.p.p. in the
following categories:

&’: DPolyhedra satisfying the Shi condition.

.. Simply connected polyhedra in .5~

# . Compact topological manifolds, dimension =3.

A4 Simply connected manifolds in _~.

In the categories . and _ f.p.p. is a homotopy type invariant.
In fact, if X is any compact ANR dominated by Y, where Y is in
& or #, then Y f.p.p. implies X f.p.p. [1]. Thus the result, ¥
f.p.p. implies Y x I f.p.p., is valid in the categories & or _# even
though it is false for (simply connected) polyhedra in general.

The question

(1) X fp.p, Y fp.p.=— X x Y fp.p.?

in the categories . or .2 remains open. In §4, we prove two very
special cases for the categories .7, and _#,. In §2 we provide the
details of the examples announced in [1] which show that in .&”, and
A o £.p.p. is not invariant under the suspension and join operations.
In §3 we use one of the examples of § 2 to construct a simply con-
nected polyhedron X which has f.p.p. and with the curious property

89



90 E. FADELL

that with one choice of base point (@, @) the resulting smash product
XANX=XxX/axXUX x a fails to have f.p.p., while constructing
X A X with another choice of base point preserves f.p.p.

2. Two examples. If F: X —X is a self-map of a compact
connected metric ANR, then for any field 4

(1) L(f; 4) = 3 (=1)" Trace fi

is the Lefschetz number of f over 4 and L(f, A) = L(f, 4) — 1 is the
reduced Lefschetz number of over 4. When 4 = @, the field of ration-
al numbers, then L(f) = L(f, @) is the usual Lefschetz number of f.
2(X) and %(X) = x(X) — 1 will denote the Euler characteristic and
reduced Euler characteristic, respectively. All spaces in this paper will
be connected compact metric ANR’s.

We will make use of the following simple lemma.

LEMMA 2.1. Suppose A is a field of characteristic p + 2 and X
and Y are spaces with the property that for every self-map f: X — X,
L(f; 4) = 0 or 1 and every self-map g: Y —Y, L(g, ) = 0. Then any
space W ~ X V'Y has f.p.p.

Proof. Let
(2) X xvyhx
(3) vy . xvy Ly

denote the natural inclusions and retractions. Then, if p: XV Y —
XV Y is any map, let f = rpi, and g = r,pi,. It is easy to verify
that

(4) L(p, 4) = L(f, 4) + L(g, 4) = 0 or 1.

Therefore, L(p, 4) # 0. Thus, X VY has the property that every
self-map ¢ has nonzero Lefschetz number over 4. Since this property
is a homotopy type invariant, it follows that if W~ X VvV Y, then W

has f.p.p.

LEMMA 2.2. If HP* is quaternionic projective 4-space, them for
every self-map f: HP*— HP*, L(f, Z,) = 0 or 1.

Proof. Let u denote a generator in H*HP* Z,). Then, if
S*(u) = au,

(5) Lf;Z)y=a+a+a +a'=0or1.



SOME EXAMPLES IN FIXED POINT THEORY 91

LEmMMA 2.8. If SHP? is the suspension of quaternionic projective
3-space, then for every self-map g: SHP*— SHP?, L(g; Z;) = 0.

Proof. Choose a generator ve H(SHP? Z*) such that P'v and
P*» generate the Z,-cohomology in dimensions 9 and 13, respectively.

Piis the mod 3 Steenrod reduced power operator. Now, if g: SHP®—
SHP? and g*(v) = bv,

(6) Lg; Z)y=b+b+b=0.
PROPOSITION 2.4. Any space W ~ HP*\/ SHP® has f.p.p.

ProrosITION 2.5. Let
K = HP*U,SHP?®

denote the union of HP* and SHP® along an edge. Then, K is a
stmply connected polyhedron which has f.p.p. and satisfies the Shi
condition. Moreover, y(K) = 2.

REMARK. K' = (HP*\/ SHP?®) x I has the same properties as K.

PROPOSITION 2.6. The suspension SK and the join KoK fail to
have £.p.p.

Proof. Since }(SK) = —y%(K) and 7(K-K) = —%(K)x(K), both
SK and Ko K have Euler characteristic 0. Since SK and Ko K satisfy
the Shi condition, both admit maps homotopic to the identity map
which are fixed point free [5].

THEOREM 2.7. The f.p.p. is not invariant under suspension and
join im the category .

Our next example will verify the above theorem in the category
A e

Let ¢: S”— S* denote the standard Hopf fibering and let A = M, (q),
B = M,(q) denote two copies of the mapping cylinder of q. Then if
h: S”"— S7 is a reflection (degree —1), where S7 is identified with one
end of the mapping cylinder of ¢, we may represent the connected sum

(7) M = HP* g HP*
by
(8) M:AUILB.
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There is a natural “flip” map f: M — M which takes A to B and B to
A and which is the reflection on S”" = AN B, where A and B are
identified with the appropriate subsets of M. It is easy to see that f
is a homeomorphism which preserves orientation. Furthermore, by
identifying S" = A N B we obtain an identification map

(9) g: M —— HP*\/ HP?

which allows us to compute the cohomology ring structure (Z-coefficients)
as follows:

LEMMA 2.8. The cohomology of M = HP*# HP* is given by

HYM) = Z, generator 1
10) HXM) = ZP Z, generators x, y
H M) = Z, generator x* = y*

with H(M) = 0 in the remaining dimensions and xy = 0.

THEOREM 2.9. M = HP*# HP*® is a simply connected manifold
with f.p.p. which admits a map f of Lefschetz number L(f) = 2.

Proof. The natural “flip” map f: M — M defined above has L(f)=2
so that the last part of the theorem is easy. Now, let

11) oM — M
denote an arbitrary map and suppose, using (10), that

p*(x) = ax + by

2 P*(y) = cx + dy .

Then,

(13) P*(@%) = @*(¥’) = (@ + b)a* = (¢ + d)y*
and

14) p@y) = 0 = (ac + bd)a?

which yields the conditions

15) A+ =c+d?, ac +bd =0.
Furthermore,
(16) Lip)=1+a+d+a* + 0.

We now consider individual cases.
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Case 1. a=0,b=0. Here L(p) = 1.

Case 2. a* + b* =+ 0, (a, b) = (—1,0). Using (15), we have
an a¥(a@® + b*) = a¥(c* + d¥) = d¥a® + b%)

so that a = +d. If a = —d, L(p) =1+ a*+ b > 0. On the other
hand if a = d, L(p) = (1 + a)* + b* > 0.

Case 3. a = —1,b=0. This case does not occur. To see this,
choose ve HYHP?* Z;) such that P'v =1*. Then we may assume
9*(v) = x (over Z;) and P'z = a* in HY(M; Z;,). If p*(x) = ax (over Z),
we must have

(18) @*(P'z) = p*(2*) = a’*a* = a’P'x = aP'x = ax®

so that a* = @ (mod 3). This precludes ¢ = —1.
Thus, we see that for any map ¢: M — M, L(p) # 0 and hence M
has f.p.p.

THEOREM 2.10. The f.p.p. is not invariant under suspension and
join in the category _#7,.

Proof. Let M denote the manifold in the previous theorem and
f+:M— M the map with L(f) = 2. Then,

(19) Sf: SM— SM and fofi:MoM— MM
yield

(20) L(Sf) = —L(f) = =1 = =L()L(f) = L(f-9)
so that

(21) L(Sf) =0=L(ff) .

Since we are in the simply connected case, the Nielson number of Sf
(and fof) is zero. Therefore again using [5], Sf and fof can be
deformed to fixed point free maps so that SM and M oM fail to have
f.p.p.

3. The f.p.p. and smash product. OQur objective in this section
is to show that there is a simply connected polyhedron X with f.p.p.
such that the smash product X A X = X x X/X Vv X has f.p.p. with
one choice of base point x,e X while it may fail to have f.p.p. if one
employs another base point z, € X.

We will make use of the polyhedron
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(1) K = HP*yU ,SHP?
discussed in the previous section. If N = SHP? and
(2) X =KV N=(HP*U,SHP® v SHP?

we will show that X A X fails to have f.p.p. if the base point z,€¢ X
is chosen distinct from the wedge point ve X. On the other hand, if
the wedge point v is employed to form X A X, then X A X retains

f.p.p.

THEOREM 3.1. If x, # v, then
XNX=Xx Xz, x XUX X x,

fails to have f.p.p.

Proof. TFirst we observe that since y(X) = 0, L(id) = —1, where
L is the reduced Lefschetz number. Since ¥(K) = 1 (reduced Euler
characteristic) we see that X admits a map ¢ such that L(g) = 1.
Thus, L(id A g) = L(id)L(g) = —1, and we see that f =id A ¢ is a
self-map of X A X with L(f) =0. X A X is simply connected and
can be shown to satisfy the Shi condition (using the fact that
2, x X UX x %, fails to separate X x X). It follows that there is a
map g ~ f such that g has no fixed points. Thus, X A X fails to have

f.p.p.
We now show that using the wedge point v
(3) XNANX=XxXvxXUX xw

has f.p.p. Although the details are lengthy, the idea is quite simple.
X = KUN with KN N = v, the wedge point. TUsing v as base point
in the formation of X A X yields

(4) XANX=KANK)VKANN)VNANK)V(NAN)

where the four-fold wedge on the right is understood to have a single
wedge point v’ corresponding to v x X U X x ». Now, since f.p.p. is
invariant under the wedge operation, it suffices to show that the four
individual wedge factors K A K, K A N, NA K, N A N have f.p.p.

LEMMA 3.2. HP* A HP* has f.p.p. Specifically, for any self map
Py E(@y Zs) =0 or 1.

Proof. We will identify H*(A A B) with H*(A x B,AV B) =
H*(A, a,)  H*(B, b)) using always field coefficients. Then, working
over Z,, H*(HP*) has a basis of the form
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(5) 1, o, P'a, P, o*

where P? is the Steenrod reduced power operator. Then, we may
arrange a basis for H*(HP* A HP* in positive dimensions as follows:

axa ax Pa+ Paxa a x Pa + P'lax Pla+ PaxX«a
Paxa Pax P'la—Paxa —PaxPa+ PaxPua

@ x PPa P'a x P« Pla x P«

atxXa a* x P'a o' x Pa

axat Pa x ot Pla x a*.

at < at

Notice that (for the first five rows) applying P' and P? to the first
column yields the second and third columns. This means that for a
self-map @: of HP* A HP*, L(p, Z:) = \*, where p*(a@xa) = Ma X «).
This concludes the proof.

LEmMMA 3.3. HP* A SHP?® has f.p.p. Specifically, for any self-
map @, Lip, Z;) = 0.

LEMMA 3.4. SHP®* N\ SHP? has f.p.p. Swpecifically, for any self-
map p, L{p, Z;) = 0.

The proofs of these lemmas are modelled after the proof of Lemma
3.2 and consequently are left as exercises.

ProrosiTiON 3.5. K A K has f.p.p.

Proof. Let K' = HP*\/ SHP?, then using the above lemmas every
self-map ¢’ of

K' N K’

6
(6) = (HP*NHP*)\ (HP*N\SHP®)\/(SHP°\ HP*) \/ (SHP* \ SHP?)

has the property that L(p, Z,) = 0 or 1(using the technique in the proof
of Lemma 2.1). Since this property is a homotopy type invariant,
every self-map ¢ of K A K has L(p, Z,) = 0. Thus, K A K has f.p.p.

LEMMA 3.6. HP* N\ SHP* has f.p.p. Specifically, for every self-
map @, L(p, Z,) = 0.

Proof. We may choose basis for the Z,-cohomology of HP* and
SHP?, respectively, as follows

(7) HP* 1, a, S¢'a, 8, Sq'8
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(8) SHP* 1, u, Sq*u .

Then, we may arrange a basis (in positive dimensions) for the Z,-
cohomology of HP* A SHP* as follows

a X u a X S¢u + S¢*a + S¢ta x u
Sqta X u Sq‘a x Sq'u
B X u B x Sq¢u + S¢*B X u

S¢'B X u S¢'s x Sq*u

where S, applied to the first column yields the second coiumn. This
is enough to show that for every self-map ¢, L(p, Z,) = 0.

LEMMA 3.7. SHP?* A\ SHP? has f.p.p. Specifically, for every self-
map ¢, L(p, Z,) = 0.

The proof of this lemma is similar to the proof of Lemma 3.6.
ProrosiTiON 3.8. K A N has f.p.p.

Proof. K A N has the same homotopy type as
(9) W= (HP*\ SHP* N\ SHP*= (HP* N\ SHP?%\ (SHP* N\ SHP?) .

But by the previous lemmas, every self-map ¢’ of W has the property
that L(¢', Z,) = 0 and hence every self-map of K A N has Lefschetz
number 1 (over Z;). Thus, K A N has f.p.p.

PROPOSITION 3.9. N A N has £.p.p.

Proof. Working with Z, coefficients, a basis for the cohomology
of N = SHP® has the form 1, u, Sq*u. A basis for the cohomology (in
positive dimensions) of N A N can be written

WX U Sq*u X u + u X Sq'u
Sqtu X u Sq*u x Sq*u

where Sq¢* applied to column one yields column two. This, given any
self-map ¢ of M, L(p; Z,) = 0.

THEOREM 3.10. Using the wedge point v of X
XNX=XxXrxXUXxw

has f.p.p.
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4. Very special cases of the product theorem. Consider the
following property:

Property F': X is said to have property F if, and only if, L(f) # 0
for every self-map f: X — X.

In terms of this property we recall the following theorem [1]:

THEOREM 4.1. If X belongs to &%, or _#, them X has f.p.p. if,
and only +f, X has property F.

Thus for spaces in &%, (or _#,), the question of the invariance
of f.p.p. under Cartesian products (see (1) of §1) is equivalent to the
question

(1) X and Y have property F'= X x Y has property F'?
Our next theorem answers (1) in the affirmative under quite special

hypothesis. In the following we use rational singular cohomology.

THEOREM 4.2. Suppose X and Y are spaces having property F.
Suppose further that X has trivial cup products and X and Y have
disjoint cohomology, i.e., H*(X) =0, H(Y)+#0, p, ¢ = 1, implies p #q.
Then X x Y has property F.

We will make use of the following lemma whose proof is left to
the reader.

LeEMMA 4.3. Suppose y: X —Y s a map and 4 Y —Y is defined
by the diagram

XxY-2XxY
y %, v

where 0 18 a section given by o(y) = (2, ¥), x,€ X and T is a projec-
tion on the second factor. Then, for ve H*(Y)

(2) YL X v) =1 X (v) + E(v)

where E(v) is @ linear combination of terms of the form a X b where
dima = 1.

Proof of 4.2. Let o: X xY— X x Y denote an arbitrary map
and let f and g be defined by the diagrams
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XxY-2XxY

b

X — X

XxY-25XxY

y 4 v

where o, and o, are sections and 7, and 7, are projections (see Lemma
4.3).

We choose bases 1 = 4, +++, %, and 1 = v,, - -+, v, for the rational
cohomology of X and Y, respectively. Then, elements of the form
u; X v; form a basis for the cohomology of X x Y. If w and v are
typical basis elements, then using Lemma 4.3

p*(u x 1) = f*(w) x 1 + E(uw)
P*(1 x v) =1 X g*(v) + E(v)

where E(u) is a linear combination of terms of the form a x b with
dimbd =1 and E(v) is a linear combination of terms of the form a’ x ¥’,
dima’ = 1. Suppose dim % = m and dim v = #. Then

P (u X v)

3
®) = f*(u) X g*(v) + E(u)(1 x g*(v)) + (f*(w) x DE(@) + E(u)E(®) .

Now E(u) is a linear combination of terms of the form a x b where
dima < m —1 so that 4 x v cannot appear in the term E(u)1 X g*(v)).
Similarly, # x v cannot appear in the term (f*(u) X 1)E(v). In E(u)E(v)
a typical term has the form

(4) (@ X b}’ X V) = *aa’ X bV

where dima < m —1,dimb=1,dimae = 1,dimbd <n—1. Ifdima=>=1,
aa’ = 0 so that (4) is 0. On the other hand if dim ¢ = 0 then dim b = m.
Since dimu = m we see that b = 0 and hence (4) is 0 in this case.
Thus E(u)E(v) = 0. Thus, we see that o*(u X v) and (f X ¢)*(u X v)
have the same coefficient of v x ». Thus,

(5) L(f x 9) = L(f)L(g) = L(p) # 0 .

THEOREM 4.4. Suppose X and Y belong to &7, (or _# ) and have
f.p.p. Then X x Y has f.p.p. of X or Y has trivial rational cup
products and X and Y have disjoint rational cohomology.
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ExaMPLE. Using Theorem 4.4, we see that CP* x SCP’ has f.p.p.
for 7 and j even, 4,5 = 2. To prove that CP? has f.p.p., arrange a
basis for the Z,-cohomology of CP¢ in the form (¢ even)

(6) 1, », quxu Ly, quxzy s
so that for any self-map @ of CP* we have L(p, Z,) = 1. Since S,
commutes with suspension the same argument works for SCP:.
Theorem 4.4 raises the following question:
QUESTION 4.5. If SX x Y has f.p.p., does this imply that X x Y
has f.p.p.?
An affirmative answer to this question would settle the following

conjecture.

CONJECTURE 4.6. Suppose X and Y belong to &/, and X and all
its suspension have f.p.p. Then if Y has f.p.p., so does X x Y.

The technique used to prove Theorem 4.2 can also be used to
prove the following.

THEOREM 4.7. Suppose X and Y belong to &% (or _#,) and have
f.p.p. Suppose further that H*(X) 1s a truncated polynomial ring
on a single generator we H¥(X). Then, if H¥Y)=0,X x Y has

f.p.p.

ExaMpPLE. CP? x HPJ, where ¢ is even (¢,j = 2) has f.p.p. The
argument that HP’ has f.p.p. goes as follows. First of all, if pisa
self-map of HP?, then working over the rational field

(7) Lpgy=1+a+a*+ -+ +af

where ¢*(u) = au, v a generator in H*(HPY). Of course, if 7 is even
we’re done, since L(p) = 0 in this case. If j is odd, 7 = 3 we need
only preclude the case « = —1. Working over Z,, we may assume that
Py = w* in HYHP'; Z;,). This forces

(8) @’ = a (mod 3)

which precludes ¢ = —1.

REMARK. G. Bredon was the first to observe that HP?® has f.p.p.
using the above argument.
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TANGENTIAL CAUCHY-RIEMANN EQUATIONS
AND UNIFORM APPROXIMATION

MICHAEL FREEMAN

A smooth (Z"=) function on a smooth real submanifold M/
of complex Euclidean space C* is a CR function if it satisfies
the Cauchy-Riemann equations tangential to 3/, It is shown
that each CR function admits an extension to an open neigh-
borhood of M in C* whose Z-derivatives all vanish on M to a
prescribed high erder, provided that the system of tangential
Cauchy-Riemann equations has minimal rank throughout M.
This result is applied to show that on a holomorphically convex
compact set in M each CR fuction can be uniformly approxi-
mated by holomorphic functions.

1. Extension and approximation of CR functions. Each point
p of a smooth real submanifold M of C™ has a complex tangent space
H,M. It is the largest complex-linear subspace of the ordinary real
tangent space T,M; evidently H .M = T,M N iT,M. Its complex dimen-
sion is the complex rank of M at p. The theorem of linear algebra
relating the real dimensions of T,M, ¢T,M and their sum and inter-
section shows that if M has real codimension % its complex rank is
not less than = — k.

DEFINITION 1.1. M is a CR manifold if its complex rank is con-
stant. It is genericif in addition this rank Is minimal; that is, equal
to the larger of 0 and n — k. A smooth function f on M is a CR
function if ker d,f D H,M for each p in M.

Here f is assumed to be extended in a smooth manner to an open
neighborhood of M and 4, f is regarded as the conjugate complex-linear
part of the ordinary Fréchet differential d,f. Since the condition on
d,f is independent of the extension chosen, the definition makes sense.
Computational equivalents to it and some elaboration are given in § 2.
A more comprehensive treatment of these ideas is found in the paper
by S. Greenfield [1]. It should be mentioned that his definition [1,
Definition II. A.1] of CR manifolds also requires that the distribution
p»— H,M be involutive. That assumption is not needed here.

If M is a complex submanifold of C*, then it is CR with complex
rank equal to its complex dimension. It is not generic if it has posi-
tive codimension. Of course the CR functions on M are just its holo-
morphic functions.

At the other extreme, every real hypersurface is a generic CR
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manifold of complex rank » — 1. These frequently have no nontrivial
complex submanifolds, which is true for example of the usual 2n — 1
sphere in C~.

M is a generic CR manifold if its complex rank is everywhere
zero, which is the fotally real [5] case.

An example of a proper generic CR submanifold which is neither
totally real nor a hypersurface can of course only be found if n» = 3.
There is one in C°, a 4-sphere S* given as the intersection of the usual
5-sphere and a real hyperplane transverse to it. Let

=12+ |2+ |z -1

and 0, = 2, + Z,, where z, #,, 2, are the usual coordinates for C°, and
let S* = {0, = p, =0}. It follows from (2.2) below that S* has the
requisite properties. Furthermore, S* has no nontrivial complex sub-
manifolds (since the 5-sphere does not).

THEOREM 1.2. If f is a CR function on a generic CR manifold
M in C* and m 1s a monnegative integer, then there is an extension
of f to a smooth function f, on an open set U DM such that df,
vanishes on M to order m in all directions.

This result is known [3, Lemma 4.3] and [5, Lemma 3.1] when
M is totally real. It is also proved in [2, Th. 2.3.2'] when M is a
real hypersurface. A local version which does not require that M be
generic is proved in [5, Lemma 3.3].

Theorem 1.2 plays a key role in a program outlined by L. Hormander
for showing that CR functions can be uniformly approximated by
holomorphic functions. The basic idea is to take a compact set K in
M and a given CR function f on M and find a solution ¢ of dg = af
with supg|g| small. Then u = f — g is holomorphic and approximates
Jf uniformly on K with error no larger than sup.|g]|.

In Hormander’s implementation of this idea, Theorem 1.2 implies
that a certain bound on an L* norm of the Sobolev type is imposed
on dg. The existence of solutions to 6g = df subject to the same a
priori bound [2] and a Sobolev inequality are used to estimate supy |¢]|.
This proof appears in [3] and [5] for the cases cited above. Since the
only step of it which depends on the complex rank of M is the con-
clusion of Theorem 1.2, this proof will, without further modification,
yield a result on uniform approximation.

THEOREM 1.3. If M is a closed generic CR submanifold of a
domain of holomorphy U im C* and K s a compact subset of M
holomorphically conver with respect to U, then each smooth CR func-
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tion on M is a uniform limit on K of functions holomorphic on U.

In fact, the same method in conjunction with Theorem 1.2 will
prove the stronger statement that approximation holds in the &~
topology; c.f. [5, Th. 6.1]. One merely replaces supx|g| by a &*
norm of g on K.

In the totally real case, it is known that the holomorphic con-
vexity of any given compact subset K with respect to some domain
of holomorphy is a consequence of the absence of complex tangent
vectors. This follows from the fact [3, Th. 3.1] and [5, Corollary 4.2]
that each K has arbitrarily small tubular neighborhoods which are
domains of holomorphy. However, the case of the 2n — 1 sphere in
C" shows that in the presence of complex tangent vectors holomorphic
convexity must be assumed. When there is complex tangency, the
problem of determining holomorphic convexity of a given compact sub-
set of M is very difficult, even for the examples mentioned above.

It should be remarked that in Definition 1.1 and Theorem 1.2 C*
may be replaced by any complex manifold, and if this manifold is
Stein [2], it may replace U in Theorem 1.3. No significant modifica-
tion of the exposition is required.

2. CR manifolds and functions. Kach real-linear map L: C" —
C* is uniquely expressible as a sum L = S + T where S, T: C*—C*, S
is complex linear, and 7T is conjugate complex linear. If J:v— v, a
direct computation shows that S = (L — JLJ) and 7 = (L + JLJ).
Applying this result to the Fréchet differential d,0 of a smooth map
0: C"— C* at p there results

dp‘O = 0,0 + 51)10

in which 8,0 is the complex linear part of d,0 and 6,0 the conjugate
complex linear part.
Each point of M has an open neighborhood U in C” on which there

exists a smooth map o = (0, -+, 0,): U— R* with maximal rank % on
U and satisfying
2.1) MnNU=1{&ecU:pk =0}.

Regarding R* as contained in C* in the usual way, and applying the
remarks above to Definition 1.1, it follows that M is CR if and only
if 0o has constant complex rank on M N U, and is generic exactly when
this rank is maximal. When k& = n this means that H,M = 0, which
is the totally real case. The case of interest here is &k < n, when M
is generic if and only if 6o has complex rank &k on M N U. Henceforth,
it is assumed that k& < n. Since it is clear that op = (3o, -+, 90,) it



104 MICHAEL FREEMAN

follows that the condition
(2.2) 90, A\ +++ AN 0p,  has no zeros on M N U

is necessary and sufficient that M be a generic CR manifold.
From Definition 1.1 and (2.2) it follows that a smooth function f
on M is CR if and only if

(2.3) Of NOp, N+ ANop, =0  on M.

Equivalently, since {do,, ---, 00,} is, at points of M, by virtue of (2.2)
part of a basis for the space of conjugate-linear functionals on C*,
there exist smooth functions 4,, ---, h, on U such that

@.4) W:éﬁ@%+mm.

Here O(p) denotes a form which vanishes on M N U. It is a standard
result [4, Lemma 2.1] that if ¢ is a smocoth O(o)-form there exist
smooth forms g, ---, g, such that

k
(2.5) gzgmm-

More generally, O(0™) will denote a smooth form on U which vanishes
on M N U to order m. Induction on m using (2.5) shows that if ¢ is
such a form there are smooth forms g, on U satisfying

(2.6) g = 2 0%,

lai=m
in which the standard multi-index notation has been used. Thus
a=(a, +--, @,) is a k-tuple of nonnegative integers, |a|=«a, + -+ + «,,
and 0% = pf1-..03k. The coefficients g, are not unique on U, but the
fact that they are determined on M N U will be essential.

LEMMA 2.1. If smooth forms g, g, are related on U by

g= 2 0"9a + O(0""")

laj=m

then for each o, D*g | M N U =walg,|M N U. In particular, if g =0
on U then each g,|M N U = 0.

Here D* = Dy---Dsk, where D, denotes differentiation with re-
spect to p; and a! = «,! --- a,l.

Proof. The statement is local and since o has rank %, the proof
can be reduced to the case where each ©; = x;, the jth ordinary
Euclidean coordinate function. Then the lemma follows from the gen-
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eral Leibniz formula
a - .
D(fg) = X} N Dif.-D*7g

Tsa

with f = 2%, noting that D'x* =0 on MN U if v <« and D*x* = al.
Here <3> = al/v (@ — 7)! and ¥ < @ means that v; < a; for some j.

3. Proof of Theorem 1.2. The proof is an induction on m in
which f,., is obtained by subtraction of an O(p™*') function from f,.
Similar procedures have been used in [2, Th. 2.3.2'], [3, Lemma 4.3],
and [5, Lemmas 3.1 and 3.3]. The one used here borrows ideas from
all of these. Since the totally real generic cases where k = n are
treated in [3] and [5], it will be assumed that & < n. However, the
proof below can be read with k = %, with some slight modifications.

In the presence of complex tangent vectors, the only known result
is local in nature [5, Lemma 3.3]. Its proof refers to a particular
local coordinate system for C* and uses an initial extension f, which
is independent of the coordinates normal to M. This feature is clearly
not preserved by the patching construction intended here, so an arbi-
trary extension of f must be admitted at each step. This introduces
remainder terms of the form O(e™), and it is necessary to keep an
accurate account of their effects.

To begin the induction, extend a given CR function f from M to
a smooth function f, on an open set U> M.

First assume that the representation (2.1) holds on U. Then df,
is of the form (2.4) and if w = Y%_, p,h; it is clear that o(f, — u) = O(0).

In general U has a locally finite cover by open sets U, on each
of which there exists a defining function o, presenting M N U, as in
(2.1) and a O(p,) function u, satisfying o9(f, — u,) = O(0,) on U.. If
{p.} is a partition of unity subordinate to {U.} and

(3.1) U= 3L P
then
(3'2) g(fo - /M/) - ZL @Lé(fo - uL) - ZL uté@L .

By construction each term of either sum in (3.2) vanishes on M. There-
fore so does af, if f. = f, — u.

For the inductive step assume that m > 0 and f has an extension
fn to U such that df, vanishes on M to order m. A global modifi-
cation of f, will again be obtained by patching local ones, so the
construction is again begun by assuming that M is globally presented
by (2.1).
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Then by (2.6) there are smooth (0, 1) forms g, such that

(3.3) ofn= 5 0
Hence

_ & _
(3.4) 0=0fu= 3 3,050, A g+ 00",

in which « — j denotes («a,, S a; —1, .-+, ) if a; > 0. Wedge this
equation with 80, A -+« A 5o; A -++ A 9p, (3p; is missing) to show
that for each j

(3-5) 0= 3 ;0950 A -++ Adpu A gu+ O(0") -
Now for fixed j, the map a — @ — 5 is a one-to-one correspondence

of {a:|a| =m and «a; > 0} with {8:|8] = m — 1}. Therefore (3.5)
may be rewritten as

0= [ﬂI;m-—l (B; + D)oo, A +++ A 00, A i + O(0™)
and Lemma 2.1 applied to deduce that g;.; A 30, A -+ A 90, =0 on
M. Since this holds for every j and B, it follows from the linear

independence of dp,, -+, 90, on M that for each «, |&| = m, and each
j, 1 <4 £k, there is a function h,; such that

(3.6) ge = 3 hesd0s + 0(0) .

When substituted for ¢, in (8.3) and (3.4) this relation yields

— k —
&0 ofn= 3 30%hedo; + 00"
and
k — —
(3.8) 0= 2. 3 a;0haop; A op: + 00" .

The expression (3.7) suggests modifying f,, by

1 k
% = 00N,
77/+11a§m§‘ rotes

(the need for the constant 1/(n + 1) will appear as a consequence of
(3.11)). Now

~ - k R ~
(3.9 (4 Dou = >, 0°h,;00; + 3 > 0,0:0° " haj00; + >, 0"00he; -
a,g a,j 1=1 a,J

2
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The first term of this is df,. The second is
k ) _

which will be shown to equal ndf,, + O(0™").
To that end, for each ¢ < j, wedging (3.8) with

_ N\ AN —
B0, N =+ NOO; A o+ N3O; N =++ N 00
(00; and op, are missing) gives the symmetry relation

(3.11) 0= > (@0 hy — ;0" hy;) + O(0™)

laj=m

Using this in (3.10) it becomes

& N )
i izlpj<1a\z=“majpa_Jkai)aPi + O(o™")

which when the summation over j is performed first is

k ke
3 S (Za)othados + 00" .
Noting that >%_, @; = n completes the argument that the second term
of (3.9) is mdf, + O(0™*"). Therefore ou = df,, + O(o™).

Thus on each U, there is a function u, = O(0o7*') such that
o(fn —u)| U, = O0(po""). With » defined again by (3.1) and f,.., = f. — %
it follows as before from (3.2) that of,,.., vanishes on M to order m + 1.
This completes the proof.

4. Remarks. We know of no nongeneric examples where Theorem
1.2 fails. However, when M is not generic, the above proof breaks
down at the inductive step from m = 1 to m = 2: Since dp does not
have maximal rank it may be assumed that there is an integer | < k&
such that 8o, A --- A 00, has no zeros on M but 5o, A --+ N dp; = 0
on M if 7 > 1. Thus there are more unknowns g, than equations avail-
able from (3.4). There are very simple cases where this occurs:

ExamMpPLE 4.1. If the usual coordinates of C? are denoted z, z.
and M = {z:2, = 0} then the function f = 27z, is CR, for of = z.dz..
The most general function « vanishing to second order on M is by
(the complex analogue of (2.5)) of the form

U = 230, + 22,0, + 230
for suitable smooth functions g¢,, ¢,, and g,. Therefore

ou = zgggl + 29,02, + zzgzggz + 27,9:07, + 55593 .
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Each of these terms either vanishes to second order on M or is line-
arly independent of df. Therefore no such » will satisfy o(f — u) =

0(0").

However since f is zero on M, it obviously satisfies the conclusion
of Theorem 1.2. In fact, if M is a complex manifold, each CR func-
tion f is holomorphic, so if U is a domain of holomorphy Theorem 1.2
for U and M N U follows from Cartan’s Theorem B [2], which implies
that f has a holomorphic extension to U. Moreover, standard results
in several complex variables show that Theorem 1.3 is true for any
complex manifold M. Thus Theorem 1.2 and a consequent Theorem 1.3
may still hold in the nongeneric case, but some new ideas for proof
are necessary.
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TORSION CLASSES AND PURE SUBGROUPS

B. J. GARDNER

In this note we obtain a classification of the classes .7
of abelian groups satisfying the following closure conditions:
(i) If {A.|peM} s 7, then 7 contains the direct sum
> A,

For a short exact sequence
(*) 0— A—>B—>C—>0
(ii) Ce 7 if Be 7
(iliy Be 7 if A, Ce 7
(iv) Ae 7 if Be 7 and (*) is pure.

Classes satisfying (i), (ii) and (iii) are called torsion classes (of
abelian groups) and were first studied by Dickson [2], who classified
those which contain only torsion groups and showed that the general
classification problem reduces, essentially, to that for torsion classes
determined (in the sense of §2 below) by torsion-free groups. The
torsion classes which are closed under taking subgroups (called strong-
ly-complete Serre classes) can be described quite simply ([1], [2], [10]).
A possible approach to the general problem is to investigate torsion
classes closed under taking the subgroups corresponding to proper
classes of monomorphisms as used in relative homological algebra (see

for example [8], pp. 367 ef seqq.), and herein lies the motivation for
the present paper.

1. Notation. “Group” means “abelian group” throughout. A(z)
denotes the height of an element of a torsion-free group z(x) its type
and 7(X) the type of a rational group X. An S-group, where S is
a set of primes, is a group whose elements have orders belonging to
the multiplicative semigroup S* generated by S. A group A is p-
divistble for a prime p if pA = A and S-divisible if p-divisible for
each peS. 7, % , are the classes of all torsion and torsion-free
groups respectively. For a group A, 4, is the torsion subgroup, A4,
its p-primary component. The direct sum (or discrete direct sum) of
a set of groups {4, peM} is denoted by >, A,, the direct product
(or complete direct sum) by >.* A, and an element of either by (a,).
[A, B] is the group of homomorphisms from a group A to a group B.
If a is an element of a torsion-free group A4, [a] denotes the cyclic sub-
group it generates, [a], the smallest pure subgroup containing it. Z
is the group of integers, @ the (additive) group of rational numbers,
Z(p) the cyclic group of order p, Z(p~) the quasicyclic p-group. For
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a set S of primes, Q(S) is the subgroup {m/n|me Z, ne S*} of @ and
for a prime p, Q(p) = {m/p" | m,ne Z,n = 0}. I, is the group or ring
of p-adic integers.

For unexplained terms see [4].

2. Torsion classes. We begin by listing some properties of torsion

classes for later use.

For a class & of groups we write 7(%") for the torsion class
determined by & ,i.e. the smallest torsion class 7~ with ¥ & 7
but if & has a single member C, T(C) rather than T({C}) will be used.

Tl. AeT(¥) if and only if [A, B] = 0 whenever [C, B] = 0 for
all Ce®. [3].

T(#) is also the lower radical class determined by %, in the
sense of Kurosh [7]-Shul’geifer [9], so by the simplified version of the
Kurosh construction which applies in an abelian category, we obtain

T2. AecT(¥) if and only if every nonzero homomorphic image
B of A has a nonzero subgroup which is a homomorphic image of
some Ce &, t.e., [C, B] = 0.

A torsion class .7~ will be called a t-torsion class if it contains
only torsion groups.

T3. Let S, S, be disjoint sets of primes and let .7~ be the class
of all groups of the form A, P A, where A, is an Si-group and A, a
divisible Sy-group. Then 7~ 1is the t-torsion class

T({Z(p) I peS}U{Z(p~)|pelS) .

Any t-torsion class is uniquely represented in this way. [2].

T4. Let 9~ be a torsion class and p a prime. Then either
Z(p)e T or every group th 7 s p-divisible [2].

ProrosiTiON 2.1. If T is a torsion class containing a torsion-
free group A, then Z(p»)e .7 for every prime p.

Proof. 1If Z(p)e .77, then 9~ contains all p-groups (T3); if not,
then A is p-divisible, so z([a],) = 7(Q(p)) for any nonzero ac A. Thus
A/[a] has a subgroup and therefore a direct summand isomorphic to
Z(p~), i.e. Z(p~) is a homomorphic image of A.

T5. A torsion class 7 contains a group A if and only if A,
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and AJlA, e T [2].

T6. Any torsion class .7 satisfies the equality
7 =TT NnTJUlT NF .
[2].

T7. T(Q(S)) is the class of S-divisible groups, for any set S of
primes. (Cf. [2], Proposition 4.1.)

3. A simplification of the problem. As a first step, we show
that every torsion class closed under taking pure subgroups is either
a t-torsion class or is determined by rational and torsion groups. A
class of the latter kind will be called an r.t.-torsion class.

ProrosiTiON 3.1. All t-torsion classes are closed under taking
pure subgroups.

Proof. Let S, S, be disjoint sets of primes. If 4, isan S,-group
and A4, a divisible S,-group, then clearly any pure subgroup of A, P A4,
is the direct sum of an S,-group and a divisible S,-group.

THEOREM 3.2. A torsion class 7 1s closed under taking pure
subgroups if and only if 7 N F , 1s.

Proof. Let A’ be a pure subgroup of Ae.7, and consider the
induced diagram

0 0

L]

0 A A A'[A] 0

Lok

0— A, A AJA, —— 0

with exact rows and columns, where ¢ is defined by g(¢’ + A4) =
a + A,. A,ispurein A’ and hence in A. Therefore A} is pure in A,
80 by Proposition 8.1, A;€.9” N.97,. The kernel of g is A’ N A,/A; = 0.
If, for some nonzero neZ,a’'c¢A’ and ac A we have g(a' + A4l) =
n(a + A,), then m(a’ — na) = 0 for some nonzero m € Z, i.e. ma’ = mna.
Since A’ is pure in A, there exists o' ¢ A’ with ma’ = mna”. But
then g(a’ + A4i) = ng{a”’ + A}), so that ¢g is a pure monomorphism.
Thus if .7~ N &, is closed under taking pure subgroups, A’'/A;e¢ .9 N5,
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so A’e 7 and .7 is therefore closed under taking pure subgroups.
The converse is obvious.

THEOREM 3.3. If a torsion class 7~ 1is closed under taking pure
subgroups, then

T =T19 NI JUT)

where 7 1s the class of rational groups in 7.

The proof uses the following lemmas:

LEMMA 3.4. For 9 and 7 as in Theorem 3.3, 7 N .7 , =
()N F

Proof. Clearly 9 N ,27T(7 )N %, Let Abeany groupin
7 N, Then A is a homomorphic image of > [a], where the sum
extends over all ac A and each [a],c.7, so Aec T(Z).

LEmMA 3.5. For any two classes & ., &, of groups, T(€,U%E",) =
(T[z.lu T[Z.D-

To complete the proof of Theorem 3.3, we observe that

T =TI NI JUIT NnF)D)=T1I7 NI JUIT(ZT)NZF )
ST NI JUTT)) =T NngJUuFT)S .7 .

We conclude this section by showing that not every r.t. torsion
class is closed under taking pure subgroups.

PROPOSITION 3.6. Let .7 be a torsion class closed under taking
pure subgroups and I' the set of types of rational groups in 7 . If
v,0el’y, them yNoel.

Proof. Let X and Y be rational groups with z(X) =+~ and
7(Y) = 0. Then X @ Y has elements and therefore pure rational sub-
groups of type v N d.

Thus for example if p and ¢ are distinct primes, T({Q(p), Q(q)}) is
not closed under taking pure subgroups since 7(Q(p)) N 7(Q(q)) = ©(Z)

4. The main results. In this section we obtain an explicit char-
acterization of the torsion classes closed under taking pure subgroups.

LEMMA 4.1. Let X be a rational group and S = {p prime| X s
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p-divisible}. Then I, e T(X) whenever p¢S.

Proof. Let P be the set of primes distinct from p. Then
I,e T(Q(P))(TT). Also, there is a short exact sequence

0 X QP) 2. Z(q") — 0

where ¢ ranges over P — S. Since >, Z(q) € T(X)(Proposition 2.1), it
follows that T(X) contains Q(P) and hence I,.

The main result can now be stated.

THEOREM 4.2. A torsion class 7~ s closed under taking pure
subgroups if and only if etther

(i) 7 s a t-torsion class
or (ii) 9~ = T({Z(p) | pe P} U{Q(S)}), where P and S are sets of
primes with P < S.

The proof of Theorem 4.2 will be accomplished in several stages.
We first prove

LEMMA 4.3. Let {X,|pnecM} be a set of rational groups. Let
A=3X,and S = {p prime| A is p-divisible}. Then T{X,|pe M})
contains >, *A;,1=1,2,8, --+, where each A, = A.

Proof. Let f:3,*A,—Y be a nonzero epimorphism. We show
that [X,, Y] # 0 for at least one value of p.

If Y,+# 0 for some p, then since Y is S-divisible, so is Y,. If
peS, Y, is therefore a direct sum of copies of Z(p~) so by Proposi-
tion 2.1, Y, € T(X,) for each p and a fortiori [X,, Y]+ 0 for all g
If p¢ S, then at least one X, is p-reduced, whence [X,, Y,] # 0.

If Y is torsion-free, there are two possibilities. If f((a;)) # 0 for
some (a;) with almost all a; = 0, then f induces a nonzero map from
some A;, and hence from some X,, into Y, while if f((a;)) = 0 when-
ever a; = 0 for almost all values of 7, then f factorizes as

sra, Loy

| 7
2 A A

where the other maps are epimorphisms. >3* A,/> A, is algebraically
compact (see [6]), and also torsion-free, since 3} A; is a pure subgroup
of 31* A, Thus >* A,/>) A; is the direct sum of a divisible group and
a (reduced) cotorsion group [5]; so, therefore, is Y, which being torsion-
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free is algebraically compact [5]. Since Y is S-divisible, it has the
form D@ >.*R,, p¢ S where each R, is inter alia a reduced I,-module
and D is divisible. If D = 0 then for each pte M there are monomor-
phisms X, -Q—D. If D=0, let R, 0. Then at least one X, is
p-reduced, so by Lemma 4.1, I, ¢ T(X,). Since there is an epimorphism
(an I,epimorphism) from a direct sum of copies of I, to R,, we have
R,e T(I,) & T(X,), so [X,, R,] # 0 and the proof is complete.

The next step is to show when T({X, | ¢ € M}) is closed under taking
pure subgroups.

LEMMA 4.4. With the notation of Lemma 4.3, if T({X,.|peM})
is closed under taking pure subgroups, it contains Q(S).

Proof. Let p,, p;, s, +++ be the natural enumeration of the primes,
and let J = {i|p;¢S}. For each jeJ, choose a,e A with h;(a;) = 0,
where 4; denotes height at p;. For example, let a¢; = (z;,) with z;, € X,
satisfying the following conditions: (i) ;; ## 0 for some ) € M for which
X; is p;reduced; (ii) k;(x;;) = 0; (iii) #;, = 0 for g2+ N. For a natural
number 7¢.J, let a; be an arbitrary element of A, and regard the
resulting (a;) as an element of a group >\*A4;,7=1,2,8,---. Then
h((a;)) = Nz Ma;). In particular, z,;((a;)) = 0. Therefore, since >* A;
is S-divisible, the height of (@;) at a prime p is infinite if pe S and
zero otherwise, i.e., 7((a;)) = ©(Q(S)) and >* A; has a pure subgroup
isomorphic to Q(S). By Lemma 4.3 and assumption, therefore,
Q(S)e T({X, | pe M}).

Since each X, is S-divisible and T(Q(S)) is the class of all S-
divisible groups (T7) we have

COROLLARY 4.5. With the notation of Lemma 4.3, if T({X,|pe M})
s closed under taking pure subgroups, it is the class of all S-divisible
groups.

Proof of Theorem 4.2. Let 7~ be a torsion class closed under
taking pure subgroups. If .7 is not a t¢-torsion class, let " be the
set of types of rational groups in .7~ and for each veI" let X, be a
rational group of type v. Then

T =T(7 NTJU{X,|vel}) (Theorem 3.3)
and 9 N ,=T{X,|velYh) N &, (Lemma 3.4).

By Theorem 3.2, T({X,|veI}) is closed under taking pure sub-
groups and therefore, by Corollary 4.5, is the class of all S-divisible
groups, where S is the set of all primes dividing > X,. Thus 9 =
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T(o N7 JU{RS)). Let P={peS|Zp)e.7}. Since T(QS)) =
7 ,.7 contains the groups Z(p=) for all primes p as well as Z(p) for
primes p¢ S. Thus by T3 and Lemma 3.5

7 =T{Zp) | peS}U{Z(p) | peP}u{Zp=)|all p} U{QS)))
= T({Z(p) |pe P} U{QS))) .

Conversely, that any class .77 = T({Z(p) | p€ P} U {Q(S)})) with
P < S is closed under taking pure subgroups follows from Theorem
3.2, Lemma 3.4 and the observation that T(Q(S)) is closed under taking
pure subgroups. By Proposition 3.1, the proof is now complete.

Note that by T1, for a torsion class .#~ which is not a ¢-torsion
class, the representation .7~ = T({Z(p) | p € P} U {Q(S)}) is unique. We
conclude with a characterization of the groups in such a class:

ProPOSITION 4.6. A group A belongsto .7 =T({Z(p)|p e P}U{R(S)})
where P and S are sets of primes with P < S, if and only if there
18 a short exact sequence

0 A A A" 0

where A’ is a P-group and A" is S-divisible.

Proof. Let Ae. 7 and A’ = >, A, where the sum extends over
all peP, A” = A/A’. Then A} has no P-component and belongs to
7 (T5) so therefore has divisible S-component. Thus A} is S-divisible.
A"[A} is torsion-free and belongs to 7. If not S-divisible, it has a non-
zero S-reduced torsion free homomorphic image B. But then Be 9~
and [Q(S), B] = 0 = [Z(p), B] for each pe P and this contradicts T1,
so A”/A) is S-divisible, whence A” is also. The converse is obvious.
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BOUNDS FOR THE SOLUTIONS OF A CERTAIN CLASS
OF NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS

ViNnoD B. GoyAL

This paper is a study of boundedness and other properties
of the solutions of nonlinear partial differential equations of

the form
(1-1) Au = P(xl; Loy ** xn)f(’u/)
where P(xi, %3, + -, %,) is positive, and u(x;, 23, - - - x,) is to be

defined in some region of Euclidean n-space, and du =
S, 0%u/0x is the Laplacian of u. In particular, we con-
sider the case f(u) = e*.

Our principal result is concerned with the nonexistence
of entire solutions, An entire solution wu = u(®x:, X2, « -, %x)
will be defined as a solution which though continuous for
0 =< r < « is twice continuously differentiable for 0 < 7 < co,
Other results are concerned with the general form of and
explicit bounds for solutions,

In the literature on the subject [3, 4, 5, 8, 9, 11, 12] conditions
have been given on f(u) in order that the equation

1.2) du = f(u)
or, more generally, the differential inequality
(1.3) du = f(u)

will have no solutions u = wu(x, 2, -+, 2,) having two continuous
derivatives for all finite values of x, 2, ---,z,. The most general
conditions which exclude such solutions, obtained by Keller [5], are:
fu) >0, f/(u) = 0 for —co < u < oo and

S:[S:f(t)dt]_”zdu < o

For n = 2 Redheffer [10] showed that the monotonicity of f(w) may
be dispensed with.
In §2 we shall consider a more general question for the equation
o° 0*
1.4 du = P(z, y)e*, P(z,y) > 0, —’:T—Z"'—Z-
o0x oY
While the coefficient P(x, y) will be assumed to be positive and
twice continuously differentiable for 0 < » < co, P(zx,y) will be
permitted to vanish or to become singular in a manner specified in
the statement of the Theorem 2.1. If P(z, y¥) has such a singularity

117
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it will, of course, be reflected in the singular behaviour of the solu-
tions of (1.4). We shall thus give conditions on P(x,y) which ex-
clude entire solutions of (1.4). An example of such a solution is
% = r which solves equation (1.4) with P(x, y) = e™"/r.

For n = 2 it is well known that the function

(1.5) Wz, 7) = logl_‘_f'lgf_()ziw

is a solution of
(1.6) du, = 4¢*

if f(2) is an analytic function satisfying |f(z)| <1 and |f(?)]| = 0 in
the domain considered. In §3 we show, conversely, that every
solution of (1.6) is essentially of this form. This converse result is
necessary if it desired to use (1.5) and the theory of bounded analytic
functions to obtain general properties of the regular solutions of (1.6).
If the solution u(z,z) of (1.6) is regular in a disk |z| < R, Theorem
3.1 leads to a bound for % in this disk. If |f(?)| <1l in [z|< R
then, by Schwarz’ lemma | f'(z) |/1 — | f(z) ? < R/R* — | z|*. Hence, a
solution of (1.6) which is regular for |z| < R is subject to the
inequality.

R

y2) < log ————— .
u(z, z) < log T F

For z = 0, this leads, in particular, to the well known fact that the
equation (1.6) can not have twice continuously differentiable solutions.

In § 4 comparison theorems are proved and explicit bounds are
obtained for the solutions of

(1.7) du = P(r)f(u)
or, more generally
1.8) du = P(r)f(u) .

The behaviour of these solutions at an isolated singularity is in-
vestigated.

2. Entire solutions. The main result is:

THEOREM 2.1. Let

@.1) SS P, y)dady = O(r,) (for small 7,)

r<rg

and
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2.2) g'ta(t)dt = 0(r) €>0
0
where
2.3) a(r) = Lraaog P)ds .
21 Jo
If either
@.4) |“eu-rmret (og ry=ridr = o=
or
(2.4)/ Sme(i—ﬁ)g(r)qﬂ(1—2§)+s2nslz (log r)‘ﬁ‘edr — oo
where

(i) ¢ isaconstant such that ¢ = (2 — e)(1 — B) where 1/2< <1
and € > 0 but small. And
(ii) the function g(r) is a solution of

% %(r%) = %S:A (log P)do

such that rg’(r) —0 as r— 0.
Then (1.4) cannot have a solution which is twice continuously
differentiable for 0 < r < « and continuous for 0 < r < co.

That such solutions of (1.4) may exist for certain P(z, y) is shown
by the example u = »", n = 2 where P(z, y) = n*r" %",

Proof. If we set
(2.5) u=v—logP
equation (1.4) becomes
(2.6) dv = e’ + 4(log P) .

We introduce the notation
. 1 2w
(2.7) w(r) = —\ wv(r, 6)db .
27 Jo
By Green’s formula for the circle |[z| < r < R

“dvdxdy= S % S

lzisr lzl=r
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where 7 is the exterior normal. On account of 0/on = 9/dr it follows
that

Srgzzdvrdﬁdr = S ov —rdf = 1"~§ v(r, 6)do .
0J0 0 or

o or

With the help of (2.6) and (2.7), this yields

2.8) T%w(y) - _21;”)(3 + A(log P))yrdodr .

o(r) is single valued and twice continuously differentiable for » < R.
Because of (2.3) and (2.5), (2.8) is equivalent to

rdo(r) _ 1 r
(2.9) - 2ng S P(z, y)errdodr + Sota(t)dt.

Since w is continuous, it follows from assumption (2.1) and (2.2) that
(2.10) ra’(r) — 0

as r—0.
Differentiating (2.8) with respect to » and using (2.3), we obtain

1 d(,dw 1 SZ“
. = —\ e'df .
2.11) : dr<dd ) or) + o=\ o'd
Since ¢f is convex for all & the right hand side of (2.11) can be
estimated by
Z:S;fu[r,())dﬁ

27
21 S 6v(r,0)d0 2 61/2:8 — em('r) .
T Jo 0

Hence (2.11) yields

(2.12) d‘i <TO§TC:> > ro(r) + rev
We now set
(2.13) o(r) = g(r) + f(r)

where ¢(r) is a solution of

208p) -

which is continuous at the origin; that is, we compute g(r) from

(2.14) 2 (g(r)) = STta(t)dt .
dr 0
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Because of our assumption on the behaviour of o(r) at » = 0, g(»)
will be continuous at » = 0. Inequality (2.12) then takes the from

(2.15) L(rlL) 2 reyer

where 7(r) = ¢/, Introducing the new independent variable by
o0 = log r and setting

(2.16) F=f+20
inequality (2.15) yields
(2.17) F = z(p)e”

where dot denotes the differentiation with respect to o. Since the
right hand side of (2.17) is always positive F(p) is convex in o there-
fore, w(r) is convex in log .

Now suppose (1.4) and, therefore, also (2.17) has entire solutions.

We observe that F(p) must be positive for all o in (—co, o).
Indeed, from (2.16), we get, F(0) = 2 + e°(df(e?))/)dr. Since by (2.14)
and the assumption (2.2), ¢'(r) = O(r**) we have, lim,_,r¢’(r) = 0.
Hence, by (2.10) and (2.13) lim,_, 7@’(r) = lim,_, 7f’(r) = 0. It follows,
therefore, that lim,._.. F(o) = 2. But, by (2.17) F(p) is convex in p
and we have, consequently,

(2.18) F(o) =2

throughout (— =0, oo). It, therefore, follows that F(o) is ultimately
positive. We choose p, large enough so that F(p) > 0 for o > p, and
set

(2.19) ¢ = FF.
Differentiating with respect to o and using (2.17) we have
(2.20) do=7 = TF*1e" I~ + F-1fe

where v is a constant to be chosen later.
Using the inequality [Hardy-Littlewood-Polya] A + B = (A/a)*(B/B)?
where ¢« + 8 =1, 0 £ a, 8 < 1. the inequality (2.20) yields

(2.21) gﬁ'gﬁ—f = (1 — B)ﬁ—llg—?e(l—ﬁ)FF1—,s_7F'vzg_r .
Now we consider two cases:

Case I. Let 28 —v =0, 1/2< B <1. Then the inequality (2.21)
becomes

(2.22) Fo—% > C ri-Peli—H1F Fri=s3
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where ¢, = (1 — B)*'8~F. Since F'=2 we have F = (2 — ¢)p if p is
sufficiently large. Moreover, since e“—#FFUu-%) g increasing for
F > 38 — 1/1 — B, inequality (2.22) yields

¢'¢—2ﬁ g czfl—ﬁp1—3ﬂecﬂ

provided (2 — €)p >38—-1/1 -, ¢, = ¢,(2—¢)'* and ¢ = (2—¢)1 — B).
Integration of (2.22) gives

(2.23) L r_1r 1 ] >ec Sep et=P9pe=(log ) =3y |
28 — 1L (o) ¢ (o) T "lewo

Since F' is convex and increasing in o, ¢'~*(p) tends to zero as p — co.
Hence, the left hand side of (2.23) is bounded as o0 — <. This con-
tradicts the assumption (2.4).

Hence the inequality (2.17) and also (1.4) does not have entire
solutions.

Case II. Let 28— v >0, 1/2< B < 1. The inequality (2.21)
becomes in this case

doT = ¢, TP -E-TgU—HIF Q1
where we have used (2.18). But since
Fri—f=igi=0F > gu=pe—ae{(2 — g)p}—57
provided (2 — ¢)p > (v + 8 — 1)(1 — B)~!, we have
G671 = c2uNTRet o2 — &)

Choose vy =1+ ¢, € >0. Then 8> (1 + ¢)/2. Therefore, integration
with respect to p gives

(2.24) _1_[

&

11
¢ (00)  8%0)

] > Caspeu—ﬁ)g(m,,.(l—zﬁ)+(ez—s/2>(log T)—ﬁ_sdr

where ¢, = ¢,(2 — &)~F—.

If it were true that u = u(x, y) is entire, the left-hand side of
(2.24) would remain bounded as p— o. Since by (2.4) the right
hand side of (2.24) is unbounded, this leads to a contradiction.

This completes the proof of Theorem 2.1.

3. General solution. Let u(x, y¥) be of class C* in the region
D of x, y-plane and satisfy (1.6). Introducing the new independent
variables z =  + iy and Z = ¢ — 7y equation (1.6) becomes

(3.1) U; = e
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where 0/0z = 1/2(3/0x — (0/0y)) and 06/07Z = 1/2(0/ox + i(d/0y)). How
we prove

THEOREM 3.1. Ewvery solution of (1.6) which is twice continuously
differentiable in a given region D can be written in the form

e, = log L

where f(z) is analytic in D such that | f'(z)| #0 and | f(z)| < 1.
Proof. According to an observation which goes back to Bieberbach

[1] a regular solution of (1.6) can be associated with an analytic
function of z in the following manner: We set

Q:uzz—uz

where % is a solution of (1.6) or, equivalently, of (3.1) and we
compute @;. We have, with the help of (3.1), @; = 0. Thus, @ is
found to satisfy the Cauchy-Riemann equations. Since @ is continuous,
it must therefore be regular analytic function w(z).

If we set

(3.2) o= e
and observe that
V. = €MU; — u,,)
we find that +« is a solution of the linear differential equation
(3.3) V., + OR = 0.

Since w(z) is analytic in z the general solution of (3.3) contains the
analytic solutions of the equation

(3.3) F"(z) + 0(z)F(z) = 0

because, for an analytic F, we have F'(z) = 0F/oz. The general
solution of (3.3) can, therefore, be written in the form

Vv o= A%Y(2) + B ()

where ++, and 4, are two linearly independent (analytic) solutions of
(3.3) which may be assumed to be normalized by

(3.4) Pips — Pl =1

and A* and B* are constants with respect to d/0z — differentiation
used in (8.3) i.e., 0A*/6z = 0B*/0z = 0. Since these are Cauchy-
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Riemann equations for functions in z we have A* = A(z), B* = B(z)
where A and B are analytic. The general solution of (3.3) is, there-
fore, found to be of the form

(3.5) ¥ = A@)V.(2) + B@R)v(2)

where A, B, +, and 4, are analytic functions in D. In view of (3.2),
equation (3.5) can be written

(3.6) ¢* = A@W(2) + B()(2) .

Now the proof of the theorem will follow from the following lemma:

LEMMA 3.1. Let +, and +, be linearly independent solutions of
the differential equation (3.3) where w(z) s analytic in D. If A(z)
and B(z) are analytic in D and if the expression

(3.7 K(z,2) = AR)V(z) + B(2)v:(2)

1s real throughout D but does not vanish identically then K(z, Z)
can be written in the form

K(z2) = £|o@) " F [7(2)

where d(z) and ©(z) are two linearly independent solutions of (3.3)
for which

(3.8) 7(2)0'(2) — 0(2)T'() = 1.
Proof. Since K(z,z) is real, we have
(3.9) A@)(R) + B@)1(2) = AR)i(2) + B@E)() -
Differentiation with respect to z and (3.4) give
PRVI(R)AR) — 1) A ()] + T(2)[Vi(2)B() — B'(@¥.(2)] = —B() .
Setting

(3.10) 9(2) = Vi(R)AR) — v.(2)A'(2)
and

(3.11) Iz) = vi(2)B(z) — +.(2)B'(2)
we have

(3.12) Y.(2)F(?) + ¥.(2)h(2) = —B() .

But the left-hand side of (3.12) is a solution of (3.3)’; hence (—B(z))
satisfies
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B, + w(®B =0

where w(z) is an analytic function. But since B(z) is analytic in z,
B"(z) + w(z)B(z) =0,

consequently, B is of the form

(3.13) B(z) = ayr.(2) + Bvu(2)

where @ and 8 are constants. Arguing in the same manner (3.4)
and (3.9) give

(3.14) A(Z) = 14.(2) + 09(2)

where v and ¢ are constants.

Also from (3.12) and (3.13), ¥,(2)/v,(2) = — ((h(z) + B)/(9(2) + «)).
But since +r,(2)/¥,(2) is analytic in z and, moreover, since +r, and
are linearly independent, we must have §(z) + @ = 0 and h(z) + 8 = 0,
or equivalently

(3.15) (Y + 0P )Yl — (Yl + oYY, = —@
and
(3.16) (@, + By )V] — (@] + By, = —f

respectively. With the help of (3.12), (3.14), (3.15) and (3.16) the
equation (3.7) becomes

(3.17) Kz 2) = 79[ + B v [ + Gy + ado,

Now let o(z) and 7(z) be any other solutions of (3.3) such that
A (2) = ad(2) + br(2) and ¥,(2) = co(z) + dz(z) where a, b, c and d are
constants satisfying

(3.18) ad —bc =1
and
(8.19) b(va + ac) + d(eéB + aa) = 0.

This is possible if the determinant
D=vlal*+ B|c|* + 2Re(acc)

does not vanish. Evidently this can always be achieved as long as
not all numbers «, B and v are zero. However a, 8 and v cannot
all be zero since, in view of (3.17) K(z, %) would then be identically
zero, and this case is excluded.

Substituting +, and 4, in (3.17) and using (3.19) we obtain
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Kiz,z)=|oc@)Hy|lal?+ B|c| + acax + aca}

Now we consider the following two cases:

Case I. Let 8+#0, v 0. We set a # 0 and ¢ = 0 then, with
the help of (3.18) and (3.19), (3.20) becomes

K(z,2) =|o@) v|al’ + [t() P |d P (By — [a]) .
(i) Let v>0, By — |a]? = m (m is a positive integer). Hence,
K(z,2)=|o" "+ |T*

where 0* = o(v |a [)'* and 7% = tm'*(v | a [*)~*"* are solutions of (3.3)".
(ii) v>0, By — |a* = —m. In this case

K(z,2) = |0 [ — | 2% .
(iii) Let vy <0, By — |a|* = m. Then
K(z7) = —|o* [ — |o* |
(iv) v<0, By — |aP = —m. This gives
K(z,2z) = —|o*P+|T*]7.
Case II. Let 8 =0, vy =0. We set a,b= 0. With this choice
(3.18) and (3.19) reduce (3.20) to
Kz 2) = —|o, [ + |7,

where |o,| = |o|(@@)'®*"* and |z,| = a~'* |7 |(@B)"* and are solutions
of (3.3).

Summing up, we have thus proved that, if the function K(z, ?)
is real, it must have either of the three following forms

(1) Kz, 2) =t —|of
(2) Kz 2) =|t["+ o H(S)
(3) Kz 2) = —jcif = |of

where ¢ and 7 are solutions of the differential equation (3.3)’ normalized
by (3.8). The case K(z,2) =|o|* — |7|* is evidently not essentially
different from case (1). Case (3) can be excluded immediately, since
beacuse of (3.6) and (3.7) K(z,7) must be positive. This also shows
that, in case (1), we necessarily must have

(8.21) [7(®)] > [o(2)].

We now define



BOUNDS FOR THE SOLUTIONS OF A CERTAIN CLASS 127

(3.22) flz) = 2@
7(z)

In view of (3.8) we have

(3.23) F1e) = o
T%(2)

and thus |6+ |7P=1+|fR@ P/ f'(®)| incase 2) and |zf— |0 [*=
A — | f® P/ ()| in case (1). Comparing this with (3.6), (3.7) and
(S) we find that wu(z, Z) must be either of the forms

Z) — |f(2) |
YA =T

7 — | f'() ]
u(z, Z) = log e

Z) — 1+ /)
w(z, ) = logW .

Since the last two functions are not solutions of (1.6), these cases
are excluded. Hence any real solution of (1.6) must be of the from

2 = log L@
e B =g T R
where because of (3.21) and (3.22) |f(?)| <1 and in view of (3.23)

[f(z)] =+ 0.
This completes the proof of Theorem 3.1.

4. Bounds for the solutions of 4, = P(r)f(u). Let

0* 0 o
A = e
0x? * oxs * 0%,

denote the n-dimensional Laplace operator and let D, and S, stand
for the open sphere a + @} + .-+ + 22 < »? and its boundary

A .
respectively. We are concerned here with functions
®=0@@eD,,0<r<R)
which are of class C?® in D, and satisfy the differential equation
4o = P(r)F(®)
or, more generally, the differential inequality

(4.1) dw = P(r)F(w) .



128 VINOD B. GOYAL

Nehari [6] found explicit bounds for the solutions of the differential
equation 4w = F(u) or, more generally the differential inequality
Adu = F(u) which are regular in a disk. We shall obtain here a more
general result, which also applies to certain equations of the form
(4.1).

LEMMA 4.1. Let F(t) and G(t) be positive and differentiable
functions for —oo <t < oo and such that the integrals
S‘” dt S“’ dt
o F(t) " Jo G(2)
exist, and let W = W@, x5y -+, x,) and v = v(x, X, ---x,) be two
Sunctions related by the identity

= dt _ (~.dt_
(4.2) Lf@“&am'
Then
(4.3) Ao - 4
Fo) — GW)

provided F'(w) = G'(v).

Proof. We write & for one of the variables x, %,, -+, 2, and
differentiate (4.2) twice with respect to x. This yields

v W,
G(v)  F(w)

Vi ;G . w, v, B (W)
Gv) G(w)  Fl) G@

Summing over all x, and using the fact that F'(w) = G'(v), we get (4.3).
We derive the following corollary.

COROLLARY 5.1. If v = v(®, Xy, +-+, T,) 18 @ function satisfying
the differential imequality

4.4) dv < Pot, E>1

where P = P(x,, @, +++, %,) 1s posttive, and 1f F(u) is such that

“ dt k
4.5 F’ LA L
(4.5) (ano—k_l
then, the function w defined by
(4.6) 1 _ S"’ dt
(k — 1)k v F(t)
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1s subject to the inequality
(4.7) du < PF(u) .

Setting G(v) = v* in Lemma 4.1, the proof of the Corollary 4.1

is immediate.
As an application of Corollary 4.1, we prove the following result.

THEOREM 4.1. If the function @ = w(x,, X, <+, %,) satisfies the
inequality

(4.8) Aw = r*F(w)

where F(w) is such that F’(a))rdt/F(t) < 9/8 and F'(w) = 0 then the
function u defined by

(1,.2 . p2)2(R2 — ,rZ)Z _ Soo dt 0 R
20F' “F@) <e<r<
is such that
w=u.

Proof. Consider the function v defined by

1
e pz)a(Rz . ,’.2)01

(4.9) v=—

(r

where « is a constant to be determined later. Differentiating (4.9)
twice with respect to one of the variables z = x,, we obtain

v, = — 22 n 2z
(" = ) B =) @ = o) (B~ )
o = _ 2a dr*a(a + 1)
B e e ¥ NG TE
X 2a _ 8a'a’
0 — O (@® — ) (= o) R — )
4eta(ce 4 1)

(7’2 _ p2)a(R2 _ 7,.2)&-)—2 *
Summing over all z = z, and choosing @ = 1/4 we get,
dv < 37”2}247)9 .
2
Now let v = (2'%y)/(5'2R*"* then we have

(4.10) dy < r*y°
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where ¥y is given by

()"

Now applying Corollary 4.1 to (4.10), we obtain,
du £ r*F(u)
when u is defined by

(r2 — pz)z(Rz — ) _ Soo dt .
20R « F(t)

Clearly, #'(0) =0 and 4— > as »r— R or o—r. The fact that
o < u now follows from Osserman’s lemma [8]. This proves our
assertion.

THEOREM 4.2. Let f(w) be positive, nondecreasing, differentiable
Sunction in (— oo, o) for which

exists and
(= dt
@.11) f (w)gw% <142 (> 0).
If
@ u(r) = sup (@)

where w(Q) ranges over all functions of class C* in D, which satisfy
4.1). Then

4.12) Ca(R — 7y’ < Sw dt

R? u(r)?(_i)—

in case P(r) = a (a > 0).

(4.13) COggrife =y - _dt
R wir) F(2)

?:f P(’)") = B/r”/1+l (,8 > 0) a’l’bd

s comr ey [ o
R ulr) f(t)

if P(r) = yr*%* (v > 0)
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where
(4.15) ooy = L r <7 —2)
4n
and
_ 1 _
(4.16) €M = g 5 U >n —2).

The inequalities (4.12), (4.13) and (4.14) are sharp.

The case A = 0 had been considered by the author in [2].

Proof. Consider the function g = g(r) defined by

CONR — ) _ 1 Sw dt

(4.17)
Vi p(r)Js f(2)

where p(r) is positive, monotonically increasing and twice continuously
differentiable and C is a positive constant to be chosen later. De-
noting by « one of the variables x, and differentiating twice with
respect to x we have

4dex(R? — 7?) g, 2x (= dt
4.18 kA L A g -
(4.18) 7 PF) pzmgg )
_de(R— ") 8’ Gu dop(rlg. . _g.f"(9)
R R pflg)  p(r)flg) () f9)
2p(r) (= dt 4x’p(r) (= d
4.19 -
(4.19) 2<r>g GGG Saf(t)

8a*p*(r) g
() o ft)

where dot denotes differentiation with respect to »°. With the help
of (4.17) and (4.18), (4.19) becomes

Joo  _ _ 8ca? 4¢(R? — 7r*) | 16ex*p(r)(R* — r?) | 4dea?
e R A
, (R 2)2 PR — 1) T
x f'(g)ep(r) [2 o) ]
S dt
10( ) FOR

Summing over all z, and using (4.11) it reduces to
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49 < 40{% - 77:2—(1@ -2 4x)} _ 16(R* — r)er'p(r),

o PO = R
(4.20)  2e(R — ) {27«215@”) +np(r) _ 20 g x)} .
B p(r) p(r)

We now consider the following cases:

Case 1. Choose p(r) such that p(r)/p(r)(2r*p(r)/p(r)) —n/(1+\)) =0.
(i) If p=0 or p = a where « is an arbitrary positive constant
then (4.20) becomes

49 -2
(4.21) Wgélc{n rn — 2 ).

If, 4 < n — 2 it follows that 4g < 4necaf(g) and if C is given by
(4.15), we have

(4.22) dg9 < af(g) .

If A > n — 2 the right hand of (4.21) attains maximum for R = r
and the value of (4.16) for C again leads to (4.22). Since §(0) =0
and increases to « as r-—» R the proof of (4.12) will follow from
Osserman’s lemma [8].

REMARK. If a =1 the left hand inequality (9) of Theorem 1 of
Nehari [6] becomes a particular case of this result.

(ii) If 2r(r)/p(r) — (n/l + A) = 0 or p = +"'**8 where S is an
arbitrary positive constant then (4.20) gives

[N PO S S
B ) §4cln oz (n — 2 4)»)}.

If C is given by the values (4.15) and (4.16), we have
dg = Br"*flg) .
Now the proof of (4.13) will follow from Osserman’s lemma [8].
Case 1I. Assume p(r) to satisfy
2rp(r)(pr) + np(r)p(r) — 2r%(1 + Np(r) = 0

or p(r) = vr~** where v is an arbitrary positive constant. Then
(4.20) reduces to

49 <4c{n—l"2_n—2—4x}
v flg) T 2 i

Now if C takes the values (4.15) and (4.16) respectively, we have
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dg = yr"=*f(g)

and (4.14) is proved with the help of Osserman’s lemma [8].
We derive the following corollary:

COROLLARY 4.2. If w satisfies the equation
Aw = Brri+igituln >0, n=2)

where £ 18 an arbitrary constant, then

)\le 2
(4.23) w0 = <0(X),3T"/1+1(R2 — 7-2)2> ’

Also the behaviour of w s such that

m(logw>g nh i
logl/r/ = 1 4+ )

r—0

Indeed, setting f(¢t) = ¢'*“/» in (4.13), we have (4.23), where w = u.
Taking logarithm on both sides, we have, from (4.23)

AR? n n
Be(\W)(RE — r?)? 1+ r

log w < Mlog

Dividing by log 1/ and letting » — 0

m(logw>§ nn )
log 1/r 1+

r—0

A similar result could also be proved about the solutions of the
equation
dw = yrelgrHein

The next theorem concerns the lower bounds for the maximum
of the solutions of (4.1).

THEOREM 4.3. Let f(w) satisfy the conditions of theorem 4.2
with (4.11) replaced by

< dt
4.11) ! —— =1+, A>0).
(4.11) ref =1 (> 0)
1f
G o) = Sup (@)

where w(Q) ranges over all functions of class C* in D, and which
satisfy (4.1) then
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(4.24) S‘” dt < E(R* — %)
o f(¢) 2n
if p(r) = £ where £ is an arbitrary positive constant,
= dt _ ormii (R — g A )
4.25 S < 2, A >1,
(4.25) VIl = on <"> Sy
provided p(r) = or"—**-1 (6 > 0).
(4.26) 5” dt o pr R — ) (n = 3)
v f(8) 6
n case p(r) = pr'* (¢ > 0). However, in 2-dimensional case
(4.27) S‘” dt < vrY(R: — 7%)
v f(t) 4
where p(r) = vrl, v and 1 being arbitrary positive constants.
Proof. Consider the function A = h(r) defined by
: ot 1 (= dt
(4.28) o - S (0 >R >"r)
Bn P AW ¢

where p(r) is positive, monotonically increasing and twice continuously
differentiable. Clearly, & belongs to the class C?in D,. Differentiating
(5.28) twice with respect to & = x, we obtain

_m o_ h, . 2xp(r) i‘” dt
v e B @
1 h,., 4dach,p(r) hif'(h) 29 dt
4.29 —_ = - —
A2 == TRem T Fpn T pnrm P A NG}

_ 4xp(r) g“ dt Bxp(r) S‘” dt )
p(r) Jn f(t) pi(r) Ji f(2)

Using (4.29) and summing over all z,, we obtain

_4h 47'20(')) =1 P 17
=1 L _1
e - iy TP [ ==L -

_2¢p+ni)x o — 7t
D n

Since f” > 0 we obtain with the help of (4.11)

wan o1 b Pormb B 420
Fp) =" mp " »

Now we consider the following cases.
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Case I. Choose p such that » =0 or, p = ¥ where £ is an
arbitrary positive constant. Hence (4.30) reduces to

(4.31) 4dh = £f(h) .
Consequently (G)' implies

hir) = v(r).
Since we can take p arbitrarily close to R, we have

S“ dt _ &R — 1)
o ft) T 2m

Case II. Assume p(r) to be such that
nPp(r)p(r) + 20°p(r)p(r) — 2nr*pi(r) = 0

or p = 0r"**' where 0 is an arbitrary positive constant, n > 2,
A > 1 and such that » < (47n/1 + \). Hence (4.30) becomes

_ 21— 2\, m—2iim
h = {1 B2 }57‘ AR

Using (G)' and arguing as above, we obtain

Soo dt é a,r.n—ZIZ—I(RZ _ 7,.2) .
v f(t) — 2n

Case III. Choose p to satisfy
np(r)p(r) + 20r°p(r)p(r) — (1 + M)2r*p*(r) = 0

or p = pr'* where p is an arbitrary positive constant and n = 3.
Hence (4.30) gives

4h = i?f_rmf(h) )

Using the same argument as above, we have

r dt _ prii(R — o)
- f) 6

Case IV. Assume p to be such that 2r*p + npp — 2r*p* = 0 or
p = vr' where v and [l are arbitrary positive constants. Consequently

4h = v(1 — Irf(h) .

And, as above we conclude
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S“’ dit < vri(R* — 7%) )
o f0) 4

This completes the proof of the theorem.
We derive the following corollaries:

COROLLARY 4.3. In case of a function @ regular in D, and
which satisfies the differential equation

N = Spn—2li—t {1 _2Mn —2) }wwm
n(\n + 1)

where 6 s an arbitrary positive constant, n > 2, v > 1 and such
that n < (4N/1 + \) we have

<5¢n—m_217(%z — Tz)y so.

And also the behaviour of w is such that

H—m<loga)>2xn——2 .
logl/r/ — Xx-—1

r—0

Indeed, setting f(¢) = ¢'*» in (4.25), where v = w, we obtain

Wt > 2nN
= 87.n_2/1—1(R2 - ,',.2) ‘

Taking logarithm on both sides, we get

2n\ +>\7@,—210g_1_.

o(R — r?) r—1 r

log @ = N log

Dividing by log 1/r and taking the limit

E—ﬂ(logw)zxn—z )
logl/y/ — AN—1

r—0

COROLLARY 4.4. If 4 = 0*/ox? + 0*/ox: + 0*/ox: is a 3-dimensional
Laplace operator and o satisfies the equation

Aw = L apirgrain
3

we have

@

[\

(;ﬁmy
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and
7+— [ log w
1 = }>1
rl—r.? <]og 1/7'> -

COROLLARY 4.5. If the function @ tis regular in D, and satisfies
the differential equation

4o = 5(1 — Dyriw+u <A U 5_2>
0 o0

we have

(i) =
ort(R* — %)
and also the behaviour of w is such that

Hﬁ(%‘;g—l%)g In.

r—0

The proof of Corollaries 4.4 and 4.5 is exactly the same as that of 4.3.
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ON |C, 1] SUMMABILITY FACTORS OF FOURIER
SERIES AT A GIVEN POINT

Fu CHENG HSIANG

Let f(x) be a function integrable in the sense of Lebesgue
over the interval (—r, =) and periodic with period 2z. Let its
Fourier series be

Sflw) ~ ‘;" + i (@, cos nx + b, sin nx)
n=1

= Zg A(x) .
Whittaker proved that the series
S A@ne (> 0)
n=1

is summable | A| almost everywhere, Prasad improved this
result by showing that the series

oo k—1
S A@) /(Hlogf‘ n)(log" mie (logh e > 0)
prass]

n=ng

is summable | A| almost everywhere,

In this note, the author is interested particularly in the
|C,1| summability factors of the Fourier series at a given
point x,,

Write

e(t) = flwo + t) + flwo — t) — 2f(20) ,
o(t) = S |l o(w)| du .

The author establishes the following theorems,
THEOREM 1, If
o) =01 (t—+0),
then the series

S Au(an)/ne

is summable {C, 1| for every a > 0,

THEOREM 2, If

0=ofcrt )
P 7

as t — +0, then the series
i An(x())

To—
n=ng ( Ii log* n)(log" n)L+e
#=1

is summable |C, 1| for every ¢ > 0,

139
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A series Y, a, is said to be absolutely summable (4) or summable
|A|, if the function

f@) = 3 a,a"

is of bounded variation in the interval <0, 1>. Let 0% denote the nth
Cesdro mean of order « of the series > a,, i.e.,

0, =

3 Oty @, = Ik + DI + DI+ 1)

If the series
Z [O'Z - 0'(711_1|

converges, then we say that the series 3 a, is absolutely summable
(C, @) or summable |C, «|. It is known that [2] ¢f a series is sum-
mable |C|, it is also summable |A|, but not conversely.

2. Suppose that f(x) is a function integrable in the sense of
Lebesgue and periodic with period 27. Let its Fourier series be

Sf@) ~ C;" + i (a, cos nx + b, sin na)

= > A=) .
Whittaker [4] proved that the series

3 A@)ne (a > 0)

is summable |A| almost everywhere. Prasad [4] improved this result
by showing that the series

i A,L(x)/@i[i log* n>(logk n)+(log* n, > 0) ,

n=mngy

where log* n = log (log** n), log® = log (log n), is summable | A| almost
everywhere.

Let (M,) be a convex and bounded sequence, Chow [1] demonstrated
that the series

LA ()N

is summable |C, 1] almost everywhere, if the series 3, n~"A, converges.

In this note, we are interested particularly in the |C, 1| sum-
mability factors of the Fourier series at a given point. For a fixed
point z, we write

P(t) = @, (1) = f(@, + 1) + flw, — 1) — 2f(%) ,
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and
o) = | lp(w)| du.
We are going to establish the following
THEOREM 1. If
(i) o(¢) = O(¢)
as t— +0, then the series

2:“ n(xo)

1s summable |C, 1| for every a > 0.
3. The following lemmas are required.

LEMMA 1 [3]. Let o > —1 and let ¢ be the nth Cesdro mean
of order a of the sequence {na,}, then

Th = n(0, — 05_) .
LEMMA 2. Write
S,(6) :kﬁ‘s(nJr 2 — k)cos(n + 2 — k)t ,

then

nt (nt = 1),

S,.(t) = O{
n (for all t) .

In fact, we have

S,.(t) = {di z(n+2)tkz“ e“”“}

- { d ( gin+t et >}
- dt \1 — e—it 1 — et
i(n42)t * Hi(n4-2)t
— n + 9 e _ 1€ ‘
{( ) —M (1 _ 6—-”)2

e i }
1 — ¢t + (1 — et

= O(nt™) + O(t)
= O(nt_l) ’
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if nt < 1. This proves the lemma. From this lemma, we can easily
derive the following

LEMMmA 3.
A A
|n+ {ZS(t)A( +2) }lg{tha—{_ntz»_a (tgl)y
An'—¢ (for all t).

By Lemma 2, for nt = 1, we write

" Jlr 1 {EZL S04 j 2)a} T Jlr 1{“2—1 * y—[tim} + O(n:;——a)
=305+ o3 )
nt““)

O( 'n;—"‘> + O( toj;"‘ > ’

+ o

and for all ¢,

This proves the lemma.

4. We have
A, (%) = ESzrp(t) cos ntdt .
T Jo
Let 7,(x,) be the mth Cesaro mean of first order of the sequence
{nd,(2,)/n%}, then

1 i (v+2)cos(v+2)tdt
n 4+ 1= v+ 2)*

TE T
Zes@) = | o)

Abel’s transformation gives

— {é S.,(t)A—(;TlW}dt

1 S, (1)
) . Sa
+So¢( n+1 (<t 3)F
:Iln+12n5

Zeuw) = | o)
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say. Thus, on writing

say, we see that
i/n
L, = 0(n={" |p| dt) = 0@~ ,
0

by condition (i) of the theorem.

e = o] Agtar) + ol e

Now,
gt () - ow +off ) = ot
and

SE lol g < nl—“S: ’f' dt = O(n*—log n) .

1n tz-—oz
It follows that
L, = O{log n/n*} .
As before, we write
1/n T
L={"+| =L+1,
say. Then,
1/n

I, = O(n‘-“so 1P| dt> — O(n) .
And

_ (" 12| _ a

I, O{n Slln : dt} = Oflog n/n°} ,

by the similar arguments as in the estimation of the integral I,,. By
Lemma 1, we have to establish the convergence of ) |7,(x,)|/n. And
from the above analysis, it concludes that

(L] + || + [ Ton| + | Ls}

Sleel o2
=1 T n=1

g

1
n
log

I

iMs

}:0(1).

n1+a
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This proves Theorem 1.
5. Let z,(x,) be the nth Cesaro mean of first order of the sequence
k—1
{nA,,(xo)/< 1 log* n)(log" n)‘“} e>0),
p#=1

where k is a positive integer. Abel’s transformation gives

@) = |Tpt—1 {3 8s.t)a—— 1 dt
2 S" n+l {”=° {#Izl1 log* (v + 2)}{logk (v + 2P+
G- S.() dt
0 n

1 {07 0+ 3)}log* (n + By

=1

= Iln + IZn ’

say. As before, we write

L={"+{ =15.+1L,

0 REVE

say, and

say. Since, for v = n,,

y 1 - A
k—1 = k—1 ’
(H log* v)(log" p)t+e v( 1 log* u>(10gk p)i+e
pr=1 pr=1
we obtain
L{Ssma— .
- (T tog* (v + 2) )(log* (v + 2))
#=1
_ A S — 1A o (nt=1),
. k pp\l4c 2 p L N S
e mjiormr " o e D
P An (for all ?) .
( 11 log* n)(log" Nyt
=1
Now, if

th?qu}

IT log* -
pr=1



ON |C,1| SUMMABILITY FACTORS OF FOURIER SERIES 145

as t— +0, then

=0 <Hlog n)(long n)+e XO VPidt}
_0 1
(Hlogf >(10g n)'*e
n=of [ tzlal

<f[ )(log n)'+e

ey

But since
[ gt (3 [ 2
) dt
=0(Q1) + O{Sllnm}
_ 0(1) + O{]ng+1 n} ’

S‘- (H log* W;( k1 )1“ at = O{ ko < . S:/n l? dt}

( 11 log* n)(log" n)tte
=1
—0 n log*+' n

Cli log %>(10g’° 0y '

we obtain
log“+* n
A b
< 1:[ log* n)(log" nytte
Finally,
I, = o " "ol at}
(1‘[ log* n (log* m)+< ~°
1

(H log* n)(log n)+e
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I, = 0{ 1 S k2 dt}
6n 1 Un t
< 1T log* n)(log" n)tte
p=1
0 log®** n

Cﬁ:i log* n)(log" n)+e

Thus,
i [Za(®) | _ {i log**' n } +0Q)
=1 n=n, k=1
e 0 n< 1T log* n)(log’c n)+e
f#=1
=0(Q).
Hence, we establish
THEOREM 2. If
[El log" 5
as t— +0, then the series
i — A, (x,) (log* m, > 0)
mer < 11 log f‘n)(log" n)t+e
f=1

is summable |C, 1| for every ¢ > 0.

6. For the conjugate series
i (b, cos nx — a, sin nx) = > B,(x) ,
we can derive two analogous theorems. Write, for a fixed x = z,,
4 t
v(t) = | v du = 17+ 0 — f@ -0 du.
We have the following
THEOREM 3. If
(iii) T(t) = O(t)
as t— +0, then the series

i Bn(j;o)

n=1 n
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is summable |C, 1| for every a > 0.

THEOREM 4. If

(iv) w(t) = O{“T"t—l—}

as t— +0, then the series

i 1 B () (log* 1, > 0)
e <H log* n)(log" n)'e

1s summable |C, 1| for every ¢ > 0.
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