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ON SOME EXTREMAL SIMPLEXES

MIR M. ALI

Let A be a fixed point in ̂ -dimensional Euclidean space.
Let BlfB2, '"fBn+ί be the vertices of a simplex Sn of n-
dimensions, that is, the n + 1 vertices do not lie on a (n — 1)
dimensional subspace. Let dif assumed to be positive, be the
distance of Bι from A, and let Uj be the cosine of the angle
between the straight lines ABi and ABj for i, j = 1, 2, •••,
n + 1. Let πi denote the (n — 1 -dimensional hyperplane pass-
ing through all the vertices of Sn except Bif let pi, assumed
positive, be the perpendicular distance of πι from A, and let
ma denote the cosine of the angle between the normals from
A to TΓi and π3- for i, j =1,2, , n + 1. The present paper
deals with the following problems.

(a) An expression for the content of Sn, C(Sn) say, in terms
of di and Uj for i, j =1,2, - -,n + 1 is first obtained. Then
leaving dl9d2, -"9dn+i fixed, values of liJ9 say l*3 , are deter-
mined in such a manner that C(Sn) is a maximum, and the
maximum value of C(Sn) is obtained for the two cases that
arise: (i) when A is inside Sn, (ϋ) when A is outside Sn.
The latter case does not arise when dx = d2 — = dn+u

(b) An expression for C(Sn) is obtained in terms of pi and
m>ij, i, j = 1, 2, , n + 1. Then leaving pu p2, , pn+i fixed,
values for ma, say m%, are determined in such a manner that
C(S») is a minimum, and such C(Sn) is computed for the two
cases that arise depending on (i) whether A is inside Sn or (ii)
A is outside Sn. The latter case does not arise when

Pi = ί>2 = = Pτι + 1 .

The results are stated below.
(a) The content of Sn, max C(Sn) and Ifj are given by

(1.1) n\C(Sn)= I f t M + DI1/2

(1.2) max (nlC(Sn))2 = -w" 1 " π (d? - w)
i=i

(1.3) Zi* = uKdidj) for i, y = 1, 2, , n + 1 i =£ j ,

where u satisfies the equation

(1.4) l + uΣWl-uϊ-^O.
i = i

The unique negative root for u in (1.4) corresponds to the
case when A is inside Sn. When the relation

di = d2 = = dTO+i

is not satisfied, the smallest positive root for u in (1.4) cor-
responds to the case when A is outside Sn. Other roots for
u in (1.4), if any, are inadmissible.

1



2 MIR M. ALI

(b) The content C(Sn), min (C(Sn)) and m** are given by

(1.5) (nlC(Sn)γ = I ( p ί P i + ma) | /JI \ Ma I

where | Ma | is the cof actor of ma in | (m^ ) | and

(1.6) min (nϊC(Sn))2 = - v V * Π (p* - v)

and

(1.7) m** = vl(piPj) f o r i φ j ; i, j = 1, 2, , n + 1

where v satisfies the equation

(1.8) ll/stPi-ti)"1 = 0.
* = 1

The unique negative root for v in (1.8) corresponds to the
case when A is inside Sn. When the relation

Pi = PZ = ' * = ί?n+l

is not satisfied, the smallest positive root for v in (1.8) cor-
responds to the case when A is outside Sn. All other roots,
if any, are inadmissible.

When dι = d2 = = dn+i, we obtain the special result
that the largest simplex inscribed in a sphere of ̂ -dimensions
is a regular one, while when p1 = p2 — = pn+ί the smallest
simplex circumscribing a sphere is a regular one.

The coordinates of B{ referred to a π-dimensional Cartesian co-
ordinate system with origin at A will be denoted by (xitl, xit29 , %i,n)
(xL, x2, , xn) will denote a general point in the π-space.

2* Extremal simplex determined by the distance of vertices*
The content of Sn is given by (Sommerville, p. 124) n\C(Sn) = | V\
where

(2.1)

so that (n\C(Sn)Y = \ VV \ = \ (w{j) \ say, where

(2.2) w^ = 1 + Sij for ί, i = 1, 2, , n + 1; and

(2.3)

(2.4)
ifΛJL ^Λ+1,1
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Hence we have proved (1.1).
We note that su = d\, for i = 1, 2, , n + 1. From (2.3) we also

note that the rank of (siά) is less than n + 1 so that | (s o ) | = 0 and
(s^ ) is semi-positive definite. Further we note that both (st7) and
(w^ ) are symmetric matrices and since B19 , 5 Λ + 1 do not lie on a
(w — l)-dimensional subspace, we must have | (wi5) \ΦQ, in fact,
I (w%j) I > 0 since (w{j) is positive definite. Our problem of maximizing
C(Sn) with respect to the lijf i Φ j , for given values of diy d{ > 0, may
Ibe re-stated as follows.

We must maximize | (wi5) | over the class of symmetric matrices
(sid) or (wij) with respect to sijy i, j = 1, , n + 1, subject to the
conditions: | (sid) \ = 0 and % = d\ for i = 1, , n + 1. Further (siS)
should be semipositive definite and | w{J \ Φ 0.

Let θ and /ilt •• ,/Λ4+i be Lagrange multipliers. We seek the
extreme values of the function L with respect to sijy i, j = 1, ,
n + 1, where

L=\wi5\-

Hence s iy must satisfy

and
3L

- θ I Sij I = 0 for ί Φ j , i,j, = 1, . . . , n + 1

- I W« I - θ\ S« I + μ< = 0 for i = 1, . . . , n + 1

where and S^ I denote co-factors of wkl and ŝ ; in

r) I respectively.
This implies that

so that

Σ
1 = 1

3L

n + 1

» Σ = 0

and

Let k Φ i; then using (2.2), wkj = 1 + skj and by the well-known
property that expansions in terms of alien co-factors vanish identically
(Aitken, p. 51) we finally obtain

n = 0

so that ski = wki — 1 = θ/μt Σ? ί ί | — 1, for all k Φ ί. Since the
above expression for ski is constant for values of k = 1, , n + 1,
^ f̂: ίy we conclude that the elements of the ith column of (s^ ), except
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Su = d\, must be equal. Since si3 is a symmetric matrix, the above
property extends to the rows of (s^ ) and it is easily seen that the
extreme values of L correspond to values s* of si3 where

(2.5)

while

sf3- = u for i ., n + 1

st = d\, i = 1, ••-, n + 1 .

Now u can be determined from the relation | si3- \ = 0 so that we must
have

(2.6)

u

u
u
u

u u

Let us define the determinant

( 2 . 7 ) Dk(x;a19 .••,<**) =

= 0

αL a;-

x a2

From the relation due to Grabeiri (1874) (see Muir, vol. 3, 4, p. 110),
or by subtracting the first row of the above determinant from the
remaining rows and by the use of Cauchy expansion in terms of the
first row and first column, we have

(2.8) Dk(x; αx, , ak) = ( l + x Σ (α< - x)'1) Π (α< - x) .
\ ΐ=i / i=i

Hence from (2.6) u must satisfy the equation

(2.9) (1 + u Σ (̂ < ~ /^)~1 Π (̂ i — w) = 0 .

From (2.2) and (2.5) the extreme value of (n\C(Sn))2 for any u
satisfying (2.9) is equal to

D n + ι ( l + u;l + dl, ' " , 1 + d l + 1 )

= (l + (1 + M) Σ (d? - »)-')("Π (dl - «))

(w + 1 \ /w + 1

(2.10)

by the use of (2.9).
Since u — 0 does not satisfy (2.6), we immediately obtain from
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(2.9) that the expression (2.10) is equal to

/O 1 1 \ Λ7—l TT (rfZ η.\

\Δ,JLJL) H xx \U>i — (A/)

which is the extreme value of (n\C(sn))2 in terms of u. In order that
the content is nonzero we must have u Φ d\ for i = l, •• ,w + l .
This statement along with (2.9) implies that u must satisfy the equa-
tion

(2.12) 1 + u Σ (d2 - u)-1 = 0 .

The roots for u, temporarily assuming that d19 , dn+ί are distinct,
can be located by Decartes rule of signs by checking the signs of the
left-handside of (2.12) for values of u, equal to — oo, 0, +co and in
the neighborhood of d2, i = 1, , n + 1- Relabelling dt such that
dγ < d2 < < dn+1J it is easily verified that all the roots for u are
real, say u19 •••, un+1 and may be labelled in such a manner that

(2.13) u^O <d2<u2<d2

2< --> < un+ι < d2

n+ί .

Consider the characteristic roots of (s£ ) given by \s*j — λ/| = 0. By
(2.5) and (2.7) λ must satisfy Dn+1(u; d\ - λ, , d2

n+1 - λ) = 0. Hence
from (2.9)

)(l + u Σ (d\ - λ - u)-1) Π (dl-X-u) = 0 .

By similar method as used to obtain (2.13) we find that the roots
for λ may be so labelled that λ: = 0 and

d\ < λί+1 + u < d +1 i = 1, , n .

In order that all the roots for λ are nonnegative it is easily seen
that the relation

(2.14) d\ - u > λ2 ^ 0

must be satisfied so that we must have u < d\. From (2.13) we find
that the only admissible roots for u are uγ and u2.

To establish (1.4) it only remains to show that uγ corresponds to
the case when A is inside the extremal simplex whereas u2 corres-
ponds to the case when A is outside the extremal simplex.

Consider the equation of πi9 passing through all the vertices of
Sn except B{ having the coordinates (xitl, ••-, xitn), given by

Li(xu , xn) = 0 ,

where
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,Xn) =

Now A and Bi lie on the same side of π{ if and only if Li(xiΛ, , α?ίfΛ).
Li(0, , 0) > 0 while A and B{ lie on opposite sides of π{ if and only
if Li(xitl, , xUn). Li(0, , 0) < 0.

Now by direct multiplication of the determinant Li(xifl, , xi>n)
with the transpose of the determinant 1^(0, 0, , 0) we obtain

, a?ίfn) L f(0, 0, • • , 0)

1 + Si.

1 + s22

1

1

1 + s, n+1

1 + s2 w + 1

1 + sn+n 1 +

We now assume that Sn is an extremal simplex so that from (2.5)
8PV = dj, v = 1, , τ& + 1 and svjfc = î , i; Φ k, v, k = 1, , n + 1. Then
in the last determinant each entry in the i-th column is 1, the /th
diagonal entry is d) + 1 for j Φ i, j = 1, , n + 1 while the remaining
entries are 1 + u. Subtracting (1 + u) times the i-th column from the
remaining columns we immediately obtain

, 0) - (d\ - u)-1 ) - u)

(-vr\d\ - u))

Since from (2.11) the numerator of the last expression is positive, we
find that A and B{ lie on the same side of π{ if and only if

-u~\d\ - u)> 0 ,

while they lie on opposite sides of π{ if and only if —u~ι(d\ — u) < 0.
Since —uϊ\d\ — u2) < 0 and — uz\d\ — uj > 0, it is readily checked

that we have proved (1.2), (1.3) and (1.4) in the case when dly , dn+ι

are distinct.
Necessary modifications are easily made when some or all of the

di are not distinct.
Finally we remark that the simplex corresponding to ux has larger
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content than that for u2. This is because

d\ - u, > d\ - u2 > 0 for i = 2, , n - 1

and

-uτ\d\ - u,) = 1 - ^ >1 - rf /tt, = - M Γ 1 ^ - u2) ,

so that

(2.15) -uτι Π (dj - u,) > -UT1 li (d) - u2) .
1

We also note that when dx — d2= = dn+ι (1.4) has a unique nega-
tive root for u and the point A corresponding to this value of u must
lie inside the extremal simplex.

3* Simplex determined by distances of faces* We recall that
the (n — l)-dimensional hyperplane π{ passes through all the vertices
of Sn except Bi9 The distance of TΓ* from A is #;. The point B{ does
not lie on TΓ̂  but does lie on all the remaining n hyperplanes

Let τr{ be given by (in normal form)

(3.1) π,\ e^x, + ei}2x2 + + eitnxn = eitn+1

where for notational convenience we have written

(3.2) Vi = eitn+1 ,

and eiΛf , eitn are the direction cosines of the normal to πif so that
we have

k

(3.3) Σ ei>3ek,j = ^iΰ if k = 1, 2, , n + 1; m« = 1 .

The notations used in this section will be listed first and some rela-
tions needed later will be established in order to avoid future digres-
sion.

We define the (n + 1) x (n + 1) matrix E in double suffix notation
as

(3.4) E = (eifi)

and Eiti will denote the co-factor of eitj in E. We also define the
(n + 1) x (n + 1) matrix M as

(3.5) M =
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and M{j as co-factor of mi5 in M.
Let Gi denote the signature of | Eitn+ι | so that

1 if \Eitn+ί > 0

(3.6) σ, = for i = 1, + 1 .
- 1 if < 0

We remark here that Ei>n+i is nonsingular. This is because

π19 , TΓ^!, ττί+1, , πn+1

have one and only one point in common, namely (xitl, •••, xitn). Since
π{ does not pass through the above common point, it is easily seen
that the matrix E is also nonsingular, so that

(3.7) #1=5*0 and \Ei>n+ι\ Φ 0, i = 1, . . , n + 1 .

Furthermore it is easily seen that

(3.8) I E i > n + ι 1 = ^ 1 E i 9 n + ι E ί , n + 1 1 1 / 2 - σ,

for i = 1, , n + 1

where the radical above as well as all radicals appearing in this paper
will be always taken as positive. Hence from (3.2) and (3.4) we have

(3.9) |1/2 == P (say) .

D will denote the diagonal matrix

(3.10) D = Diag. (ply « . , ^ +

and let

(3.11) R = (ri5) = D-ιMD~ι

so that Tu = pτ2 for i = 1, , n + 1. Since

we also remark that ilί and consequently R are symmetric positive
semi-definite matrices, so that | M \ = 0 and | ϋJ | = 0.

Finally, it follows that

(3.12) =\Rίi

To obtain the content C(Sn), we will use the formula (2.1). Since
(xi}l, xitn) lies on π3 ; j Φ ί, j = 1, , π + 1, we may directly solve
for xifj from the following n linear equations:
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^ , 1

A simple calculation shows that (see (3.4))

xitj = ( - l ) - i ( - l ) ^ I tfίf. | / ((- i r

Hence we obtain

x i y j = -\Eitj\/\Ei>n+ι\;ί,j = 1, 1 .

Substituting these values in \V\ of (2.1) and factoring out —1 from
each of the first n columns of V and also factoring out | Eitn+11"1

from the ith row of V for i = 1, , n + 1, we readily obtain

nϊC(SΛ) = (-1)" I Adj^l/Π |^, . + 1

(3.13)

where | Adj E \ is the adjoint determinant of | E \. In order to avoid
the ambiguity of sign in C(Sn) we consider (n\C(Sn))2 instead and from
(3.9) and (3.12) we obtain

2n In + ί

/ Π |ΛΓ«I

Our problem of minimization is equivalent to minimizing

K n + l \2 In + l "1

Σ^iΛ«r)/jπtiΛ«rJ
with respect to ri5, i, j = 1, , n + 1, subject to the restriction that
r ΐ { = pϊ2, i = 1, , w + 1 and | .β | = 0 over the class of symmetric
matrices R.

Let λ, μlf , μn+1 be Lagrange multipliers and we seek the ex-
treme value of

L = u \A* - ±- Σ ln\ RU\-X\R
/ 72

« - VT2) .
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1 ψ 1 3| Rw 1 d\R\
dri3-

and

where p is as defined in (3.9).
These equations reduce to

λ3L = g
2 dr,: i v=i

I"1'2 - n~ι

and

for i Φ j ; i, j = 1, , % + 1

)|Λ*vi«| - λ |iί« | + ^ = 0

where |i2vHiil
 i s t h e co-factor of r ί 5 in \RVV\.

Hence the minimizing values of rijf rt*, say, must satisfy the
equations in τiά\

and

(3.14)

and

(3.15)

After obvious

tt + l

W + l

simplification

(o-'σ, i? w I-1'2

'"2

1
2

(3

3L

.14)

ci 1 j

(III

yields

RVV "" ) | Xtyy

0

0 .

1 +

or

(3.16) μ, = pϊp-'σatu .

From (3.15) we obtain for k Φ i,
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n+ίn+ί

(3.17) Σ Σ Ψλ R™ I"1 V 1 - rrι\ Rvv l " 1 ) ^ R»ulij \ + ^4rfci = 0

After some calculations we obtain

(3.18) rki = μτ\σh\ Rkk \~Wp-1 - n~ι\ Rkk \~')\ Rik | .

It is easily seen from (3.11) that \Rik\ == pφk\ Mik | and

Mik = I E i > n + 1 1 | Ek}%+11

and hence from (3.8),

so that substituting for μt from (3.16) in (3.18) we obtain

(3.19) p?rw = 1 - n~ιpσk\ Rkk \~^ .

In obtaining (3.18) from (3.17), we illustrate the case for i = 1,
n + 1 = 4 and k = 2, for the expression, for example:

= r £ 1 ( σ f | i25

+ r22(σ3\

| R33lll \\ RS3 \

σt\ RiW \\ Ru \

σt\ R
u m

ru(σi\RΆ\u\\R22\"lli + σt

The last expression is obtained from the coefficients of |JB2 2

? |~1 / 2;

the coefficients of | i?331~1/2 or | Rn |~1/2 are easily seen to vanish identic-
ally, since they represent expansion by alien co-factors.

In the summation appearing in (3.17) only the term with v = k
survives;

n+l

Σ rkj\R
kkHj

is the expansion of the determinant obtained by replacing the elements
of the ί-th row of \R\ by those of the Λ -th row of | R\ with the fc-th
row and k-th column deleted. Transferring the elements rki appearing
in the i-th row to the k-th row, there results the minor of rki in \R\.
Hence multiplying by ( — 1)*-* and ( — l)ί+k we obtain \Rki

seen that
It is thus

2,
iϊ*fc

rkj
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From (3.19) it is easily checked that we have

(3.20) = p)p\r5k

for all i, j = 1, , n + 1, with i Φ k, j Φ Jc.
Since the matrix

(plruP)) = D2RD2 = D2D-ιMD~ιD2 = DMD = (^m f

is symmetric, and (3.20) implies that nondiagonal elements of each
row or column of this matrix are equal we conclude, (in a manner
analogous to (2.5)) that r* = pΐ2, i = 1, , n + 1 and

say, for i Φ j ; i, j = 1, , n + 1 so that

'mfi = 1 for i = 1, , n + 1

' # * 1/wi* — v for i Φ j) i, j = 1, , n + 1.

We obtain values of v by equating | r£ | = 0 or equivalently by sett-
ing I DMD I = I (PiPj-mfj) | = 0, where PiPj-mfj = v, i Φ j and p\m% = p2,
and it is seen from (2.7) that v must satisfy

Dn+I(v;pl, •• ,2>2

n+i) = 0 .

and hence

(3.22)

We also note from (3.13), (3.8),

(3.23)

But from (ί

(n\C(Sn))2 = p2

= Pi

5.19) we have

)-1))

(3.9)

w + 1

#ii 1

and (3.12) that

n + ί

i=2

so that ρσk\Ru |~1/2 = n(p\ - v)/piy from (3.21). Also from (3.21), since
rfj = v/iplp2) and r« = p4"

2 it is easily seen that

n \U.Pi = Dn(v; pi, , p2

n+1)
i=2

Σ
i=2

(pi -

= (Pi
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Σ,(P)ή\pl v)

= -v{p\ - v)~! ΐ [ ( p j - v) from (3.22) .
i = l

Substituting in (3.23) we readily find that

(3.24) (nlC(SJ)2 = v~ln2n U (pi - v) .
i — l

Thus (1.6) is proved.
In order that Sn is nondegenerate v Φ pi, ί = 1, , n + 1. Hence

from (3.22) v must satisfy

(3.25) 1 + t ; Σ ( P ί - v)-1 - 0 .
i = i

Thus we have exactly the same equation as (2.12) with dt replaced
by Pi and u replaced by v. By exactly the same argument that follows
(2.12) we conclude that, when ply , pn+1 are distinct, if the roots of
(3.25) are so labelled that the unique negative root of (3.25) is vι and
the smallest positive root for v is v2 and if the p{ are labelled so that
p1 is the smallest and p2 the second smallest pif i = 1, , n + 1, we
have the two eligible roots of (3.26) as v1 and v2 satisfying

(3.26) v,<0 <pl<v2<p2

2.

It remains to prove that vι corresponds to the case when A is
inside Sn while v2 corresponds to the case when A is outside Sn.

We will prove that, for the extremal simplexes obtained above,
the vertex B{ and the fixed point A lie on the same side of π{ if

Pi - v > 0

while A and B{ lie on opposite sides if pi — v < 0.
Let

Then L,(0, . - , 0) = -eί>n+1 = -pi9 and

•^iV^ili ' * ' 1 Win)

= - Σ eitS\ EilS I/I EUn+ι I (by v i r tue of (3.5))

= - I £ 7 1 / 1 ^ , , ^ I

= -Ptp/σ t\Ru\1 1 2 (from (3.8) and (3.12))

= -npt(l - plrl) (from (3.19))

= -npi(l - v/p]) (from (3.21))
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Hence 1^(0, , 0) Li(xitl, , xi>n) = n{p\ — v). Now the equation of
π{ is Li(xlf , xn) = 0. Hence p\ — v > 0 implies that A and J5, lie
on the same side of π{ while pi — v < 0 implies that A and Bt lie on
opposite sides of π^ Since $ — v1 is positive for i = 1, , w + 1 we
conclude from (3.26) that corresponding to v19 A is inside Sn. Also
from (3.26) we find pi — v2 is negative so that corresponding to v2 the
point A lies outside Sn. Hence it is readily checked that we have
proved (1.5), (1.6), (1.7) and (1.8).

Finally, using an argument analogous to that used to obtain (2.15)
we find that

-V71 ff(j>{ - vλ) > - v^ΐΐ (V\ ~ v2)
i = i i=i

so that from (3.24) we conclude that the content of Sn corresponding
to Vj. is greater than the content of Sn corresponding to v2.

Obvious modifications in the foregoing proofs are easily made.
when some or all the p19 , pn+1 are equal.

When pγ — p2— = pn+1, (3.25) has a unique negative solution
for v and in this case A must lie inside the extremal simplex.

The author expresses his thanks to Professor H. S. M. Coxeter
for his valuable association which led to this problem and for his
keen interest in this work.
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ON NORMED RINGS WITH MONOTONE
MULTIPLICATION

SILVIO AURORA

It is shown that if a normed division ring has a norm
which is "multiplication monotone" in the sense that N(x) <
N(xf) and N(y) < N(yf) imply N(xy) ^ N(x'y'), and if the norm
is "commutative" in the sense that 2V( -xy- •) = iV( -yx- •)
for all x and y, then the topology of that ring is given by an
absolute value. A consequence of this result is that if the norm
of a connected normed ring with unity is multiplication mono-
tone and commutative then the ring is embeddable in the
system of quaternions.

Pontrjagin has shown [7] that the only locally compact connected
fields are the field of real numbers and the field of complex numbers.
A theorem of A. Ostrowski [6] implies that if the topology of a con-
nected field is given by an absolute value then the field is (isomorphic
to) a subfield of the field of complex numbers. Both results are con-
tributions toward the solution of the problem of determining what
connected fields exist.

In this note the more restricted question of studying connected
normed fields is considered. (It is recalled that a normed ring has
its topology induced by a norm function N; that is, N is a real-valued
function defined on the ring such that: (i) JV(O) = 0 and N(x) > 0
for x φ 0, (ii) N(-x) = N(x) for all x, (iii) N(x + y) ^ N(x) + N(y)
for all x and y, (iv) N(xy) < N(x)N(y) for all x and y.) Ostrowski's
results may be regarded as the treatment of the special case of this
problem in which the norm N satisfies the additional condition

N(xy) = N(x)N(y)

for all x and y. This extra requirement is replaced here by the
weaker condition that N be multiplication monotone in the sense that
whenever N(x) < N(x') and N(y) < N(yf) then N(xy) ^ N(x'y').

Specifically, it is shown in the corollary of Theorem 3 that if a
commutative connected normed ring with unity has a multiplication
monotone norm then that ring is (algebraically and topologically is-
omorphic to) a subring of the field of complex numbers. (The version
of this statement which appears below actually includes the noncom-
mutative case as well.) The basic device employed in obtaining this
result is Theorem 2, which asserts that if a normed division ring has
a multiplication monotone norm N such that

N( -xy- - -) = N( - -yx- - -)

15
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for all x and y then there is an absolute value which induces the
topology of the ring.

2* Preliminaries* It is recalled that a norm for a ring A is a
real-valued function N on A such that: (i) JV(O) = 0 and N(x) > 0 for
all nonzero x in A, (ii) N(-x) = N(x) for all & in A, (iii) N(x + #) g
JV(α) + i\%) for all x, y in 4, (iv) N(xy) ^ N(x)N(y) for all a?, #
in A If a norm JV for a ring A also has the property that
N(xy) = N(x)N(y) for all x, y in A then AT is called an absolute value
for A.

By a normed ring is meant a ring A, together with a norm JV
for A. The norm for a normed ring induces a metric, and therefore
a topology, in A.

A topological ring is called a Q-ring of its set of quasiinvertible
elements is open; for a topological ring A with unity to be a Q-ring
it is necessary and sufficient that the set of invertible elements be
open. In particular, it can be shown that every complete normed
ring with unity is a Q-ring.

Further details on these concepts can be found in [1] and [4],
where the term metric ring is employed for a normed ring.

If a norm N for a ring A has the property that JV( -xy- •) =
JV( 2Λ& ) for all x, y in A then JV will be called a commutative
norm. For instance, absolute values are always commutative, and
every norm for a commutative ring is also commutative.

In addition to the above notions, we shall also refer to the con-
cepts which figure in [5], and we shall make use of the criteria given
by Kaplansky in that paper for a topological division ring to admit
an equivalent absolute value.

Two elementary lemmas will help to translate Kaplansky's criteria
to the special case of normed division rings. The proofs are routine.

LEMMA 1. An element x of a normed ring is topologically nil-
potent if and only if there exists a natural number n such that
N(xn) < 1.

LEMMA 2. The set of topologically nilpotent elements of a normed
ring is open.

Kaplansky's criteria can now be rephrased to fit the needs of the
present discussion.

THEOREM 1. Let K be a normed division ring whose norm is
commutative. In order for K to admit an equivalent absolute value
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(that is, an absolute value whose induced topology coincides with
the topology induced by the norm for K), it is necessary and suf-
ficient that the set of elements which are either topologically nilpot-
ent or neutral be right bounded.

Proof. The necessity of the conditions is obvious. For the suf-
ficiency of the conditions, we first note that the commutativity of the
norm implies that N(x) — N(l) whenever x is an element of the com-
mutator subgroup of the multiplicative group of nonzero elements of
K; this commutator subgroup is therefore metrically bounded and is
consequently right bounded. Lemma 2 and [5; Th. 2] imply that there
is an equivalent absolute value for K.

3* Rings with multiplication monotone norm* We shall
subject the norm for a normed ring to a monotonicity condition which
is of interest because it implies the existence of an absolute value
equivalent to the given norm.

DEFINITION. A norm N for a ring A is said to be multiplication
monotone provided that whenever N(x) < N(x') and N(y) < N(y') then
N(xy) ^ N{xfy').

Clearly every absolute value is multiplication monotone, while the
following theorem indicates that under suitable conditions a multiplica-
tion monotone norm for a division ring must have an equivalent absolute
value.

THEOREM 2. Let K be a normed division ring whose norm is
commutative and multiplication monotone. Then there is an equiv-
alent absolute value for K.

Proof. The theorem obviously holds for discrete division rings,
so we may confine our attention to nondiscrete division rings.

Let x be a fixed element of K such that 0 < N(x) < Nil)"1. Then
if N(y) > N(x~2) it follows that N{y~ι) ^ N(x) < 1, and y is therefore
inversely nilpotent. Thus whenever y is topologically nilpotent or
neutral we have N(y) ^ N(x~2), so that the set of elements of K
which are topologically nilpotent or neutral is metrically bounded and
therefore right bounded. Theorem 1 yields the desired result.

It is possible to relax the requirement that the ring in question
be a division ring, provided that the ring is connected. In order to
achieve this we introduce the notion of generalized zero-divisors.
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DEFINITION. An element b of a normed ring A will be called a
generalized left zero-divisor (generalized right zero-divisor) provided
that the greatest lower bound of the set {N(bx)/N(x) | x Φ 0} ({N(xb)/
N(x) I x Φ 0}) is zero.

These are essentially the definitions which were employed in [1],
but we may also note that b is a generalized left zero-divisor (gener-
alized right zero-divisor) if and only if there exists a sequence {xn} of
nonzero elements of A such that

lim N(bxn)/N(xn) = 0 (lim N(xnb)/N(xn) = 0) .

Although normed rings usually have many generalized zero-divisors
it can be shown that a connected normed ring whose norm is multi-
plication monotone has no generalized zero-divisors other than zero.

LEMMA 3. Let A be a connected normed ring with unity such
that the norm for A is multiplication monotone. Then A has no
generalized left zero-divisors or generalized right zero-divisors other
than zero.

Proof. Suppose b is a generalized left zero-divisor in A. Let
{xn} be a sequence of nonzero elements of A such that

lim N(bxn)/N(xn) = 0 .

Choose a sequence {yn} in A such that (l/2)N(xn) < N(yn) < N(xn) for
every natural number n.

If / is the set of all elements c of A such that

lim N(cyn)/N(yn) = 0

then / is clearly a left ideal in A. Also, whenever c is an element
of A such that N(c) < N(b) then N(cyn)/N(yn) ^ N(bxn)/((l/2)N(xn)) for
all n, so that c is an element of I. Thus, if b were not zero then
an entire neighborhood of zero would be contained in the left ideal J,
and / would therefore be open and closed in the connected ring A;
consequently I would coincide with A, in contradiction to the fact
that I can not contain the unity of A. We conclude that b is zero.

Similarly, every generalized right zero-divisor is zero.

In order to obtain the desired results concerning connected normed
rings we first dispose of a special case in the following lemma.

LEMMA 4. Let A be a connected ring with unity such that the
set A* of nonzero elements of A is disconnected. Then A is a division
ring.
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Proof. If c is a nonzero element of A then the mapping x —• ex
is clearly a continuous endomorphism of the additive group of A, so
that its image H is a connected nonzero subgroup of the additive
group of A. But it can be shown that the additive group of A is
continuously isomorphic to the additive group of real numbers (for
instance, a proof is outlined in [3; Chap. 5, p. 28, Exercise 4]), and H
must therefore coincide with the additive group of A. Thus, 1 is in
Hj so that 1 — cd for some d in A, and c has a right inverse in A.

Since every nonzero element of A has a right inverse in A we
conclude that A is a division ring.

It is now possible to pass to the general case.

THEOREM 3. Let K be a connected normed Q-ring with unity
such that the norm for K is commutative and multiplication monot-
one. Then A is algebraically and topologically isomorphic to the
field 3t of real numbers, a dense connected subfield of the field & of
complex numbers, or a dense connected division subring of the division
ring £l of all real quaternions.

Proof. If the set A* of nonzero elements of A is not connected
then Lemma 4 implies that A is a division ring. On the other hand,
if A* is connected then A is a division ring according to [1; Th. 1]
since Lemma 3 implies that A has no generalized zero-divisors other
than zero. In either case A is a division ring.

There is an equivalent absolute value for the normed division ring
A by Theorem 2. Ostrowski's characterization of connected division
rings with absolute value (see for instance [2; Th. 2, p. 131]) may
then be applied to obtain the desired result.

COROLLARY. Let A be a connected normed ring tυith unity such
that the norm for A is commutative and multiplication monotone.
Then A is algebraically and topologically isomorphic to 9ΐ, to a dense
connected subring of (£, or to a dense connected subring of £}.

The corollary is obtained by applying the theorem to the comple-
tion of A.

REMARK. Another kind of monotonicity condition could be in-
troduced in normed division rings. The norm of a normed division
ring can be described as inversion monotone provided that whenever
N(x) < N(y) for nonzero elements x, y then Nix^) ̂  N(y~~ι). Theorem
2 remains valid if "multiplication monotone" is replaced by "inversion
monotone" in the hypothesis, although some details of the proof must
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be modified. Similarly, the corollary of Theorem 3 continues to hold
if "multiplication monotone" is replaced by "inversion monotone" in
the statement of the corollary, provided that it is assumed that the
ring is a division ring.

This note evolved from the consideration of some peripheral ques-
tions related to a problem which was investigated with the support
of the Research Council of Rutgers University; the author wishes to
express his appreciation to the Research Council for that support.
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NORMED FIELDS WHICH EXTEND NORMED
RINGS OF INTEGERS

SILVIO AURORA

It is shown that if the ring of integers is made a normed
ring by using a "reasonable" norm, such as the ordinary
absolute value or some power thereof, then every normed field
which extends such a normed ring is a subfield of the field of
complex numbers.

The development of the foundations of analysis involves the con-
struction of the normed field of complex numbers, with the ordinary
absolute value as norm, from the normed ring of integers, with the
ordinary absolute value as norm, by a process of successive enlarge-
ments of algebraic systems. (By a normed ring is meant a ring A
which is provided with a norm function N; that is, N is a real-valued
function defined on A such that: (i) N(0) = 0 and N(x) > 0 for every
nonzero x in A, (ii) N( — x) = N(x) for all x in A, (iii) N(x + y) ^
N(x) + N(y) for all x, y in A, (iv) N(xy) <Ξ N(x)N(y) for all x, y in
A.) Although some treatments of this construction create only positive
numbers in the early stages of the passage from the system of natural
numbers to the complex number system, such approaches could easily
be modified to retain their basic features while still producing the
ring of integers at the outset; thus, all such procedures essentially
involve the extension of the normed ring of integers to produce the
normed field of complex numbers.

One might ask what normed fields could be produced by enlarg-
ing the normed ring of integers, with the ordinary absolute value or
some power thereof as norm, if no restriction whatever were placed
upon the method of extension. It is shown in Theorem 3 that the
only normed fields which can be thus obtained must be (continuously
isomorphic to) subfields of the field of complex numbers.

Somewhat similar results are given in §4 for the situation in
which the normed field of rational numbers, with a suitably "natural"
norm, is enlarged to create a new normed field. For instance, the
corollary of Theorem 6 indicates that if the field of rational numbers
is provided with a norm which coincides with a power of the ordinary
absolute value over a suitable neighborhood of zero, then every normed
field which extends this normed field is (continuously isomorphic to)
a subfield of the field of complex numbers.

2* Preliminaries. It is useful to recall some of the concepts
which are employed in [1] and [2].

21
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A norm for a ring A is a real-valued function N defined on A
such that: (i) N(0) = 0 and N(x) > 0 for all nonzero x in A, (ii)
N(-x) = iV(ί*0 for all a? in A, (iii) N(x + y) S N(x) + N(y) for all x, y
in A, (iv) i\Γ(£2/) ̂  N(x)N(y) for all cc, ?/ in A. If a norm N for a
ring A has the property that N(xy) = N(x)N(y) for all x, y in A then
iV is called an absolute value for A.

By a normed ring is meant a ring A, together with a norm N
for A; the norm for a normed ring A defines a metric, and therefore
a topology, for A.

If N is a norm for a ring A and c is an element of A such that
N(cx) = N(c)N(x) for all x in 4 then JV is said to be homogeneous at
c. A norm JV for a ring A is said to be power multiplicative at an
element c of 4 provided that N(cn) = N(c)n for every natural number
n. When a norm AT for a ring A is homogeneous (power multiplica-
tive) at every element of a subset C of A then JV is said to be homo-
geneous (power multiplicative) on C.

In case N and N' are norms for a ring A such that JV'(a ) <£ N(x)
for all x in A then we shall write N' ^ N. The relation <£ in the
set of norms for a ring A constitutes a partial ordering of that set.

An example will serve to illustrate some of these concepts. Let
A be the ring of all real functions which are defined and have a
continuous derivative on the closed unit interval [0, 1]. If N'(x) =
sup{|a?(ί)| |0 ^ t ^ 1} and

N(x) = sup {\x(t) I I 0 ^ t ^ 1} + sup {\x'(t) \ | 0 ^ t ^ 1}

for all a in A, then N' and iV are norms for A, with AT' ^ N. It
is also easily established that N' is power multiplicative on A and
that N is homogeneous at each constant function which belongs to A.

When N is a norm for a field if and c is a nonzero element of
K, then for all x in if:

^ N(xc)/N(c) ^ N(xc2)/N(c)2 ^

Thus

JVβ(α;) = inf {N(xcn)/N(c)n \ n a natural number} = lim N(xcn)/N(c)n

n—>oo

is a well-defined nonnegative real number for all x in A. It can be
shown that the function Nc is identically zero on A if and only if ΛΓ
fails to be power multiplicative at c. On the other hand, if N is
power multiplicative at c then Nc is a norm for if, with Nc ^ ΛΓ, as
the following lemma indicates. (It is recalled that by a semigroup
in a ring is meant a nonempty subset of that ring such that the
subset is closed under multiplication.)
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LEMMA 1. Let N be a norm for a field K, and let c be a non-
zero element of K such that N is power multiplicative at c. Then
Nc is a norm for K such that:

( i ) NctίN,
(ii) Nc(c) = N(c),
(iii) Nc is homogeneous at c,
(iv) whenever S is a semigroup in K, with c in S, such that

N is power multiplicative on S then Nc is power multiplicative on S.

It is easily established that Nc possesses properties (ii), (iii), (iv)
of a norm, so that the set I of all x in A for which Nc(x) = 0 is an
ideal in the field K, and Nc is therefore a norm for K. The remain-
ing details of the proof are routine.

The lemma permits us to replace the norm N by a new norm
which has properties similar to those of N and is homogeneous at c
as well. It is possible to sharpen this result so that the new norm
is homogeneous on an entire semigroup on which the original norm is
power multiplicative.

THEOREM 1. Let K be a normed field with norm N, let S be a
semigroup in K such that N is power multiplicative on S, and let
c be a nonzero element of S. Then there exists a norm N' for K
such that:

( i ) N' £N,
(ii) N'(c) = N(c),
(iii) N' is homogeneous on S.

Proof. Let £tf be the set of all norms N" for K such that
N" ^ N, N"(c) = N(c), N" is homogeneous at c, and N" is power
multiplicative on S. Then £%f is not empty since it contains Nc;
also, §ίf is partially ordered by the relation ^ . It is easily shown
that every totally ordered subset of £ίf has a lower bound in J ^
so that Zorn's Lemma implies the existence of a minimal element,
isr, of 3ίf.

If d is a nonzero element of S then Lemma 1 implies that (N')d

belongs to ^ with (N')d(dx) = (N')d(d) (N')d(x) for all x in K. Since
Nf is a minimal element of Jg^ and since N' and (N')d both belong
to ^ with (N')d ^ N', it follows that N' = (N')d. Thus, N\dx) =
N'(d)N'(x) for all x in K. We conclude that Nf is homogeneous at
every element d of S, and the theorem follows.

REMARK. In order to apply Theorem 1 it is useful to have a
criterion to determine when a norm for a ring is power multiplicative
on a semigroup in that ring. It is easily established that a norm N
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for a ring A is power multiplicative on a semigroup S in A if and
only if for every element x in S there is an integer n(x), with
n(x) > 1, such that N(xn{x)) = N(x)n{x). In particular, ΛΓ is power
multiplicative on S if and only if N(x2) = iV(x)2 for all a? in S>. (Any
integer exponent greater than 1 could be used instead of 2 in the
preceding statement.)

3* Extensions of the normed ring of integers* We are inter-
ested in normed fields which extend the ring of integers when the
latter is provided with a norm which is a power of the ordinary
absolute value. It will be shown that such fields are (continuously
isomorphic to) subfields of the field of complex numbers. First a
more general result is obtained which implies that if the ring of in-
tegers is given a norm which is power multiplicative and takes a value
greater than 1 at least once then any normed field which extends this
normed ring must be (continuously isomorphic to) a subfield of the
field of complex numbers.

For convenience, whenever n is an integer the symbol n will be
used to denote the %-fold of the unit element of the field which is
under consideration.

THEOREM 2. Let K be a normed field for which there is a
natural number n0, with N(n0) > 1, such that N(n2) — N(n)2 whenever
n is a natural number for which n ^ nQ. Then K is continuously
algebraically isomorphic to a subfield of the field (£ of complex
numbers.

Proof. If S is the set of all elements n of K such that n is a
natural number with n ^> n0, then S is a semigroup in K such that
N is power multiplicative on S. Theorem 1 can be applied to the
semigroup S and the element n0 in order to obtain a norm N' for K
such that N' ^ N, N'(n0) = N(x0) > 1, and Nr is homogeneous on S.

If n is an arbitrary natural number greater than 1 then there is
a natural number r such that nr and nr+L both belong to S; the in-
equality N'(nr)N'(n)N'(x) = N'(nr+ί)N'(x) - N'(nr+1x) ^ N'{nr)N'(nx)
implies that Nr(nx) = Λ/r'(w)iV'(α;) for all x in K. From the condition
N'(nox) = N'(no)N'(x) with x = 1 we obtain iV'(l) = 1, and conse-
quently N' is homogeneous at every "integer" in K. Thus Nf is
homogeneous on the prime field, P, of K. Since N'(nQ) > 1, the re-
striction of N' to P is an archimedean absolute value for P; therefore
Ostrowski's results [4] imply that P is algebraically isomorphic to the
field of rationale (and can be identified with that field), and there is
a real number s, with 0 < s ^ 1, such that N'(x) = \x\s for all x in P.

Let A be the completion of K relative to the norm N', so that
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A is a complete commutative normed ring with unity, and there is
an obvious continuous isomorphism φ of K into A. We have in fact
N"(φ(x)) = N'(x) ^ N(x) for all x in K if N" is the norm for A. The
closure, JS, of φ(P) in A is the completion of φ(P) and can be identi-
fied with the completion of P. Therefore R can be identified with
the field of real numbers, and we have N"(y) = \y\s for all y in R.

There is a maximal ideal M in A, and M is closed since the set
of invertible elements of a complete normed ring with unity is open.
Thus, AjM is a complete normed field and has its norm N given by
the rule N(X) = inf {N"(x)\x eX} for all X in A/M. The natural
homomorphism y of i onto A/ΛT is continuous since N(v(y)) rg N"(y)
for all 2/ in A, and v(R) is therefore identifiable with the field R.
Then A/M may be considered a complete commutative normed division
algebra over R, where R is the field of real numbers with a power
of the ordinary absolute value as its absolute value. The Gelfand-
Mazur Theorem, as it appears in [3; Chap. 6, p. 127, Th. 1], implies
that AIM is continuously isomorphic to the field of real numbers or
the field of complex numbers, so that there is a continuous isomorphism
ψ of A/M into the field (£ of complex numbers.

It is easily seen that the mapping ψ o v o φ is a continuous iso-
morphism of the field K into (£, and the theorem follows.

Note. An alternative means of stating Theorem 2 is that if the
ring of integers is given a norm which is power multiplicative at
every integer which is sufficiently large, and if the norm takes a
value greater than 1 for at least one of those integers, then every
normed field which is an extension of this normed ring must be a
subfield of (£ with a topology at least as fine as its ordinary relative
topology in (£.

The simplest norms which satisfy the hypothesis of Theorem 2
are those which coincide with some power of the ordinary absolute
value at all natural numbers which are sufficiently large. We thus
obtain the following theorem.

THEOREM 3. Let K be a normed field for which there exist a
natural number n0 and a positive real number s such that N(n) = ns

whenever n is a natural number with n Ξ> n0. Then K is continuously
algebraically isomorphic to a subfield of (£.

It should be noted that s is necessarily less than or equal to 1.
A special case of Theorem 3, that in which s = 1, has been given in
[2; Corollary 2 of Th. 5]. Another result of some interest can be ob-
tained as a corollary of the theorem, and has appeared in [2; Th. 6].
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COROLLARY. Let K be a normed field such that N(n) = nN(l)
for infinitely many natural numbers n. Then K is continuously
algebraically isomorphic to a subfield of (£.

The proof involves replacement of the norm N by a new norm
N' defined by N'(x) = sup {N(xc)/N(e) \ c e K, c Φ 0} for all x in K.

Note. Theorem 3 implies that if the ring of integers is provided
with a norm which is a power of the ordinary absolute value (or if
the norm merely coincides with some power of the ordinary absolute
value at integers which are sufficiently large) then every normed field
which extends this normed ring must be a subfield of (£ with a topology
at least as fine as its ordinary relative topology.

An interesting consequence of these results concerns normed fields
which satisfy the parallelogram law.

DEFINITION. A normed ring A is said to satisfy the parallelogram
law if N(x + yf + N(x - yf = 2N(x)2 + 2N(y)2 whenever x, y belong
to A.

The parallelogram law is characteristic of Euclidean distance and
can hold for a normed field only if that field is continuously embed-
dable in the field of complex numbers.

THEOREM 4. Let K be a normed field which satisfies the paral-
lelogram law. Then K is continuously algebraically isomorphic to
a subfield of K.

Proof. The parallelogram law with x = y yields the relation
N(2x) = 2N(x) for all x in K. Thus, N(2rx) = 2rN(x) for all x in K
and for every natural number r. The corollary of the preceding
theorem then leads to the desired result.

4* Extensions of the normed field of rational numbers* The
fields of the preceding section were all necessarily of infinite charac-
teristic although the hypotheses employed in the statements of the
results did not explicitly make such an assumption. We now confine
our attention to fields of infinite characteristic, and the discussion is
simplified by identifying the prime field of each such field with the
field of rational numbers. The results of this section then indicate
that if the field of rational numbers is given a norm which is "reason-
able" in an appropriate sense, then every normed field which extends



NORMED FIELDS WHICH EXTEND NORMED RINGS OF INTEGERS 27

such a normed field must be (continuously isomorphic to) a subfield
of <£.

We first obtain an analogue of Theorem 2.

THEOREM 5. Let K be a normed field of infinite characteristic
for which there is a natural number n0, with N(l/n0) < 1, such that
N(l/n2) = N(l/n)2 whenever n is a natural number with n ^ n0. Then
K is continuously algebraically isomorphic to a subfield of E.

Proof. If S is the semigroup which consists of the elements 1/n
of K for which n is a natural number with n^ n0, then N is power
multiplicative on S and we may apply Theorem 1 to S and the ele-
ment l/nQ. Thus, there is a norm N' for K, with N' ^ N, such that
N' is homogeneous on S and N'(l/n0) — N(l/nQ) < 1. We have
N'(n0) > 1 since N'(l/n0) < 1. Also, whenever, n is a natural number
with n ^ n0 then N'(l/n2)N'(n2) = 1 = N'(l/n)2N'(n)2 = N'(l/n2)N'(n)2,
so that N'(n2) = N'(n)2. Thus, K with the norm N' satisfies the
hypothesis of Theorem 2, and the theorem follows since K is con-
tinuously algebraically isomorphic to this normed field.

When the norm for a normed field of infinite characteristic coin-
cides with some power of the ordinary absolute value at the reciprocals
of all natural numbers which are sufficiently large, we obtain an an-
alogue of Theorem 3.

THEOREM 6. Let K be a normed field of infinite characteristic
for which there exist a natural number n0 and a positive real number
s such that N(l/n) — l/ns whenever n is a natural number with
n Ξ> nQ. Then K is continuously algebraically isomorphic to a sub-
field of (£.

COROLLARY. Let K be a normed field of infinite characteristic
for which there exist positive real numbers rQ and s such that
N(r) — rs whenever r is a rational number with 0 < r < r0. Then
K is continuously algebraically isomorphic to a subfield of (L

We note that the corollary implies that if the field of rational
numbers is provided with a norm which coincides with some power
of the ordinary absolute value over a suitable neighborhood of zero,
then every normed field which can be obtained by extending this
normed field must be a subfield of (£ with a topology at least as fine
as its ordinary relative topology in (£. The special case of this corol-
lary which occurs when 5 = 1 has already been given in [2; Th. 7].
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REMARK. Theorems 2, 3, 5, and 6 and their corollaries identify
the normed field K with a subfield of the field (£ of complex numbers,
but with a topology finer than the ordinary topology inherited from
(£. That the topology for K may be strictly finer than the ordinary
topology is shown by taking as K the field of complex numbers with
the norm N given by N(x) = max (| x |, | σ(x) |) for every complex number
x, where σ is a fixed discontinuous automorphism of the field of com-
plex numbers.
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INDEFINITE MINKOWSKI SPACES

JOHN K. BEEM

The purpose of this article is to characterize Minkowski
general G-spaces. The unit sphere K is shown to have at
most four components.

Assume the space R is not reducible. If K has one com-
ponent, R is an ordinary Minkowski G-space. If K has two
components they are quadrics and R is nearly pseudoeuclidean.
When K has three components, one is a quadric and the other
two are strictly convex. The unit sphere has four components
only in dimension two.

The axioms of a general G-space have been given in [4] and the
interesting two dimensional spaces have been investigated in [1], We
will denote the indefinite distance from x to y by xy. We refer to xy
as a metric even though it is not in general a true metric.

DEFINITION 1.1. The general G-space R is called a Minkowski
space if R is the real 7^-dimensional affine space An, the family of Arcs
A consists of the affine segments and w = (l/2)(x + y) implies wx =
wy = (l/2)xy.

If Lr is an r-dimensional flat in R, then Lr is an r-dimensional
Minkowski space with the induced distance.

Let e(x, y) be an associated euclidean metrization of An. Then for
each line L in R there is a number φ(L) such that xy = φ(L)e(x, y)
for all x,yeL. If φ(L) = 0, we call L a null line. The number φ(L)
depends continuously on L and φ(L) = ΦiL,) if L1 is parallel to L, see
[1], It follows that the affine translations preserve the distance xy.

Let z always denote the origin in An. We call C = {x | xz = 0}
the light cone and K = {x | xz = 1} the unit sphere. If K is given
the distance xy is uniquely determined.

For x Φ y let L(x, y) denote the line through x and y and let
a(x, y) denote the affine segment from x to y. When S czAn define
— S = {x\—xeS}. I f S = — S the set S is called symmetric about
z or simply symmetric. The sets C and K are symmetric.

Two general G-spaces Rx and R2 are said to be topologically iso-
metric if there exists a topological map of RL onto R2 that preserves
the indefinite distance xy.

It is easily seen that if Rγ and R2 are Minkowski spaces defined
on An with unit spheres K and K* respectively, then Rι and R2 are
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topologically isometric if and only if there is an affinity mapping K
onto if*.

2* Two dimensional spaces* If R is A2, then by [4, p. 241]
one of the following must hold: (1) no null lines exist in R, (2) there
is exactly one null line through each point of R, (3) there are exactly
two null lines through each point of R, or (4) all lines in R are null.

In case (1) we call R a spacelike plane. By [4, p. 239], a space-
like plane is an ordinary Minkowski G-space with unit sphere a strictly
convex closed curve.

In case (2) we call R a neutral plane. A neutral plane is topo-
logically isometric to the (s, t) plane with distance from (slf tλ) to (s2, t2)
given by \t, - t2\.

When R has exactly two null lines through each point it is called
a doubly timelike (Minkowski) plane, see [1]. The unit sphere has
four components each of which is strictly convex and not compact.

If all lines in R are null, we call R a null plane.

3* Reducible spaces* Let R be an ^-dimensional Minkowski
space. Then R is reducible to Rr x Nn~r for r < n, provided affine
coordinates xί9 x2, , xn may be chosen such that

(1) Rr is given by xr+1 = xr+2 = = xn = 0 and Nn~r is given
by Xi = = %r = 0.

(2) The projection of R onto Rr preserves the metric xy.
The maximum possible value of n — r is called the index of redu-

cibility of R. A null plane has index 2 and a neutral plane index 1.
Spacelike and doubly timelike planes are not reducible.

Nonreducible spaces often contain reducible subspaces. In the
three dimensional Lorentz space any plane tangent to the light cone
is neutral and hence reducible.

Given a line N the parallel to N through x will always be denoted
by Nx.

DEFINITION 3.1. A line N through z is called a line of reduction
of R if x e K implies Nx c K.

LEMMA 3.2. The space R is reducible if and only if R has a
line of reduction.

Proof. If N is a line of reduction of R and Ln~ι is a hyperplane
with Ln~ι n N = z, the projection of R onto Ln~γ along parallels to N
preserves the metric.

On the other hand if R is reducible to Rr x Nn~r any line N through
z and in Nn~r is a line of reduction of R.
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4* The r-flat topology* If {Mm} is a sequence of closed subsets
of i?,we say Mm converges to the closed set M if limΛfw = M in the
sense of Hausdorff s closed limit, see [2]. This limit induces a topology
on the closed subsets of R. If IS is an r-flat and W(Lr) is a neighbor-
hood of Lr in this topology, let Wr(Lr) denote the r-flats in W(Lr).

LEMMA 4.1. Let {14} be a sequence of doubly timelike planes,
each containing z, such that {L2

m} converges to the two flat L2. As-
sume xf eK n L2

m and xT —> α?< for i — 1,2.
(1) Let L2 be doubly timelike and let x19 x2 lie on the same com-

ponent [opposed components] of K. Then for sufficiently large m
the points x? and x™ always lie on the same component [opposed com-
ponents] ofKf] L2

n.
(2) // L2 is neutral, then for sufficiently large m the points xT

and x™ are always on the same or else always on opposed components

of κniA.

Proof. The proofs are similar and consequently we only consider
statement (2) in which L2 is neutral.

Without loss of generality assume x1 and x2 are on the same com-
ponent of K n L2 since if xrc —^xγ then — x™ —> —xL.

If y 6 a(x19 x2) then y eK and zy = 1. Therefore, there exists an
open set V containing the set a(x19 x2) such that all pe V have zp > 0.
For sufficiently large m all points of a(x?, xf) lie in V and have posi-
tive distance from z. It follows that x? and x™ lie on the same com-
ponent of K n L2

m for large m.
The components of K are arcwise connected since they are con-

nected and locally arcwise connected.

LEMMA 4.2. Let xL and x2 lie on the same component of K and
let L2 he a two flat containing z, xx and x2. If Sλ and S2 are the
components of K f] L2 containing x1 and x2 respectively then either
Sx = S2 or else Sλ = — S2.

Proof. Let x(t) for 0 ^ t ^ 1 be a curve on K connecting xγ and
,x2 with x(0) — xy and x(l) = x2.

Call the two flat L\t) admissible if z, x,, x(t) e L2(t) and Kf]L2(t)
has components S, and S(t) containing xι and x(t) respectively such that
either Sι = S(t) or else St = —S(t). For sufficiently small t there must
exist admissible L\t). Set M = {t e [0, 1] | there exists an admissible
L\t)}.

We now show M is closed. If {L2(tm)} is a sequence of admissible
planes and tm —* tQ, then there is a convergent subsequence {L2(tk)} c
{U{tm)} such that L\tk) -> L\. Clearly z, x19 x(t0) e L2(t0). Statement (1)
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of Lemma 4.1 implies L\ cannot be doubly timelike with xL and x(t0)
neither on the same nor on opposed components of K Π LI. Therefore,
toeM.

To show M is open let τ eM and U(τ) be admissible. If L2(τ) is
spacelike there must exist a neighborhood W2(U) containing only space-
like planes. But this implies the existence of a neighborhood U{τ) of
the number τ with U(τ) c M. If L2{τ) is a doubly timelike plane state-
ment (1) of Lemma 4.1 implies the existence of a neighborhood
U(τ) c M. In case L2(τ) is a neutral plane first construct a neigh-
borhood W2(L2(τ)) in which no null planes exist. If only spacelike
and neutral planes exist in W2(L2(τ)) there is nothing to show. If
there is a sequence of doubly timelike planes L\tm) converging to
I/2(r), statement (2) of Lemma 4.1 guarantees that for large m the
planes L2(tm) are admissible. It follows that there is a neighborhood
U(τ) c M. Therefore, M is open as well as closed. Since M Φ φ, M =
[0, 1] and the lemma is established.

THEOREM 4.3. Let Kγ and K2 be distinct components of K that
are opposed (i.e., K2 — — Kγ). Then Kγ and K2 are convex hypersurfaees.

Proof. Let K? = {y \ a(z, y)f]K1Φφ}. Then Kΐ has boundary K,
and y e Kΐ implies zy ^ 1. If ylf y2 e Kl let L2 be a two flat through
z, y1 and y2. Then L2 must either be neutral or doubly timelike. In
either case a(y19 y2) c Kl if yγ and y2 lie on the same component of
Kλ Π L2. Clearly yλ and y2 lie on the same component for L2 neutral.
If L2 is doubly timelike, then Kt Φ K2 and Lemma 4.2 imply yλ and
y2 lie on the same component of Kγ Π ZΛ It follows that K[ is convex
and that its boundary Kx is a convex hyper surf ace. In the same
fashion one may show K2 is a convex hypersurface.

LEMMA 4.4. Let K have a component Kγ that is symmetric about
z. Then for each xe Kι there is a two flat L2 through z and x that
is spacelike.

Proof. Assume the statement is false. Any two flat containing
L(z, x) is then either neutral or doubly timelike. Orient L(z, x) to
get L+(z, x). If L1 is a line parallel to L+(z, x), orient Lt in the same
direction. This gives an ordering < on each line parallel to L(z, x).

Let x(t) for 0 ^ t ^ 1 be a curve on Kx with x(0) = x, x(l) — —x
and x(t) £L{x, —x)ίovO<t<l. Let L+(t) be the oriented line con-
taining x(t) and parallel to L+(z, x). The line L+(t) is never a null line.

In the ordering < along L+(t) let p(t) be the first element in
{y I y e L+(t) and zy ~ 0}. Let f(t) be the signed euclidean distance
from x(t) to p{t) where f(t) < 0 if x(t) < p(t). If z < x then /(0) < 0
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and /(I) > 0.
The function f(t) is continuous at 0 and 1 since p(t) ~+z for t —• 0

and t —• 1. To show f(t) is continuous on (0, 1) let 0 < ί0 < 1 and
t"m —* U F ° r 0 < t < 1 let L2(t) denote the unique plane containing
L+(t) and z. Clearly if L(t0) is neutral we have L(z, p(tm)) —> L(z, p(Q).
If L2(t0) is doubly timelike, one can show using (1) of Lemma 4.1 that
L(z, p(tm)) —> 1/(2, p(ίo)) In either case p(tm) —> p(£0) and /(ί) is continu-
ous. But then f(τ) = 0 for some 0 < τ < 1 which implies x(τ) =
This is impossible since z&(τ) = 1 and zp(τ) = 0.

5* Three dimensional spaces* In this section we only consider
three dimensional Minkowski spaces.

LEMMA 5.1. Let K have three components K17 K2 and K3 with
K3 — — K3. Then Kγ = — K2 and Kλ (hence also K2) is strictly convex.

Proof. By Lemma 4.4 there is a two flat L2 through z that is
spacelike with L2 [\KZΦ φ. This flat separates As and does not in-
tersect iΓ2. Hence Kz Φ —K2. Consequently, Kι = —K2.

To see that Kx is strictly convex let x, y e Kx. If LI is a two flat
through x, y and z it must be doubly timelike since LI Π L2 Φ φ. Then
LI Π ULI is a strictly convex curve. It follows that u e a(x, y) — x — y
implies zu > 1. Therefore, Kx must be strictly convex.

If Kι is a component of K then so is —Ki. Consequently, if K
has exactly three components there is always one, say iΓ3, that is
symmetric about z.

Extend A3 to the real three dimensional protective space P 3 by
adding a plane Lt at CXD. The protective lines that the light cone C
determine intersect LL in a curve C^. Let K have exactly three com-
ponents. Since spacelike planes exist in this case, there is a line
Lo c LL with Lo n Coo = φ. The set LL — Lo is an affine plane with
Lo the line at ©o.

Let p, q eCoo with p Φ q. Let L2 be two flat in P 3 that contains
2, p, g. Then L2 Π A3 cannot be a null plane, since if it were it would
separate A3 and Kz could not be symmetric. Consequently, L2 Π A3

must be a doubly timelike plane.
It follows that L2 n (LI - Lo) is an afline line in LI - Lo that

intersects C^ in only the two points p and q. But C«, is a closed
curve. Hence, CL is a strictly convex curve in LL — Lo.

THEOREM 5.2. Lei dim iϋ = 3. If K has three components Kly K2

and K3 with Kd — —K3y then Kz is a hyperboloid of one sheet.

Proof. Let ue LI — Lo and let u be exterior to the convex set
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in LL — I/o whose boundary is CL. Then there are lines Lι and L2

through u that are supporting lines of CL. Let L\ be the protective
plane containing z and I/; for i = 1, 2. Then L2. π CL is a single point
and hence L2 n i 3 is a neutral plane.

The set LI f] A3 f] K consists of two parallel lines which must be
on Kz since Kγ and K2 are strictly convex. For any q e Kz let u =
L{z, q) ΓΊ Llo and without loss of generality assume u £ Lo. Then u
must be exterior to C^. By the above arguments there must be two
straight lines on Kd through q. By [5, p. 272] the set Kz is a hyper-
boloid of one sheet.

Notice that the above theorem gives the additional information that
C is elliptic and CL is an ellipse in Uu — Lo.

LEMMA 5.3. K can have at most four' components. If K does
have four components, R is reducible and no component of K is sym-
metric about z.

Proof. Let K, be a component of K. Assume Kγ = —K19 then
there is a spacelike plane LI through z with LI Γ) Kx Φ φ. Take K2 Φ Kx

and x e K2. Let L\θ) be a two flat containing L(z, x) that revolves
continuously in θ and sweeps out A3 for 0 ^ θ ^ π. Each L2(θ) inter-
sects LI in a line through z so that L\θ) Π Kt Φ φ for all θ. There-
fore, each L2(θ) is doubly timelike and intersects K in four components.
Two of these components lie on K19 and the other two are subsets of
K2 and — K2. Since this holds for all θe[Q,π\,K can have at most
three components. Therefore, Kγ Φ — K± if K has four components.

By the above, it must be possible to find at least two components
K, and K2 of K with K, Φ -Kly K2 Φ ~-K2 and K, Φ -K2. Set iΓ3 =
— Ki and if4 = — K2. Let y e Kλ and let L2(ψ) be a two flat through
L(z, y) that sweeps out A3 continuously for 0 ^ f g π. It can be as-
sumed without loss of generality that L2(0) Π K2 Φ ψ. Therefore, let
x2 belong to L2(0) Π K2. L2(ψ) cannot be doubly timelike for all ψ or
else x2 and — x2 would be on the same component of K. Therefore,
there is a first ψQ with L2(ψQ) neutral. Let NaL2(ψQ) be the null
line through z. Claim N is a line of reduction of R.

It is clear that if x e K, U Ks then Nx(zKιU Ks since these are
convex surfaces and Ny c Kx as well as N_y c K3. For x G K2 U K±
consider the following argument. Let L2(y) be a plane through L(z, x2)
sweeping out A3 continuously for O g γ g π with y e L2(0). By the
same reasoning as before, there is a first τ0 with L2(τ0) neutral. The
above N must be in I/2(γ0) since Ny c Kx and Kγ is not flat. This im-
plies Nxa K2{J K4 whenever x e K2 U K±.

It is now possible to show K has at most, four components. If
L\ is a two flat containing the above N either L\ is neutral or null.
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If it is null, it intersects L2(τ) for 7 = 0 in a null line. If it is neutral,
it intersects either Kγ and K3 or else K2 and iΓ4. In any case it can-
not contain a point of K not on Kx U K2 U K3 U K4.

An immediate consequence is that if K has four components R =
R2 x JV where R2 is a doubly timelike plane.

Consider now the case of K having one component. If R has no
null lines, then by [4, p. 239] it is a Minkowski G-space and K must
be strictly convex.

LEMMA 5.4. Let K have one component and not be strictly con-
vex. Then K is a cylinder and R = R2 x N1 where R2 is a spacelike
plane.

Proof. Let K contain a segment a and consider the two flat LI
through z and a. LI must be neutral, hence the line containing a
must lie on K. Let N be the null line in LI through z. Since K
has only one component, there is a spacelike plane L2 through z. Any
two flat LI containing N must intersect L2 in a line through z.

The plane L\ cannot be a doubly timelike because of Lemma 4.2
and the fact that K has only one component. Therefore, L\ is neutral
and contains two lines on K parallel to N. It follows K must be a
cylinder with generators parallel to N.

Projecting R onto L2 along parallels to N gives R — R2 x Nι for R2

the spacelike plane ZΛ
If K has two components Kι and K2 in dimension three, then Kγ —

— K2 since otherwise there would be a spacelike plane L2 through z
intersecting only one component of K yet separating A\ Both Kγ and
K2 must be flat since if x, y e Kγ with x Φ y, the two flat LI contain-
ing x, y and z would have to be neutral.

It can easily be shown that for K having two components, the
space is always topologically isometric to (xί9 x2, *τ3)-space with the
distance from (aly α2, α3) to (bu &2, δ3) given by \aλ — 6J. K consists of
two parallel planes and R = R1 x N2 for R1 the real line.

6* Higher dimensional spaces. The n dimensional situation is
now investigated by the use of r-flats.

LEMMA 6.1. K19 K2J Kz be three distinct components of K, then
two are reflections through z of each other.

Proof. Consider pt e Kι for i = 1, 2, 3 and let L3 be a three flat
containing z, plf p2, and pz. Let St = Kif] L3, then S19 S2, and S3 are
disjoint components of K Π L\ By the last section K Π L3 has either
three or four components, and in any case, any three of the components
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of K n U contain a pair that are symmetric to each other. If we as-
sume Si = — S2 then clearly Kx = — K2.

LEMMA 6.2. K has at most four components. If K does have
four components Kly K2, K3 and K4, without loss of generality, one
may assume Kγ— — Kz and K2 — — K4.

Proof. Assume K has five components K19 K2, K3, K4 and K5.
Then lemma 6.1 applied to Kγ, K2 and K3 allows the assumption K3 = —K^
Applying Lemma 6.1 to K^ K2 and K4 yields K2 = ~K,.

Let px e Kίy p2 e K2 and p5 e Kδ, then let L3 be a three flat contain-
ing ply p2, p5 and z. K Γi L* then contains five disjoint components,
which is impossible by Lemma 5.3.

LEMMA 6.3. Let NxaK then if one of the following holds, Nz

is a line of reduction.
(1) K has exactly one component.
(2) K has exactly two components Kx and K2 that are symmetric

to each other.
(3) K has exactly three components K19 K2, Kz with K3 — —Kz

and NxcKιΌ K2.
(4) K has four components.

Proof. The proofs of the above four cases all follow the same
general pattern. Therefore, the first case is the only one discussed.

If NxdK and K has one component, consider y e R and let U be
a three flat containing z, y and Nx. Either Ny c K or else K Π Ls has
three components. If K Π L3 has three components, there is a two
flat L2 c U through z that is doubly timelike. But then K Π L2 has
four components, and Lemma 4.2 would imply K had more than one
component.

For convenience the following notation is adopted. If k, p, , m
are r distinct integers from the set 1, 2, , n let Lr

kp...m be the unique
r-flat through the xk, xp, , xm axes. If LQ is a line with Lo φ LlP...m

let Lltp...m be the r + 1 flat containing LQ and Lr

kp...m. Here we assume
LQ Π L r

k p . . . m Φ φ.
Repeated application of the last lemma gives the following partial

description of the nonreducible spaces:

THEOREM 6.4. In all cases K has at most four components. Let
R be nonreducible.

(1) If K has one component, then R is a Minkowski G-space.
(2) If K has two components that are opposed to each other then

R is isometric to the real line.
(3) // K has three components, then one is symmetric about z
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and the other two are strictly convex.
(4) If K has four components, then R is a doubly timelike plane.

The case where K has two components which are not opposed is
discussed in Theorem 6.13 and additional information on the case of
three components is found in Theorem 6.8.

LEMMA 6.7. Let n — 3 and K have three components. Assume
coordinates xίy x2, x3 are chosen such that the light cone is given by
x\ + χ\ — χ\. Then the plane x3 = 0 intersects K3 in a set x\ + x\ — a2

for some a > 0.

Proof. Let p lie on K3 and in the plane x3 = 0. For some a > 0
the point p lies on x\ + χ\ — χ\=z a2. We claim that the only hyperboloid
of one sheet containing p that has C as light cone is x\ + x\ — x\ = a2.

Since p is contained in exactly two planes tangent to C, the two
lines on K3 through p are determined. For any q on one of these two
lines, the same argument yields that the two lines on K3 through q
are determined. It follows K3 is determined by p and C.

Consider now n > 3 and extend An to Pn by adding a hyperplane
Ll"1 at CXD . Let the protective lines that contain the lines of the light
cone C intersect LΞΓ1 in a set C^.

If R is nonreducible and K has three components, let L'Γ1 be a
supporting hyperplane to Kλ. If Ln~ι is the hyperplane parallel to
Llι~~ι through z, then Ln~ι f)C — z. Otherwize Ln~ι Π C would contain
a line N. For p e Llι~" n Kλ then the two flat U through p and N
would be neutral or doubly timelike. It could not be neutral because
of Lemma 6.3. It could not be doubly timelike since then NP would
not be a supporting line of Kλ.

Set Ln-1 Π Ll~L = Ll~2 an n - 2 dimensional flat. By taking L r 2 as
the n — 2 flat at °o of LZ~L the set L ^ 1 — L2Γ2 becomes an n — 1 dimen-
sional affine space. Let x,y eC^ for x Φ y and let L\ be the two flat con-
taining x, y and z. Then L\ Π A" is a doubly timelike plane. In the
same manner as the argument after Lemma 5.1, we conclude C^ is a
strictly convex n — 2 dimensional surface in the space L2Γ1 — LZ~2

LEMMA 6.6. C^ is an ellipsoid in L2Γ1 — LZ~2.

Proof. Let Lt be a two flat in L^~ι with LL Π CL containing
more than one point. Let U be the three flat containing z and Lt.
Then L3 Π An is an indefinite metric space whose unit sphere has three
components. By Theorem 5.2, LI Π CO, is an ellipse and hence by [2,
p. 91] Ceo is an ellipsoid.

Take now coordinates xlf x2, •••,#„ in An such that C has the form
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xl = χ\ + . . . + χ\_x and let L?-1 be the hyperplane xn = 0.

LEMMA 6.7. Ll~ι Π i£ has the form $ + . . . + a;2^ = α2 /o?̂  α > 0.

Proof, Let L2 be any two flat in L?-1 passing through z. Let
I/3 be the three flat containing L2 and the xn axis. Since L3 f] K always
has three components, L2 Π K is always an ellipse of center 2. There-
fore, I/Γ"1 Π -ίΓ is an ellipsoid in L?"1 of center 2.

If L2 contains^the x{ and xό axis Lemma 6.5 implies L2 Π iξ$ has
the form x\ + #2 = a\ό. If j>< and p y are points of L2 ΓΊ K3 that lie on
the ith and j t h axes respectively, \Pi\2 = l^ l 2 = α2y. Therefore, α^ is
independent of i and y. Setting α = aiά yields the desired result.

THEOREM 6.8. Let R be nonreducible and K have three com-
ponents. If K3 is the components of K symmetric about z it is a
quadric. In proper affine coordinates K3 is given by

x\ + + a?n-i - a& = α2

Proof. Using the same notation as in Lemma 6.9 define

S = {(xly x2, , xn) I xl + + x\-ι - xl = a2} .

If L3 contains the xn axis then U π S = I/3 Π i^3. The result follows
by letting U sweep out An.

In order to investigate nonreducible spaces in which K has two
components, we first consider nondegenerate central quadrics that have
z as a center. The general form in affine space is

n

X dijXiXj = 1 where aiά = aάi and det (αίy) Φ 0 .

If two such quadrics Eγ and ^ are given respectively by

Σ α ϋ ̂ i^i = 1 a n ( i Σ Q'ifi&i = — λ2 for λ > 0 ,

they will be called semiconjugate. We will refer to Ex as the λ
semiconjugate to 2£2. For λ = 1 the quadrics are conjugate in the
usual sense. Notice that one of the quadrics does not have a real
locus if the quadric form is definite.

LEMMA 6.9. Suppose the nonempty sets Bx and B2 contained in
Ui^j L\j are such that the locus B2 Π L\ό is always the λ semiconju-
gate quadric to Bt Π L\5 for fixed λ. Then there are exactly two
central quadrics Et and E2 such that E1Π L\ό = Bx Π L2

i3 and E2 Π L\ά —
B2 Π L\j for all i Φ j . Furthermore, E2 is the λ semiconjugate to Ex.

LEMMA 6.10. Let n = 4 and K have two components Kx and K2
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each symmetric about z. Let If be a three flat through z such that
If Π K has three components. Then If Π K consists of two semi-
conjugate quadrics.

Proof. By Theorem 5.2 one component of If n K must be a hyper-
boloid of one sheet. Choose coordinates x19 x2, x3 in If such that If Π G
takes the form x\ + x\ = x\. Let If Π K have components Sί9 S2, S3

with S3 = — S3. For some a > 0, S3 is given by x2

L + xl — xl = a2. Let
Lo be a line through z in Z4

In R let L2 be a spacelike plane containing the x3 axis, so L2 <£ U.
Choose the xi axis in ZΛ Assume i£ has components Kx and iΓ2 with
SsaK19 then L?34 Π ίΓ2 is a hyperboloid of one sheet in Ls

03i. Conse-
quently, Los n K2 is a hyperbola. This hyperbola is determined given
only the intersection of K2 with the x3 axis and the intersection of L2

3

with the surface x\ + x\ — x\ in L3.
Revolving Lo in the plane L\2 shows ΊJ Π i^2 consists of a hyper-

boloid of two sheets that is a semiconjugate of U Π Kγ.

LEMMA 6.11. Ifn = A and K has two symmetric components,
they are semiconjugate quadrics.

Proof. Let the notation and coordinates be the same as in the
last proof. Set Bγ = U M i (L\s Π KJ and B2 = \Jw (U5 Π K2).

If U Π K2 is the λ semiconjugate to U Π ̂  in L3, then L3

34 Π iί2

is the λ semiconjugate to Llu Π ίΓi in L3

34 for the same λ. This follows
since L2

03 is common to both three flats and intersects both components
of K. Therefore, Bx and B2 satisfy the hypothesis of Lemma 6.9. Let
J5Ί and E2 be the semiconjugate quadrics determined by Bλ and B2.

U Π -EΊ — I? Π Kλ since each are quadrics in L3 determined by
Bt Π L°° and B2 Π I/3. By the same reasoning, Lz Π E2 = U f] K2. Also
L\u n X* = L k ίΊ JK* for i = 1, 2.

Therefore, L2, Π ̂  = L2

y Π ̂  for i = 1, 2 and i - 3, 4. But then
using Lemma 6.11 one last time, we find Lo34 Π Et — L5

QM f) K{. By
revolving Lo in L\2 it follows E{ = K{ for i = 1, 2.

LEMMA 6.12. Lβί ^ = 5 and K have two components Kλ and K2

symmetric about z. If R is not reducible, Kt and K2 are semiconju-
gate quadrics.

Proof. Two cases are considered.

Case 1. Let there exist a three flat If through z such that If n K
has one component. Assume If Π K2Φ φ. Choose coordinates xx, x2, x3

in If. We may assume that L\2, L\3, L\3 are spacelike planes. Choose
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coordinates x4, x5 such that L% is spacelike and intersects Kγ. By
arguments as in Lemma 6.10 and Lemma 6.11, it is possible to
show L\ό Π Kx and L\$ Π K2 are always semiconjugate quadrics for fixed
λ. Therefore, B, = \JW {L\ό Π K,) and B = {Jw (Us Π K2) satisfy the
hypothesis of Lemma 6.9.

Let Eλ and E2 be the quadrics determined by B1 and B2. Let L{

be a line through z in L?2. Since L\2j Π 2£, = L\u Π i^, clearly L^ Π Et =
L2

0j n Kλ for i = 1, 2 and i = 3, 4, 5. Therefore LJ345 Π Et = L%4δ f] K,.
By revolving Lo in L?2 it follows that Et = ir^.

Case 2. Assume no U through z exists with L3 f] K having only
one component. We will show this leads to a contradiction.

Choose coordinates x19 x2, xs, x4, xδ such that L\2 and L2

U are space-
like planes intersecting respectively Kγ and K2. By Theorem 6.8, the
set K Π £2345 cannot have exactly three components. Consequently,
L2345 Γl K consists of two symmetric components. The same must also
be true of Lt235 Π K.

By Lemma 6.11 the sets Lt234 Π K, Li34δ Π -K" and Lί235 Π K each
consists of two quadrics. In each of the three sets one quadric is
the semiconjugate of the other for some fixed λ. Define

B, = {JiφΛLh Γi K,) and B2 = U w <JΛi Π K2) .

Let £Ί and JE^ be the quadrics determined.
Let LQ be a line through 2 in L\2. Then L^ Π if\ — L2

0j π J?» for
i = 3, 4, 5 and i = 1, 2. Therefore, Z445 Π ̂  = 3̂45 Π ̂  and revolv-
ing Lo in L?2 gives ^ = Ki for ΐ = 1, 2.

Then in proper affine coordinates yly y2, y3i y±, y5 the components of
K are given by y\ + y\ + 2/3 — v\ — vl = 1 and y\ + y\ + y\ — y\ — y\ =
— λ2. This contradicts the assumption of Case 2.

The w dimensional case now follows using induction.

THEOREM 6.13. If R is not reducible and K has two components
which are not opposed, then n ^ 4 and the components are semiconju-
gate quadrics.

Proof. Assume n Ξ> 6. Take Ln~ι to be a hyperplane containing
L\ and L\, which are spacelike two flats through z with L\<Γ\ KiΦ φ.
Then Ln~ι Π K has exactly two symmetric components. Because of
Lemma 6.12, there exists an U through z and contained in I / " 1 with
U n K having one component. Take the x19 x2, x3 affine coordinates in
II and xly x2, , xn_1 affine coordinates in Ln~ι. For pe K — Ln~ι let
the xn axis be L(z, p). Take Lo to be a line through z in 14. By
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induction Llΰl..n Π K{ must consist of two semiconjugate quadrics.
The argument is the same as before, letting LQ revolve in L\2.

An interesting result of this section is the following.

COROLLARY 6.14. If R is a nonreducible Minkowskί space and
not a G-space, then any spacelike plane in R is euclidean.
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TRAJECTORY INTEGRALS OF SET
VALUED FUNCTIONS
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Let /be a compact interval of the real line and for each
t in /, let F(t) denote a nonvoid subset of euclidean w-space
E*. Let J^iiF) be the collection of all Lebesgue summable
functions u: I-+En having the property that u(t) e F(t) almost
everywhere on /. Following the lead of Kudo and Richter,
Aumann defines the integral of F over / by

I fe

and, in addition to other results, establishes a dominated
convergence theorem for such integrals. Hermes has pursued
Aumann's line of thought to obtain results concerning some-
thing akin to a "derivative" for set valued functions.

It is certainly also valid (and for control theoretic appli-
cations essential) to define the trajectory integral of F to be
the set S^i(F) of all functions which vanish at the left end-
point of / and have derivatives in J?~Ί(F). The purpose of
this paper is taken to be the study of the trajectory integrals
of nonvoid, compact set valued functions. A primary goal
is the extension of the results of Aumann to include the
trajectory integral. A secondary goal is the provision of an
intuitively meaningful definition of "derivative" for set valued
functions.

Whereas I F(t)dt is a subset of En, S^(F) is a subset of a space

of functions on I to E*. Taking note of the relation

( 1 ) \ F ( τ ) d τ = {μ(t) \ μ e ^ j ( F ) } , t e l ,

the validity of which is obvious when ^Ί(F) is nonvoid, it is clear

that the distinction between S^(F) and \ F(τ)dτ is essentially that
J[o,t]

between "function" and "value of a function". In view of this dis-
tinction, one necessarily anticipates that a study of the trajectory
integral would, in some sense, subsume that of the integral defined
by Aumann.1 Concrete justification for this point of view already
exists in control theory [4].

Further motivation for the study of the trajectory integral arises
in connection with the existence theory of the generalized differential
equation

1 The work of Kudo, Richter, Aumann and Hermes cited previously is to be
found in references [13], [18], [1] and [11] respectively.
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( 2 ) x e R(t, x), x(t0) = x0 ,

in the case in which the set valued function satisfies, in particular,
a condition of measurability in its first argument. Here one anticipates
that a suitably formulated dominated convergence theorem for the
trajectory integral would provide the means for a constructive proof
of existence, along classical lines, thereby providing at same time a
method of approximation to solutions. This is a question of no little
importance inasmuch as the general existence theorem of Plis [17]
and Castaing [5] has been established by nonconstructive methods.

The goals of this paper are achieved in the following way. After
developing, in § 1, the pertinent algebraic and topological properties
of the space Ωn of nonvoid compact subsets of En, in § 2 we establish
several fundamental structural properties of Lebesgue measurable
functions on E1 to Ω%. The concept of Lebesgue measurability for
functions on E1 to Ωn is due to Plis [16] and is a natural generali-
zation of the concept of measurability of functions with range in En.
As Hermes has pointed out [11], Aumann's "Borel measurability"
implies measurability in the sense defined by Plis. Some of the
theorems of § 2 have already been stated, without proof and in a
somewhat less general form, by Filippov [9]. The central result of
§ 2 is Theorem 2.3 which is the counterpart of the theorem for point
valued functions which asserts that almost every point in the domain
of a summable function is a Lebesgue point of the function. This
theorem plays an essential role in the proofs of two of the major
results of the paper: Theorems 3.1 and 5.1.

Theorems 3.1 and 3.2 are the principal results of interest in § 3.
In the former, conditions are stated—the chief one of which is
measurability of F— under which S*Ί(F) is a nonvoid compact subset
of each of two linear topological (function) spaces. One of these
compactness properties, together with Hermes' refinement [12, Lemma
1.2] of Filippov's "measurable selection" lemma [8], permits a short
proof of the dominated convergence theorem (Theorem 3.2) in a form
suited to the proof of the existence theorem (Theorem 4.1) for (2).
In § 3 we also devote some attention to the relationship between
Aumann's results and our own.

Finally, in § 5, we define a derivative for an element of a certain
function space which, owing to its obvious relationship to Huygen's
principle of wave propagation, we have styled "the Huygens deriva-
tive". The principal result (Theorem 5.1) of this section asserts,
loosely speaking, that the Huygens derivative of the trajectory
integral of a measurable function F is almost everywhere the convex
hull of F(t). As easy corollaries to this theorem we obtain generali-
zations of some of the results of Hermes [11] mentioned previously.
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1* Algebraic and topological preliminaries* In this paper we
shall need the following Banach spaces.

En: euclidean %-spaee, with the scalar product of α, b e En

denoted by aob and with norm denoted by \\x\\ =
(xox)1'2;

&Pn(I): space of continuous functions on I to En, with
supremum norm <V> = max {[| x(t) \\ \ te I};

^4^J^Wn{I): space of absolutely continuous functions on I to En,

vanishing at the left endpoint of /, with norm x —

\\\x(t)\\dt\

J*fϊ(I): space of Lebesgue summable functions on I to En,

with norm ((x)) = \ \\ x(t) || dt.

In each instance, / denotes a nondegenerate compact interval of Eι.

Throughout this paper the symbol φ will be used to denote the null

set. We shall also need the following classes of subsets of En and

£T"(/):

Ωn: class of nonvoid, compact subsets of En;
Γn\ class of nonvoid, compact, convex subsets of En;
^fn{l)\ class of nonvoid, compact subsets of ^"(1);
^Γn{I): class of nonvoid, compact, convex subsets of Wn(I).

DEFINITION 1.1. Given a field, Φ, of scalars and a set, K, of
vectors, together with functions + : K x K—>K and x : Φ x K —» K,
K is called a quasilinear space over Φ if and only if all the axioms
for a linear space obtain except (i) the distributivity of x over scalar
addition and (ii) the existence of an inverse under + .

DEFINITION 1.2. For aeE\ A, BeΩn,

a A = {aa \ a e A} .

The following result is easy to verify.

LEMMA 1.1. With the foregoing definition (Definition 1.2) of

addition and scalar multiplication, Ωn and Γn are quasilinear spaces

over the real field.

DEFINITION 1.3. Let A,Be Ωn, Y,Ze £έfn(I) and xeEn,ye £f *(/);
then we may define:
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a(x, A) = min {|| x — a || | a e A}

β(y, Z) = min {<y - z> \z e Z)

ρ(B, A) = max {a(x, A) \ x e B)

σ(Y, Z) = mnx{/3(y, Z)\yeY}

p(A, B) = max {p(A, B), p{B, A)}

σ(Y, Z) = max {σ(Y, Z), σ(Z, Y)}

v(A, p) = max {po<7 | σ e A]

\\A\\ = p(A,{0})

Z(A, B) = max {v(A, p) - v(B, p) \ \\ p \\ = 1}

Aη = {x e En I 6 φ , A) ^ 07}

Δ(A, B) = max {J(^L, B), Δ(B, A)}

S(x,p) = {ξ£E*\\\ξ-x\\ ^p},

LEMMA 1.2. ( i ) {Ωn, p}, {Γn, p}, {<%?n(I), σ) and {3Tn(I), 0} are
metric spaces.

(ii) If AeΩn(e Γn) then Aη e Ωn( e Γn) for all η > 0 and Aη =
A + S(0, η).

(iii) If A, Be Γn then ρ(A, B) = Δ{A, B) and

Δ(A, B) - max {| v(A, p) - v(B, p) \ \ \\ p \\ = 1} .

(iv) // A,B,Ce Γn then p(A + B, A + C) = p(B, C).

Proof. The proofs of (i), (ii) and (iii) are to be found in [4].
For (iv), we have, by virtue of (iii),

p(A + B,A + C) = max{v(A + B, p) - v(A + C,p)\ \\p\\ - 1}

- max {v(A, p) + v{B, p) - v(A, p) - v(C, p) \ || p \\ - 1}

= P(B, C).

Henceforth we shall use Ωn,Γn, 3ίfn(I), 3Tn(I) to denote the metric
spaces obtained by virtue of Definition 1.3 and Lemma 1.2 (i) and in
the cases of Ωn, Γn we shall suppose that the algebraic structure of
Definition 1.2 has been imposed. For a point AeΩn we shall denote
by A* the convex hull of A; it is well known that A* e Γn. More-
over, if Ύj e Eι and A, Be Ωn{ e Γn) then ηA and A + B are in Ωn (in
Γn) [6, V. 1.4].

LEMMA 1.3. ( i ) If ηeE1 and A, BeΩn then ρ{ηA, ηB) =
\V\P(A,B).

(ii) If A,B,Ce Ωn then p(B*, C*) ̂  p(A + B, A + C) ̂  p(B, C).
(iii) 1/ A, B,CyDe Ωn then p(A + B,C + D)^ p(A, C) + p(B, D).

Proof. The proof of (i) is trivial. Part (iii) is an easy con-
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sequence of (ii) and the "relaxed" triangle law [4, Lemma 1.1]. The
second inequality of (ii) follows readily from the definitions and only
the first inequality remains to be proved. By [6, V. 2.4]

p(A* + £*, A* + C*) = p((A + B)*, (A + C)*)

and then by Lemma 1.2 (iv)

p(B*, C*) = p((A + B)*, (A + C)*) .

Now for D, EeΩn we have DczE + S(0, 7), where 7 = jθ(A 2?); hence
D* aE* + S(0, 7) or Z>* c (2£*)r by Lemma 1.2 (ii) from which we
conclude p(D*, E*) g ρ(D, E). Setting JD = A + 5, # = A + C, the
first inequality of (ii) follows from this result and the last formula
line.

COROLLARY 1.1. Let η9yeE\ A,BeΩn; then
( i ) | | ? A | | = | i 7 l | | A | | ;
( i i ) | | A | | ^ 0 and \\A\\ = 0 if and only if A - {0};

(iii) | |A + B | | ^ | | A | | + | | B | | ;
(iv)
( v )

Proof, (i) through (iv) follow easily from the definitions and
Lemma 1.3. For (v) we have from Lemma 1.3 (i), (ii)

p(7)A, ΊA) = \η-Ί \p((l
η — 7 / \Ύ] — 7 /

DEFINITION 1.4. (Kuratowski.) Let ^// denote a metric space and
let ^ ^ * denote the space of all nonvoid, compact subsets of ^£,
metrized by the Hausdorff metric, p (cf. Definition 1.3). For a
sequence {AJc^^*, linv^A; is the set of all xe^/f having the
property that each neighborhood of x intersects all but a finite num-
ber of the An whereas lim^c A* is the set of all x e ^J? having the
property that each neighborhood of x intersects infinitely many Aί#

If lim ôo Ai = lim ôo Ai9 the common value will be denoted by lim^c A{.

LEMMA 1.4. ([14, p. 248]) // {AJa^* and Az^£*, with
im ôo p(Ai, A) = 0, then linv^ A< = A.

LEMMA 1.5. Let {AJc^lΓ* and let l e ^ f * be a cluster point
(in the Hausdorff metric topology) of {AJ; then

lim i , c l c lim A< .
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Proof. Let {Ah} satisfy I im 4 _ p(Ah, A) = 0. By [14, PP 242-
243]

lim Ai c lim AH c lim At, a lim A;
i—>oo /c—*oo k—*<x> %—>oo

but by Lemma 1.4, A = l i m , ^ Aijk.

COROLLARY 1.2. Lei {A<} c Γn satisfy || A* || ^ λ, /or some λ ^ 0;
i/ A = lim^oo Ai then Ae Γn and lim^oo p(Ai9 A) = 0.

Proo/. By Blaschke's Auswahlsatz, the set U= {A Π S(0, λ) | A e Γn)
is a compact subset of Γ% so that {AJ has a cluster point in Z7. By
hypothesis and Lemma 1.5, A is the only cluster point of {AJ and
then 4 e Γ . Again since U is compact, the assertion of the lemma
follows.

LEMMA 1.6. Let {AJczΩ01 satisfy, for some λ ^ 0, || A{\\ ^ λ; if
A = lim A< α^d A φ φ then A e Ωn and lim Af = A* e Γw.

Proo/. Since [14, pp. 242-243] A is closed, the fact that AeΩn

follows easily from the hypotheses. We shall prove that

A* == (l imA ί )*climA? c ϊ ϊ m Af cOϊϊnA,)* = A* ,

the second inequality being- trivial. For the proof of the first
inequality, let xeA*; by Caratheodory's theorem [7, p. 35] there
exist xk e A, k = 1, , n + 1, such that x = Σ£±; α^τ*,

Σ «* = lι OLk ^ 0, A: = 1, , n + 1 .

Despite Lemma 1.1, it is trivial to establish that

[x)Ti = {x} + S(0, rj) = Σ α J M + S(0, 57)] = Σ
fc = l /c = l

It is easy to see that there exists K^ 0, independent of
such that {xk}η Π A< ^ φ for all i ^ K. Letting- a\ e [x*}η Π A{ there
follows Σ ί i ϊ tf*αj e {̂ }, for all i ^ iΓ; but clearly Σ ϊ ί ί a ^ e Af and
we conclude that ίc e lim Af.

For the proof of the third inequality, let scelίίnAf; then by
[14, p. 243] there exists a subsequence {A*k} and a sequence {%}
satisfying xk e Aζ and lim xk = x. Now for each index k, there exist
vectors ζ3

k e Aίjfc, i = 1, , n + 1 and numbers a) ^ 0, i = 1, , k + 1,
satisfying Σ?i ί <** = 1 and α?t = Σ J i ί <*)& Setting X, = (ft, , ξt+1)
and αfc = (αf, ••-, α^+ 1)

Γ, the superscript denoting transpose, we may
write xk = X&α:/c. By virtue of the fact that || Aifc || ^ λ for all ft, it
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is clear that {Xk} is contained in a compact subset of the cartesian
product (n + 1 factors) En x x En. Moreover, the compact set
Σ - {P e #% + 11 Pι ^ 0, i = 1, , n + 1; _Σ?ίί P* = 1} contains {ak}.
Hence {Xk} and {ak} have cluster points X, α respectively with aeΣ,
and now there follows readily x = Xa. Writing X — (ξ\ , ξn+ί),
it is clear that ξj e A, j = 1, , n, so that ^ e i * and the proof is
complete.

2* Lebesgue measurable functions on I to Ωn.

DEFINITION 2.1 (Plis [16].) A function F:I—>Ωn is measurable if
and only if the set E(F, D) = {te I\ F(t) Π -D Φ Φ) is Lebesgue measur-
able for each open set DaEn.

Filippov [9] has stated without proof the following easily
established result.

LEMMA 2.1. Let & be the class of all open balls in En having
positive rational radii and centers with rational coordinates; then a
function F:I—^Ωn is measurable if and only if the set E(F, D) is
measurable for every D e £&.

LEMMA 2.2. If P is a closed subset of I and F:P—>Ωn is
continuous then there exists Φ: I~^Ωn having the following properties:

( i ) Φ is continuous on I;
(ii) Φ(t) = F(t) on P;
(iii) for t e 7, || Φ(t) \\ < sup {|| F(τ)\\\τe P};
(iv) if the range of F is in Γn, so is that of Φ.

Proof. Define Φ on P by setting Φ(t) = F(t) there; without loss
of generality one many assume that P is properly contained in I and
that I is the smallest interval containing P. If (ί0, tλ) is one of the
at most countably many complementary intervals of P, define Φ on
(t09 ίi) by

φ(t) =

For any points r, τ0 in [t0, ί j there follows

p(Φ(τ), Φ(τ0)) ̂  (ίx - uy'piτiFiQ - F(ί0)), ^ ( ^ ( 0 - F(t0)))

^ τ - τ01

the last inequality being a consequence of Corollary l.l(v). The
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availability of this estimate makes possible the proof that Φ is
continuous on / by means of an argument like that of Natanson
[15, pp. 102-104].

LEMMA 2.3. {Plis [16].) If F:I-+Ωn is continuous it is
measurable.

Filippov [9] has stated the next theorem, without proof, again
for bounded functions.

THEOREM 2.1. // Fk: I—>Ωn, k = 1, 2, 3, , are measurable and
if lim p(Fk(t), F(t)) ~ 0 almost everywhere (a.e.) on I, where F: I-+Ωn,
then F is measurable.

Proof. (After Natanson [15, Th. 2, p. 94].) Let α, r be fixed
and such S°(a, r) e <gr, the class defined in Lemma 2.1, where the
superscript denotes interior. For positive integers m satisfying mr > 1
define

T* = E(Fk, S°(α, r - m"1)), k = 1, 2, 3, . . - ,

Zl = Π T*, n = 1, 2, 3, .

We shall prove that

( 3 ) E(F, S°(α, r)) = U Zl

Certainly Tt is measurable by hypothesis and Lemma 2.1; thus ZZ
and the right member of (3) are measurable. Then by Lemma 2.1, (3)
implies the measurability of F.

Let tQ e E(F, S°(α, r)); then F(tQ) f] S°(a, r) Φ φ and there exists an
integer m0, mor > 2, such that F(tQ) Π S°(a, r — 2mQ~1) Φ φ. Since
p(F(t0), Fk(tQ)) -> 0, it follows that p(F(t0) n S(α, r - 2mo~

1), Ffc(ί0)) — 0.
Consequently there exists nQ = wo(mo) such that if k ^ n0 then
Ά̂ (̂ o) Π S°(α, r — m^1) ^ ^. Hence t0 e T£Q for k^ n0 which implies

t0 e Zl\ and then of course t0 e \Jn,m Zl.
Now let t0 e \Jn,m Zl\ then there exist n0, m0 such that t0 e Zl\.

Hence toeT*o for k ^ ^0; i.e., Fk(t0) n S°(α, r - mo"1) ^ ^ for k ^ %0.
Now since p(Fk(t0), F(t0)) ->0 it follows that

0) n S(α, r - mo"1), F(ί0)) ~> 0 .

This in turn implies that S(a, r — m^1) Π ̂ (ίo) Φ Φ so that certainly
F(t0) Π S°(α, r) ^ ^. Thus ί0 e ^ ( J P , S°(a, r)) and (3) follows.

The necessity of the condition of the next theorem (generalized
Lusin theorem) was established, for bounded, measurable F, by Plis
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[16]. The entire theorem, again restricted to bounded functions, was
stated without proof by Filippov [9]. For a measurable set J B C I ,

let μ(B) denote its Lebesgue measure.

THEOREM 2.2. A function F:I-+Ωn is measurable if and only
if for each r] > 0 there exists Eηa I which is closed, μ(I — Ev) < η
and the restriction of F to Eη is continuous.

Proof. (Necessity, using a device of Natanson [15, p. 10].) Let
Tk = E(F, £Γ(0, k)), where k is a positive integer and the tilde denotes
complementation. Now Π Tk = φ for otherwise, if tQ e Π Tk,

F(tQ) Π ST(0, k) Φ φ

for all k, contradicting the assumption that F(t0) e Ωn. Hence μ(f\ Tk) —
0 and since T* c T3 for ί > j it follows that \imμ(Tk) = 0. Thus for
Ύ) > 0 there exists k0 such that μ(TkQ) < rj/A; moreover, there exists
open T* 3 TkQ such that

μ(T*) < μ(Tk) + η/A < η/2 .

Defining F*:I-*Ωn by

F*(t) = F(t), t e l - T* ,

the measurability of F* follows from that of F; in addition || F*(t) \\ ̂
k0 for all tel. Hence, by the aforementioned theorem of Plis [16],
there exists closed E* c I such that the restriction of F* to E* is
continuous and μ(I — E*) < η/2. Consequently, the restriction of F
to the set Eη = (I — T*)f\E* is continuous and Eη is certainly closed.
Moreover,

- Eη) = μ{T* U (J - E*)) ^ μ(T*) + μ(I - E*) < η ,

and the argument is complete.
(Sufficiency.) For each rj > 0, denote by Φ(o, η) the continuous

extension of F, from Eη to J, guaranteed by Lemma 2.2. Let
ηm = 2~m, m = 1, 2, 3, •; then setting

Sm = I - EVm

it follows that μ(Sm) < 2~m. Define

Now M, =) ikf2 Z) so that lim μ(Mζ) = ̂ (Q); but since /i(M<) < ΣΓ=i 2-&

there follows μ(Q) = 0. Let toel — Q; then ί o e | J ( / - -M"i) so that
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tQeI — MiQ for some i0. But then tQeI—Sk for all k^i0; i.e.,
p(F(t0), Φ(t0, Ύ]k)) — 0 for all k >̂ i0 and this in turn implies

lim p(F(t0), Φ(t0, ηk)) = 0 .

By Lemma 2.3, Φ(o, ηh) is measurable for each k so that by Theorem
2.1 and the result just obtained, F is measurable.

COROLLARY 2.1. If F:I—>Ωn is continuous (measurable) then
the function F*:I—>Γn defined by F*(t) = (F(t))* is continuous
(measurable).

Proof. The assertion concerning continuity is immediate from
Lemma 1.3 (ii). Now suppose F is measurable; by Theorem 2.2, for
Ύ] > 0 there exists closed Eη(zl such that μ(I — Eη) < η and the
restriction of F to Eη is continuous. But by Lemma 1.3 (ii), the
restriction of F* to Eη is continuous. Another application of Theorem
2.2 yields the measurability of F*.

The next two lemmas were originally stated for bounded functions;
an examination of their proofs (vide [12]) reveals, in the light of
Theorem 2.2, that this boundedness restriction is superfluous.

LEMMA 2.4. (Hermes-Filippov.) Let g:En—>Ek be continuous
and let H:I—>Ωn be measurable. If r:I—>En is measurable and
r(t) e g(H(t)) on I then there exists measurable v:I—+En satisfying
v(t) e H(t) and r(t) = g(v(t)) on I.

LEMMA 2.5. (Hermes.) Let R:I—>Ωn be measurable and let
w:I~^En be measurable; then there exists measurable r:I—>En

satisfying r(t) eR(t) and \\ w(t) — r(t) \\ = a(w(t), R(t)) on I.

The next lemma was originally stated by Hermes [11, Lemma
1.1] for bounded functions; again by virtue of Theorem 2.2, the
boundedness restriction is superfluous. A function F:I-+Ωn is
approximately continuous at t e I if and only if there exists a measur-
able set B a I for which ί is a point of density and such that the
restriction of F to B is continuous at t.

LEMMA 2.6. If F: I—+ Ωn is measurable then F is approximately
continuous a.e. on I.

DEFINITION 2.2. ( i ) Let F: I-+Ωn; if there exists a Lebesgue
summable function h: I—>Eι such that \\F(t) || g h(t) on I then F is
integrably bounded.
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(ii) Let A be an index set and let Fr:I—>Ωn for all ye A; if
there exists a Lebesgue summable function h'.I—^E1 such that
|| Fr(t) || ^ h(t) for all tel and all y eA then {Fr \jeA} is uniformly
integrably bounded.

The next lemma has an easy proof which will be omitted.

LEMMA 2.7. ( i ) If F:I—*Ωn is continuous it is integrably
bounded.

(ii) If F:I~>Ωn is integrably bounded then the function F*
defined in Corollary 2.1 has the same integrable bound as F.

DEFINITION 2.3. Let F:I-*Ωn be such that for each ί e / t h e
function p(F(<>), F(t)) is summable on I. A point t el for which

'p(F(τ), F(t))dτ = 0

is called a Lebesgue point of F.

THEOREM 2.3. If F: I—+Ωn is measurable and integrably bounded
then almost all tel are Lebesgue points of F.

Proof. Theorem 2.2 and the continuity of ^(o, o), together with
Lusin's theorem for real valued functions, implies that p(F(o)y F(t))
is measurable for each tel. Let h be an integrable bound for F;
without loss of generality one may suppose that h(t) > 0 on /. By
Corollary 1.1 (iv), ρ(F(τ), F(t)) ^ h{τ) + h(t) for all τ,tel. Hence
p(F(o), F(t)) is summable on / for each tel. Now by Lemma 2.6
and [15, Th. 5, p. 255] almost all points of I are, at once, points of
approximate continuity of F and Lebesgue points of h. Let t be
such a point and let B c / be a measurable set for which t is a point
of density and such that the restriction of F to B is continuous at
t. For η > 0, set

BAV) = [ ί , ί + ? ] ί l S ,

B2(η) = [ί, t + η\ n (I - B) .

Then, given ε > 0, one may choose rj = η(ε, t) > 0 sufficiently small
that the following three conditions are satisfied:

( i ) for τ e B^V), P(F(τ)9 F(t)) < e/6;
(ii) μ{B2{η)) < eη/βh(t);

S t + η
I h(τ) - h(t) I dτ < ψ/S .

t

By virtue of (i), (ii), (iii) and Corollary 1.1 (iv) there follows
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1 (t+'p(F(τ), F(t))dτ = ψ' ί p(F(τ), F(t))dτ + ψι \ p{F(τ), F{t))dτ

\\\F(τ)\\ + \\F{t)\\]dτ

S t + η

I h(τ) - h(t) I dτ + 2h(t)rrιμ{B1(η))

< 6/3 + 5/3 + 5/3 = 5 .

S t + η

p(F(τ), F(t))dτ = 0, and a similar argument shows
that the left hand limit is also zero.

We close this section with the following important lemma on the
measurability of composite functions.

LEMMA 2.8. Let D be a nonvoid, open subset of E1 x En and
let R: Eι x En — Ωn satisfy:

( i ) for each t in the projection of D on E1, R(t, ©) is continu-
ous on the set Dt = {x e En | (ί, x)eD};

(ii) for each x in the projection of D on En and each compact
interval IczE1 for which I x {x} c D, R(o, %) is measurable on Γ,

(iii) for each compact C aD there exists a Lebesgue summable
function hc\E1-+Eι such that \\R(t, x)\\ g hc(t) on C.

If I is a compact interval in E1 and S is a compact ball in En

satisfying Ix SaD then for each continuous function x:I-+S the
function R(o, x(o)) is integrably bounded and measurable on I.

Proof. If the assertion of the lemma is true with "continuous"
replaced by "step" as the restriction on x:I—>S then the validity of
the original statement, insofar as measurability is concerned, follows
by virtue of (i) and Theorem 2.1 since a continuous function x:I—+S
may be uniformly approximated by step functions. Hence suppose
that for ck£ S, k = 1, , m, x*: J—• S is defined by

x*(t) — ck, telk9 k = 1, , m ,

where / = \J Ik1 I3 Π /* = Φ for j Φ k and each Ik is an interval*
Then for an open set K(zEn, E(R(o, x*(<>)), K) = \J Mjf

M,. = {te I3 I R(t, cj) fl K Φ φ}, j = 1, , m .

But by (ii), each Ms is measurable so that E(R{o, x*(°)), K) is measur-
able. Integrable boundedness of R(o, x(o)) is an easy consequence of
(iii).

3* Trajectory integrals of measurable functions* In this
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section we set I = [0, 1] without loss of generality and suppose that
F:I—>Ωn is a given function. As in the introduction we denote by
^](F) the set of all Lebesgue summable functions u:I—>En having
the property that u(t) e F(t) a.e. on I. Let ^~ on ^fΐ(I) be defined by

{^Tq){t) = [q(τ)dτ, tel,
Jo

and define

may be considered as a subset of any of a number of Banach
spaces but the ones we shall be primarily concerned with here are
<ϊ?n{I) and

LEMMA 3.1. ( i ) If F:I-^Ωn is measurable and integrably
bounded then ^Ί(F) Φ ψ.

(ii) If F:I->Γn then ^](F) is a convex subset of £fΐ(I).

Proof. That there exists a measurable v:I~>En satisfying
v(t) e F(t) a.e. on I follows from Lemma 2.4 by taking g = 0, r = 0,
and H = F. The assertion of (i) then follows by the integrable
boundedness of F. The proof of (ii) is trivial.

THEOREM 3.1. If F: I —• Γn is measurable and integrably bounded
then S^ΊiF) e J%^n(I)m, moreover, 6^ι(F) is a weakly compact subset of

Proof. From Lemma 3.1 and the linearity of ^ follow the facts
that &Ί(F) is nonvoid and convex; that ^(F) is conditionally compact
follows readily from the integrable boundedness of F together with
the Arzela-Ascoli theorem. The first assertion of the theorem will
be established if we show that SΊ(F) is closed in ^"(7) . To this end
let w e &Ί(F) and let {wm} c S^(F) satisfy lim <wm - w} = 0. Now
wm(t) e F(t) a.e. on / so that with h denoting the integrable bound
on F we obtain

| w(t2) - wit,) || ^ || w(t2) - wm{t2) || + \\w(td - wm(tύ

+ || wm(t2) - wm{Q | | < ε +

for ε > 0 and m sufficiently large. Thus w is absolutely continuous
on I and it is easy to see that there exists measurable Ud, μ(I— U) =
0, having the following properties:

( i ) w(t) exists on U;
(ii) each t e U is a Lebesgue point of F.
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The validity of (ii) is of course a consequence of Theorem 2.3. With
v being the function defined in Definition 1.3, by virtue of Theorem
2.2, the Lusin theorem for real valued functions and the continuity
of v(o, o) on Γn x En [3, Lemma 1] there follows the fact that
v(F(o), p) is measurable for each peEn. By virtue of Lemma
1.2 (iii) and Corollary 1.1 (iv) there obtains | v(F(f), p) | ^ h(t) for all
(ί, p)e I x En and thus v(F(o), p) is summable for p e En. Moreover,
there exists measurable F c J , μ(I — V) = 0, such that for all
(ί, | ) ) G F X P and all m,

), P)

Thus for all m, all peEn and all ίx, ί2 e 7,

in p a r t i c u l a r for t e U, rj > 0, a l l m a n d a l l p s u c h t h a t | | p | | = 1,

ψι[v>Jί + η)- wm(t)]op g ψ^\{F(τ), p)dτ

S t + η

p(F(τ), F(t))dτ ,

the final inequality being a consequence of Lemma 1.2 (iii). For all
η > 0 such that ί + 57 e /, the convergence of wm to w implies that

V) - Mt)] = Mm ψι\wm(t + V) ~ w»(ί)] .

This and the last formula line imply that for || p \\ = 1, t e £7, ^ > 0
and t + η el,

S t + η
p(F(τ), F(t))dτ .

L e t t i n g 37—>0+ in t h i s i n e q u a l i t y y ie lds , for \\p\\ — 1,

and in turn this implies [19, Th. 5.3] that w(t)eF(t). Thus is
closed.

For the proof of the second assertion of the theorem, let x be a
weak limit point (i.e., a limit point relative to the weak topology in
^ΓJ^^n(I)) of S^F). By [6, IV. 13.31] there exists a sequence
{xm} c S^j(F) which converges pointwise to x on /. But by the first
assertion of the theorem, there is a subsequence {xm]c} which converges
in ^n(I) to x so that necessarily xe^Ί(F). Thus is <9^(F) weakly
closed. Now \ g(r)dr ^ \ h{τ)dτ for all q e J^iF) and all measurable

\\)E II } E

Ed I; hence by [6, IV. 8.11] and the absolute continuity of the set
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function I h(τ)dτ, ^Ί{F) is weakly sequentially compact in ^fl(I).
)E

Since Jf is linear and continuous with respect to the metric topologies
in Sfΐ{I) and ^Ts/^n(I), by [6, V. 3.15] S^(F) is weakly sequentially
compact in ^Ks$?^n(I). Now the weak compactness of S^Ί(F) is a
consequence of [6, V. 6.1],

THEOREM 3.2. Let F, Fk: I->Γn, k = 1, 2, 3, , satisfy

limp(Fk(t),F(t)) = O

on I; if {Fk} is uniformly integrably bounded and each Fk is measur-
able then S^(Fk) and S^Σ{F) are in <5Tn{I) and limcr(^(i^&), SΊ(F)) = 0.

Proof. That &Ί(Fk) e X B ( J ) is a consequence of Theorem 3.1.
That F is measurable is implied by Theorem 2.1. Let h be a uniform
integrable bound for {Fk} and let tel be fixed; by hypothesis and
Corollary 1.1 (iv) we find that, given ε > 0, there exists K = K{ε, t)
s u c h t h a t f o r k > K, \\ F(t) | | < e + || Fk(t) \ \ ^ ε + h ( t ) . T h u s F i s
integrably bounded by h and from Theorem 3.1 there follows

e 3Tn(I). Now there exists wk e ^j(Fk) such that β(wk, £^{F)) =
^i(F)). Let qk e ^(Fk) be such that wk = ^~qk and, by

Lemma 2.5, let ukeJ^(F) satisfy || uk(t) - qk(t) \\ = a(qk(t), F(t)) ^
p(Fk(t), F(t)) on /. Then σ(^(Fk), &&F)) ^ <wk - ^uky, but

<wk - ^Tuky ^ \)\ qk(τ) - uk{τ) || dr = [a(qk(τ), F(τ))dτ
Jo Jo

and since a(qk(t), F(t)) — 0 on / and a(qk(f), F(t)) ^ 2h(t) on / it
follows from [6, III. 6.16] that lim<wk - ^uky = 0. Hence

lim σ(^z(Fk)9 S^ΛF)) = 0 .

There also exists yk e £^(F) such that β(yk, SΊ{Fk)) = σ(^(F),
Let uk e ^(F) satisfy yk = ^~uk and, by Lemma 2.5, let qk e
satisfy || uk(t) - qk(t) \\ - a(uk(t), Fk(t)) ^ p(F(t), Fk(t)) on I. Then

; but

S i ri

II uk(τ) - qk{τ) \\ dτ = α(^(τ), Fk{τ))dτ .
o Jo

Arguing as in the preceding part of the proof we conclude

limσ(^(F)y S1(Fk)) - 0

and the proof is complete.

DEFINITION 3.1. Let y be a set of functions on / to En; then

= {φ(t)\φeS}, tel.
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LEMMA 3.2. If either of the following conditions is satisfied
then for all t e I, G(t; Sf) e Γn:

( i ) ^eSTn(I);
(ii) S? is a nonvoid, convex, weakly compact subset of

Proof, (i) is an immediate consequence of [4, Th. 1.4]. For (ii)
we observe first of all that by [6, IV. 12.3] there is a unique nonvoid,
convex, weakly compact subset &~ c -Sf ?(/) such that £f — ̂ Z^Γ
By virtue of [6, V. 6.1], Jβ~ is weakly sequentially compact; from [6,
IV. 8.8] it then follows that F is bounded. The function ^ 7 : J^Γ(I) -> En

defined for each fixed t e I by

= [q(τ)dτ
Jo

is linear and continuous with respect to the metric topologies in
J5^Γ(/), En; hence by [6, V. 3.15] it is continuous with respect to the
weak topologies in these spaces. Consequently ^~t^~ is bounded, convex
and weakly compact, hence, by [6, V. 3.13], closed. We conclude
that G(t; Sf) = J ^ T J ^ e Γn.

The next lemma generalizes a result due to Hermes [12, Th. 1.2].

LEMMA 3.3. If F:I—+Ωn is measurable and integrably bounded
then G(t; &&F)) = G(t; SΊ(F*)) e Γn for all t e I.

Proof. By Corollary 2.1, Lemma 2.7 (ii), Theorem 3.1 and Lemma
3.2, G(t; &&F*)) e Γn. Certainly G(t; S^{F)) c G(t; S^(F*)) and the
remainder of the proof coincides with the second part of Hermes'
proof for [12, Th. 1.2].

Hermes [11] has observed that: if F:I—+Ωn is Borel measurable
[1] then it is measurable. Our next result is the combined assertion
of Theorems 1 through 4 of [1] for Borel measurable, integrably
bounded F:I—*Ωn. It is an immediate consequence of Lemma 3.3
and Hermes' observation.

COROLLARY 3.1. If F: I —> Ωn is Borel measurable and integrably
bounded then for each tel, G(t; Ή(F)) e Γn.

Lemma 3.3 provides the instrument for establishing the following
corollaries to Theorem 3.2.

COROLLARY 3.2. Let F, Fk: I—+Ωn, k = 1, 2, 3, , satisfy

lim p(Fk{t), F(t)) = 0
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on I; if {Fk} is uniformly integrably bounded and each Fk is measur-
able then for each t e I, G(t; £1(Fk)) and G(t; SftF)) are in Γn and

]χmp(G(t; &(Fk)), G(t; SΊ(F))) = 0 ,

uniformly on I.

Proof. By Corollary 2.1 and Lemma 2.7, each F* is measurable
and {Fi?} has the same uniform integrable bound as {Fk}. By Theorem
2.1, F is measurable and, by an argument like that used in Theorem
3.2, F is integrably bounded. Thus by Corollary 2.1 and Lemma 2.7,
F* is measurable and integrably bounded and, by hypothesis and
Lemma 1.3 (ii), lim p(Fk*(t), F*(t)) = 0. From Theorem 3.2 there
follows limσ(SΊ(Fk*), SftF*)) = 0 and this result together with [4,
Th. 1.5] implies

lim p(G(t; &(Fk*)), G(t; &(F*))) = 0 ,

uniformly for te I. The proof is completed by application of Lemma
3.3.

COROLLARY 3.3. Let Fk: I-^Ωn, A; = 1, 2, 3, , satisfy the follow-
ing conditions:

( i ) {Fk} is uniformly integrably bounded;
(ii) for each k, Fk is Borel measurable;
(iii) F(t) = lim Fk(t) exists and is nonvoid for each te I. Then

F:I-+Ωn and, for each tel,

lim G(t; &(Fk)) = G(t; SftF)) e Γn .

Proof. By virtue of (i), (iii) and Lemma 1.6, F:I—>Ωn and
lirn Fk(t) = F*(t). Lemma 2.7 implies that {F*} has the same uniform
integrable bound as {Fk} so that Corollary 1.2 yields lim/θ(FΛ*(ί), F*(t)) =
0. The observation of Hermes quoted above, together with (ii) and
Corollary 2.1, yields the measurability of F*. Now Corollary 3.2 and
Lemma 1.4 permit the assertion

lim G(t; S^Fi)) = G(t;

hence Lemma 3.3 yields

Γ ) lim G(t; &(Fk)) = G(t; S1(F*)) e

But the assertion of [1, Th. 5] is that the left member of this
equation is equal to G(t; ^(F)); the proof is complete.

Discussion. It is easy to see that in Corollary 3.3, the require-
ment that Fk be nonvoid, compact valued for each k can be replaced
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by the requirement that it be nonvoid, closed valued for each k.
The corresponding replacement can be made in Corollary 3.1. It is
noteworthy that Corollary 3.1 bears out the anticipation, expressed in
the introduction that a study of S^(F) subsumes, in an obvious sense,
a study of Aumann's integral. Corollary 3.3 shows that our expecta-
tions in this direction cannot be too high; indeed, under hypotheses
of this corollary, O appears to be the strongest result we can obtain
within the confines of the theory developed in this paper. The
utilization of [1, Th. 5] in this corollary could be supplanted by a
counterpart of Theorem 2.1 in which Hausdorff convergence is replaced
by Kuratowski convergence. However, we have not been successful
in obtaining such a counterpart of Theorem 2.1; moreover, in view of
the proof of Theorem 2.1 it does not appear likely that such a counter-
part is valid. It is also noteworthy that the lack of such a counter-
part for Theorem 2.1 prevents the inference from [1, Th. 5] alone
that G(t; S^(F)) Φ φ for some te I even under the hypotheses of
Corollary 3.3.

The weak compactness of S^{F) in ^Vls^f'W^il) may be shown to
follow directly from the hypotheses of Theorem 3.1; the device of
using the compactness of 6^(F) in c^n(I) to establish weak compact-
ness of S^(F) was a matter of convenience in the proof of that
theorem. Taking this observation into account, it is not difficult to
see that Corollary 3.2 may be established independently by means of
an argument which depends only on weak compactness of S^(F),
Lemma 3.2 (ii), Lemma 3.3 and Lemma 2.5. Thus Corollaries 3.1,
3.2 constitute a theory which is a direct counterpart of Aumann's
theory, the major distinction between the two theories being that
between Hausdorff and Kuratowski convergence. The discussion of
the preceding paragraph indicates that whereas these theories are
supplementary, neither implies the other.

The proof of [12, Corollary 1.1] applies with trivial modification,
taking into account Lemma 3.3, to yield

LEMMA 3.4. Let F: J—> Ωn be measurable and integrably bounded,
and let y e S^ΊiF*); then for each ΎJ > 0 there exists zv e £^(F) satisfy-
ing <JJ ~ zry < η.

This lemma has the following immediate consequence.

COROLLARY 3.4. If F:I—>Ωn is measurable and integrably
bounded then SΊ(F*) is the closure of SftF) in c^n(I).

REMARK 3.1. [12, Example 2.3.] shows that with the hypotheses
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of Corollary 3.4 £^(F) need not be closed in ^n(I); there thus appears
to be no possibility of generalizing Theorem 3.2 by requiring that
F, Fk have values in Ωn.

Let us denote by <9*ί (F) the closed (in ΛΊs#'<g7n(I)) convex hull
of S^{F) and by Sf\(F), the weak closure of 6^(F) in

THEOREM 3.3. If F: I-^Ωn is measurable and integrably bounded
then

Proof. By means of an argument like that for the second asser-
tion of Theorem 3.1 it may be inferred that S^(F) is weakly
sequentially compact. Now there follows from [6, V. 3.13, 3.14] and
Theorem 3.1,

c ^f(F) c

But from these inclusions, Lemma 3.4 and [6, IV. 13.31], the theorem
follows.

REMARK 3.2. It is easy to see that S*f(F) = j^^ΐ(F), where
is the closed convex hull of

Arguing again as in the proof of the second assertion of Theorem
3.1, it follows that if F:I-+Ωn is measurable and integrably bounded
and if S^(F) is closed in ^n(I) then Sζ{F) is weakly closed in

In view of this result, Theorem 3.3 yields

COROLLARY 3.5. If F:I—+Ωn is measurable and integrably
bounded then &(F) e ^fn(I) only if SftF) =

The final result of this section provides a marked strengthening
of Theorem 3.1 and of the assertion of Remark 3.1.

THEOREM 3.4. Let F:I—>Ωn be measurable and integrably
bounded; then the following statements are equivalent:

( i ) ^(F) e 2έ?\I).
(ii) S^(F) is a nonvoid, weakly compact subset of Λ/~S*fc£?n(I).
(iii) F(t) is convex a.e. on I.

Proof. That (iii) implies both (i) and (ii) is an easy consequence
of Theorem 3.1. For the remainder of the proof, consider the func-
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tion p(F*(o), F(<>)). By virtue of Corollary 2.1, an argument similar
to that of the first part of the proof of Theorem 2.3 permits the
assertion that this function is measurable on I. Hence the set

M = {ί G /1 p(F*(t), F(t)) >0} = {teI\ p(F*(t), F(t)) > 0}

is measurable. We need prove only that if μ(M) > 0 then 6^{F) is
a proper subset of S^(F*). Indeed, in this event it follows from
Corollary 3.5 that SΊ(F) £ £ίfn(I) and, from Theorem 3.3, that S1(F)
is not weakly compact. Now we observe that minor modification of
Hermes' proof [12] of Lemma 2.4 produces the following result: there
exists a measurable function w:I—*En satisfying w(t) e F*(t) and
a(w(f), F(t)) = ρ(F*(t)9 F(t)) for all tel. A function w so determined
thus satisfies a(w(t), F(t)) > 0 on M. Hence, if μ(M) > 0 it follows
that ^~Ί(F) is a proper subset of J^ΊiF*) and this in turn implies that
S^{F) is a proper subset of SftF*) and the proof is complete.

4* An existence theorem*

THEOREM 4.1. Let D be a nonvoid open subset of E1 x En and
let R: E1 x En-+Γn satisfy conditions (i), (ii), (iii) of Lemma 2.8 on
D; then for each (t0, x0) e D there exists a solution2 of

(2 ) xe R(t, x), x(t0) = x0 ,

and every solution of (2) may be continued to the boundary of D.

Proof. There is no loss of generality in assuming that (0, 0) e D
and proving the theorem in the case (ί0, x0) = (0, 0). The proof is
based on that of Hartman [10, Th. 2.1, p. 10]. Let α, b > 0 be
sufficiently small that C c f l , where

C = {(£, x) e E1 x En | 0 ^ t ^ a; \\ x \\ ^ 6} .

Define a = max 11 e [0, a] \ hc{τ)dτ ^b\; evidently a e (0, a]. Let

37 e (0, α:] be fixed; then on [0, η] the function whose value is R(t, 0)
is measurable and integrably bounded. By Theorem 3.1 there exists
wxe i5̂ [0,9](i2(o, 0)) and we define a function χv on [0, η] by

χ,(ί) - ^(ί), ί e [0,)?] .

There follows easily

(4α) II χ,(ί) || ^ (\e(r)dr < δ, ί 6 [0,97]
Jo

2 I.e., an absolutely continuous function satisfying x(t)eR(t, x(ff) a.e. on an
interval containing ίo in its relative interior and satisfying x(to) = Xo.
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(4b) || χη(U) - χv(td || ^ I [\(τ)dτ\, tu t2 e [0, η] .
I J ί i I

If η < a, let rf — min {a, 2η}; then by Lemma 2.8 the function whose
value is R(t, χv(t — η)) is measurable and integrably bounded on
[η, η1]. Hence by Theorem 3.1 there exists w2eS^η,ηi ](R(o

9 χη(° — y)))
We extend χη to [η, ηι] by defining

Xv(t) = XM + wa(ί), t e [η, 7}1]

it is easy to see that χη satisfies (4) on [η, 7?1], hence on [0, η1]. If
rf < a the foregoing process may be iterated at most a finite number
of steps to extend the definition of χη to [0, a] in such a way that
the following property obtains:
(*) Xv e ^ίotai(Rri0)h where R^: [0, a] ~>Γn is defined by

iϊ '(ί) = R(t,0),te[0,η] ,

R%t) =R(t,χη(t-V))>te(y,a]

with the family {Rη \ rj e (0, a]} being uniformly integrably bounded
and each member of the family measurable on [0, a].

Now let {ηm} be a monotone null sequence of points in [0, a];
then by property (*) and the Arzela-Ascoli theorem {χVm} contains a
subsequence (assume it is the original) which converges uniformly on
[0, a] to a limit function, χ, which is easily shown to be absolutely
continuous (cf. the proof of Theorem 3.1). Equicontinuity of {χVm}
implies

vjt - Vm) = χ(ί), t e [0, a] ,

so that by condition (i)

( 5 ) l im p(RHt), R(t, χ(t))) = O,te [0, a] .

Thus from (*), (5) and Theorem 3.2 there follows

( 6 ) lim σ ( ^ [ 0 , α ] ( i ^ ) , ^ 0 > β ] (Λ(o, χ(o)))) = 0 .

Since χ , m - + χ and ^0,α ](J?(o, χ(o))) is compact, (*) and (6) imply that

( 7 ) χ e ^ 0 f β ] ( i 2 ( o , χ ( o ) ) ) .

But (7) is equivalent to the assertion that χ(0) = 0 and, a.e. on [0, a],

and the proof of existence is complete. The continuability assertion
follows in a straightforward way from [2, Th. 4].

COROLLARY 4.1. // in the statement of Theorem 4.1 conditions
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(i), (ii), (iii) of Lemma 2.8 are replaced by (iv) R is continuous on D,
then the conclusion of that theorem remains valid.

Proof. That (iv) implies (i) is obvious; that (iv) implies (ii) is a
consequence of Lemma 2.3. Finally, (iii) follows from (iv) by setting

he(t) = m a x { m a x {|| ξ \\ \ ξ e R ( τ , x)} | ( r , x) eC},teEι .

REMARK 4.1. The demonstration that all solutions of (2) may be
continued over the interval [0, a], defined in the proof of Theorem
4.1, is exactly like the corresponding proof for ordinary differential
equations. The compactness of the solution family as a subset of
ίT%([0, a]) is then an easy consequence of Theorem 3.2; this again is
a parallel to the corresponding argument for ordinary differential
equations. Invoking [5, Th. 1] and Corollary 2.1, only slight modi-
fication of the proof of Theorem 4.1 is needed to establish the more
general Plis-Castaing existence theorem [17], [5].

5* The Huygens derivative*

DEFINITION 5.1. Let y e ^ f / ) ; given tel, if there exists
S(t) e Γn such that

limη-1p(G(t + η; ̂ ), G(t; £S) + ηS{t)) = 0

then S(t) is called a right hand (Huygens) derivative of 6^ at t. If
there exists V(t) £ Γn such that

\imrj-lp(G{t - η; &>) + ηV(t), G(t; &>)) = 0

the V(t) is called a left hand (Huygens) derivative of S^ at t.

LEMMA 5.1. The one-sided Huygens derivatives of 6^
are unique.

Proof. We give the proof for right hand derivatives, the proof
for left hand derivatives being similar. Let R(t), S(t) be right hand
derivatives of 6^ at t; then for η > 0 it follows from Lemma 1.3 and
the triangle law that

p(R(f), S(t)) = ψιp(ηR(t),ηS(t)) = ψιp(G(U S?) + ηR(t),G(t;

^ V'piGit + η; S"), G(t; Sf) + ηR(t))

+ ψιρ(G(t + η; SS), G(t; £*) + ηS(t)) .

By hypothesis, the limit, as Ύ] —>0 + , of the rightmost member is
zero so that ρ(R(t), S(t)) = 0.



TRAJECTORY INTEGRALS OF SET VALUED FUNCTIONS 65

DEFINITION 5.2. When these exist, the right hand and left hand
derivatives at t of Sf e Hn(I) will be denoted by (D+^)(t) and (D"S^)(t)
respectively. If the one-sided derivatives of £f at t both exist and
are equal, their common value is called the Huygens derivative of £f
at t and is denoted by

LEMMA 5.2. If F:I—±Γn is measurable and integrably bounded
then

v(G(t; SftF)), v) = [viFiτ), p)dτ, teI,peE* .
Jo

Proof. Let us condense notation by defining

, p) = v(G(t; S1(F)), p) ,

λ(ί, p) = v(F(t), p) .

Then the assertion of the lemma is that ω(t, p) = \ λ(τ, p)dτ, te /,
Jo

p 6 En. By an argument similar to that for Theorem 3.1 it follows that

λ(o, p) is summable for each peEn so that \ λ(τ, p)dτ is well defined.

If σ e G(t; SftF)) then there exists u* e ̂ Ί{F) such that σ = [^(rfdτ;
Jo

hence
σop = \ u*(τ)opdτ ^ \ λ(r, p)dτ, tel, peEn .

Jo Jo

We infer that a)(t, p) < \ λ(r, p)dτ. For the proof of the reverse
Jo

inequality let h be the integrable bound on F; then for η > 0 and
| |p || — l, (h(t) + τj)$F{t) on I. For suppose the contrary; then

h(t) < h(t) + 3? = || (h(t) + η)p\\^ h{t) ,

which is absurd. Let q(t, rj, p) be the unique point in the boundary
of F(t) nearest (h(t) + η)p; then by virtue of Lemma 2.5, q(o, η, p)
is summable and

\ λ(τ, p)dτ = \q(τ, η, p)°pdτ = (\q(τf η, p)dτ\°p ^ ω(t, p) .

This completes the proof.

THEOREM 5.1. If F: I —> Ωn is measurable and integrably bounded
then a.e. on I, {DSWW) = F*(t).

Proof. By virtue of Corollary 3.4, (DSζ(F))(f) exists if and only
if (DS^(F*))(t) exists; moreover, the two have the same value. It is
thus sufficient to show that (DSl(F*))(t) = F*(t) a.e. on /; we shall
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carry out the proof for D+, the proof for D~ being similar. For
η > 0 we find that with ω, X being as defined in the proof of Lemma
5.2,

V~ιP(G(t + y; Sϊ(F*)), G(t; &(F*)) + ηF*(t))

= ψ1 max {| ω(t + η, p) - [ω(t, p) + η\(t, p)] | | || p || = 1}

= ψ

= ψ

The proof

ί Π + 7)
1 max i \ λ(r, i

v 1 J t

1 max ^ \ [λ(τ,

Ct + η
M d(F*(τ), F*
it

is completed by

P)dr - ^λ

P) - λ(ί,

[t))dτ S ^

invoking

I

Ct + η

) t

 P { F { T ) ί

Theorem 2

= l\ (by Lemma

F(t))dτ

(by Lemma 1.3

.3 .

5.2)

COROLLARY 5.1. If Fi.I—>Ωn, i — 1, 2, are measurable and
integrably bounded, a necessary and sufficient condition that the
closures of S^(Fj) and S^(F2) be equal is that F*{t) — F*(t) a.e. on I.

Proof. (Sufficiency.) Evidently SftF?) = S^(F^) and the asser-
tion follows from Corollary 3,4.

(Necessity.) By hypothesis, Corollary 3.4 and Theorem 5.1, a.e.
on I we have

= F2*(t) .

For t19 t2 G /, let us set

\hF(τ)dτ = \\t2q(τ)dτ \ q e ^(F)}

where F: I—>Ωn. It is not difficult to verify that for η > 0

S t + η

F(τ)dτ, t,t + ηel,

a n d

G(t - η; S^{F)) + [ F(τ)dτ = G(t;
Jt

Thus if F: / —> Ω% is measurable and integrably bounded there follow
from Lemma 3.3, Lemma 1.3 and the foregoing identities, both

ψιp{G(t + η; SftF)), G(t; SftF)) + yF*(t)) =

and
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- m S1(F)) + vF*(t), G(t; S1(F))) = pίv'A* F(τ)dτ, F*^
\ jt-v y

when η > 0. Together with Theorem 5.1, these last formulae establish
the following generalization of [11, Lemmas 1.2, 1.3].

COROLLARY 5.2. If F:I—+Ωn is measurable and integrably
bounded then, a.e, on /,

, F*(t)) = 0 .

REMARK 5.1. Note that now Corollary 5.1 appears as a generali-
zation of [11, Th. 1.1].
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A GENERALIZED HAUSDORFF DIMENSION
FOR FUNCTIONS AND SETS

ROBERT J. BUCK

A generalization of the Hausdorff dimension of sets is given
by restricting the lengths of the intervals in the covering
family. The dependence of this dimension on the choice of
covering family is studied by considering the set of points in
the countable unit cube Iω whose coordinates are the values
of the dimensions of some set for a fixed, countable collection
of covering families. General conditions are given in order
that two families yield the same dimension on each set, and
that a covering family give the ordinary Hausdorff dimension.

In 1919, Hausdorff [3] introduced a notion of dimension for sub-
sets of the unit interval. For any set E, this dimension is H{E) —
sup {7: \(E) > 0}, where Xr(E) = inf {1(1(1^: ϋlj 3 E}\ and it can
take any value between 0 and 1, being 1 in the case that E has posi-
tive Lebesgue outer measure. This notion of dimension can be genera-
lized in various directions and the approach taken here follows Bill-
ingsley [1]. In particular, consider the dimension Hr{E) given by the
outer measure X'r(E) = inf {Σ(m(Ci))r: UC* 3 S & de ^}, where m
denotes Lebesgue measure and ^ is any collection of m-measurable
sets containing sets of arbitrarily small measure. If ^ contains the
intervals and their finite unions, then H'{E) assumes only the values
0 and 1, as m(E) = 0 or not. Thus for the study of sets of Lebesgue
measure zero, it appears that ^JΓ cannot be too large with respect to
the family of all intervals. Accordingly, the dimension H'{E) is studi-
ed only where ^JΓ is any collection of intervals containing intervals
of arbitrarily small length and where ^ is closed under translations,
i.e., where JF is completely determined by the length of its members.
Rather than use the set of these lengths to describe ^ it is more
convenient to use the set S of their negative logarithms, which is
unbounded in (0, oo), The dimension then becomes a function S{E) of
the set E and the unbounded set S. In § 2, dimension is defined for
a certain family ^ of nondecreasing functions, c.f. [2], [4], [5], which
greatly facilitates the study.

The principal results concern the dependence of S(E) on the choice
of the covering set determined by S, and are obtained by considering
the set &(S, T) of points in the unit square whose coordinates are
respectively S(E) and T(E), for some set E. If Ω denotes the pro-
duct of the closed unit interval with itself countably many times,
Theorem 5 shows that the set of points in Ω, whose coordinates are
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Sk(E) for some E and fixed sequence of unbounded sets {Sk}, is pre-
cisely the intersection of all cylinders in Ω determined by the sets
&{Sjy Sk),j < k. A characterization of &(S, T) directly in terms of
the relative gaps in the sets S and T is given by Theorem 6. The
set &(S, T) is closed and star-shaped with respect to the diagonal
0 ^ x = y ^ 1 and Theorem 7 shows that these are characteristic pro-
perties. Theorem 9 gives an especially simple necessary and sufficient
condition on S and T for the equivalence: S(E) = T(E) for all sets
Έ. The remaining theorems of § 4 show that for this equivalence, an
unbounded set S may be replaced by an increasing sequence {sn} and
that lim sn+1/sn = 1 is a necessary and sufficient condition that {sn} give
the ordinary Hausdorff dimension for all sets E.

I* Preliminaries* Let j ^ ~ be the collection of all real-valued
functions /, defined on (— oo, oo) with the property that x ίg y —»
0 <£ f(y) — f(x) Sy — x. The following elementary properties of ^
will be continually used without mention:

0

fe J?~ —*/ + a e J^a any constant

/e j ^ and 0 ̂  a ^ l-xxfej^;

f,gej^ and 0 ̂  α, β ^ 1, a + β ^ 1 — af+ βge

V/β G ^ - for /α G J^Γ if V/β(a?0) < - for some x

A/α G ^ for /α G J^ if Afa(Xo) > — °° for some x0 .

Let S, T, etc., denote unbounded sets in (0, oo) and let / G J ^ " .

Define S(f) = lim inf /(a?)/a?, over x -> oo, x G S. For / G ^ Γ S(/) satis-
fies: 0 ^ S(/) ^ 1. The number S(f) is called the Hausdorff dimen-
sion of / with respect to S. The following properties are immediate
consequences of the definition:

S(Afa) = AS(fa) over finite collections {fa}

S(af + βx) = aS(f) + β

S(f V βx) = S(/) V /5 .

L E M M A 1. Given ε > 0 , / G ^ 7 ΛTMZ unbounded sets S19 •• , S P ,

ί/^ere is βr G ̂ " suc/^ ίfeαί (i) 0(0) ̂  0, flr(a ) ^ (Sk(f) — e)x, for x e Sk,

k = 1, 2, , p; and (ii) S(g) = S(f) for all unbounded S.

Proof. Choose x0 > 0 large enough so t h a t f(x) ^ (Sk(f) — e)x for

x ^ a?0, x G SΛ, fc = 1, , p . Write #(&) = (f(x) V 0) + a?0. Then g e ^

and 0(0) ̂  0. Moreover, if 0 ^ x ^ x0, then g(x) ^x^ (Sk(f) - e)x.

For x ^ x0, and xeSk, g(x) ^ /(x) ̂  (Sk{f) - e)x, which proves (i).
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Finally, from the construction of g(x) it is clear that S(g) = S(f) for
all unbounded S.

LEMMA 2. Let fn e ̂  n = 1,2, and unbounded sets Sly S21

be given. There is fe^~ such that Sk(f) = lim inf Sk(fn) as n~>°°,
for each k = 1, 2, .

Proof. By Lemma 1, it can be assumed that for each n,fn(Q) ^
0 a n d fn(x) ^ (Sk(fn) — e n ) x , f o r x e S k , k <^n a n d ε n —* 0 a s w —> oo.
For each k and w choose xn>keSk such that #%>fc —> w as % ^ ~ and
Λ(a?.,*) ^ (S*(Λ) + eΛ)xΛfk. Let C» = V J U (a^f* -/»(«»,*)) and put ^(a) =
fn(x) V (x - Cn). Finally write / = \gn. Since gn(0) ^ 0, it follows
that fe^C Moreover, Sk(gn) = 1 for each k and n implies Sk(f) =
Sk(An^mQn) for all m. If & ̂  m, then A ^ ^ A(Sk(fn) - ε»)α over
n^m, so that S&(/) ̂  lim inf Sk(fn) as w —• oo. On the other hand,
from the construction of Cn, it follows that for k <L n, f(xn,k) S
(Sk(fn) + Sn)a?»,fc. Since xntk -^ oo as w -> CXD , Sk(f) ^ lim inf SΛ(/W) as

2. The Hausdorfϊ dimension of sets* Let ^t be the set of
all continuous, real-valued, nondecreasing functions μ defined on [0, oo)
such that μ(0) = 0 and μ(x) = 1, for x Ξ> 1. Let ^ C α be the subset
of ^£ consisting of those μ in ^ C which are sub-additive, i.e.,
μ(x + y) ̂  μ(x) +μ(y). Finally, given a subset E of [0,1], let ^/ί{E)
be the subset of f̂" consisting of all functions μ in ^£ supported
by E, i.e., (a,b) Π E = φ implies μ(a) = /ί(b). The set ^f(E) may be
void. The operator z/, defined on ̂  by z//̂ (α;) = sup (μ(y + x) — μ(y))
over all y ^ 0, is clearly a projection of ^ ^ onto ^C α . The proper-
ties of subadditive functions needed here are given by

LEMMA 3. // μe ^C α , then (i) μ(tx) ^ μ(x)t/(t + 1) /or ί, a; ̂  0;
and (ii) /i(a ) > 0 for x > 0.

Proof. If £ = 0, (i) is obvious. Otherwise

= μ(txt~ι) S (tx(l + [t~1])) ̂  (1 +

where [2;] denotes the greatest integer <^z. This shows (i). Part (ii)
follows from (i), since μ(t) ̂  t/(t + 1).

Corresponding to each μ in ̂ ^ there is /^ G ^~" defined by fμ(x) ~
\/(x — y — log Jμ(e~y)) over y ^ x. The following estimates for /̂ (a?)
will be needed:

LEMMA 4. .Por μ e ̂ fy - log Δμ{erx) ^ /;ί(.τ) ^ log 2 - log Δμ{erx).
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Proof. The first inequality is trivial. By Lemma 3 Δμ(e~x) <̂
2ey~xΔμ(ery), which establishes the second inequality.

Using the correspondence μ—+fμ, the Hausdorίf dimension of func-
tions μ e ̂ € can be defined by writing S(μ) = S(fμ), for each unbound-
ed set S. Given any set E S [0,1], the Hausdorίϊ dimension of E
with respect to S is defined to be the number:

S(E) = sup {S(μ): μ e

taking S(E) = 0 in the case that ^£(E) = 0 . The connection between
S(E) and the classical Hausdorff dimension of E is given by

THEOREM 1. ([2], [4]) S(E) = sup {7: xs,r(E) > °}> where XStΐ(E) =
inf {Σ(l(Ij)y: U Is 3 E & -log 1(1 J e S}.

Proof. Let β < S(E) and {Ik} be a covering of E by intervals
such that -log l(Ij)eS. By Lemmas 1 and 4, 2β-3s ^ z/μ(e~s) for
s e S and some μe^f(E), so in particular

Σ(l(Ik)y^ 1/2 ΣJμ(l(Ik))^ 1/2.

It follows that λ5fA(jE) > 0, and hence S(E) ̂  sup {7: Xs,r(E) > 0}. To
show the reverse inequality, Xs,r(E) > 0 implies that

μ(x) = (\St7(E))-ι\St7(E Π [0, x])

belongs to ^£{E). Moreover μ(x + β"s) — μ(x) £ (Xs,r(E))~le~r8 f o r a 1 1

x, so that by Lemma 3, fμ(s)/s — (log (Xs>r(E))/s ^ 7 for all s e S; and
it follows that S(E) ̂  sup {7: Xs,r(E) > °ί

The fact that XS)Ϊ is a sub-additive and monotone set function
implies

THEOREM 2. Given any countable collection {En} of subsets of
[0,1], S(\jEn) = yS(En) for all unbounded sets S.

Let ^ be the collection of all sets E of the form: E = {f: ξ =
Σskξkf εk = 0 or 1} for some positive, nonincreasing sequence {fk} with
I'ffc ^ 1. For such sets E, the function μE, defined on [0, 00) by μE(x) =
sup {Σεk2~k: x ^ Jε^f fc}, belongs to ^£{E) and is sub-additive.

THEOREM 3. If Ee^, then S(E) = S(μE) for all unbounded
sets S.

Proof. Let Xe ̂ €(E) and consider se S such that ξk+1 ^ e~s ^
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ξk. Since E is contained in the union of the 2k+1 intervals:

I(Si, , ek+ι) = little^, Σfjβ^j + ζk+1] ,

and any two of these intervals intersect in at most one point, it fol-
lows that A\(e-S) ^ 2"*-1 ^ Jμ(e's)/2. By Lemma 4, fλ(s) ̂  log 4+/„(«)
for s e S, so that S(X) ̂  S(μE).

Since S(μ) = S(fμ), Theorem 3 shows that for Eβ1^, there is
such that S(E) = S(/) for all S. The converse is also true.

THEOREM 4. For each /eJ^Γ there is Efβ^ such that S(f) =
S(Ef) for all unbounded sets S.

Proof. If / is bounded, then S(f) = 0 and Ef can be taken to
be void. Thus assume f(x) —> oo as a? —• oo and without loss of genera-
lity, /(0) = 0. Select a positive, nonincreasing sequence ξk satisfying
/( — logffc) = klog2. Such sequences exist since / is continuous non-
decreasing and tends to oo as x—> oo. Moreover, since f(x) — x is
nonincreasing, ζx ̂  1/2 and ζk+1 ^ ξk/2, which implies Σξk ^ 1. Let
E = Ef be the set {ζ: ζ = Σεkζk, εk = 0 or 1}, and let μ = μE. For
seS and ξk+1^e-s^ζk, log μ(e~s) ̂  -log 2 - f(s), so that f(s) ^
— log 4 + /^(s) by Lemma 4. Also log μ(e~s) ̂  log 2 — /(s), which shows
/(s) ^ log2 + /^(s). Since these inequalities hold for all seS, this
proves S(f) = S(E).

If ^ = {(α5): for some # e 9T, α^ = S(JS?) for all S}, and if ^ ^ =
{(βs): for some fej^/3s = S(f) for all S}, then Theorems 3 and 4
show ££%? = ̂ r . The situation for arbitrary subsets of [0,1] is more
difficult and the results are restricted to countable collections {Sk} of
unbounded sets.

For any pair of unbounded sets S and T, let &{S, T) = {(a, β):
a = S(f), β = T(f) for some fe J?~}. From the properties of ^ and
S(f) for / e j ^ ~ listed in §1, it is clear that ^?(S, T) is star-shaped
with respect to each point (a, a), 0 ̂  a <̂  1. Moreover, Lemma 2 im-
plies that &(S, T) is always closed. Let

Ω = {(xr):0^xr^l,r = 1,2, ...} .

For each pair of natural numbers j , k with j <k, let Ai>& be the cy-
linder in Ω: Ajίk = {(xr): (xjy xk) e &(Sjf Sk)}. Finally, let 3ίf\{Sk\\ =
{(ak): for some E s [0,1], α4 - Sk(E), k = 1, 2, ...}.

THEOREM 5. Given any countable collection of unbounded sets
{Sk}, ^f[{Sk}] = ΠAj}k over j < k.

Proof. Suppose (ar) e £έf{{Sk}\. Let j < k and E C [0,1] such
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that a,- = Sj(E), ak = Sk(E). If αy = α* then (aj9 ak) e &(SS, Sk) so
(ar) e Aj>k. Thus assume aά Φ ak and by symmetry, consider only the
case aά < ak. Then given any ε > 0, there is f e ^ such that

Sk(E) - ε < Sk(f) ^ Sk(E) and S, (f) £

The function g = / V Sj(E)x belongs to ^ and

- ε < Sk(g) ^ Sk(E) .

Since ^?(S3 , Sk) is closed, this shows (ar) e Ajfk, and hence Sίf\{Sk\\ S
Πi i ) f e over j <. k. Now suppose (#r) e lΊA^. Then for every pair

i < k, there is /,,* e ^ with a?y = Sj(fd,k) and % = Sk(fj>k). For each
pair of natural numbers p,n, write

By Lemma 2, for each p, there is ^ e ^ ^ such that Sk(gp) = lim inf
Sk{gP,n) as w—> oo, for each k = 1, 2, . Now write i£ = U ^ p over
p = 1, 2, . By Theorems 2 and 4, for each k9 Sk(E) = \/Sklgp) ^
lim% inf Sk(gk,n) — xk. On the other hand, if pφk, then either 0Pfn ^
/*,!» o r ^,^ ^ fP,k f° r n ^t k, depending whether p<k or p > fe. Thus
iSfcί-Ê ) = Sk(gk) V VJ,^Λlimninf Sk(gp>n) ^ %, for each fc, which shows
(xr)

In general, if the sequence {Sk} contains more than two terms,
the set £ίf[{Sk}\ properly contains the set {(xk): for some fe<βζxk =
Sk(f),k = 1,2, ...}.

3. The set &(S, T). The results of § 2 show that the set
is determined by the sets &(Sj9 Sk),j < k. This section

lists a few of the properties of &(S, T). The first of these is a
characterization of ^ ( S , T) solely in terms of the sets S and T.

For each x, let A(x, S, Γ) consist of all pairs (α, /9) with 1 > a ^
/5 > 0 and (a?/3/α, x(l - β)/(l -a))ΠS= 0. Let B(x, S, T) be the set
of all pairs (a, β) with (β,a)eA(x, T, S). Finally let J^(S, Γ) =
lim sup A(t, S,T) as t — oo, ί e y, and ^ ( S , Γ) = lim sup B(s, S, T) as

THEOREM 6. For every pair of unbounded sets S and T,

, T) - Gl (J^(S, T) U &(S, T)) .

Proof. Suppose (a, β) e J*f(S, T). Ita=β, then (a, β) e &(S, T).
Thus assume β < a. Then for some unbounded subset TQ of Γ, the
intervals It = (tβ/a, ΐ(l - /3)/(l - a)) do not intersect S for t e To. De-
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fine a function / in J^ by

[βt V (x - (1 - β)t) , if xeIt,teT0
fix) —

[ax, otherwise .
Then S(f) = a and f(t)/t = /3 for t e To, and so T(f) ^ £. It follows
that βS(f) ^ αΓ(/) and (1 - β)(l - S(f)) ^ (1 - α)(l - Γ(/)). Since
^(Sy T) is closed and star-shaped with respect to (0, 0) and (1,1) it
follows that Cl (J^(S, T)) S &{S, T). A similar argument shows
Cl (&(S, T)) S ^ ( S , Γ). On the other hand, let / belong to J C If
S(/) - Γ(/), then (S(/), T(/)), belongs to Cl (J^(S, T) U ̂ ( S , Γ)).
Thus assume S(/) ^ T(f) and by symmetry in S and Γ, assume S(/) >
T(f). It suffices to show that S(f) >a>β> T(f) implies (a, β) e j*f{S, T).
In this case, it can be assumed by Lemma 1, that f(s) > as for all
se S and that there is an unbounded subset To of T on which f(t)<
βt. Since fej^f(s) ^ ((s - ί) V 0) + /(*) for all pairs s and ί. If
t e To and s ^ ί, this implies as < /3ί. If s ^ ί, then as<s — t + βt.
These last two inequalities imply (tβ/a, ί(l - /3)/(l - <z)) Π S = 0 or
(α, /9) G A(t, S, T) for each t e To. It follows that (a, β) e JZf(S, T).

As was noted before ^P(S, T) is always closed and star-shaped
with respect to all points (α, a), 0 ^ a: ^ 1. These two properties
actually characterize the shape of ^ ( S , T) as is seen by

THEOREM 7. Let & be a closed set in the unit square, 0 ^
a, β ^ 1, star-shaped with respect to (0, 0) <mc£ (1, 1). There are un-
bounded sets S and T such that & — &(S, T).

Proof. The theorem is obvious if & is the diagonal 0 ^ a = β ίg 1,
since for S = T, &(S, T) is this diagonal. Otherwise, there is a
sequence (an, βn), 0 < an, βn < 1, an Φ βn which is everywhere dense
in &. Select a sequence of intervals (αn, bn) such that αΛ —> c>o as
^ —• co f bn ^ α n + 1 a n d

bjan = (a-1 - l)/(^-1 - 1), if an < /Sn

^ - 1), if αn > /5n

If an < βn, the interval (αΛ, 6W) is called an interval of type I. If
#* > βn, the interval (αΛ, δ%) is said to be of type II. In each interval
of type I, let sn = anβjani and in each interval of type II, let tn =
anajβn. In either case the constructed point belongs to (an9 bn). Let
S consist of all the points an, bn and the points sn. Let T consist
of all the points ani bn and the points tn. Assume first that {a, β) e &.
If a = β, then (a, β) e &(S, T). Thus suppose a Φ β and by sym-
metry in S and T assume a > β. Select a sequence of intervals In =
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(αΛ, bn) of type II, such that an—>a and βn~-+ β. Define / in &~ by

(aan V (x - (1 - α)6»), if a; e JΛ, n = 1, 2,
/(a?) = , ,, .

[ax, otherwise .
Then S(f) = a and for tn e In, f(tn)/tn = aβjan V (1 - (1 - α)(l - βn)/
(1 — an)) which tends to β as n —• oo. Thus Γ(/) = /9, which shows
^ S ^ ( S , T). To show the reverse containment it is sufficient, by
Theorem 6, to show J^(S, T) S ^ . If (α, /S) e Jf(S, T), then for a
subsequence tk of {£„}, (tkβ/a, tk(l — β)/(l — a)) f) S = 0 . This implies
βk/ak £ β/a and (1 - β)/(l -a)^(l~ βk)/(l - ak). Since ^ is star-
shaped with respect to (0,0) and (1,1), this shows (a,β)e&.

4* Equivalence of unbounded sets* By Theorem 5 of § 2 the
statement, S(E) = T(E) for all # g [0,1], is the same as, S(f) = T(f)
for all / e ^ Γ The induced equivalence relation, S = T, deserves some
study.

THEOREM 8. For all unbounded sets S, S = Cl (S).

Proof. Since S g C1(S), it is clear that S(f) ^ C1(S)(/) for all
fejK On the other hand, there is a map ψ:G\(S)-^S such that
11 - x/ψ(x) I ̂  1/x for each x e Cl (S). If fe ^ then

/(s) ^ [(8 - x) V 0] + /(£)

for every pair s, a?. Hence f(ψ(x))/ψ(x) ^ I/a; + (1 + l/x)/(ίc)/eτ for all
x e Cl (Si). It follows that S(f) £ Cl (S)(f) for / e ^ ^ and so S = Cl(S).

The related partial ordering: S g Γ, if and only if, S(/) ^ Γ(/)
for all / e ^ Γ again equivalent to S(£7) £ T(E) for all E'S [0,1], has
the following characterization.

THEOREM 9. A necessary and sufficient condition that S ^ T, is
that there exist a function φ: T-+ S such that lim t/φ(t) = 1, as £—• oo,

Proo/. It φ:T-+S and ί/^(ί) -> 1 as ί -> oo, t e T, then for fe J ^
/(?>(«)) ^ [(φ(t) - ί) V 0] + f{t), which implies

f(φ(t))/φ(t) ^ I 1 - ί/9>(ί) I + (t/φ(t))(f(t)/t) .

Hence S(/) ^ φ(T){f) ^ Γ(/). On the other hand, assume S(f) ^ T(f)
for all / G ^ Γ In particular this is true for #(#) = V(s/2 A (a? - s/2))
over seCl(S). Here, S(g) = 1/2 ^ T(g). For each ί e Γ, let s(ί) -
sup {s: s e S, s ^ ί} and s'(ί) = inf {s: s e S, s ^ ί}. Then s(t) and s'(ί)
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belong to Cl (S) and it is easy to see that g(t) = s(t)/2 V (ί - s'(ί)/2).
Now let θ: T-*C1(S) be defined by

θ(t) = \
\s'(t), otherwise .

If 0 < ε < 1/2, then for teT,t sufficiently large, 1/2 - ε ^ g(t)/t, which
means 1 - 2ε ^ s(t)/t or s'(ί)/ί ^ 1 + 2ε. Since 0 satisfies: 1 ^ £/0(ί) ^
s'(t)/t or 1 ^ ί/0(ί) ^ s(ί)/ί, it follows that 11 - t/θ(t) \ S 2ε and so
t/θ(t)—+1 as ί ^ o o ^ e ϊ 1 . If ψ: Cl (S)-+S is the mapping introduced
in the proof of Theorem 8, then the composition, φ = ψθ, satisfies
the required property, i.e., t/φ(t)—>l as t —> oo, te T.

Given any unbounded S, let 7fc = [nk, nk + 1), for wfc nonnegative
integers, be a sequence of intervals such that S c U/* and /̂  n >S is
nonempty. Let sk = inf {s: s e S Π I*,}. Then {sj S Cl (S) and so {sj ^
S. On the other hand the map φ: S —>{sk} defined by φ(s) = sk, if
seSnlk, clearly satisfies the condition of Theorem 9. This proves

THEOREM 10. Given any unbounded S, there is an increasing
sequence {sk} such that S = {sk}.

The final result concerns the classical Hausdorff dimension H{f),
where H = (0, oo)#

THEOREM 11. If S = {sn} and sn ^ sn+1, then S = H, if and only
if, limsΛ+1/sn = 1, α s w ^ o o ,

Proof. If sn ^ x ^ sn+1, then for fe J^, f(sn+1) ^ sn+1 - x + /(»),
so that f(sn+1)/sn+1 ^ sΛ+i/sΛ - 1 + f(x)/%. In the case that s%+1/sw —> 1
as n — oo, it follows that S(f) ^ H(f) for all / e J^T Since Sgff , this
shows S = H. Conversely, if S ^ H, then for g = \/(asΛ(x — (l — a)s)
over s e S, H(g) ^ S(/) = a, for a fixed a,0 < a < 1. Thus, in par-
ticular for the points

xn = asn + (1 - a)sn+ι, lim inf g(xn)/xn = lim inf
(1 — a)sn+jsn) ^ a as w —• oo. Thus sn+Jsn —• 1 as w -> oo.

5* Connection with other dimension functions* Dimension
can be defined for more general classes of intervals, ^J? cf. [1], i.e.,
where ^ need not be closed under translations. It is known that
if ^ is the class of r-adic intervals, then the dimension H'(E) de-
termined by ^ coincides with the usual Hausdorff dimension H(E),
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as an easy application of Theorem 11 shows, taking

For which classes ^ does the dimension S(E), where

coincide with that determined by ^ ? More generally, for which
do there exist unbounded sets S, such that S(E) coincides with H\E)
determined by ^fi In general, the solution of these problems is not
known. Notice that for such classes ^ the dimension Hr{E) is neces-
sarily a translation invariant dimension, so that one might ask if this
property is also sufficient.

The author is indebted to Professor F. Bohnenblust for his advice
and guidance during the preparation of this paper, which formed a
part of the author's Doctoral dissertation submitted to the California
Institute of Technology.
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A CHARACTERIZATION OF PERFECT RINGS

VLASTIMIL DLAB

J. P. Jans has shown that if a ring R is right perfect,
then a certain torsion in the category Mod R of left ϋί-modules
is closed under taking direct products. Extending his method,
J. S. Alin and E. P. Armendariz showed later that this is true
for every (hereditary) torsion in Mod R. Here, we offer a very
simple proof of this result. However, the main purpose of this
paper is to present a characterization of perfect rings along
these lines: A ring R is right perfect if and only if every
(hereditary) torsion in Mod R is fundamental (i.e., derived
from "prime" torsions) and closed under taking direct products;
in fact, then there is a finite number of torsions, namely 2n

for a natural number n. Finally, examples of rings illustrat-
ing that the above characterization cannot be strengthened are
provided. Thus, an example of a ring R± is given which is
not perfect, although there are only fundamental torsions in
Mod Ri, and only 4 = 22 of these. Furthermore, an example
of a ring R2* is given which is not perfect and which, at the
same time, has the property that there is only a finite number
(namely, 3) of (hereditary) torsions in Mod i?2* all of which are
closed under taking direct products. Moreover, the ideals of
R2* form a chain (under inclusion) and Rad R2* is a nil idem-
potent ideal; all the other proper ideals are nilpotent and R2*
can be chosen to have a (unique) minimal ideal.

In what follows, R stands always for a ring with unity, ^f for
the set of all left ideals of R and Mod R for the category of all (unital)
left i?-modules and i?-homomorphisms. Given L e Jzf and pe R, L: p
denotes the (right) ideal-quotient of L by p, i.e., the left ideal of all
χ e R such that χp e L. We shall call a subset St~ of Jέ? a Q-set if
it is closed with respect to this operation, i.e., if KeSΓ and peR
implies K: pe JsΓ; obviously, £f and {R} are the greatest and the
least Q-sets, respectively. Thus, a topologizing idempotent filter
(briefly, a T-set) of left ideals of P. Gabriel [4] is a Q-set 3ίΓ satis-
fying, in addition to the filter properties, also the following "radical"
condition: If L is a left ideal of R such that L: tc e 3tΓ for every
element it of Ke JsΓ, then Le5ίΓ, as well.

By a torsion T in Mod R we shall always understand a hereditary
torsion; thus, a torsion T in Mod R is a full subcategory of Mod R
such that

(a) T is closed under taking submodules,
(b) for every M e Mod R, there is the greatest submodule (the Γ-

torsion part) T(M) of M belonging to T and
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(c) T(M/T(M)) = 0 for every MeUodR.
As a consequence, every torsion in Mod R is closed under taking
quotients, direct sums and inductive limits. There is a one-to-one cor-
respondence between the torsions in Mod R and the T-sets of left ideals
of R:

If JT" is a T-set, then the class T(3Γ) of all ^-modules whose
elements have orders from 3ίΓ is a torsion in Modi?; on the other
hand, if T is a torsion in Modi?, then the Γ-set 3Γ(T) = {L\LeSf
and R mod Le T) satisfies T = T[ST{T)]. Given an i2-module M, let
us always denote the Γ-torsion part of it by T{M).

Thus, given a torsion T, we can define the following two-sided
ideals Iτ and JT1Ξ±IT of R:

iτ= n L
LeJf(T)

and

JT\IT = T(R/IT) .

Using this notation, we can prove easily

PROPOSITION 1. The following four statements are equivalent:
( i ) A torsion T in Mod R is closed under taking direct products.
(ii) For every subset £f of

(iii) lτz3

(iv) JB = R.

Proof. The equivalence of (ii), (iii), and (iv) is trivial. Also the
implication (ii) —• (i) follows easily; for, the order of an element of a
direct product is evidently the intersection of the orders of its com-
ponents. Finally, in order to show that (i) —> (iv), we consider the
monogenic submodule of the direct product

Π RmodL

generated by the element whose components are generators of R mod L;
it is obviously ϋMsomorphic to R/Iτ.

PROPOSITION 2. Let every proper (i.e., Φ R) two-sided ideal J
of R satisfy the following condition: There is/cgj such that, for
every peR with pic £ J, there exists σ e R with σp/c = tc. Then every
torsion in Mod R is closed under taking direct products.
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Proof. Let T be a torsion and Jτ the two-sided ideal defined
above. Assume that Jτ Φ R. Thus, there exists K&JT with the
properties stated in our assumption. Since

Π L = ITQJT ,
Le3Γ(T)

there is Loe<βt~(T) such that /cgL0. Hence

LQ: iί — (Rtc Π Lo): /cQjτ:/c ,

and therefore Jτ: tee ̂ t~(T), in contradiction to the fact that R/Jτ has
no nonzero element of order belonging to J%Γ{T). Consequently, Jτ = R
and Proposition 2 follows in view of Proposition 1.

THEOREM A. If a ring R satisfies the minimum condition on
principal left ideals, i.e., if R is right perfect (cf. H. Bass [2]),
then every torsion in Mod R is closed undertaking direct products.

Proof. Given an ideal J Φ R, consider the (nonempty) set of all
principal left ideals which are not contained in J; take a minimal
element K of this set, K G K\J and apply Proposition 2.

REMARK 1. We can see easily that if R satisfies the minimum
condition on principal left ideals, then every ϋ?-module M has a non-
zero socle; the latter property is, in turn, obviously equivalent to either
of the following two statements:

( i ) Every monogenic ίί-module has a nonzero socle.
(ii) For every proper left ideal L of iϋ, there is peR\L such

that L: p Φ R is maximal in R.

Before we proceed to establish the characterization of perfect rings,
left us introduced the following convenient notation and terminology.
Denote by <W~ S -Sf the Q-set of all maximal left ideals of R (R itself
including). Obviously, for every WeW~, W Φ R, the subset

{W:p\peR}

is a minimal Q-set contained in 5^~. Denoting by W~ω, ωeΩ, all such
(distinct) minimal Q-sets, it is easy to see that {W^ \ o) G Ω) is a cover-
ing of W, i.e.,

Ύ/^ = U ^ ^ and S ^ l Π ̂ L - {22} for ω, Φ ω2
ωeΩ

Furthermore, for every Ωx S £?, put

ίt= n



82 VLASTIMIL DLAB

of course, W — Ύ/Ώ and y/^ω — cWm for each ωeΩ. Now, for every
Ω^Ω, denote the smallest T-set containing <W~Qχ by ^ i * . It can be
easily shown (cf. [3]) that ^ i * is the unique T-set ^-equivalent to

in the sense that, for every proper left ideal Le

{L:p\peR}ΠWΩl Φ {R} .

As a consequence,

π <%r

Let us call the torsions T(W~ω*)> (O e Ω, the prime torsions in Mod R
and, more generally, torsions T(Wl*) corresponding to the subsets Ω1

of Ω, the fundamental torsions (i.e., derived from prime ones) in ModR.
On the basis of the above characterization of the T-sets >^*, one

can derive very easily the following well-known

PROPOSITION 3. For any ring R, all the fundamental torsions
T(C%^1*) in Mod R are distinct and form a lattice ideal of the com-
plete lattice of all torsions in Mod R, which is isomorphic to the
lattice 2Ω of all subsets of Ω.

Proof. In order to complete the proof we need only to show that
every torsion T in Modiί contained in T ( ^ * ) is fundamental. But
this follows from the fact that the T-set 3ίΓ{T)^<W* is evidently
—equivalent to 3tΓ(T) Π Ύ/^ and since 3Γ(T) Π Ύ/^ — 2 ^ 0 for a
suitable ΩQ^Ω, we have, in view of the fact that there is unique T-
set ~-equivalent to Ύ^Ω,,

as required.

REMARK 2. We can see easily that the assertion that every torsion
in Mod R is fundamental is equivalent to the assertion that 5^~* = £?,
which in turn is equivalent to any of the statements of the previous
Remark 1 (for,

Now, let us formulate the following

THEOREM B. Let R be a ring such that every fundamental torsion
in Mod R is closed under taking direct products. Then iϋ/Rad R is
semisimple (i.e., artinian); in particular, Ω is finite.

Proof. For each ωeΩ, put

We 7/r
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and notice that the intersection

Rad R =
e Ω

is, according to Proposition 3, irredundant. For, W~ω* (for each ωeΩ)
and W* are the smallest T-sets containing Wl and Rad R, respectively.

In order to prove our theorem, it is sufficient to show that the
socle of i?/Rad R is the whole quotient ring i?/Rad R; for, i?/Rad R is
a ring with unity. First, observe that, in view of the fact that
Rad R e W *, the socle of jβ/Rad R is essential in iϋ/Rad R in the sense
that it intersect every nonzero left ideal of i?/Rad R nontrivially. Write

S/Rad R = Socle (Λ/Rad R)

with the two-sided ideal S^RadR of R and assume

Then, there is a (proper) maximal left ideal W of R such that

and, Weej^l1 for a suitable ωλeΩ. Moreover, clearly

Hence, since Π ^ β C is irredundant,

n wι Φ ( n wi) n ws1 = Rad R ;

on the other hand, since Rad i?§Ξ SgΞ Ή ^ ,

) S = Rad 22 ,
\ ω e β /

and thus

2 2 ,
ωeΩ

a contradiction.

The proof of the theorem is completed.

Now, the main result of the present paper, namely the character-
ization of perfect rings, follows straight forward from Theorem A,
Remarks 1 and 2, Theorem B and the fact that a (right) perfect rings
can be characterized as a ring 22 with unity such that every (left) 22-
module has a nonzero socle and that 22/Rad22 is artinian (H. Bass [2]):
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COROLLARY. A ring R is right perfect if and only if all torsions
in Mod R are fundamental and are closed under taking direct products.

In conclusion, let us remark that the above characterization can-
not be strengthened, even if we take into account the additional con-
dition that there is a finite number of fundamental torsions in Mod R
(the fact which is a consequence of our characterization). To show
this, we present the following two examples of rings (which can easily
be generalized):

EXAMPLE 1. Let N be the set of all natural numbers, F a field.
Denote by Rt = ir^^o, F) the ring of all countable "bounded" matrices
over F, i.e., the ring of all functions f:Nx N—>F satisfying the
condition that there is a natural number nf such that

f(i, j) = 0 for i Φ j , i > nf or j > nf

and

Ah i) = / ( % + 1, % + 1) for all i > nf ,

with matrix addition and multiplication. It is easy to verify that, for
every neN,

Cn = {f\feR1 and f(i, j) = 0 for j Φ n)

are minimal left ideals in R1 and that the socle

S= @Cn
neN

of Rι is a (two-sided) maximal ideal in RΣ; obviously, RJS = F. Further-
more, W[' = {S, Rλ} is a minimal ζ)-set of left ideals of Rλ. Also, for
every neN, the left ideals

Wn = {f\feR1 and /(i, n) = 0}

are maximal in Rλ and belong to the same minimal Q-set <W\'. It is
easy to see that the set of all maximal left ideals of RΣ

and that there are 4 torsions in Modi?, all of them fundamental, namely

0 = T({R}), T(3^*), Γ(^ς*) and ModR =

Only T(5^*) is not closed under taking direct products. Of course, Rv

is not perfect.

EXAMPLE 2. Denote by Q+ the set of all nonnegative rational
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numbers endowed with the usual order ^ . Let F be a field. Denote
by R2 = R(Q+, F) the ring of all functions f:Q+-+F such that the
support

Sup/ = {r I r e Q+ and f(r) Φ 0}

is contained in a well-ordered (with respect to ^) subset of Q+ which
has no finite limit point, with the addition and multiplication defined
by

• = fM + /2(r)

and

respectively.

It is a matter of routine to verify that R2 is a (commutative) ring.
Now, for every feR2, denote by rf the least nonzero rational number
such that f(rf) Φ 0. Moreover, for every t e Q+, denote by f{t) the
function of R2 defined by

(1 for r = t ,
f{t)(r) = -I

(O otherwise .

Now, we can see easily that, for every feRz,

where f(r) = f(r + τf) for r e Q + (and thus, r/ = 0). First, we are
going to prove the following

LEMMA. // fe R2 such that rf- — 0, then there is g e R2 satisfying

f*g =fi0) (= unity of R2) .

Proof. In order to ease the technical difficulties of the proof,
observe first that having a well-ordered subset S of Q+ with no finite
limit point, we can consider the subsemigroup S of Q+ generated by
S: S is again well-ordered and has no finite limit point. Hence, we
may consider, for a moment, that our function / is defined on a well-
ordered subsemigroup S of Q+ with no limit point and try to find g
defined on the same set S, i.e., with S u p ^ g S . Write

S = {ri}Γ=o with 0 = r0 < rx < r2 < . . < rn < .

Let us proceed by induction: Denoting by gx the function defined by
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UO) = [/(0)]-\ Urd = -[/(O)]-2-/^) and gt(r) = 0 otherwise,

we can see easily that

where

Sup gι <Ξ {ri}l=0 and Sup hL S {^i}T=2 .

Assuming that, for a natural n Ξ> 1, we have gneϋ2 and hneE2 with

Sup £n s W?= o and Sup λw S Wr= +i

such that

f*9n = / ( 0 ) + K ,

let us define

where

gn+1(rn+1) = — [7(0)]~1λ'Λ(
/rw+i) and ^%+1(r) = 0 otherwise .

Then,

and, writing

K+1 = K + f*gn+i ,

we can easily check t h a t

Sup hn+ι C {r<}Γ=»+2

For,

A»+iW = (f*gn+ύ(r) - o Σ r 7 ( % +i(r - ί ) - 0 for r < r % + 1

and

= K(rn+i) + 7(0)^+1(^+1) = Ki^n+i) - K(rn+1) = 0 ,

as required.
Finally, to complete the proof of our lemma, denote by g the function

defined by

_ {9i{r%) for r = ri9 i = 0, 1, .

(0 elsewhere .
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Then,

f*g=fm;

for, if i = 1, 2,

(f*g){n) = (f*[gt + (g -gdWi)

= (7*Λ)(n) + If* (5 - ϋMn)
= (fm + hiKrt) + [f*(g ~ Λ)](Λ )

= 0 + Σ /(ί)(σ - gt)(rt ~ t)

As a consequence, feR2 is a unit in R2 if and only if τf = 0.
Moreover, for every r 6 ζ)+, there exist two ideals

Tr = {f\feR2 and rf ^ r}

and

i r = {/|/ei22 and r ^ V } ;

these are all ideals of R2. Notice that,

J r c / r

and that

r, < r2 implies Ir^\ϊr2

in particular,

Jo = R2 and Io = Rad R2.

It is also easy to see that there are no divisors of zero injiZ/and that

(Rad R2Y - Rad R2 .

For, if /eRadi?2, then τf > 0 and obviously,

where

( i ^ for reQ+

here, both /«1/2>v> and ̂  evidently belong to Radi22.
Finally, given a positive rational number g, define

R2q = R2/Iq

(similarly, we can consider R2q = R2/Ϊq). It is easy to see that
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Rad R2q ~ I0/Iq

satisfies again

(Rad R2q)
2 = Rad R2q ,

but that every other proper ideal (which is isomorphic to either Ir/lq

or Ir/Iq for r ^ q) is nilpotent; besides,

Socle (R2q) ~ IJIq .

Thus, there are only three torsions in Modjβ2g, namely

0 - T({R}), T({R2q, Rad J?w}) and MoάR2q =

All of them are evidently closed under taking direct products; but, only
the first two are fundamental. And, R2q is not perfect.
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SOME EXAMPLES IN FIXED POINT THEORY

E. FADELL

It is known that the fixed point property (f.p.p.) is not
invariant under suspension and join in the category of simply
connected polyhedra. In this paper we exhibit examples to
show that f .p.p. is not invariant under suspension and join in
the category of simply connected polyhedra satisfying the Shi
condition and more strongly, in the category of simply con-
nected compact manifolds. We also exhibit a simply connected
polyhedron X such that the smash product X A X fails to have
f.p.p. if one choice of base point is used to form X A X, while
X A X has f .p.p. using another choice of base point. In the
last section we prove that f .p.p. is invariant under Cartesian
products in very special circumstances.

It is known that the fixed point property (f.p.p.) in the category
of simply connected polyhedra is not an invariant under cartesian pro-
ducts, smash products, suspension, join or homotopy type (Lopez [3] and
[1]). In all cases the counterexamples are based upon polyhedra which
fail to satisfy the Shi condition, namely that for each vertex v, dStv
(boundary of the star of v) be connected and the dimension is ^ 3 . It
is therefore natural to consider the behavior of f.p.p. in more restric-
tive categories. As suggested in [1], one should look at f.p.p. in the
following categories:

Sf\ Polyhedra satisfying the Shi condition.
^ 0 : Simply connected polyhedra in S?.
^ \ Compact topological manifolds, dimension 2:3.
^£'0: Simply connected manifolds in ^ .
In the categories Sf and ^£ f.p.p. is a homotopy type invariant.

In fact, if X is any compact ANR dominated by Y, where Y is in
S? or ^ , then Y f.p.p. implies X f.p.p. [1]. Thus the result, Y
f.p.p. implies Y x I f.p.p., is valid in the categories £f or ^£ even
though it is false for (simply connected) polyhedra in general.

The question

(1) X f.p.p., Y f.p.p. => X x Y f.p.p.?

in the categories Sf or ^ remains open. In § 4, we prove two very
special cases for the categories .9% and ^#V In § 2 we provide the
details of the examples announced in [1] which show that in ^ 0 and
^T o f.p.p. is not invariant under the suspension and join operations.
In § 3 we use one of the examples of § 2 to construct a simply con-
nected polyhedron X which has f.p.p. and with the curious property

89
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that with one choice of base point (α, a) the resulting smash product
X A X = X x XIa x X U X x a fails to have f.p.p., while constructing
X Λ X with another choice of base point preserves f.p.p.

2* Two examples* If F:X-+X is a self-map of a compact
connected metric ANR, then for any field A

(1) L(f; A) = y\(-l)k Trace fξ
k

is the Lefschetz number of / over A and L(f A) — L(f, A) — 1 is the
reduced Lefschetz number of over A. When A = Q, the field of ration-
al numbers, then L(f) = L(f, Q) is the usual Lefschetz number of / .
χ(X) and χ(X) = χ(X) — 1 will denote the Euler characteristic and
reduced Euler characteristic, respectively. All spaces in this paper will
be connected compact metric ANR's.

We will make use of the following simple lemma.

LEMMA 2.1. Suppose A is a field of characteristic p Φ 2 and X
and Y are spaces with the property that for every self-map f: X—•» X,
L(f; A) = 0 or 1 and every self-map g: Y—> Y, L(g, A) = 0. Then any
space W ~ X V Y has f.p.p.

Proof Let

(2) X-^->XvY-^X

( 3 ) ΓΛIVΓΛΓ

denote t h e n a t u r a l inclusions and r e t r a c t i o n s . T h e n , if φ X V Y—>
X V Y is a n y m a p , let / = r^ix and g = r2φi2. I t is easy to verify
t h a t

( 4 ) L(φ, A) = L(f A) + L(g, Λ) = 0 or 1 .

Therefore, L(φ, A) Φ 0. Thus, X V Y has the property that every
self-map φ has nonzero Lefschetz number over A. Since this property
is a homotopy type invariant, it follows that if W ~ X V Y, then W
has f.p.p.

LEMMA 2.2. If HP* is quaternionic protective 4-space, then for
every self-map f: HP*->HP\ L(f Zz) = 0 or 1.

Proof. Let t& denote a generator in H4(HP*; Z3). Then, if
f*(u) = an,

(5 ) L(/; Z3) = a + a2 + α8 + α4 = 0 or 1 .
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LEMMA 2.3. If SHP3 is the suspension of quaternionic projective
3-space, then for every self-map g: SHP3 —* SHP3, L(g; Z3) = 0.

Proof. Choose a generator v e H5(SHP3; Z3) such that Pιv and
P2v generate the Z3-cohomology in dimensions 9 and 13, respectively.
Pι is the mod 3 Steenrod reduced power operator. Now, if g: SHP3-+
SHP3 and g*(v) = bv,

( 6 ) L(g; Z5) = b + b + b = 0.

PROPOSITION 2.4. Any space W — HP' v SHP3 has f .p.p.

PROPOSITION 2.5. Let

K = HP'Ό.SHP3

denote the union of HP4 and SHP3 along an edge. Then, K is a
simply connected polyhedron which has f.p.p. and satisfies the Shi
condition. Moreover, χ(K) — 2.

REMARK. Kr — (HP* V SHP3) x I has the same properties as K.

PROPOSITION 2.6. The suspension SK and the join KoK fail to
have f.p.p.

Proof. Since χ(SK) = -χ(K) and χ(KoK) - -χ(K)χ(K), both
SK and KoK have Euler characteristic 0. Since SK and KoK satisfy
the Shi condition, both admit maps homotopic to the identity map
which are fixed point free [5].

THEOREM 2.7. The f.p.p. is not invariant under suspension and
join in the category S^o.

Our next example will verify the above theorem in the category

Let q: S 7 -^S 4 denote the standard Hopf fibering and let A —
B — M2(q) denote two copies of the mapping cylinder of q. Then if
h:S7-+S7 is a reflection (degree —1), where Sτ is identified with one
end of the mapping cylinder of q, we may represent the connected sum

( 7 ) M= HP2 # HP2

by

(8) M=AuhB.
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There is a natural "flip" map f:M—+M which takes A to B and B to
A and which is the reflection on S 7 = i ίl 5, where A and B are
identified with the appropriate subsets of M. It is easy to see that /
is a homeomorphism which preserves orientation. Furthermore, by
identifying S7 = A f] B we obtain an identification map

(9) g:M > HP2 V HP2

which allows us to compute the cohomology ring structure (^-coefficients)
as follows:

LEMMA 2.8. The cohomology of M = HP2 # HP2 is given by

H\M) = Z, generator 1

(10) H\M) = Z@Z, generators x, y

H\M) = Z, generator x2 = y2

with Hq(M) = 0 in the remaining dimensions and xy = 0.

THEOREM 2.9. M = HP2 # HP2 is a simply connected manifold
with f.p.p. which admits a map f of Lefschetz number L(f) = 2.

Proof. The natural "flip" map f:M-+Mdefined above has L(f) = 2
so that the last part of the theorem is easy. Now, let

(11) φ:M >M

denote an arbitrary map and suppose, using (10), that

<P*(x) = ax + by

φ*(y) = ex + dy .

Then,

(13) φ*(x2) - φ*(y2) = {a2 + b2)x2 = (c2 + d2)y2

and

(14) φ(xy) = 0 = (ac + bd)x2

which yields the conditions

(15) a2 + b2 = c2 + d2 , ac + bd = 0 .

Furthermore,

(16) L{φ) = l + a + d + a2 + b2.

We now consider individual cases.
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Case 1. a = 0, δ = 0. Here £(<?) = 1.

Case 2. a2 + δ2 =£ 0, (a, 6) ^ ( - 1 , 0). Using (15), we have

(17) a\a2 + δ2) - α2(c2 + d2) = d*(a* + δ2)

so that a = ±d. If α = -<Z, L(φ) = 1 + α2 + δ2 > 0. On the other
hand if a = d, L(φ) = (1 + a)2 + δ2 > 0.

Case 3. α = — 1, δ = 0. This case does not occur. To see this,
choose v e H\HP2) Z3) such that Pιv = v2. Then we may assume
g*(v) = x (over Z3) and P 1 ^ = x2 in iϊ4(ikf Z3). If ?>*(») = αx (over Z),
we must have

(18) φ^iP'x) = ^*(α;2) - α V = α2P^τ = α P 1 ^ = ax2

so that a2 ~ a (mod 3). This precludes α = — 1.
Thus, we see that for any map φ:M—*ikf, L(φ) Φ 0 and hence M

has f.p.p.

THEOREM 2.10. The f.p.p. is not invariant under suspension and
join in the category

Proof. Let M denote the manifold in the previous theorem and
f:M-+M the map with L(f) = 2. Then,

(19) Sf:SM >SM and fof:MoM >MoM

yield

(20) L(Sf) = -L(f) = -1 = -L(f)L(f) = L(fog)

so that

(21) L(Sf) = 0 = L(fof).

Since we are in the simply connected case, the Nielson number of Sf
(and fof) is zero. Therefore again using [5], Sf and f of can be
deformed to fixed point free maps so that SM and MoM fail to have
f.p.p.

3. The f.p.p. and smash product* Our objective in this section
is to show that there is a simply connected polyhedron X with f.p.p.
such that the smash product X Λ X = X x X/X V X has f.p.p. with
one choice of base point x0 e X while it may fail to have f.p.p. if one
employs another base point xLeX.

We will make use of the polyhedron
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(1) K = HPi{JISHP3

discussed in the previous section. If N = SHP2 and

( 2 ) X = K\J N= (HP'UjSHP") V SHP2

we will show that X A X fails to have f.p.p. if the base point xoeX
is chosen distinct from the wedge point veX. On the other hand, if
the wedge point v is employed to form X A X, then X A X retains
f.p.p.

THEOREM 3.1. If x0 Φ V, then

X A X = X x X/χ0 x X U X x Xo

fails to have f.p.p.

Proof. First we observe that since χ(X) = 0, L(id) = — 1, where
L is the reduced Lefschetz number. Since χ(K) — 1 (reduced Euler
characteristic) we see that X admits a map g such that L(g) = 1.
Thus, L(id A g) = L(id)L(g) = — 1, and we see that f — id A g is a
self-map of i Λ l with L(/) = 0. i Λ l is simply connected and
can be shown to satisfy the Shi condition (using the fact that
x0 x X U X x x0 fails to separate X x X). It follows that there is a
map g ~ f such that # has no fixed points. Thus, X A X fails to have
f.p.p.

We now show that using the wedge point v

(3) XAX^XxX/vxXuXxv

has f.p.p. Although the details are lengthy, the idea is quite simple.
X = K U N with K Γ) N = v, the wedge point. Using v as base point
in the formation of X A X yields

( 4 ) X A X = (K A K) V (K A N) V (N A K) V (N A N)

where the four-fold wedge on the right is understood to have a single
wedge point v' corresponding to v x X U X x v. Now, since f.p.p. is
invariant under the wedge operation, it suffices to show that the four
individual wedge factors KAK, KAN, NAK, NAN have f.p.p.

LEMMA 3.2. HP* A HP* has f.p.p. Specifically, for any self map
φ, L(φ, Zz) = 0 Or 1.

Proof. We will identify ff*(A Λ ΰ) with H*(A x B, A V B) ~
H*(A, a0) 0ff*(B, 60) using always field coefficients. Then, working
over Zz, H*{HPA) has a basis of the form
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( 5 ) 1, a, Pιa, P2a, a4

where Pi is the Steenrod reduced power operator. Then, we may
arrange a basis for H*(HP4 A HP4) in positive dimensions as follows:

a x a ax Pιa + Pιa xa ax P2a + Pιa x Pιa + P2a x a

Pιa x a Pιa x P'a - P2a x a -P2a x Pιa + Pιa x P2a

a x P2a Pγa x P2a P2a x P2a

a4 x a a4 x P1a a4 x P2a

ax a4 Pιa x a4 P2a x a4 .

a4 x a4

Notice that (for the first five rows) applying Pι and P2 to the first
column yields the second and third columns. This means that for a
self-map φ: of HP4 A HP4, L(φ, Zz) = λ4, where φ*(axa) = X(a x a).
This concludes the proof.

LEMMA 3.3. HP4 A SHP3 has f .p.p. Specifically, for any self-
map φ, L(φ, Zz) = 0.

LEMMA 3.4. SHP3 A SHP* has f .p.p. Specifically, for any self-
map φ, L(φ, Zz) = 0.

The proofs of these lemmas are modelled after the proof of Lemma
3.2 and consequently are left as exercises.

PROPOSITION 3.5. K A K has f .p.p.

Proof. Let Kf = HP4 V SHP\ then using the above lemmas every
self-map φ' of

(6, K ' Λ K '

has the property that L(φ, Z3) = 0 or l(using the technique in the proof
of Lemma 2.1). Since this property is a homotopy type invariant,
every self-map φ of K A K has L(<p, Zz) Φ 0. Thus, K A K has f.p.p.

LEMMA 3.6. HP4 ASHP2 has f.p.p. Specifically, for every self-
map φ, L(φ, Z2) = 0.

Proof. We may choose basis for the Z2-cohomology of HP4 and
SHP2, respectively, as follows

( 7 ) HP4:1, a, Sq4a, β, Sq4β
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(8 ) SHP2:1, u, Sq4u .

Then, we may arrange a basis (in positive dimensions) for the Z2-
cohomology of HP4 A SHP2 as follows

a x u ax Sq'u + Sq'a + Sq'a x u

Sq'a x u Sq*a x Sq*u

β x u β x Sq'u + Stf4/3 x u

Sq'β x w Sq'β x Sg%

where >Sg applied to the first column yields the second column. This
is enough to show that for every self-map φ, L(φ, Z2) = 0.

LEMMA 3.7. SHPZ A SHP2 has f.p.p. Specifically, for every self-
map φ, L(φ, Z2) = 0.

The proof of this lemma is similar to the proof of Lemma 3.6.

PROPOSITION 3.8. K A N has f .p.p.

Proof. K A N has the same homotopy type as

( 9 ) W = {HP' V SHP") A SHP2 = (HP' A SHP2) V (SHP" A SHP2) .

But by the previous lemmas, every self-map φf of W has the property
that L(φf, Z2) = 0 and hence every self-map of K A N has Lefschetz
number 1 (over Z2). Thus, K A N has f.p.p.

PROPOSITION 3.9. N A N has f.p.p.

Proof. Working with Z2 coefficients, a basis for the cohomology
of N = SHP2 has the form 1, u, Sq4u. A basis for the cohomology (in
positive dimensions) ofNAN can be written

u x u Sq'u x u + u x Sq4u

Sq'u x u Sq'u x Sq'u

where SqA applied to column one yields column two. This, given any
self-map φ of Λf, L(φ; Z2) = 0.

THEOREM 3.10. Using the wedge point v of X

XAX = XxX/vxX{jXxv

has f.p.p.
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4* Very special cases of the product theorem* Consider the
following property:

Property F: X is said to have property F if, and only if, L(f) Φ 0
for every self-map / : X—> JSΓ.

In terms of this property we recall the following theorem [1]:

THEOREM 4.1. If X belongs to ^ 0 or ^T o , then X has f.p.p. if,
and only if, X has property F.

Thus for spaces in S^o (or ^t0), the question of the invariance
of f.p.p. under Cartesian products (see (1) of § 1) is equivalent to the
question

(1) X and Y have property F =^ X x Y has property Ft

Our next theorem answers (1) in the affirmative under quite special
hypothesis. In the following we use rational singular cohomology.

THEOREM 4.2. Suppose X and Y are spaces having property F.
Suppose further that X has trivial cup products and X and Y have
disjoint cohomology, i.e., HP(X) Φ 0, Hq(Y) Φ 0, p, q >̂ 1, implies pφq.
Then X x Y has property F.

We will make use of the following lemma whose proof is left to
the reader.

LEMMA 4.3. Suppose ψ: X—> Y is a map and ψ0: Y—+Y is defined
by the diagram

X x 7 Λ l χ Y

Y JU Y

where σ is a section given by σ(y) = (x0, y), xoe X and π is a projec-
tion on the second factor. Then, for v e Hn(Y)

(2) ψ*(l x v) - 1 x ψ*(v) + E(v)

where E(v) is a linear combination of terms of the form a x b where
dim a ^ 1.

Proof of 4.2. Let <p: X x Y—>X x Y denote an arbitrary map
and let / and g be defined by the diagrams
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X x

Ί , Γ
x -ί-» x

X x y Λ l x Γ

where σx and σ2 are sections and πx and π2 are projections (see Lemma
4.3).

We choose bases 1 = ulf , uk and 1 = v19 , vx for the rational
cohomology of X and Y, respectively. Then, elements of the form
Ui x Vj form a basis for the cohomology of X x Y. If u and v are
typical basis elements, then using Lemma 4.3

φ*(u x 1) = f*(u) x 1 + E(u)

φ*(l x v) = 1 X g*(v) + J&(v)

where E(u) is a linear combination of terms of the form a x b with
dim 6 ^ 1 and E(v) is a linear combination of terms of the form α' x δ',
dim α' ^ 1. Suppose dim u = m and dim i; = w. Then

= f*(u) x g*{v) + E(u)(l x g*(v)) + (/*(%) X l)E(v) +

Now E(u) is a linear combination of terms of the form a x b where
dim a ^ m — 1 so that u x v cannot appear in the term E(u)(l x g*(v)).
Similarly, u x v cannot appear in the term (f*(u) x l)E(v). In E(u)E(v)
a typical term has the form

( 4 ) (ax b){a' x V) - ±αα' x bb'

where dim a ^ m — 1, dim 6 ^ 1 , dim a' ^ 1, dim br ^Ln — 1. If dim a ^ 1,
aaf = 0 so that (4) is 0. On the other hand if dim α = 0 then dim 6 = m.
Since dim % = m we see that 6 = 0 and hence (4) is 0 in this case.
Thus E(u)E(v) = 0. Thus, we see that φ*(u x v) and (/ x g)*(u x v)
have the same coefficient of u x v. Thus,

( 5 ) L(fxg) = L(f)L(g) = L(φ) Φ 0 .

THEOREM 4.4. Suppose X and Y belong to ^ 0 (or ^£Ό) and have
f .p.p. Then X x Y has f .p.p. if X or Y has trivial rational cup
products and X and Y have disjoint rational cohomology.
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EXAMPLE. Using Theorem 4.4, we see that CPι x SCP5 has f.p.p.
for i and j even, ί, j ^ 2. To prove that CPι has f.p.p., arrange a
basis for the Z2-cohomology of CPι in the form (i even)

( 6 ) 1, x19 Sq%, x2, Sq2x2,

so that for any self-map φ of CPί we have L{φ, Z2) = 1. Since Sq

commutes with suspension the same argument works for SCP\

Theorem 4.4 raises the following question:

QUESTION 4.5. If S I x 7 has f.p.p., does this imply that X x Y
has f.p.p.?

An affirmative answer to this question would settle the following
conjecture.

CONJECTURE 4.6. Suppose X and Y belong to S^o and X and all
its suspension have f.p.p. Then if Y has f.p.p., so does X x Y.

The technique used to prove Theorem 4.2 can also be used to
prove the following.

THEOREM 4.7. Suppose X and Y belong to S^ {or ^£Ό) and have
f.p.p. Suppose further that H*(X) is a truncated polynomial ring
on a single generator ueHk(X). Then, if Hk(Y) — 0, X x Y has
f.p.p.

EXAMPLE. CPί x HPj, where i is even (£, j ^ 2) has f.p.p. The
argument that HPj has f.p.p. goes as follows. First of all, if φ is a
self-map of HP5, then working over the rational field

( 7 ) L(φ) = 1 + a + α2 + + aj

where φ*(u) = au, u a generator in H\HPj). Of course, if j is even
we're done, since L(φ) Φ 0 in this case. If j is odd, j ^ 3 we need
only preclude the case a = — 1. Working over Z3, we may assume that
Pιu = u2 in H8(HPj; Z3). This forces

( 8 ) a2 = a (mod 3)

which precludes a = — 1.

REMARK. G. Bredon was the first to observe that HP3 has f.p.p.
using the above argument.
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TANGENTIAL CAUCHY-RIEMANN EQUATIONS
AND UNIFORM APPROXIMATION

MICHAEL FREEMAN

A smooth (ί^0 0) function on a smooth real submanifold M
of complex Euclidean space O is a CR function if it satisfies
the Cauchy-Riemann equations tangential to M. It is shown
that each CR function admits an extension to an open neigh-
borhood of M in O whose ^-derivatives all vanish on M to a
prescribed high order, provided that the system of tangential
Cauchy-Riemann equations has minimal rank throughout M.
This result is applied to show that on a holomorphically convex
compact set in M each CR fuction can be uniformly approxi-
mated by holomorphic functions.

1* Extension and approximation of CR functions* Each point
p of a smooth real submanifold M of Cn has a complex tangent space
HPM. It is the largest complex-linear subspace of the ordinary real
tangent space TPM; evidently HPM = TPM n ίTpM. Its complex dimen-
sion is the complex rank of M at p. The theorem of linear algebra
relating the real dimensions of TPM, ίTpM and their sum and inter-
section shows that if M has real codimension k its complex rank is
not less than n — k.

DEFINITION 1.1. M is a CR manifold if its complex rank is con-
stant. It is generic if in addition this rank is minimal; that is, equal
to the larger of 0 and n — k. A smooth function / on M is a CR
function if ker dpf ID HPM for each p in M.

Here / is assumed to be extended in a smooth manner to an open
neighborhood of M and dpf is regarded as the conjugate complex-linear
part of the ordinary Frechet differential dpf. Since the condition on
dpf is independent of the extension chosen, the definition makes sense.
Computational equivalents to it and some elaboration are given in § 2.
A more comprehensive treatment of these ideas is found in the paper
by S. Greenfield [1]. It should be mentioned that his definition [1,
Definition II. A. 1] of CR manifolds also requires that the distribution
p —• HPM be involutive. That assumption is not needed here.

If M is a complex submanifold of Cn, then it is CR with complex
rank equal to its complex dimension. It is not generic if it has posi-
tive codimension. Of course the CR functions on M are just its holo-
morphic functions.

At the other extreme, every real hypersurface is a generic CR
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manifold of complex rank n — 1. These frequently have no nontrivial
complex submanifolds, which is true for example of the usual 2n — 1
sphere in C\

M is a generic CR manifold if its complex rank is everywhere
zero, which is the totally real [5] case.

An example of a proper generic CR submanifold which is neither
totally real nor a hypersurface can of course only be found if n ^ 3.
There is one in C3, a 4-sphere S4 given as the intersection of the usual
5-sphere and a real hyperplane transverse to it. Let

ft = I Si I2 + I z21
2 + I z51

2 - 1

and p2 — zz + z3, where z19 z2, z3 are the usual coordinates for C3, and
let S* = {ft = ρ2 = 0}. It follows from (2.2) below that S 4 has the
requisite properties. Furthermore, S 4 has no nontrivial complex sub-
manifolds (since the 5-sphere does not).

THEOREM 1.2. If f is a CR function on a generic CR manifold
M in Cn and m is a nonnegative integer, then there is an extension
of f to a smooth function fm on an open set U z> M such that dfm

vanishes on M to order m in all directions.

This result is known [3, Lemma 4.3] and [5, Lemma 3.1] when
M is totally real. It is also proved in [2, Th. 2.3.2'] when M is a
real hypersurface. A local version which does not require that M be
generic is proved in [5, Lemma 3.3].

Theorem 1.2 plays a key role in a program outlined by L. Hormander
for showing that CR functions can be uniformly approximated by
holomorphic functions. The basic idea is to take a compact set K in
M and a given CR function f on M and find a solution g of dg = df
with sup*: I g \ small. Then u — f — g is holomorphic and approximates
/ uniformly on K with error no larger than sup^ \g\.

In Hόrmander's implementation of this idea, Theorem 1.2 implies
that a certain bound on an L2 norm of the Sobolev type is imposed
on dg. The existence of solutions to dg = df subject to the same a
priori bound [2] and a Sobolev inequality are used to estimate supA- \g\.
This proof appears in [3] and [5] for the cases cited above. Since the
only step of it which depends on the complex rank of M is the con-
clusion of Theorem 1.2, this proof will, without further modification,
yield a result on uniform approximation.

THEOREM 1.3. If M is a closed generic CR submanifold of a
domain of holomorphy U in Cn and K is a compact subset of M
holomorphically convex with respect to U, then each smooth CR func-
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tion on M is a uniform limit on K of functions holomorphic on U.

In fact, the same method in conjunction with Theorem 1.2 will
prove the stronger statement that approximation holds in the < °̂°
topology; c.f. [5, Th. 6.1]. One merely replaces s u p x | # | by a ^ k

norm of g on K.
In the totally real case, it is known that the holomorphic con-

vexity of any given compact subset K with respect to some domain
of holomorphy is a consequence of the absence of complex tangent
vectors. This follows from the fact [3, Th. 3.1] and [5, Corollary 4.2]
that each K has arbitrarily small tubular neighborhoods which are
domains of holomorphy. However, the case of the 2^ — 1 sphere in
Cn shows that in the presence of complex tangent vectors holomorphic
convexity must be assumed. When there is complex tangency, the
problem of determining holomorphic convexity of a given compact sub-
set of M is very difficult, even for the examples mentioned above.

It should be remarked that in Definition 1.1 and Theorem 1.2 C*
may be replaced by any complex manifold, and if this manifold is
Stein [2], it may replace U in Theorem 1.3. No significant modifica-
tion of the exposition is required.

2* CR manifolds and functions. Each real-linear map L: Cn —*
C7; is uniquely expressible as a sum L = S + T where S, T: C%—>Cfc, S
is complex linear, and T is conjugate complex linear. If J:v—+iv, a
direct computation shows that S = i(L — JLJ) and T = i(L + JLJ).
Applying this result to the Frechet differential dpp of a smooth map
p: Cn —• Ck at p there results

dpρ = dpρ + dpp

in which dpp is the complex linear part of dpρ and dpρ the conjugate
complex linear part.

Each point of M has an open neighborhood U in Cn on which there
exists a smooth map p = (ply , ρk): U—* Rfc with maximal rank k on
U and satisfying

(2.1) Mf]U= {ze U:p(z) = 0} .

Regarding Uk as contained in Cfc in the usual way, and applying the
remarks above to Definition 1.1, it follows that M is CR if and only
if dp has constant complex rank on M Π U, and is generic exactly when
this rank is maximal. When k^n this means that HPM = 0, which
is the totally real case. The case of interest here is k ^ n, when M
is generic if and only if dp has complex rank ί onilίΠ U. Henceforth,
it is assumed that k ^ n. Since it is clear that dp = (dply , dρk) it
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follows that the condition

(2.2) dp, A Λ dρk has no zeros on M Π U

is necessary and sufficient that M be a generic CR manifold.
From Definition 1.1 and (2.2) it follows that a smooth function /

on M is CR if and only if

(2.3) df A dp, Λ Λ dpk = 0 on M.

Equivalently, since {dply •••, dpk} is, at points of M, by virtue of (2.2)
part of a basis for the space of conjugate-linear functional on Cn,
there exist smooth functions h19 , hk on U such that

(2.4) df = Σ Mft +
i=i

Here O(/0) denotes a form which vanishes on M Π ί7. It is a standard
result [4, Lemma 2.1] that if g is a smooth O((o)-form there exist
smooth forms g19 , gk such that

(2.5) g = Σ Λ Λ

More generally, O(ρm) will denote a smooth form on U which vanishes
on M n U to order m. Induction on m using (2.5) shows that if g is
such a form there are smooth forms ga on U satisfying

(2.6) g - Σ r # « ,

in which the standard multi-index notation has been used. Thus
a = (aλ, , ak) is a /c-tuple of nonnegative integers, | a \ — α\ + + ak,
and ρa = pV Plk The coefficients ga are not unique on [7, but the
fact that they are determined on M Π U will be essential.

LEMMA 2.1. If smooth forms g, ga are related on U by

9 = Σ P°9a + O(pm+1)

/or βαcfe α, Dag \ M Π Z7 = ^!^α ilί" Π ί7. In particular, if g = 0
[/ ί/iew eαcΛ grα I i f Π Ϊ7 = 0.

Here Da = Df1- D?fc, where D, denotes differentiation with re-
spect to ^ and a\ = α j <zΛ!.

Proof. The statement is local and since ^ has rank fc, the proof
can be reduced to the case where each pά — xd, the jth ordinary
Euclidean coordinate function. Then the lemma follows from the gen-
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eral Leibniz formula

with / = x", noting t h a t Drxa = 0 on Mf]U if 7<a and Daxa = a\.

Here (*z) — otl/yl(a — 7)1 and 7 < a means t h a t y3- < aά for some j .

3* Proof of Theorem 1.2. The proof is an induction on m in
which fm+1 is obtained by subtraction of an O(pm+1) function from fm.
Similar procedures have been used in [2, Th. 2.3.2'], [3, Lemma 4.3],
and [5, Lemmas 3.1 and 3.3]. The one used here borrows ideas from
all of these. Since the totally real generic cases where k ^ n are
treated in [3] and [5], it will be assumed that k ^ n. However, the
proof below can be read with k >̂ n, with some slight modifications.

In the presence of complex tangent vectors, the only known result
is local in nature [5, Lemma 3.3]. Its proof refers to a particular
local coordinate system for Cn and uses an initial extension fQ which
is independent of the coordinates normal to M. This feature is clearly
not preserved by the patching construction intended here, so an arbi-
trary extension of / must be admitted at each step. This introduces
remainder terms of the form O(pm), and it is necessary to keep an
accurate account of their effects.

To begin the induction, extend a given CR function / from M to
a smooth function f0 on an open set U~D M.

First assume that the representation (2.1) holds on U. Then 3/0

is of the form (2.4) and if u = Σ*=i P3 hd it is clear that 3(/0 -u) = O(ρ).
In general U has a locally finite cover by open sets UL on each

of which there exists a defining function ρL presenting M f] UL as in
(2.1) and a O(pL) function ut satisfying 3(/0 — uL) = O(pt) on Ut. If
{φL} is a partition of unity subordinate to {UL} and

(3.1) u = Σc ΦM

then

(3.2) 3(/0 - U) = Σc φβ(fo - U) - Σ t ^dφL .

By construction each term of either sum in (3.2) vanishes on M. There-
fore so does 3/j. if f1=f0 — u.

For the inductive step assume that m > 0 and / has an extension
fm to U such that dfm vanishes on M to order m. A global modifi-
cation of fm will again be obtained by patching local ones, so the
construction is again begun by assuming that M is globally presented
by (2.1).
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Then by (2.6) there are smooth (0,1) forms ga such that

\a\-m

Hence

(3.4) 0 = 9a/m = Σ Σ <*sP"-*dpi Λga +
| α | = m 3=1

in which a — j denotes (al9 , aό — 1, , ak) if a3- > 0. Wedge this

equation with dp, A Λ dρό A Λ 9 ^ Φρό is missing) to show
that for each j

(3.5) 0 = Σ ajpa-idp, A Λ dpk A ga + O(pm) .
\a\=m

Now for fixed j , the map a —>α — j is a one-to-one correspondence
of {a:\a\ = m and a:,. > 0} with {β: \ β | = m - 1}. Therefore (3.5)
may be rewritten as

0 - Σ (βj + l)P

βdPl A Λ dpk A gβ+j + O(ρm)
\β\=m-l

and Lemma 2.1 applied to deduce that gβ+j A dp, Λ Λ dpk = 0 on
ilf. Since this holds for every j and β, it follows from the linear
independence of dPl, , dpk on ikf that for each a, \ a \ = m, and each
j , 1 ^ i ^ ^̂  there is a function fcαi such that

(3.6) ga = Σ /^ft- + O(^) .

When substituted for ga in (3.3) and (3.4) this relation yields

(3.7) dfm= Σ Σ PahajdPj + C K ^ 1 )

and

(3.8) 0 = Σ . Σ ajp
a-jhaιdρj A dp, -

α | = m * , ί = l

The expression (3.7) suggests modifying fm by

1 k

<y^ :=z \Λ \Λ QaQ .fo .
Ύl + 1 l«|=m j = l

(the need for the constant l/(n + 1) will appear as a consequence of
(3.11)). Now

(3.9) (n + l)du = Σ PahajdPj + Σ Σ pjOCiP^Kβp, + Σ PaPβKj
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The first term of this is dfm. The second is

(3.10) Σ PJ( Σ aφ^
ij l \ | |

which will be shown to equal ndfm + O(pm+1).
To that end, for each i < j , wedging (3.8) with

dp, A Λ dpi A Λ dpj A Λ dpk

(dpi and dp3- are missing) gives the symmetry relation

(3.11) 0 - Σ (ajpa-jhai - aφ^Kj) + O(pm) .
\a\=m

Using this in (3.10) it becomes

Σ Λ ( Σ <χsP°-> ha%)dPi + O(p^)
i,j = ί \\a\=m J

which when the summation over j is performed first is

Σ iL
\a\ —m i = i

Noting that Σy=i aj = n completes the argument that the second term
of (3.9) is ndfm + O(ρm+1). Therefore du = dfm + O(ρm+1).

Thus on each UL there is a function uL = 0{ρT+ι) such that
3(/« - We) I Ut = O(p?+1). With u defined again by (3.1) and fm+ί = fm - u
it follows as before from (3,2) that dfm+ί vanishes on M to order m + 1.
This completes the proof.

4* Remarks* We know of no nongeneric examples where Theorem
1.2 fails. However, when M is not generic, the above proof breaks
down at the inductive step from m = 1 to m — 2: Since dp does not
have maximal rank it may be assumed that there is an integer I < k
such that dpι A Λ dpt has no zeros on M but dp, A Λ dp3- = 0
on M if j > I. Thus there are more unknowns ga than equations avail-
able from (3.4). There are very simple cases where this occurs:

EXAMPLE 4.1. If the usual coordinates of C2 are denoted zL, z.z

and M = {z: z2 = 0} then the function / = z2zλ is CR, for df = zΛz^
The most general function u vanishing to second order on M is by
(the complex analogue of (2.5)) of the form

w = z\gγ + z2z2g2 + z\gz

for suitable smooth functions gλ1 g2, and g3. Therefore

du = ztdg, + z2g2dz2 + z2z2dg2 + 2z2gβz2 + z$gz .
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Each of these terms either vanishes to second order on M or is line-
arly independent of 3/. Therefore no such u will satisfy d(f — u) —
O(p2).

However since / is zero on M, it obviously satisfies the conclusion
of Theorem 1.2. In fact, if M is a complex manifold, each CR func-
tion / is holomorphic, so if U is a domain of holomorphy Theorem 1.2
for U and M f] U follows from Cartan's Theorem B [2], which implies
that / has a holomorphic extension to U. Moreover, standard results
in several complex variables show that Theorem 1.3 is true for any
complex manifold M. Thus Theorem 1.2 and a consequent Theorem 1.3
may still hold in the nongeneric case, but some new ideas for proof
are necessary.
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TORSION CLASSES AND PURE SUBGROUPS

B. J. GARDNER

In this note we obtain a classification of the classes J?~
of abelian groups satisfying the following closure conditions:
( i ) If {Aμ \ μeM} Q ^~9 then J7~ contains the direct sum

ΣΛ.
For a short exact sequence

(*) 0—>A—>B—>C—>0

(ii) CejT" if J5
(iii) £e j^~ if A,
(iv) A ej^~ if Be^~ and (*) is pure.

Classes satisfying (i), (ii) and (iii) are called torsion classes (of
abelian groups) and were first studied by Dickson [2], who classified
those which contain only torsion groups and showed that the general
classification problem reduces, essentially, to that for torsion classes
determined (in the sense of § 2 below) by torsion-free groups. The
torsion classes which are closed under taking subgroups (called strong-
ly-complete Serre classes) can be described quite simply ([1], [2], [10]).
A possible approach to the general problem is to investigate torsion
classes closed under taking the subgroups corresponding to proper
classes of monomorphisms as used in relative homological algebra (see
for example [8], pp. 367 et seqq.), and herein lies the motivation for
the present paper.

1* Notation* "Group" means "abelian group" throughout. h(x)
denotes the height of an element of a torsion-free group τ(x) its type
and τ(X) the type of a rational group X. An S-group, where S is
a set of primes, is a group whose elements have orders belonging to
the multiplicative semigroup S* generated by S. A group A is p-
divίsible for a prime p if pA — A and S-divisible if p-divisible for
each p e S. ^~0, J^o are the classes of all torsion and torsion-free
groups respectively. For a group A, At is the torsion subgroup, Ap

its p-primary component. The direct sum (or discrete direct sum) of
a set of groups {Aμ | μ e M) is denoted by Σ Aμ, the direct product
(or complete direct sum) by Σ * A^ and an element of either by (aμ).
[A, B] is the group of homomorphisms from a group A to a group B.
If a is an element of a torsion-free group A, [a] denotes the cyclic sub-
group it generates, [a]* the smallest pure subgroup containing it. Z
is the group of integers, Q the (additive) group of rational numbers,
Z{p) the cyclic group of order p, Zip00) the quasicyclic p-group. For
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a set S of primes, Q(S) is the subgroup {m/n | m e Z, n e S*} of Q and
for a prime p, Q(p) = {m/pn | m, n e Z, n ^ 0}. /^ is the group or ring
of p-adic integers.

For unexplained terms see [4].

2* Torsion classes* We begin by listing some properties of torsion
classes for later use.

For a class cέ? of groups we write T(c^) for the torsion class
determined by if, i.e. the smallest torsion class jf with i f Q J7~
but if i f has a single member C, T(C) rather than T({C}) will be used.

Tl. A e T(if) if and only if [A, B] = 0 whenever [C, B] = 0 /or
all Ce<df. [3].

is also the lower radical class determined by if, in the
sense of Kurosh [7]-ShuPgeifer [9], so by the simplified version of the
Kurosh construction which applies in an abelian category, we obtain

T2. A e T(^) if and only if every nonzero homomorphic image
B of A has a nonzero subgroup which is a homomorphic image of
some C e if, i.e., [C, B] Φ 0.

A torsion class <^~ will be called a t-torsion class if it contains
only torsion groups.

T3. Let Su S2 he disjoint sets of primes and let J7~ be the class
of all groups of the form Aγ 0 A2, where Aι is an Srgroup and A2 a
divisible S2-group. Then ά?~ is the t-torsion class

T({Z(p)\peS1}Ό{Z(p-)\peS2}).

Any t-torsion class is uniquely represented in this way. [2].

T4. Let ^7~ be a torsion class and p a prime. Then either
or every group in J7~ is p-divisible [2].

PROPOSITION 2.1. If J7~ is a torsion class containing a torsion-
free group A, then Z(p°°) e ̂ 7~ for every prime p.

Proof. If Z(p)e^~, then J7~ contains all ^-groups (T3); if not,
then A is p-divisible, so τ([a]*) ̂  τ(Q(p)) for any nonzero aeA. Thus
A/[a] has a subgroup and therefore a direct summand isomorphic to
Z(p°°), i.e. Zip™) is a homomorphic image of A.

T5. A torsion class J^~ contains a group A if and only if At
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and A/Ate^ [2].

T6. Any torsion class J7~ satisfies the equality

jr- - τ([^- n ^Ό] u [ y n J ^ 0 ] ) .

12].

T7. T(Q(S)) is the class of S-divisible groups, for any set S of
primes. (Cf. [2], Proposition 4.1.)

3* A simplification of the problem* As a first step, we show
that every torsion class closed under taking pure subgroups is either
a ^-torsion class or is determined by rational and torsion groups. A
class of the latter kind will be called an r.t.-torsion class.

PROPOSITION 3.1. All t-torsion classes are closed under taking
pure subgroups.

Proof. Let Slf S2 be disjoint sets of primes. If A1 is an S^-group
and A2 a divisible S2-group, then clearly any pure subgroup of Aλ φ A9

is the direct sum of an S^-group and a divisible S2-group.

THEOREM 3.2. A torsion class J7~ is closed under taking pure
subgroups if and only if ^7~ (Ί ̂ "Ό is.

Proof. Let A' be a pure subgroup of A e ^ Γ , and consider the
induced diagram

0 0

-> A'/Aί

J
0 >At > A > A/A, •

I
with exact rows and columns, where g is defined by g(a' + A!t) =
af + At. Af

t is pure in A! and hence in A. Therefore A!t is pure in At

so by Proposition 3.1, A't e ̂ ~ Π ̂ Ό - The kernel of g is A' Π AtjA[ = 0.
If, for some nonzero n e Z, a' e A' and α e i we have g{af + A't) =
n(a + At), then m(α' — no) = 0 for some nonzero me Z, i.e. mα' = mna.
Since A' is pure in A, there exists α" e A' with mα' = mna". But
then #(α/ + A!t) = ng(a" + A't), so that ^ is a pure monomorphism.
Thus if ^~ Π ^^o is closed under taking pure subgroups, A'/A't e J7~ Π
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so Af e JT' and ̂ ~ is therefore closed under taking pure subgroups.
The converse is obvious.

THEOREM 3.3. If a torsion class J7~ is closed under taking pure
subgroups, then

n J^Ό] u ^W=)

where ^ is the class of rational groups in ^~.

The proof uses the following lemmas:

LEMMA 3.4. For JZΓ and ^Γ as in Theorem 3.3, ^7~ Π J^Ό =

τ(^ n

Proof. Clearly ^~ n J^o 3 TζW) Π ̂ "Ό Let A be any group in
^~ Π ̂ ~o Then A is a homomorphic image of ]£ [α]* where the sum
extends over all ae A and each [α]* e ^ " , so Ae

LEMMA 3.5. For any two classes ί^Ί, ̂ 2 of groups,

γ\ U

To complete the proof of Theorem 3.3, we observe that

oJ U [*J/ Π J?* Λ) = T(\jy Π Js (Λ U \T(J/ ) Π

Π J^o] U T(j^~)) = TCίj^ Π ̂ ^λ U j^7") £ ^ "

We conclude this section by showing that not every r.t. torsion
class is closed under taking pure subgroups.

PROPOSITION 3.6. Let j^Γ be a torsion class closed under taking
pure subgroups and Γ the set of types of rational groups in a?~. If
T, δ e Γ, then 7 f] δ e Γ.

Proof. Let X and Y be rational groups with τ(X) = y and
τ(Y) — δ. Then I © 7 has elements and therefore pure rational sub-
groups of type 7 Π δ.

Thus for example if p and q are distinct primes, T({Q(p), Q(q)}) is
not closed under taking pure subgroups since τ(Q(p)) Π τ(Q(q)) = τ(Z)
and [Q(p), Z] = 0 = [Q(q), Z\.

4* The main results* In this section we obtain an explicit char-
acterization of the torsion classes closed under taking pure subgroups.

LEMMA 4.1. Let X be a rational group and S = {p prime | X is
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p-divisible}. Then IpeT(X) whenever pgS.

Proof. Let P be the set of primes distinct from p. Then
Ipe T(Q(P))(Ύ7). Also, there is a short exact sequence

0 > X >Q(P) > Σ Z(<Γ) > 0

where q ranges over P — S. Since Σ Z(Q°°) G T(X)(Proposition 2.1), it
follows that T(X) contains Q(P) and hence Ip.

The main result can now be stated.

THEOREM 4.2. A torsion class J7~ is closed under taking pure
subgroups if and only if either

( i ) J7~ is a t-torsion class
or ( i i) J^~ = T({Z(p) \peP} U {Q(S)}), where P and S are sets of
primes with P §Ξ S.

The proof of Theorem 4.2 will be accomplished in several stages.
We first prove

LEMMA 4.3. Let {Xμ \ μ e M) be a set of rational groups. Let
A = Σ Xμ and S = {P prime \ A is p-divisible}. Then T({Xμ \ μ e M})
contains Σ *^> i = 1, 2, 3, , where each A* = A.

Proof. Let / : Σ *^% ^ ^ be a nonzero epimorphism. We show
that [Xμ, Y] Φ 0 for at least one value of μ.

If Yp Φ 0 for some p, then since Y is S-divisible, so is Yp. If
p e S, Yp is therefore a direct sum of copies of Z(p°°) so by Proposi-
tion 2.1, Yp e T(Xμ) for each μ and a fortiori [Xμ, Y] Φ 0 for all μ.
If pίSj then at least one Xμ is p-reduced, whence [Xμ, Yp] Φ 0.

If Y is torsion-free, there are two possibilities. If /((α^) Φ 0 for
some (αj with almost all α< = 0, then / induces a nonzero map from
some Λi, and hence from some Xμ, into Y, while if /((α<)) = 0 when-
ever α̂  = 0 for almost all values of i, then / factorizes as

Σ * A. JL^ Y

where the other maps are epimorphisms. Σ*^.;/Σ^.; is algebraically-
compact (see [6]), and also torsion-free, since Σ ^ i s a P u r e subgroup
of Σ * -A< Thus Σ * -A</Σ -A< is the direct sum of a divisible group and
a (reduced) cotorsion group [5]; so, therefore, is Y, which being torsion-
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free is algebraically compact [5]. Since Y is S-divisible, it has the
form D 0 Σ * Rpi V & S where each Rp is inter alia a reduced Zp-module
and D is divisible. If D Φ 0 then for each μeM there are monomor-
phisms Xμ -» Q -+ D. If D = 0, let Rp Φ 0. Then at least one Xμ is
p-reduced, so by Lemma 4.1, Ip e T(Xμ). Since there is an epimorphism
(an Ip-epimorphism) from a direct sum of copies of Ip to Rp, we have
Rp e T(IP) S T(Xμ), so [XΛ, i?^] ^ 0 and the proof is complete.

The next step is to show when T({Xμ | μ e M}) is closed under taking
pure subgroups.

LEMMA 4.4. With the notation of Lemma 4.3, if T({Xμ \ μ e M})
is closed under taking pure subgroups, it contains Q(S).

Proof. Let p19 p2, p3, be the natural enumeration of the primes,
and let J = {i \ pt 0 S}. For each j e J, choose a5 e A with hά{aά) — 0,
where hs denotes height at pά. For example, let ai = (xjμ) with xjμ e Xμ

satisfying the following conditions: (i) xjλ Φ 0 for some λ e M for which
Xλ is p rreduced; (ii) hό(xάλ) = 0; (iii) xjμ = 0 for μ Φ λ. For a natural
number ί&J, let a{ be an arbitrary element of A, and regard the
resulting (α )̂ as an element of a group X* Aίf i = 1, 2, 3, . Then
h{{ai)) = f|Γ=i ^ ( ^ ) . In particular, /^((α*)) = 0. Therefore, since Σ * ̂ .
is S-divisible, the height of (α )̂ at a prime p is infinite if p e S and
zero otherwise, i.e., τ((ai)) = τ(Q(S)) and Σ * Ά* has a pure subgroup
isomorphic to Q(S). By Lemma 4.3 and assumption, therefore,
Q(S)eT({Xμ\μeM}).

Since each Xμ is S-divisible and T(Q(S)) is the class of all in-
divisible groups (T7) we have

COROLLARY 4.5. TΓiίA the notation of Lemma 4.3, ΐ/ T({Xμ \ μ e M})
is closed under taking pure subgroups, it is the class of all S-divisible
groups.

Proof of Theorem 4.2. Let J7~ be a torsion class closed under
taking pure subgroups. If J7~ is not a ί-torsion class, let Γ be the
set of types of rational groups in ^ and for each y e Γ let Xr be a
rational group of type γ. Then

n J^Ό] U {Xr I Ύ e Γ}) (Theorem 3.3)
and ^" n ^ Ό = ^({^r I T e Γ}) Π ̂ Ό (Lemma 3.4).

By Theorem 3.2, T({Xr | 7 e Γ}) is closed under taking pure sub-
groups and therefore, by Corollary 4.5, is the class of all S-divisible
groups, where S is the set of all primes dividing X, Xr. Thus
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n ^~o] U {Q(S)}). Let P = {p e S | Z(p) e J Π Since T(Q(S)) S
contains the groups Z(p°°) for all primes p as well as Z(p) for

primes pgS. Thus by T3 and Lemma 3.5

^ = T({Z(p) \pϊS}{j {Zip) \peP}{j {Z(p~) | all p} U {Q(S)})

= T({Z(p)\peP}{J{Q(S)}).

Conversely, that any class j ^ ~ - T({Z(p) \ p eP} U {Q(S)}) with
P £ S is closed under taking pure subgroups follows from Theorem
3.2, Lemma 3.4 and the observation that T(Q(S)) is closed under taking
pure subgroups. By Proposition 3.1, the proof is now complete.

Note that by Tl, for a torsion class ^ which is not a ί-torsion
class, the representation ^~ = T({Z(p) \ p e P) U {Q(S)}) is unique. We
conclude with a characterization of the groups in such a class:

PROPOSITION 4.6. A group A belongs to ^ = T({Z(p) | p e P} U {Q(S)})
where P and S are sets of primes with P S S, if and only if there
is a short exact sequence

0 > A! > A > A!' > 0

where A! is a P-group and A!r is S-divisible.

Proof. Let A e ^~ and A = X Ap where the sum extends over
all peP, A" = A/A'. Then A" has no P-component and belongs to
^"(T5) so therefore has divisible S-component. Thus A" is S-divisible.
A" I A" is torsion-free and belongs to ^ " . If not S-divisible, it has a non-
zero S-reduced torsion free homomorphic image B. But then B e J^Γ
and [Q(S), B] = 0 = [Z(p), B] for each peP and this contradicts Tl,
so A" I A" is S-divisible, whence A" is also. The converse is obvious.
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BOUNDS FOR THE SOLUTIONS OF A CERTAIN CLASS

OF NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS

VlNOD B. GOYAL

This paper is a study of boundedness and other properties
of the solutions of nonlinear partial differential equations of
the form

(1.1) Δu = P(xu %2, , xn)f(u)

where P(xi, X2, , xn) is positive, and u(xu %z, xn) is to be
defined in some region of Euclidean w-space, and Δu =
ΣΓ=i d2ul®χ2i is the Laplacian of u. In particular, we con-
sider the case f(u) = eu.

Our principal result is concerned with the nonexistence
of entire solutions. An entire solution u = u(xu x2, , xn)
will be defined as a solution which though continuous for
0 5ΞΞ r < oo is twice continuously differentiate for 0 < r < oo.
Other results are concerned with the general form of and
explicit bounds for solutions.

In the literature on the subject [3, 4, 5, 8, 9, 11, 12] conditions
have been given on f(u) in order that the equation

(1.2) An = f(u)

or, more generally, the differential inequality

(1.3) Δu ^ f(u)

will have no solutions u = u(x19 x2, , xn) having two continuous
derivatives for all finite values of xly x2, •• ,xn. The most general
conditions which exclude such solutions, obtained by Keller [5], are:
f(u) > 0, f'(u) ^ O f o r - o o < ^ < c o and

S ooΓΓu η-1/2

0 []/(*)<**] du < oo .

For n = 2 Redheffer [10] showed that the monotonicity of f(u) may

be dispensed with.

In § 2 we shall consider a more general question for the equation

(1.4) Δu = P(x, y)e", P(x, y) > 0, Δ = ^ + ^ .

While the coefficient P(x, y) will be assumed to be positive and

twice continuously differentiate for 0 < r < oo, P(χy y) will be

permitted to vanish or to become singular in a manner specified in

the statement of the Theorem 2.1. If P(x, y) has such a singularity
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it will, of course, be reflected in the singular behaviour of the solu-
tions of (1.4). We shall thus give conditions on P(x, y) which ex-
clude entire solutions of (1.4). An example of such a solution is
u = r which solves equation (1.4) with P(x, y) = e~r/r.

For n = 2 it is well known that the function

(1.5) u(z, z) = log. ^ ' ^
1-1/(2) I2

is a solution of

(1.6) Δu = Ae2u

if f(z) is an analytic function satisfying \f(z)\ < 1 and \f(z)\ Φ 0 in
the domain considered. In § 3 we show, conversely, that every
solution of (1.6) is essentially of this form. This converse result is
necessary if it desired to use (1.5) and the theory of bounded analytic
functions to obtain general properties of the regular solutions of (1.6).
If the solution u(z, z) of (1.6) is regular in a disk \z\ < R, Theorem
3.1 leads to a bound for u in this disk. If | f(z) \ < 1 in | z \ < R
then, by Schwarz' lemma | f'(z) |/1 - | f(z) |2 ^ R/R2 - \ z |2. Hence, a
solution of (1.6) which is regular for \z\ < R is subject to the
inequality.

u(z, z) ^ log R

R2 - \z

For z = 0, this leads, in particular, to the well known fact that the
equation (1.6) can not have twice continuously differentiable solutions.

In § 4 comparison theorems are proved and explicit bounds are
obtained for the solutions of

(1.7) Δu = P(r)f(u)

or, more generally

(1.8) Δu ^ P(τ)f{u) .

The behaviour of these solutions at an isolated singularity is in-
vestigated.

2* Entire solutions* The main result is:

THEOREM 2.1. Let

(2.1) [[ P(x, y)dxdy = O(r0) (for small r0)
r<rQ

and
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(2.2) [rtσ(t)dt = O(rε) , ε > 0
Jo

where

(2.3) σ(r) = -A-Γ
2π Jo

// either

(ΔΛ) j e r

or

(O AV \ z>(1-/3)fir(r)r(l-215)+ε2-ε/2 / ] n o . / > Λ \ - i 5 - ε r J / r

where
( i ) c is a constant such that c = (2 — ε)(l — β) where 1/2 < β < 1
ε > 0 &%£ small. And
(ii) £Λe function g(r) is a solution of

such that rg'(r) —> 0 as r —> 0.
TΛe^ (1.4) cannot have a solution which is twice continuously

differentiable for 0 < r < oo awd continuous for 0 ^ r < oo.

That such solutions of (1.4) may exist for certain P(x, y) is shown
by the example u = rn, n ^ 2 where P{x, y) = n2rn~2e~rn.

Proof. If we set

(2.5) u = v-logP

equation (1.4) becomes

(2.6) Av = ev + A(\ogP) .

We introduce the notation

(2.7) ω(r) = (
27Γ Jo

By Green's formula for the circle | z \ ̂  r < R

\[jvdxdy= [ —ds
J J J onJ

\z\=r
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where n is the exterior normal. On account of d/dn = d/dr it follows

that

Δvrdθdr = —rdθ = r— v(r, θ)dθ .

o j o Jo dr dvlo

With the help of (2.6) and (2.7), this yields

(2.8) r—ω(r) = J - ( T V + Δ{\og P))rdθdr .
dr 27rJoJo

o)(r) is single valued and twice continuously diίϊerentiable for r < R.
Because of (2.3) and (2.5), (2.8) is equivalent to

(2.9) rdω(r) = J_[r(2πp^ y)eurdθdr + \r

tσ(t)dt .
dr 27Γ Jo Jo Jo

Since u is continuous, it follows from assumption (2.1) and (2.2) t h a t

(2.10) rω'(r) >0

as r—»0.
Differentiating (2.8) with respect to r and using (2.3), we obtain

(2 11) — —
r dr \ dr / 2π Jo

Since eζ is convex for all ξ, the right hand side of (2.11) can be
estimated by

—\ ev{r'θ)dθ ^ β1/2'τ\ = eω{r) .
2TΓ Jo Jo

Hence (2.11) yields

(2.12) 4-{rlf) - w ( r ) + reωir)

dr \ dr J

We now set

(2.13) ω(r) = flf(r) + /(r)

where g(r) is a solution of

which is continuous at the origin; that is, we compute g(r) from

(2.14) r-±-{g(r)) = [tσ(t)dt .
dr Jo
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Because of our assumption on the behaviour of σ(r) at r = 0, g(r)
will be continuous at r — 0. Inequality (2.12) then takes the from

(2.15) jL(rdJL) ^ rτ(r)ef

dr\ dr /

where τ(r) = eff(r). Introducing the new independent variable by
p = log r and setting

(2.16) F=f+2p

inequality (2.15) yields

(2.17) F ^ τ(p)eF

where dot denotes the differentiation with respect to p. Since the
right hand side of (2.17) is always positive F(p) is convex in p there-
fore, ω(r) is convex in logr.

Now suppose (1.4) and, therefore, also (2.17) has entire solutions.
We observe that F(p) must be positive for all p in (— oo, oo).

Indeed, from (2.16), we get, F(p) = 2 + ep(df(ep))/dr. Since by (2.14)
and the assumption (2.2), g'(r) = 0{rε~ι) we have, linv^ rg'(r) = 0.
Hence, by (2.10) and (2.13) limr_0 rω'(r) = lim^o rf{r) = 0. It follows,
therefore, that lim^.o. F(ρ) = 2. But, by (2.17) F(ρ) is convex in p
and we have, consequently,

(2.18) F(p) ^ 2

throughout (—00,00). It, therefore, follows that F(p) is ultimately
positive. We choose pQ large enough so that F(p) > 0 for p > p0 and
set

(2.19) φ = FF.

Differentiating with respect to p and using (2.17) we have

(2.20) φφ-r ̂  τF^eFF-r + F

where 7 is a constant to be chosen later.
Using the inequality [Hardy-Littlewood-Polya] A + B^(A/a)a(B/βy

where a + β = 1, 0 <> a, β ^ 1. the inequality (2.20) yields

(2.21) φφ-r ̂  τ 1-^! - β)β^β-βe^-^FF1~^pβ-r .

Now we consider two cases:

Case I. Let 2/3-7 = 0, 1/2 < β < 1. Then the inequality (2.21)
becomes

(2.22) -*β > πτ1-βpM-β>F JΓ1-*?
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where cx = (1 - βf-'β'K Since F ^ 2 w e have F^ (2 - ε)^ if ^ is
sufficiently large. Moreover, since e{1~β)FF{1~*β) is increasing for
F > 3/9 - 1/1 - β, inequality (2.22) yields

φφ-2? ^ c2τ
ι-Ppι-^ecp

provided (2 - e)p > 3β - 1/1 -β,c2 = ̂ (2-ε)1-3^3 and c = (2 - ε)(l - /5).
Integration of (2.22) gives

(2.23) - Γ - - 1 >
' 2/9-lL^-Vo) Φ2β-ι{p)l~

Since F is convex and increasing in p, φ1~~2β(p) tends to zero as p —> oo.
Hence, the left hand side of (2.23) is bounded as p —> ̂ c.. This con-
tradicts the assumption (2.4).

Hence the inequality (2.17) and also (1.4) does not have entire
solutions.

Case II. Let 2/3 - 7 > 0, 1/2 < β < 1. The inequality (2.21)
becomes in this case

where we have used (2.18). But since

provided (2 - ε)ρ > (7 + β - 1)(1 - β)~\ we have

Choose 7 = 1 + ε, ε > 0. Then β > ( 1 + ε)/2. Therefore, integration
with respect to p gives

(2.24) ]
Φ'(p)l

where c3 = c2(2 — ε)"^"'.
If it were true that u — u(x, y) is entire, the left-hand side of

(2.24) would remain bounded as p—>^o. Since by (2.4)' the right
hand side of (2.24) is unbounded, this leads to a contradiction.

This completes the proof of Theorem 2.1.

3. General solution* Let u(x, y) be of class C 2 in the region
D of x, 2/-plane and satisfy (1.6). Introducing the new independent
variables z = x + iy and z = x — iy equation (1.6) becomes

(3.1)
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where d/dz = l/2(d/dx - i(d/dy)) and d/dz = l/2(3/3a? + i(3/3i/)). How
we prove

THEOREM 3.1. Every solution of (1.6) which is twice continuously
differentiable in a given region D can be written in the form

1 - 1 / ( 2 ) I2

where f(z) is analytic in D such that \f'(z) \ Φ 0 and \f(z) | < 1.

Proof. According to an observation which goes back to Bieberbach
[1] a regular solution of (1.6) can be associated with an analytic
function of z in the following manner: We set

Q = uzz - u\

where u is a solution of (1.6) or, equivalently, of (3.1) and we
compute Q-z. We have, with the help of (3.1), Q-z = 0. Thus, Q is
found to satisfy the Cauchy-Riemann equations. Since Q is continuous,
it must therefore be regular analytic function ω(z).

If we set

(3.2) ψ = e u

and observe that

ψzz = eu(uz — uzz)

we find that ψ is a solution of the linear differential equation

(3.3) ψzz + ω(z)ψ = 0 .

Since co(z) is analytic in z the general solution of (3.3) contains the
analytic solutions of the equation

(3.3)' F"(z) + ω(z)F(z) - 0

because, for an analytic F, we have F'(z) — dF/dz. The general
solution of (3.3) can, therefore, be written in the form

where ψλ and ψ2 are two linearly independent (analytic) solutions of

(3.3)' which may be assumed to be normalized by

( 3 . 4 ) ^ 1 ^ 2 — ^ 2 ^ 1 —~ 1

and A* and 2?* are constants with respect to d/dz — differentiation
used in (3.3) i.e., dA*/dz = dB*/dz = 0. Since these are Cauchy-
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Riemann equations for functions in z we have A* = A(z), B* = B(z)
where A and B are analytic. The general solution of (3.3) is, there-
fore, found to be of the form

(3.5) ψ = A@)ψι(z) + Wz)Ψ&)

where A, B, ψ1 and ψ2 are analytic functions in D. In view of (3.2),
equation (3.5) can be written

(3.6) e = A(s)iK(s) + B(z)ψ2(z) .

Now the proof of the theorem will follow from the following lemma:

LEMMA 3.1. Let ψ1 and ψ2 be linearly independent solutions of
the differential equation (3.3)' where ω(z) is analytic in D. If A(z)
and B(z) are analytic in D and if the expression

(3.7) K(z, z) = A(z)ψM) + B(z)ψ,(z)

is real throughout D but does not vanish identically then K(z, z)
can be written in the form

K(z,z) = ±\σ(z)\2T\τ(z)\>

where σ(z) and τ(z) are two linearly independent solutions of (3.3)'
for which

(3.8) τ{z)σ'(z) - σ(z)τ'(z) = 1 .

Proof. Since K(z, z) is real, we have

(3.9) A(z)^(z) + B(z)ψi(z) = A(z)^(z) + B(z)ψ2(z) .

Differentiation with respect to z and (3.4) give

^(z)[ψ[(z)A(z) - ^(z)A\z)] + f2(z)[ψ[(z)B(z) - B'iz^z)] = -B(z) .

Setting

(3.10) g(z) = f[(z)A{z) - ^{

and

(3.11) h(z) - γ[(z)B(z) -

we have

(3.12) Ϋ&)9{z) + ir2{z)h{z) = -B(z)

But the left-hand side of (3.12) is a solution of (3.3)'; hence (-B(z))
satisfies
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Bzz + ω(z)B = 0

where ω(z) is an analytic function. But since B{z) is analytic in z,

B"(z) + ω(z)B(z) = 0 ,

consequently, B is of the form

(3.13) B(z) = aψ^z) + βf2(z)

where a and β are constants. Arguing in the same manner (3.4)
and (3.9) give

(3.14) A(z) = Ύψ^z) + δf2(z)

where 7 and δ are constants.
Also from (3.12) and (3.13), f^jψ^z) = - ((h(z) + β)/(g(z) + a)).

But since ψ^jψ^z) is analytic in z and, moreover, since ψ1 and α/r2
are linearly independent, we must have g(z) + ά = 0 and h(z) + β = 0,
or equivalently

(3.15)

and

(3.16) ( α ^ + #f2)τft - (α^j + /5f'2)fx = -β

respectively. With the help of (3.12), (3.14), (3.15) and (3.16) the
equation (3.7) becomes

(3.17) K(z, z) = 7 I ψ, |2 + β I ψ21
2 + άψrtt + af2f, .

Now let σ(z) and r(«) be any other solutions of (3.3)' such that
ψL(z) = aσ(z) + bτ(z) and ψ2(z) = cσ(2;) + dτ(2;) where α, δ, c and d are
constants satisfying

(3.18) ad - be = 1

and

(3.19) b(ya + tfc) + d(cβ + άα) = 0 .

This is possible if the determinant

/> = 7 | α | 2 + /9|c|2 + 2Re(aac)

does not vanish. Evidently this can always be achieved as long as
not all numbers a, β and 7 are zero. However a, β and 7 cannot
all be zero since, in view of (3.17) K{z, z) would then be identically
zero, and this case is excluded.

Substituting ψλ and ψ2 in (3.17) and using (3.19) we obtain
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(3.20)
K(z, z) = I σ(z) \2{y I a |2 + β \ c |2 + aca + aca}

+ I τ(z) I2{7 I b |2 + β I d |2 + bda + bda} .

Now we consider the following two cases:

Case I. Let β Φ 0, 7 ^ 0 . We set a Φ 0 and c = 0 then, with
the help of (3.18) and (3.19), (3.20) becomes

K(z, z) = I σ(z) |2 7 I α |2 + I τ(z) |21 d \2y-ι(βy - | a |2) .

( i ) Let 7 > 0, /37 — I α |2 = m (m is a positive integer). Hence,

z, z) = I σ* |2 + I τ*

where σ* = σ(y\a |2)1 / 2 and τ* = τm1/2(7 | a I2)-1'2 are solutions of (3.3)'.
(ii) 7 > 0, βy — \a\2 = —m. In this case

K(z, z) = I σ* |2 - I τ* |2 .

(iii) Let 7 < 0, /S7 - | a |2 = m. Then

(iv) 7 < 0, βy — \a\2 = —m. This gives

Case II . Let /3 = 0, 7 = 0. We set a, b φ 0. With this choice
(3.18) and (3.19) reduce (3.20) to

K{z,z)= -\

= α"1/2 |τ j(α/3)1/2 and are solutionswhere j σι \ = ] cr | (αα)1/2&-1/2 and
of (3.3)'.

Summing up, we have thus proved that, if the function K(z, z)
is real, it must have either of the three following forms

( 1 )

( 2 )

( 3 )

K(z, z) = I τ |2 - I a |2

K(z, z) = I r |2 + I σ |2 (S)

where σ and τ are solutions of the differential equation (3.3)' normalized
by (3.8). The case K(z, z) — | σ |2 — | τ |2 is evidently not essentially
different from case (1). Case (3) can be excluded immediately, since
beacuse of (3.6) and (3.7) K(z, z) must be positive. This also shows
that, in case (1), we necessarily must have

(3.21)

We now define

\τ(z)\ > \σ(z)\.
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(3.22) f(z) = -^4
τ(z)

In view of (3.8) we have

1
(3.23) f'(z) =

τ\z)

and thus | σ |2 + | τ |2 = (1 + | f(z) |2)/| f'(z) | in case (2) and | τ |2 - | σ |2 =
(1 - \f(z)\2)/\f'(z)\ in case (1). Comparing this with (3.6), (3.7) and
(S) we find that u(z, z) must be either of the forms

u(z, z) = log —ί

u(z, z) = log —'

u(z, z) = log 1 +

Since the last two functions are not solutions of (1.6), these cases
are excluded. Hence any real solution of (1.6) must be of the from

u(z, z) = log -

where because of (3.21) and (3.22) | f(z) | < 1 and in view of (3.23)

This completes the proof of Theorem 3.1.

4* Bounds for the solutions of Au >̂ P(r)f(u). Let

dx\ dxl dx\

denote the ^-dimensional Laplace operator and let Dr and Sr stand
for the open sphere x\ + x\ + + x\ < r2 and its boundary

/ y 2 _ 1 _ / y . 2 I . . . I / y . 2 ^ 2

respectively. We are concerned here with functions

ω - ω(Q)(Q e DrJ 0 < r < R)

which are of class C2 in Dr and satisfy the differential equation

Aω = P(r)F(ω)

or, more generally, the differential inequality

(4.1) Aω ^ P(r)F(ω) .
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Nehari [6] found explicit bounds for the solutions of the differential
equation Δu — F(u) or, more generally the differential inequality
Δu ^ F(u) which are regular in a disk. We shall obtain here a more
general result, which also applies to certain equations of the form
(4.1).

LEMMA 4.1. Let F(t) and G(t) be positive and differentiate
functions for — oo < t < °o and such that the integrals

\~ dt f
3. Fit) ' )

dt
F(t) ' J. G(t)

exist, and let a) = ω(xlf x2, , xn) and v = i>(#i, #2> *χn) be two
functions related by the identity

dt Γ~ dt
( 4 ' 2 ) )~F(t) \ G(t)'

Then

(4-3) # T ^ T̂ V
F(ω) G(v)

provided F'(ω) ^ Gr(v).

Proof. We write x for one of the variables x19 x2, •••,#* and
differentiate (4.2) twice with respect to x. This yields

vx ωx

G(v) F(ω)

vxx vlG'jv) _ ωxx vlF'jω)

G(v) G\v) F(ω) G\v)

Summing over all xn and using the fact that Fr{ω) ^ G'(v), we get (4.3).
We derive the following corollary.

COROLLARY 5.1. If v — v{xx, x2, , xn) is a function satisfying
the differential inequality

(4.4) Δv ^ Pvk , k > 1

where P = P(xly x2, , xn) is positive, and if F(u) is such that

(4.5) F'(u)[°° d t < k

Ίu F(t) ~ k - 1

then, the function u defined by

(4.6)
(

(k- l)v"-1 J. F(t)
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is subject to the inequality

(4.7) Δu ^ PF(u) .

Setting G(v) = vk in Lemma 4.1, the proof of the Corollary 4.1
is immediate.

As an application of Corollary 4.1, we prove the following result.

THEOREM 4.1. // the function ω — ω(xly x2, , xn) satisfies the
inequality

(4.8) Δω ^ τ2F(ω)

where F{ω) is such that F'(ω)[°°dt/F(t) S 9/8 and F'{ω) ^ 0 then the

function u defined by

(r2 - P

2)\R2 ~
20R* )u F(t)

is such that

0) ^ U .

Proof. Consider the function v defined by

o<p<r<R

(4.9) v =

(r2 - p2)a(R2 - r2)a

where a is a constant to be determined later. Differentiating (4.9)
twice with respect to one of the variables x = xkJ we obtain

__ _ 2xa , 2xa

(r2 - p2)a+ί(R2 - r*)a (r2 - p2)a(Rz - rz)«+ι

= 2a 4x*a(a + 1)

(R2 - r*)"{7* - ρψ+1 (R* - r^Πr2 - pψ+2

2a Sx2a2

(γt - p*)«(R* - r

2)a+1 (r2 - pY+ι(R2 - rψ+1

( r 2 - ,02)α(.β2 - r 2 ) α + 2 '

Summing over all x — xk and choosing a ^ 1/4 we get,

~ 2

Now let v = (21/82/)/(5I/2i22)1/4 then we have

(4.10) Ay ^ r V
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where y is given by

jg251/22-1/2 V/4

)
V

_ / jg2

" \(R2 -(R2 -r2)(r2 -

Now applying Corollary 4.1 to (4.10), we obtain,

An ^ r2F(u)

when u is defined by

(r2 - p2)2(R2 - r 2 ) 2

 = Γ°° dt

20i24 )

Clearly, u'(0) — 0 and u —> oo as r—>R or p—»r. The fact that
ω ^ u now follows from Osserman's lemma [8]. This proves our
assertion.

THEOREM 4.2. Lei f(ω) be positive, nondecreasing, differentiate
function in (— °°, °°) /or which

-£r <β>>-oo)
Jω J(t)

exists and

(4.11) f'(ω)\~-£L <ς i + x (λ > 0) .
Jω tit)

(G) w(r) = sup ω(Q)

where ω(Q) ranges over all functions of class C2 in Dr which satisfy
(4.1). Then

, m C(X)a(R>-r2)2

 < f- dt
X ' ' R2 Un

in case P(r) = a (a > 0).

,, 1 3 ) C(X)/3r/1+^(ie2 - r 2 ) 2

Λ2 ~

P ( r ) = /SrM/1+;i (/3 > 0)

r 2 ) 2 ^ f" dt

J.(r)/(ί)

P(r) = γr 1 1 - 2 " (7 > 0)
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where

(4.15) C(X) = — (4λ ^ n - 2)
4π

(4.16) C(X) = ^ L - ^ <4λ > » - 2) .

T/̂ β inequalities (4.12), (4.13) αwcϊ (4.14) are sharp.

The case λ = 0 had been considered by the author in [2]

Proof. Consider the function g = g(r) defined by

(A γi\ C(λ)(fl2 - r 2 ) 2

 = 1 Γ
1 ' ' i22 P ( r ) J .

where p(r) is positive, monotonically increasing and twice continuously
differentiable and C is a positive constant to be chosen later. De-
noting by x one of the variables xk and differentiating twice with
respect to x we have

(A 18) 4ca(fl - r2) =

p\r))s f{t)

- r2) _ _8cx^ _ gxx + 4xpjr)gx _,_ glf'jg)
R2 R2 P(r)f(g) p\r)fig) p(r)f*(g)

dt 4tx2p(r) f00 dt
(4.19)

where dot denotes differentiation with respect to r2. With the help
of (4.17) and (4.18), (4.19) becomes

fit) P\r) hf(t)
8xψ(r)(°° dt

p\r) I

gxx = _8ω?_ Ac(R2 ~ r2) , 16cx2p(r)(R* - r2)
R2 R2()p(r)f(g) R* R2 R'pir) R?

p(r)(R2 - r)2Ύ

p(r))

p{r)

dt
p\rγ i V

Summing over all xk and using (4.11) it reduces to
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P(r)/ϊflr)
- J^n - 2 - 4λ)| -

2c(R2 - r2)2 /2r2j?(r) + np(r) _ 2rψ(r) (1

R2 I p(r) ?)2(r)
^ ' _ 2c(R - r) /2rj?(r) + np(r) _

I ?)2(r)

We now consider the following cases:

Case I. Choose p(r) such that p(r)/p(r)((2r*p(r)/p(r)) - n/(l + λ)) = 0.
( i ) If^ = 0 o r ί ? = α where α is an arbitrary positive constant

then (4.20) becomes

(4 21) ^ k a 4H* - - έ ( " -2 -
If, 4λ <̂  π — 2 it follows that Ag ^ 4wcα/(̂ r) and if C is given by
(4.15), we have

(4.22) Ag g af(g) .

If 4λ > n — 2 the right hand of (4.21) attains maximum for R = r
and the value of (4.16) for C again leads to (4.22). Since £(0) = 0
and increases to oo as r-+R the proof of (4.12) will follow from
Osserman's lemma [8].

REMARK. If a = 1 the left hand inequality (9) of Theorem 1 of
Nehari [6] becomes a particular case of this result.

(ii) If 2r2p(r)/p(r) — (n/1 + λ) = 0 or p = rnli+λβ where β is an
arbitrary positive constant then (4.20) gives

Δg - -^(n - 2 - 4λ)l .
R JβrnI1+λf(g) " I R2

If C is given by the values (4.15) and (4.16), we have

Ag ^ βrnlί+λf(g) .

Now the proof of (4.13) will follow from Osserman's lemma [8].

Case II. Assume p(r) to satisfy

2r2p(r)(pr) + np(r)p(r) - 2r2(l + X)p2(r) = 0

or p(r) = yrn~2lλ where 7 is an arbitrary positive constant. Then
(4.20) reduces to

Ag -jL(n - 2 - 4λ)} .
7rn-2'λf(g) ~

Now if C takes the values (4.15) and (4.16) respectively, we have
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Δg ^ Ύrn-2'λf(g)

and (4.14) is proved with the help of Osserman's lemma [8].
We derive the following corollary:

COROLLARY 4.2. If ω satisfies the equation

Δω = βτ

ni1+λω1+{llλ) (λ > 0, n ̂  2)

where β is an arbitrary constant, then

(4.23) ω<( —
v ~ \c(λ)βrnll+λ(R2 - r2)2

Also the behaviour of ω is such that

log 1/rJ ~ 1 + λ

Indeed, setting f(t) = t1+ilJ2) in (4.13), we have (4.23), where ω = u.
Taking logarithm on both sides, we have, from (4.23)

\ogω <λlog — + _ J ^ _ l o g - i .

8 βc(λ)(R2 - r2)2 1 + λ * r

Dividing by log 1/r and letting r —> 0

nXlog 1/r/ 1 + λ '

A similar result could also be proved about the solutions of the
equation

Aω = jT

n-2lλω1+{llλ) .

The next theorem concerns the lower bounds for the maximum
of the solutions of (4.1).

THEOREM 4.3. Let f(ω) satisfy the conditions of theorem 4.2
with (4.11) replaced by

(4.11)' / ' ( ω ) Γ - ^ - = 1 + λ , (λ > 0) .

If

(G)' v(r) = Sup ω(Q)
QeSr

where co(Q) ranges over all functions of class C2 in Dr and which
satisfy (4.1) then



134 VINOD B. GOYAL

(4 24) Γ
f{t) ~ In

if p{r) = K where K is an arbitrary positive constant,

provided p(r) = 8rn~2lλ~ι (δ > 0).

(4.26)
6

m case p(r) = μrιlλ (μ > 0). However, in ^-dimensional case

< V r ' ( J ? 2 ~ r 2 )(4.27) Γ
/(t) ~ 4

where p(r) — vrι, v and I being arbitrary positive constants.

Proof. Consider the function h = h(r) defined by

(4.28)
2n P(r)hf(t) Kr

where p(r) is positive, monotonically increasing and twice continuously
diίferentiable. Clearly, h belongs to the class C2 in Dr. Differentiating
(5.28) twice with respect to x — xk we obtain

-Ά = - h* - 2a:p(r)f" dt
x f(h)p(r) p\r) J» f(t)

(4 29) 1 _ hm 4xhxp(r) • Kf'(h) 2p f
w /<A)p(r) /(/^)p2(r) f)(r)/2(A) p2 J fit)

Using (4.29) and summing over all xk, we obtain

j{rι)p(r) np(r) \~ n p nΛ

2r2p + np p2 — r2

x

Since / ' > 0 we obtain with the help of (4.11)'

(4.30) Ah ^ 1 - i ^ λ - P2-r*ϊnp + 2r2p __ ( 1 + λ ) 2rψU
f(h)p(r) np n L p p2 J

Now we consider the following cases.
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Case I. Choose p such that p = 0 or, p — it where K is an
arbitrary positive constant. Hence (4.30) reduces to

(4.31) Δh ^ κf(h) .

Consequently ((?)' implies

h(r) ^ v(r) .

Since we can take p arbitrarily close to R, we have

f" dt ^ fc(R2 - r2)
J /(ί) = 2™

Case II. Assume p(r) to be such that

np(r)p(r) + 2r2p(r)p(r) — 2λr2p2(r) = 0

or p = 8rn"2lx"1 where δ is an arbitrary positive constant, n > 2,
λ > 1 and such that n < (4λ/l + λ). Hence (4.30) becomes

- 1)

Using ((?)' and arguing as above, we obtain

[co_dt_< δτn~2lλ-\R2 - r2)
J /(ί) = 2n

Case III. Choose p to satisfy

np(r)p(r) + 2τ2p{r)p(r) - (1 + λ)2r2p2(r) = 0

or p — μrιlλ where μ is an arbitrary positive constant and n — 3.
Hence (4.30) gives

Ah ^ ^rllλf(h) .
o

Using the same argument as above, we have

dt < μrllλ{R2 - r2)
= 6

Case IV. Assume p to be such that 2r2p'p + npp — 2r2p2 — 0 or
p = vr^ where y and ϊ are arbitrary positive constants. Consequently

Δh ^ v(l - lX)rιf(h) .

And, as above we conclude
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dt ^ vrι{R* - r
\: fit) ~ 4

This completes the proof of the theorem.

We derive the following corollaries:

COROLLARY 4.3. In case of a function co regular in Dr and
which satisfies the differential equation

Aω = δrn-2lλ-ι{l -
n(X + 1)

where δ is an arbitrary positive constant, n > 2, λ > 1 and such
that n < (4λ/l + λ) we have

?nλ V < ω m

- r2)/ ~~r2)

And also the behaviour of ω is such that

r-o Vlog 1/r/ ~ λ - 1

Indeed, setting f(t) = t1+{ill) in (4.25), where v = ω, we obtain

Taking logarithm on both sides, we get

+ f ^
— r2) λ —

Dividing by log 1/r and taking the limit

log 1/r/ ~ λ - 1

COROLLARY 4.4. If Δ — d2\d%\ + d2\d%\ + 32/^s ^s a ^-dimensional
Laplace operator and ω satisfies the equation

Aω = Rr

ιlλωι+[ιlλ)

3

we have

ω>( §
r1'^ - r2)
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and

COROLLARY 4.5. If the function ω is regular in Dr and satisfies
the differential equation

Aω = 8(1 - lX)rιωi+ωλ) (A = — + —)
V dxl dx\ J

we have

( i Y < ω
V δrHR2 - r2) I ~

and also the behaviour of ω is such that

r-*o \log 1/r/

The proof of Corollaries 4.4 and 4.5 is exactly the same as that of 4.3.
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ON |C, 1| SUMMABILITY FACTORS OF FOURIER
SERIES AT A GIVEN POINT

Fu CHENG HSIANG

Let f(x) be a function integrable in the sense of Lebesgue
over the interval (—π, π) and periodic with period 2π. Let its
Fourier series be

~^~ + Σ (α% c o s n x + bn sin nx)2

Whittaker proved that the series

Σ An(x)/na (a > 0)

is summable | A \ almost everywhere. Prasad improved this
result by showing that the series

0)Σ An(x)/(kf[ log^ n\logk n)1+* (logk n0

is summable | A \ almost everywhere.
In this note, the author is interested particularly in the

IC, 11 summability factors of the Fourier series at a given
point ceo.

Write

φ{t) = f(χo + t) + f(χo - t ) - 2 f ( x 0 ) ,

Φ(t)= [\φ(u)\du.
Jo

The author establishes the following theorems.

THEOREM 1. If

then the series

Σ An(xo)lna

is summable | C, 11 for every a > 0.

THEOREM 2. If

Φ(t) = 01^

as ί-» +0, then the series

V An(Xo)
Z-x /k-i

n = n0

Ίc-l χ
TT l o g μ ?ι )(log Ύi)1+t

μ=ϊ /

is summable | C, 11 for every ε > 0.

139



140 FU CHENG HSIANG

A series Σ an is said to be absolutely summable (A) or summable
IA |, if the function

fix) = Σ W

is of bounded variation in the interval <(0, 1)>. Let oa

n denote the
Cesaro mean of order a of the series ^an1 i.e.,

If the series

converges, then we say that the series Σ an is absolutely summable
(C, a) or summable \C, a\. It is known that [2] i/ α series is sum-
mable \C\, it is also summable \A\, but not conversely.

2. Suppose that f(x) is a function integrable in the sense of
Lebesgue and periodic with period 2τr. Let its Fourier series be

a °°f(x) ~ —— + Σ (an cos nx + bn sin nx)
2 n=i

= Σ AM .

Whittaker [4] proved that the series

Σ AM/n" (a > 0)
n = i

is summable | A | almost everywhere. Prasad [4] improved this result
by showing that the series

Σ Au(x)l(ΐ[ log" n)(logk n)ί+ε(logk n0 > 0) ,

where logfc n = log (log^"1 n), log2 = log (log n), is summable | A | almost
everywhere.

Let (Xn) be a convex and bounded sequence, Chow [1] demonstrated
that the series

Σ An(x)K

is summable \C, 1| almost everywhere, if the series Σ ^ " ^ converges.
In this note, we are interested particularly in the | C, 11 sum-

mability factors of the Fourier series at a given point. For a fixed
point xQ, we write

φ(t) = φ Λ t ) = f(χ0 + t ) + f { χ , - t ) - 2f(x0),
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and

φ(t) = Γ \φ(u)\du .
Jo

We are going to establish the following

THEOREM 1. / /

( i ) Φ(t) = O(t)

as t —> +0, then the series

Σ
An(x0)

is summable | C, 11 for every a > 0.

3* The following lemmas are required.

LEMMA 1 [3]. Let a > — 1 and let τa

n be the nth Cesάro mean
of order a of the sequence {nan}, then

τl = n{σl - <_,) .

LEMMA 2. Write

Sn(t) = Σ (n + 2 - k) cos (n + 2 - k)t ,
fc0

n2 (for all t) .

In fact, we have

Sn(t) = l\jLe^+^Σ e-
ikt\

I dt k=o )

= A d ( eί{n+2)t

A (
\dt\l - e~u 1 - e~u

{ Aoi{n+2)t o's>i(n
(n + 2)—

1 - e-u (1 -

1 - er« (1

) + 0(ί~2)

-i \
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if nt tί 1. This proves the lemma. From this lemma, we can easily
derive the following

LEMMA 3.

{t =
n + l U=i " w (y + 2 ) a ,

Uίi1-" (/or all ί) .

By Lemma 2, for rat 2Ϊ 1, we write

1 .A

\tna )

and for all t,

w + 1 U=i

= O(nι~a) .

This proves the lemma.

4. We have

2 f~
-A*(̂ o) = — \ <p(t) c o s ^^^

π Jo

Let rw(cc0) be the wth Cesaro mean of first order of the sequence
{nAn(x0)/na}, then

2 Jo^v B + l έ i (y + 2)α

Abel's transformation gives

2 Jo n + l U=o (v + 2)"

+ (V(0— ^^—dt
I* n + l (n + S)a

T _j_ T
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say. Thus, on writing

S ίln Γπ

+ \ =IZn + hn ,
0 Jl/n

say, we see that

Izn = 0 ^ - * ^ \φ\dt) = O(n-«) ,

by condition (i) of the theorem.

Iίn = o O -naiu» t I lwJi/»ί2-β

Now,

o4 ( [
and

Γτ iΞLdt < nl-*[* ^ ί
Jl/nί2-« ~ )lln t

It follows that

Λ. - O{log n/n*} .

As before, we write

S I/Λ f-τ

+ I = J β n + Jβ» ,
0 Jl/re

say. Then,

ft" ^ } =

And

I6n = θ\n-"\' ifL

by the similar arguments as in the estimation of the integral J4Λ. By
Lemma 1, we have to establish the convergence of Σ | rn(α?0) |/w. And
from the above analysis, it concludes that
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This proves Theorem 1.

5* Let τn(xQ) be the nth Cesaro mean of first order of the sequence

n)ί+j (ε > 0) ,

where & is a positive integer. AbeΓs transformation gives

Π

2 o n + 1 U=. " - j g lQgμ {v + 2 ) γ l o g k {v + 2)}1+ί

-j- I φ(t)
Jo n + 1 I Π log" (n + 3)}{log* (n + 3)}1+ε

say. As before, we write

0 J 1/Λ

say, and

Jo J i / W

say. Since, for i; ^ n0,

k—i
^

i / Π log" v )(log& ^ ) 1 + e

we obtain

n Π log" (v + 2) )(logfc (i; + 2))1 + ε

Π
fc-1 I N / - 1 v + £

Π y logfc y

j f c - l

π

(nt ^ 1) ,

(for all ί) .

Now, if
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as £—* +0, then

{ 5

we obtain

I** =
Π log" w )(long*

I log'1',
-1

'-=°{τ^—\—s: ψ*}
I "I I 1 it \ / Ί k \ l 4 - e ' ^ ^

— iu ••-1V+β

But since

[* l3±dt = (JLY + [ JLdt

= 0(1) + θ{

- 0(1) + O{logfc+1 π} ,

and

d t = o
n

n logfc+1

Πlog^)(log f c w) 1 + ε

\
r

) 1 + ε

Finally,

/te = 0 ^ ^ ^ ^ Jo |9>|dί|
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1
Iβn —

μ=l

logk+ίn

Cfilog"n)(logkn)1+'
\μ=i /

Thus,

\ ^

= oj f. log*1* } + 0 ( 1 )
U=n" n(ΐllog>'n)(logkny+°)

μ = l /

n U " n(
\μ =

= 0(1) .

Hence, we establish

THEOREM 2. / /

as t—> +0, then the series

OO \ / M \

no> 0)

is summable \C,1\ for every ε > 0.

6* For the conjugate series

OO

Σ (bn cos nx — an sin nx) = X Bn(x) ,

we can derive two analogous theorems. Write, for a fixed x = x0,

ψ(t) = [ \ ψ ( u ) \ d u = [ \f(x0 + u ) - f(x0 - u ) \ d u .
Jo Jo

We have the following

THEOREM 3. If

(iii) ¥(t) = O(ί)

as t—> +0, ίfee^ ίfeβ series

^ Bn(x0)
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is summable \C, 1| for every a > 0.

THEOREM 4. / /

Πlog"f

t—•> +0, then the series

Σ - 7 - ^ ^ (log* ^o > 0)

is summable | C, 1 ] /or ever?/ ε > 0.
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HOMOTOPY GROUPS OF P L - E M B E D D I N G SPACES

L. S. HUSCH

Let N be a compact PL-n-manifold, and let M be a PL-
m-manifold without boundary. Two of the major problems
in PL-topology are to determine conditions such that (1) any
continuous map of N into M can be homotoped to a PL-
embedding, and (2) two homotopic PL-embeddings are PL-
isotopic.

If C(N, M) is the space of continuous maps of N into M
with the compact open topology, and if PL(N, M) is the
subspace of PL-embeddings, one can consider the map
H: ΠO(PL(N, M)) -» Π0(C(N, M)) induced by inclusion. If (1)
is true, then i% is onto; if (2) is true, then i% is one-to-one.
In this paper, we investigate the higher homotopy groups of
PL{N, M) and C(N, M).

Irwin has shown that if N is a closed manifold, m Ξ> n + 3, then
sufficient conditions for (1) are that N is (2n — m)—connected and M
is (2n — m + 1)—connected. By raising the connectivities of N and
M by one, Zeeman [7] proved (2).

By using Proposition 1 of Morlet [4] and Irwin [3], one can
easily show the following theorem by using techniques similar to the
proof of Theorem 2 below.

THEOREM 1. Let N be a closed (2n + s + 1 — m)—connected PL-
n-manifold and let M be a (2n + s + 2 — m)—connected PL-m-
manifold without boundary, m ^ n + 3. The homomorphism if
Πs (PL(N, M))—>ΠS(C(N, M)) induced by inclusion is an isomorphism;
if the connectivities of N and M are lowered by one, then % is onto.

An analogous theorem in the differential case has been proved
by J. P. Dax [1], [2].

If N has a nonempty boundary, then Dancis, Hudson and Tindell
(independently and unpublished) have shown that if N has a k-
dimensional spine with m ^ {n + 3, n + k), this is a sufficient condi-
tion for (1). If m ^ {n + 3, n + k + 1}, they obtain (2). We
generalize.

THEOREM 2. Let N be a compact PL-n-manifold with k-spine
K, k < n, and let M be a PL-m-manifold without boundary. If
m^n + k + s + 1, the homomorphism i#: ΠS(PL(N, M)) — ΠS(C(N, M))
induced by inclusion is an isomorphism] if m ^ n + k + s, % is onto.

Note that the codimension 3 restriction is eliminated. In § 3,
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we obtain some consequences of this theorem and its proof.
The author wishes to express his gratitude to N. Max who read

a preliminary version of this paper and suggested some corrections.
In this paper, we shall consider PL{N, M) and C{C, M) as zf-sets

(-i.e., as semisimplicial complexes in which the degeneracy maps are
ignored). In § 1, we list the basic definitions and results on A-sets
which we shall use. One may use either Rourke and Sanderson [6]
or Morlet [5]. [Morlet uses the terminology "quasisimplicial" set.]

We shall assume familiarity with either [1] or [7] and shall use
terminology therein with one exception. When referring to piecewise
linear maps or manifolds, we shall always use the prefix "PL-".

Let X and Y be polyhedra. In this paper pλ and p2 will always
denote projections of X x Y onto the first and second factors re-
spectively. An isotopy between X and Y will be represented as a
family of embeddings ft: X — Y, t e / = [0, 1].

1. J-sets* Let An denote the standard ^-simplex with ordered
vertices vQ, v1} •• ,vw. The i-th face map d{: A

n~ι —> An is the order
preserving simplicial embedding which omits viβ A is the category
whose objects are An, n = 0, 1, and whose morphisms are generated
by the face maps. A A-set (A-group) is a contra variant functor from
A to the category of sets (groups). A A-map between J-sets (zί-groups)
is a natural transformation between the functors.

If X is a A-set, Xk = X(Ak) is the set of k-simplexes and the
maps dt = X(di) are called face maps. We shall be interested in
pointed z/-sets in which we distinguish a simplex *k e Xk for each k
and designate * c X as the sub-zί-set of X consisting of these simplexes
and maps 3* defined by d^k = *k~\

With each ordered simplicial complex K, we associate a J-set,
also designated by K, whose λ -simplexes are order-preserving simplicial
embeddings of Ak into K.

Let Λn>i = Cl(bdry An—diA
n~1). A A-set X is called a Kan A-set

if every J-map/: Λn>ί—>X can be extended to a A-maipf: An —>X.
If X is a Kan A-set and P is a polyhedron, a map f: P—> X is a

J-map/: K—+X where K is an ordered triangulation of P. /0, fx\ P-+X
are homotopίc if there is a map F: P x I —>X such that F\P x {ί} =
fi,ί = 0,1. [P X] denotes the set of homotopy classes. We shall
need the following two propositions which are proved by Rourke and
Sanderson.

PROPOSITION 1. Any homotopy class in [P; X] is represented
by a A-map f: K —+ X where K is any ordered triangulation of P.

PROPOSITION 2. Let Q be a subpolyhedron of P and let
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h: Q x IU P x {0} —• X be a A-map to a Kan A-set X; then h extends
to a A-map h!\ P x I —»X.

If X is a pointed Kan A-set, then the n-th homotopy group of
X, ΠnX = [In, bdry In; X, *], the homotopy classes of J-maps of pairs,
where In is the PL-n-cell.

C(N, M)(PL(N, M)) is made into a J-set by defining the k-
simplexes to be maps (PL-embeddings) f:Nx Ak—>Mx Ak such that
p2f=p2 and defining d{f = f\Nx dtJ

k.

PROPOSITION 3. C(N, M) and PL(N, M) are Kan A-sets.

Proof. Let /: ΛnΛ —> PL(N, M) be a z/-map. / can then be con-
sidered as a PL-embedding

/: N x ΛnΛ • M x Λnιi

such that p2f = p2. Using the fact that the pair (Λnti x J, ylΛfi x {0})
is PL-homeomorphic to (An, Λn>%), one can easily construct the desired
extension.

2* Proof of Theorem 1* The following two propositions are
generalizations to product spaces of the simplicial approximation and
general position theorems. They can be proved similarly.

PROPOSITION 4. Let M and Y be PL-manifolds and let P g Q
be compact polyhedra. Suppose f: Q—+ M x Y is a continuous map
such that f\P is PL. There exists a homotopy ht: M x Y—>M x Y,
tel, such that

( i ) Viht = p2 for t e I;
(ii) htf\P=ffor tel;
(iii) hJ:Q-+Mx Y is PL.

PROPOSITION 5. Let M and Y be PL-manifolds and let P g Q
be compact polyhedra. Suppose f:Q—>Mx Y is a PL-map such
that f\P is a PL-embedding. There exists a PL-homotopy
ht:Mx Y-+Mx Y, tel, such that

( i ) V*ht = p2 for t e I;
(ii) htf\P=ffor tel;
(iii) the singular set of hj has dimension ^2 dimQ — dim(Mx Y);
(iv) the branch set of hj has dimension <2 dim Q — dim (Mx Y).
The following two constructions are needed frequently in the

following propositions.

PROPOSITION 6. Let N be a PL-n-manifold with k-spine K. Let
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P be a polyhedron in N such that dim P + dim K + 1 <; dim N.
There exists a PL-isotopy Ht of N, te I, such that Ho = identity
and H^N) Π P = 0 .

Proof. By general position, we can find a PL-ambient isotopy
Lt of N so that LJZ Π P = 0 . Let N' be a regular neighborhood
of LγK in N such that N' Γ\ P = 0 . Note that Î ϋΓ is also a spine
of iV. Hence, by the uniqueness theorem of regular neighborhoods,
there is a PL-isotopy Ht of N, te/, such that Ho = identity and
H,(N) = N'.

CONSTRUCTION a. Let /; be a PL-cell in the interior of Is and
let U be a neighborhood of Cl (/s — 1+) in I s . Let Uo, U1 be regular
neighborhoods of Cl (I s - I;) in Is such that ?70 S int ̂  and ί7x C Ϊ7.
Let <p: S8"1 x I—>C1 (ί7i — ί70) be a PL-homeomorphism such that

-1 x {i}) = bdry [7, Π int /% i = 0, 1.

PROPOSITION 7. Lei JV, -SΓ, Λf be as in Theorem 2 with m ^
n + k + s. Lei f; N x Is -+M x Is be a PL-map such that p2f = p2

α ĉί sue/?, ίfeαί ίfeere eo;tsis α neighborhood U of Cl (I s — ίj) such that
f\NxU is a PL-embedding, then there exists a PL-homotopy
ft:Nx Is —> M x Is and a neighborhood V of Cl (/s - If) in Is such that

( i ) /o = /, P»/, = P2, ί e I;
(ii) ft\ V = ftel;
(iii) f: N x Is —* M x Is is a PL-embedding.

Proof. By Proposition 5, we can assume that the singular set
T of / has dimension ^ 2(w + s) — (m + s), the branch set BaT of

/ has dimension < 2(w + s) — (m + s), and that f\KxIs is a PL-
embedding. By Proposition 6, there is a PL-isotopy Ht of iV such
that Ho = identity and ίf^iV) Π PiJ5 = 0 . Hence there is no loss of
generality in assuming that /1 p^iH^N)) x Is is a PL-embedding.

Let C/Q, ϋί and φ be as in construction a. Define Ft: N x Is —>
N x Is, tel, by

^ ( ^ , 1/) = (», 1/) 2/ e UQ

(HttQ(x), y) yed(U1- J70), 2/ =
Let ft = / F t and F = C70.

The following is the theorem of Dancis, Hudson and Tindell
mentioned in the introduction. We include the proof for completeness.

PROPOSITION 8. Let N, K, Mbe as in Theorem 2 with m^n + k.
There exists a PL-embedding f: N—> M.
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Proof. Let f':N—*M be a continuous map and approximate / '
by a PL-map / " such that f"/K is a PL-embedding and / " is in
general position. Let δ c S be the branch and singular set of / "
respectively. By Proposition 6, there is a PL-isotopy Ht, tel, of N
such that flί(iSΓ) Π S = S n K. Let / = / " # , .

REMARK. We shall make PL(N, M) and C{N, M) into pointed
4-sets by defining the basepoint complex * as follows. Let *s(x, y) —
(f(%)jV)> %eN, yen8 where / is defined in Proposition 8. The face
operators are defined naturally.

The proof of the following proposition is well known.

PROPOSITION 9. Let N, M, K be as in Theorem 2 with m^n + k.
Let g: N x Is —+M x Is represent an s-simplex in PL(N, M)(C(N, M))
such that

g\N x bdry Is = * s | N x bdry Is ,

g is homotopίc rel bdry Is in PL(JV, M)(C(N, M)) to g'\ N x Is -+
M x Is such that for some neighborhood U of Cl(Is — Is +) in I s ,
g'\Nx U = *s I N x U.

PROPOSITION 10. Let N, M, K be as in Theorem 2 with m :>
n + k + s + 1 and let Ft: N x Is —> M x Is be a PL-homotopy such
that

( i ) Ft are PL-embeddings, i = 0, 1;
(ii) p2Ft = p2, te I:
(Hi) there exists a neighborhood U of Cl (Is — ID in Is such

that Ft\N x U = *s.
Then there exists a PL-isotopy Gt: N x Is—>Mx Is such that
( i ) Gi = Ft for i = 0, 1;
(ii) p2Gt = p2, te I:
(iii) there exists a neighborhood V of Cl (Is — /+) in Is such

that Gt\N x V = * s.

Proof. Note that there is no loss of generality in assuming that
there is an ε > 0 so that Ft are PL-embeddings, te [0, e] U [1 — ε, 1].
However, now this is a restatement of Proposition 7.

The proof of Theorem 2 now follows easily from the above
propositions.

3* Applications. One of the immediate consequences of Theorem
2 is a partial generalization of Hudson's "concordance implies isotopy"
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theorem [2]. (See also Proposition 1 of [4].)

COROLLARY 1. Let N be a compact PL-n-manifold with k-spine
K, k < n, and let M be a PL-m-manifold without boundary. Let
f: N x Is —> M x Is be a PL-embedding such that p2f \ N x bdry Is =
p2. Then if m >̂ n + k + s, there exists a PL-embedding F: N x Is —>
M x Is such that F\N x bdry Is = f and p2F = p2. Ifm^
n + k + s + 1, f and F can be chosen to be isotopic rel N x bdry Is.

Let X be an s-dimensional polyhedron and let p:E—>X and
q:F-+X be PL-fiber bundles with fibers N and M respectively with
structure groups Aut (N) and Aut (M) where

( i ) N is a PL-w-manifold with fc-spine, k < n;
(ii) M is a PL-m-manifold without boundary;
(iii) Aut (N) and Aut (M) are the groups of PL-automorphisms

of N and M, respectively.

By triangulating X and by using the propositions above together
with induction on the dimension of the simplexes of X, one can easily
prove the following.

COROLLARY 2. If f:E~+F is a continuous bundle map (-i.e.,
Qf = P) and m ^ n + k + s, then f is homotopic through bundles
maps to a PL-bundle map which is an embedding of E into F. If
m^n + k + s + 1; any two PL-bundle embedding s of E into F are
isotopic through bundle maps.

A PLm-bundle is a PL-bundle q:F-+X whose fiber is Euclidean
m-space Rm and whose structural group is the PL-automorphisms of
Rm mod the origin.

COROLLARY 3. Let N be a PL-n-manifold with k-spine, k < n;
let p:E—+Xs be a PL-fiber bundle with N as fiber and Aut(N) as
structural group. If m ^ n + k + s, then for any PLm-bundle
q:F—>X, there exists a PL-bundle map f:E—>F which is an
embedding. If m ^ w + Λ + s + 1, then any such two PL-bundle
embeddίngs are isotopic through bundle maps.
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INTEGRATION WITH RESPECT TO
VECTOR MEASURES

D. R. LEWIS

The purpose of this paper is to develop a theory of
integration with respect to measures into a locally convex,
Hausdorff linear topological space, using a linear functional
approach.

Section 1 presents some basic facts about such measures, chiefly
through the study of their p-semi-variations (Definition 1.2). Devices
of this sort have been considered by other authors (see [1], [4]), but
chiefly to give expressions for the norms of linear operators defined
by vector measures. We consider the continuity properties of the p-
semi-variation, and define regularity in terms of the p-semi-variation.

The integration theory is developed in § 2. Although the integral
is defined in terms of linear functionals, it is in no sense a weak in-
tegral. The dominated (strong) convergence theorem is proven under
the additional assumption that the limit function is integrable, and it
is shown that this is true whenever the range space of the measure
is sequentially complete.

In § 3 integral representations of weakly compact operators from
C(S), CQ(T), CC(T) and C(T)β into a locally convex, Hausdorff space
are given. We used these representations to show that the above
spaces satisfy a strengthened rersion of the Dunford-Pettis Property-
specifically that a weakly compact operator on these spaces maps
weakly Cauchy sequences into convergent sequences, without any as-
sumption about the completeness of the range of the operator.

l Throughout the first two sections (S, Σ) denotes a measurable
space, (X, S") a complex, locally convex Hausdorff linear topological
space with dual X* and μ an additive set function from Σ into X.
If x* eX* and p is a semi-norm on X we will write x* ^ p whenever
\x*(x)\-^ p(x) for all xeX. The following theorem, stated here
without proof, was first proved by Pettis [6] for normed spaces and
Grothendieck [5] for locally convex spaces.

THEOREM 1.1. If μ is countably additive in the weak topology,
then μ is countably additive in j?\

DEFINITION .1.2. If p is a semi-norm on X, then the p-semivaria-
tion of μ is the function from Σ into the extended reals defined by
\\μ\\p{E) — svφx*<;pv(x*μ, E), where v(x*μ, •) is the scalar variation of
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x*μ.

I t follows immediately t h a t \\μ\\p(-) is monotone, subadditive and

that p[μ(E)] g || μ \\P(E) g 4 supFclEp[μ(F)] for each Ee Σ. If μ is a
measure then HμH^ ) is countably subadditive and real valued, since
the range of μ is bounded.

THEOREM 1.3. If μ is a measure, p a continuous semi-norm and
(En) a convergent sequence in Σ, then || μ \\p(\imnEn) — l imj | μ \\p(En).

Proof. We first establish a special case. Suppose (En) is a de-
creasing sequence in Σ with empty intersection and that, for some
ε > Of II μ \\p(En) > e for each n. Let nx = 1. For some x* ̂  p and
n2 > n19 v(x*μ, En) > ε and v(x*μ, En) < ε/2. Then also 4 s u p ^ ^ ^ , ,
P[/^(^)] ^ v(x*μ, En\En) > ε/2, so for some F, c ^ Λ l W 2 w e h a v e

PlM î)] > f

Continuing in this manner there is an increasing sequence (nk) of
positive integers and a sequence (Fk) in Σ such that Fk c En]c\Enk+1

and p[μ(ί\)] > ε/8 for each k. This contradicts the countable ad-
ditivity of μ since the Fk'& are pairwise disjoint.

If (En) is in Σ and has limit £7, then \\μ\\p(E) = limj
since the inequality

ill μ \\P(E) - \\μ\\p(En)\^ \\μ\\P[U^n(E\Ek)] + \\μ\\P[\J^ΛEk\E)]

holds.

COROLLARY 1.4. If μ is a measure and (En) is a convergent
sequence in Σ, then μ(limnEn) = limnμ(En).

Proof. Let E = \imnEn. The corollary follows since

\imn(E\En) = \imn(En\E) = 0

and p[μ(E) - μ(En)\ < \\μ\\p(E\En) + \\μ\\p(En\E) for each n and
semi-norm p.

DEFINITION 1.5. Suppose S is a topological space, μ is regular
(in ^ ) if, for each Ee Σ ε > 0 and continuous semi-norm p on X,
there is a relatively compact set iΓ in Σ whose closure is contained
in E and a set G in Σ whose interior contains E such that

\\μ\\,(G\K)<e.
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If μ is bounded and regular, then x*μ is bounded and regular
for each x*eX*. This implies that x*μ is countably additive for
each a;*6l*, which in turn implies that μ is a measure. Also, regu-
larity in the weak topology is equivalent to the regularity of x*μ for
each x* e l * .

THEOREM 1.6. If μ is regular in the weak topology and μ is a
measure, then μ is regular in J^~.

Proof. If μ is not inner regular there is an EeΣ, a positive ε
and a .^continuous semi-norm p such that \\ μ\\p(E\K) > ε for each
relatively compact K in Σ with KaE. Let Kλ = 0 . There is an
x1 ^ p and a relatively compact set K2 in Σ such that

Kλ c iΓ2, K2 c E, v(x,μ, E\Kύ > e

and v{xλμ, E\K2) < ε/2. Since \\μ\\p(E\K2) > ε we may continue this
process and obtain a sequence (xn) of functional dominated by p
and an increasing sequence (Kn) of relatively compact sets in Σ such
that Kn c i?, v(xnμ, E\Kn) > ε and vfeμ, E\Kn+1) < ε/2 for each π.
Let if = \Jn^iKn. Since lim^iΓVK'J = 0 there is an m such that

\\μUK\Km)<±.
Δ

But then v(xmμ, E\Km) £ v(xmμ, E\Km+1) + \\ μ \\p(K\Km) < ε. The
outer regularity of μ is proven similarly.

2* Throughout this section μ is a fixed measure from Σ into
(X, j^~) and φ the complex numbers.

DEFINITION 2.1. A function /: S—> φ is μ-integrable if
(1) / is x*μ-integrable for each #*eX*, and
(2) for each Ee Σ there is an element of X, denoted by

ί f(t)μ(dt) ,

such that x*[ f(t)μ(dt) = ί f{t)x*μ(dt) for each f e Γ .
JJS: j£

Since (X, ,_ "̂) is Hausdorff the integral is well-defined. No assump-
tion is made about the completeness of (X, ^ ~ ) . ^" enters into the
definition of the integral only in that it determines X*, so that in
any of the results of this section J7~ may be replaced by any topology
in the Mackey spectrum of (X, ̂ * ) .

It is easy to see that the integral has the following properties:
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(1) The integral is linear.
(2) Every simple function Σ ^ Λ Z ^ is μ-integrable and

ί (ΈdiXE)(t)μ(dt) = Σ.i^a.μiE Π E{)

for EeΣ.
(3) If / is bounded and μ-integrable, then

^ II μ ll,(^) βup..

for each EeΣ and continuous semi-norm p.
(4) If / is μ-integrable and T is a continuous linear operator

from X into a locally convex HausdorfE space Y, then / is Tμ-integra-

ble and ( f(t)Tμ(dt) = τ\ f(t)μ(dt) for EeΣ.
JE )E

THEOREM 2.2. (1) If f is μ-integrable, then the set function on

Σ defined by Φ(E) = I f(t)μ(dt) is a measure,
JE

Φ \\,(E) = su P l , s 4 |/(ί) \v{x*μ, dt) and limllpll ( £ ) ^ | | Φ \\,(E) = 0
J E

|
E

for each continuous semi-norm p.
(2) Let (fn) be a sequence of μ-integrable functions which con-

verge pointwise to f on S and g be a μ-integrable function such that
\fn\ ^ I 0 I for each n. f is μ-integrable if X is sequentially com-
plete. If f is μ-integrable then

\ f(t)μ(dt) - limJ fn{t)μ{dt)
JE JE

uniformly with respect to EeΣ.

Proof. The set function Φ in (1) is a measure by Pettis's Theorem,
and the expression for its p-semi-variation is correct since

v(x*Φ,E)= \ \f(t)\v(x*μ,dt)
JE

for each a?*. Clearly || Φ \\P(E) = 0 whenever || μ \\P(E) = 0, so in light
of Theorem 1.3 the usual proof by contradiction that zero-zero and
ε — δ absolute continuity are equivalent in finite measure spaces
establishes that limi^n^^oll Φ \\p{E) = 0.

To prove (2) we first show that
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is Cauchy uniformly with respect to EeΣ. Let p be a continuous
seminorm, ε > 0,

Φ(F) = \ g(t)μ(dt)
JF

and En = {se S: \f(s) - fn(s) | ^ ε}. lί EeΣ and x* g p, then / is
#*μ-integrable by the dominated convergence theorem for scalar meas-
ures and for each n

\e\\μ \\P(E\En) + 2\\Φ \\P(E 0 En) .\\Bf~ fn)(t)x*μ(dt)

Thus

p[\/n(t)μ(dt) -

^ 2ε|| μ \\P(S) + 2|| Φ \\,(En) + 2|| Φ \\p(Em)

for all n and m. The sequence is Cauchy since \ιmn\\ Φ\\p(En) = 0.
The first assertion of (2) follows from this Cauchy condition and

the dominated convergence theorem, and the second is true since

is uniformly Cauchy in ^~ with respect to E and converges weakly

to ( f(t)μ(dt) .

It follows that every bounded measurable function is μ-integrable
if X is sequentially complete. The last two theorems of this section
give characterizations of μ-integrable functions when X is sequentially
complete.

LEMMA 2.3. Let X be a complex valued measure on (S, Σ) and
(fn) a sequence of X-integrable functions such that

(1) (fn) converges to f pointwise on S, and

(2) (\ fn(t)X(dt)) is Cauchy for each EeΣ. Then f is X-integrable

and \ f(t)X{dt) = \\mλ fn(t)X(dt) uniformly with respect to EeΣ.
)E JE

Proof. The proof follows the standard argument. For each m

define Xm on Σ by Xm(E) = I fm(t)X(dt). Each λw is ^(λ)-continuous
JE

and by (2) limwλm(2*7) exists for each EeΣ. By the Vitali-Hahn-Saks
Theorem \\mv{λiE)^Xm{E) = 0 uniformly in m. Let ε > 0 and
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for each n. By (1) UmnEn = 0 , so supw 2 ϊ Λ o supm^(λm, En) < ε for some

n0. Also, for w ^ w0,

, S\En) + lim infmί | fm(t) - fn(t) \v(\, dt)

, S) + 2] .

This inequality establishes the lemma.

THEOREM 2.4. Suppose X is sequentially complete and f is a
complex valued function on S. The following are equivalent:

(1) / is μ-integrable.
(2) There is a sequence (fn) of bounded measurable functions

which converges pointwise to f and for which (\ fn(t)μ(dt)j is Cauchy

uniformly with respect to EeΣ.
(3) There is a sequence (fn) of simple functions which converges

pointwise to f and for which (\ fn(t)μ(dt)j is Cauchy for each EeΣ.
E

Proof. For each n let En = {se S: \f(s) \ ̂  n) and fn = fχEn. If
f is μ-integrable then (fn) satisfies condition (2) by Theorem 2.2. (2)
clearly implies (3). To see that (3) implies integrability, let EeΣ

and xE = lim%\ fn(t)μ(dt). For x* eX*, an application of Lemma 2.3
JE

Λvith λ = x*μ shows that

x*{xE) - l imj fn(t)x*μ(dt) = ( f(t)x*μ(dt) .
JE JE

Notice that if / and (fn) satisfy condition (2) or (3) of Theorem
2.4, then, by Lemma 2.3,

ί f(t)μ(dt) - limJ fn{t)μ(dt)
}E JE

for each EeΣ. Also, a reformation of (3) with the word Cauchy
replaced by convergent is equivalent to (1) without sequential com-
pleteness.

We next consider the case in which X is normed. Here we need
only one semi-variation of μ, that with p(x) = \\x\\. The dual of X*
under its natural norm topology will be denoted by X**.

DEFINITION 2.5. Suppose X is a normed space. A function
f:S-+φ has a generalized integral ivith respect to μ if / is x*μ-
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integrable for each x*eX*. If / is such a function, then 1 fdμ is

the linear form on X* defined by ([ fdμ)x* = ί f(t)x*μ(dt).

If / is μ-integrable, then I fdu is the image of I f(t)μ(dt) under
JE JE

the natural map from X into X **. \ /cfo& is always in X**, since

it is the pointwise limit of a sequence of the integrals of simple

functions.

THEOREM 2.6. Suppose X is a Banach space and f:S-+ψ has
<ι generalized integral. The following are equivalent:

(1) / is μ-integrable.
(2) The set function Φ from Σ into X** defined by

Φ(E) = ί fdμ
JE

is measure in the norm topology on X**.

(3)

Proof. (1) implies (3) by Theorem 2.2. (2) is immediate from (3).
For each n let Fn = {se S: \f(s) | ^ n) and fn = fχEn- For n and m
positive integers and EeΣ,

\ fΛt)μ{dt) - \ fm(t)μ(dt) ^ \\ Φ \\(S\En) + || Φ \\(S\Em) ,
JE JE

so that (fn) satisfies condition (2) of Theorem 2.4 if Φ is a measure.

3* Below S is a compact Hausdorff space, Σ the Borel sets of
S, C(S) the Banach space (under supremum norm) of continuous com-
plex valued functions on S and (X, ^~) a locally convex, Hausdorff
linear topological space.

THEOREM 3.1. Let A;C(S)—>X be a weakly compact linear
operator. There is a measure μ: Σ —> X such that

(1) μ is regular,
(2) the closed absolutely convex hull of μ[Σ] is weakly compact,
(3) every bounded Borel function on S is μ-integrable,

(4) Af = \f(t)μ(dt) for fe C(S), and

(5) A*x* = x*μ for ^ e Γ .
Conditions (1) and (4) define μ uniquely. \\A\\ = ||/*||(S) whenever
X is normed. If μ is a measure on Σ which satisfies (1), (2), and
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(3), then (4) defined a weakly compact operator which satisfies (5).
// X is complete, then (2) and (3) follow from (1).

Proof. Since the dual of C(S) may be identified with the bounded
regular Borel measures on Σ, the equation

defines an element of C(S)** for each bounded Borel function g.
Since A is weakly compact, A**, the algebraic adjoint of A*, maps
C(S)** into X. For EeΣ let μ(#) = A**(χ£). For each X * G Γ ,

#*μ = A*x* is a regular measure, so μ is a regular measure. Since
A** maps the unit ball of C(S)** into a weakly compact subset of X,
condition (3) is satisfied. If Σ ^Λχ^ is a simple Borel function, then

Thus £*(A**#Λ) = ίflr(ί)a?*/i(dί) holds for each bounded Borel function

g and ,τ*eX*. Finally, | |A | | = | |A* | | = \\μ\\(E) if X is normed.
Conversely, suppose μ satisfies (1), (2), (3). The operator A de-

fined by (4) is continuous since p[Af] ^ | | / | | \\μ\\P(S) for each con-
tinuous semi-norm p on X. Also, by the regularity of μ, A*x* = x*μ
for x*eX*. Let ί7 be the polar of the closed, absolutely convex
hull of v[Σ], U is a neighborhood of zero in the Mackey topology on
X*, and, for x* e U, || A*x* || <̂  4. Thus A* is continuous with the
Mackey topology on X* and the norm topology on C(S)*-this implies
that A is weakly compact.

If X is complete and μ is regular, then Af = \f(t)μ(dt) defines a

continuous linear operator for C(S) into X such that A*x* = x*μ for
.τ*eX*. To see that (2) holds, it is sufficient to show that A is
weakly compact-equivalently, that A* maps equicontinuous sets into
weakly relatively compact sets. Let V be an open neighborhood of
zero in X generated by a semi-norm p. For x* e V° and E eΣ,

\x*μ(E)\<\\μ\\,(E),

so the countable additivity of A*[F°] is uniform. This together with
norm boundedness implies that A*[F°] is relatively weakly compact.

In [1] Bartle, Dunford and Schwartz have given a similar integral
representation for weakly compact operators from C(S) into a Banach
space. Grothendieck [5] has noted that there is a one-to-one cor-
respondence between the weakly compact operators from C(S) into a
complete, locally convex, HausdorfF space X and the X-valued measures
on the Baire sets of S, although he did not give an integral repre-
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sentation of such operators.
Let T be a locally compact Hausdorff space. CQ(T)[CC(T)] is the

Banach space under supremum norm of complex valued functions on T
which vanish at infinity [have compact support]. C(T)β is the space
of bounded, continuous, complex valued functions on T topologized by
the semi-norms pφ(f) = 8wpteτ\φ(t)f(t)\, where φeC0(T). A weakly
compact operator A: C0(T) —*X can be represented by integration with
respect to an X-valued measure since A can be extended to a weakly
compact operator on the space of continuous functions over the one
point compactification of T. Weakly compact operators on CC(T) have
such a representation since they can be extended to C0(T). The
bounded sets of C(T)β are precisely the uniformly bounded sets and
each element of C(T)f can be identified with a bounded regular Borel
measure on T [2], so the proof of Theorem 3.1 generalizes immediately
for C(S)β.

COROLLARY 3.2. Let A be a weakly compact operator from one
of C(S), C0(T), CC(T) or C(T)β into X. A maps weakly Cauchy
sequences into convergent sequences.

Proof. If (fn) is weakly Cauchy in any of the above spaces, then
(fn) is uniformly bounded and converges pointwise to a bounded Borel
function /. Let μ be the measure determining A. / i s μ-integrable

and, by Theorem 2.1, \f(t)μ(dt) = limnAfn.

This is proven in [5] for C(S) under the assumption that X is
complete.
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2 SUBSPACES OF GRASSMANN
PRODUCT SPACES

M. J. S. LIM

The subspaces of the second order Grassmann product
space consisting of products of a fixed irreducible length k
and zero are interesting not only for their own sake and their
usefulness when determining the structure of linear transfor-
mations on the product space into itself which preserve the
irreducible length k, but also because they are isomorphic to
subspaces of skew-symmetric matrices of fixed rank 2k. The
structure of these subspaces and the corresponding preservers
are known for k — 1, when the underlying field F is algebrai-
cally closed. This paper gives a complete characterization of
these subspaces when k — 2 and F is algebraically closed.
When F is not algebraically closed, these subspaces can be
different.

Let ^ be an ^-dimensional vector space over an algebraically

closed field F. Let A2 ^ denote the ( ^ j-dimensional space spanned
\ Δ J

by all Grassmann products xι/\x2,xi<zF. A vector / e A 2 ^ is said
to have irreducible length k if it can be written as a sum of k, and
not less than k, nonzero pure (decomposable) products in A2 ^ Let
£?k denote the set of all vectors of irreducible length k in A2 ^ Ί a n ( i
fe ^fk if and only if J*?(f) = k. A subspace of A2 ^ whose nonzero
members are in ^ is called an £f — k subspace.

An J*f — 2 subspace H is a (1, l)-type subspace if there exist fixed
nonzero vectors x Φ y such that each nonzero feH can be written
/ = x Λ xf + y A Vf. A basis of a (1, l)-type subspace is called a (1, 1)
basis. When dim ^ = 4, every Jίf-2 subspace has dimension one
([4], Th. 10).

It is shown here that (i) for dim %f — n 2> 5, there always exists
an Sf — 2 subspace of (1, l)-type and dimension two; (ii) the 2-dimen-
sional =5̂  — 2 subspaces are of (1, l)-type; (iii) every ^ — 2 subspace
of dimension at least four is of (1, l)-type; (iv) the £f — 2 subspaces
have dimension at most (n — 3) when n ^ 6; and this maximum dimen-
sion is attained. Also the 3-dimensional ^f — 2 subspaces are charact-
erized, and these are the most varied.

From [4], Theorem 5, each fe^k can be uniquely associated
with a 2/c-dimensional subspace [/] of ^ . The pair {flyf2} is said to
be a Pm-pair in ^f2 if [/J + [/2] has dimension m; and the set {fl9 ,fk}
in J^f2 is pairwise-Pm if each pair is a Pm-pair, for i Φ j .

THEOREM 1. Let dim ^/ = n ^ 5. Then there always exists a

167
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(1, lytype £f — 2 subspace of dimension two.

Proof. For n — 5, ulf , uδ independent in ^ , the subspace
Γ<χ Λ^2 + ^ Λ u4, ̂ ΛWj + ^ Λ ^3> is a (1, l)-type ^f — 2 subspace

of dimension two. For n = 69 u19 , uQ independent in ^ , the sub-
space ζu,Λu2 + u3 Au49 ^ Λ ^ + ^ Λ ^ 6 > is a (1, l)-type £? — 2 sub-
space of dimension two.

THEOREM 2. Every 2-dimensional Jzf — 2 subspace is a (1, 1)-
subspace.

The theorem follows from the following Lemmas 1 to 4.

LEMMA 1. Let fι and f2 be a P7-pair in <^2, α, b be nonzero in
F. Then £?{afγ + bf2) = 3.

Proof. Let [/J Π [/2] = <»i>. By Lemma 9 of [4], we can choose
a basis {x19 , x4} of [/J such that /x = ^ Λ ̂ 2 + ^3 Λ ^4 and a basis
{x19Xι,x6,x7} such that /2 = x,Ax5 + a) 6 Λ^ with [fλ] + [/2] = <^, ,a?7>.
Then « = «/! + δ/2 = ^Λ(αx 2 + 6α;5) + ax3Ax* + bx6Ax7 and oSf(«) = 3
by Theorem 7 of [4].

LEMMA 2. Le£ f19 f2 be a basis of a 2-dimensional Sf — 2 sub-
space. Then {/i, f2) is a Pk-pair where k is either 5 or 6.

Proof. Each of [/J and [f2] has dimension four. It is easy to
see that k cannot be 4 (Theorem 10 of [4]). By Lemma 1, we conclude
k Φ 7. If k = 8, Theorem 6 of [4] implies that ^f{f, + f2) = 4. Hence
ά is either 5 or 6.

DEFINITION. flf f2 e ^ 2 can be expressed in (1, l)-form if {f19 f2}
have representations fι — x A u{ + y A vi9 i = 1, 2 and <ίc, τ/)> is a fixed
2-dimensional subspace of ^ .

LEMMA 3. Let {fly f2) be a P5-pair and a basis for an £f — 2
subspace. Then {f19 f2} have representations

/i = y* A u, + u2 A uz ,

f% ~ Vs Λ u2 + uγ A u3 ,

wftere { ,̂ ^2, %3, yi9 y5} is some basis of [/J + [/2].

Proo/. Let ^ 0 = [/J Π [/2] By Lemma 9 of [4], there are repre-
sentations
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A = X1ΛV1 + V2ΛV3 ,

Λ = xz Λ wι + w2 Λ w3 ,

where <^i, v2, vzy = <wx, w2, w3)> = ^ 0 . If vx, wL are dependent then
some combination of ft and /2 has irreducible length ^ 1. Hence they
are independent. Moreover ζv19 w^ n <Ĉ2> v8> and ζvlf w^ Π <w2, w3>
are both nonnull, and hence, without loss of generality, both v2 and
w2 are in ζvί9 wxy. Thus v2 = av1 + δwx and w2 = cvt + dwx. Clearly
b Φ 0, c Φ 0. Finally

^3 = PVJ. + g ^ + r^3, r Φ 0 .

Setting 2/4 = fer-^c""^ — αi;3), yδ = α?2 — d^3 + cg^, ^ = b^rcv^ u2 ~ wlf

u3 — 6̂ 3, we obtain the desired representations.

COROLLARY 1. Let {f19 f2) be a Pδ-paίr and </„ /2> α 2-dimensίonal
Jzf — 2 subspace. Then {flf f2} can be expressed in (1, l)-/orm.

LEMMA 4. Lei {/x, /2} δβ α P6-pair and <yx, /2)> α 2-dimensional
j ^ — 2 subspace. Then {f19 f2) can be expressed in (1, l)-/orm.

Proof. By Lemma 9 of [4], there are representations

f1 = x1AuJrvAw1 f2 = xι A nf + v' A w' ,

where <a?!> c [/J Π [/2] and <u, v, ^)>, <%', v', wrS) are contained in

If <(y, wy Π <(̂ ', w'y = O, some linear combination of f19 f2 has irreducible
length 3. If ζv, wy = <v', '̂)> some linear combination of f19 f2 has
irreducible length ^ 1. The result follows.

Lemma 2 implies the following lemma.

L E M M A 5. Let H be an Jΐf — 2 subspace. Let {flf •••,/&} be an
independent subset of H. Then

( i ) 3 ^ [/,] n [fj] ^2 for l ^ i < j ^k;

(ii) dim Σfc? [/J ^ dim Σ?=i [A] ^ dim Σ ? ί [Λ] + 2.

Corollary 1 implies:

LEMMA 6. Let {f19 f29 f3} be pairwise-P6 and generate a 3-dimen-
sional Sf — 2 subspace. Then {f19 f29 /3} is a (1, 1) basis for </„ /2, /3>
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1* dim ̂  = 5. It is not difficult to see that when dim ^ = 5,
the basis of any £f — 2 subspace must consist of pairwise-P5 vectors.

THEOREM 3. Let dim ^ = 5, H an £f — 2 subspace. Let {fί9

• > fk} be independent in H. Then k ^ 3.

Proof. Let {u19 , u5} be a basis of ^Λ Then each fh 1 ^ I ̂  k,
has the form /, = Σ α ^ % A %(1 ^ i < i ^ 5), α o e i*7. (*) Consider the
vector / = Σ?=i &/<, fteί7 not all zero. Now £f{z) ^ 1 if k ^ 4 for
some {/3J not all zero since the following is true. / = Σ*=i A/< —
Σ P(ii> i ) ^ Λ w<2(l ^ iι < i2 ^ 5) where p(kσω, kσ[2)) = sgn σp(k19 k2), σ

a permutation of {1, 2}, and {/cj are arbitrary integers 1 ^ k{ ^ 5.
Thus, using (*), it follows that {p(^, i2)} are linear homogeneous func-
tions of {βly •••iβk). Then the quadratic p-relations

Σ (-1)^(^1, , ir-l, ^)P(iθ, * * , jμ-l, jμ + 1, " * , 3 r) = 0
μ=0

for all sequences (ί19 , ίr_i), 0'0> > ir) of integers taken from {1, , n)
define (for n — 5, r = 2 in this case) j ^ β nontrivial equations, which
are in fact quadratic homogeneous equations in the indeterminates βlf

>-,βk in F. Moreover, of these five, exactly three are independent
(see [3], pp. 289, 312). Hence, if k ^ 4, then there exists a nontrivial
solution for the five equations (see [6], chapter 11). For these values
of A, , βk (not all zero), ^f(f) ^ 1. Hence k < 4. The following
three vectors generate an J?f — 2 subspace of dimension three:

fx = u4 A u, + u3 A u2 ,

/ 2 = ^5 Λ ^ 2 + ^3 Λ ^ i ,

The following theorem is true for all

THEOREM 4. Lβ£ d i m ^ = w. Lei {/:, •••,/*} δe α (1,1)

/or απ & — 2 subspace. Then k ^ n — 3.
Moreover, when n ^ 5, ί/^erβ always exists a (1, l)-type Jϊf — 2

subspace of dimension (n — 3).

Proof. Suppose k = n — 2. Each/ 4 can be written / i = ίί1Λi/i +
w2 Λ 2», 1 ^ ΐ ^ w — 2, where <u1?%2,y l t ,yn-2,zlf ,zw_2>S ^ . Now
{u19u29y19 ,^_2} must be independent for, if not, some linear combi-
nation of {fi} has irreducible length ^ 1. Hence ̂  = <wlf w2, ?/i, , 2/n-?>
Thus ^- = Σl1^2 α<y2/ί + /3,^i, 1 ^ i ^ ^ - 2. If βά Φ 0, write

(W-2 \

Σ ttijVij
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Hence, without loss of generality, we can assume {zj is dependent on
{yi}. Using a similar argument, {τ/J is dependent on {zj. Hence
<\Vi, •> Vn^y = <A, , 2w-2> Hence, for some {αj e F, not all zero,
we have Σ ? = i 2 ^ ^ = *>%"=?&& = V for some O ^ λ e ί 7 ; and / = Σΐ=ι2<Xifi
has irreducible length ^ 1. Hence & <£ w — 3.

Now let fi = uλA ui+2 + u2A ui+3 for i = 1, , (n — 3), where
(u19 , ww> = ^ . Then {/J generate an £f — 2 subspace of dimen-
sion (n — 3).

COROLLARY 2. Le£ dim ^ = 5, H an ^ — 2 subspace of (1,1)-
, ί/ dim H > 1, dim H = 2.

We pause here to introduce some notation.

DEFINITION 1. For subsets S, Γ of ^ , [S; Γ] = <>S U Γ> -
In the case where S = {xlf , xs} and T = {a?β+1, , α;Λ}, we use the
convention [£; T] = [xλ, , xs; x8+1, , % ] . Note that in this case if
y 6 [S; Γ], then y = Σ U α ^ , at e F, and αί least one of «„ , as is
nonzero.

DEFINITION 2. For subsets S, T of ^, SAT = {xAy:xeS and
7/e T}. In the case where S is the singleton {x}, we shall write S Λ T
as x AT. Similarly for T. Also, if S is the space ζxx, , a?^, then
we shall regard S as a set and write S Λ T as [^, , xk] A T. Simi-
larly for T.

The three-dimensional £f — 2 subspace when dim fS — 5. In this
context, a basis {/Ί, /2, /3} of an Sf — 2 subspace H is necessarily
pairwise P 5 . It is not a (1, 1) basis. However, either there exists a
three-dimensional subspace ^ 0 of ^ contained in each [/,], or there
exists a exists a five-dimensional subspace "W" Si ^ which contains
each [ft] (see [1], p. 14). In fact, W~ = <%S. Moreover, since dim <%s = 5,
dim [/J Π [f2] = 3, and dim [/3] = 4, then dim flLi [/*] ^ 2. Consequ-
ently this intersection has dimension two or three.

THEOREM 5. Let d i m ^ = 5. Let {f19 f2, f3} be a basis for an
Jzf — 2 subspace H such that [ft] Z) ̂ 0 , i — 1, 2, 3, where ^ is α
three-dimensional subspace of Ήf. Then ^f has a basis {u^u^u^x^x^}
such that there are representations

f = Xt A uL + u2 A u3 ,

f2 = xδAu2 + uΣAu3 ,

fz = y A u3 + ^ 2 Λ u, ,
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Proof. *%s has a basis {w19 w29 w3, y4, y5} such that ^Ό = ζwl9 w2, w3y
and there are representations f1 = yiΛw1 + w2Aw3, A = y5Aw2 + wλAw3

(see Lemma 3). Now there exists y' e [/3] such that y' £ ̂ Q and
2/'e [yiy yδ; w19 w2, w3\. Since {f19 f29 f3} is pairwise-P5, it is easy to see
V' e [y» y5, w19 w29 w3] n [y5; y*, w19 wi9 wz\. Hence / 3 has a representation

A = y' Λu + v Λw; %r0 = <(μ9 v, wy ,

(see [4], Lemma 9). Now if ueζw19 w2y, it is possible to find repre-
sentations of f19 f29 / 3 such that they form a (1, 1) basis for H. This
contradicts Corollary 2. Hence u£ζw19 w2y, but ue [w3; w19 w2]. In
fact, without loss of generality, we can take u = wz + cwι + c'w2.

Now ζw2, 6̂>, <(^!, î >, (y, wy intersect pairwise in dimension at least
one. Also u g ζy, wy. Therefore we may suppose v e [w2; u], w e [w^ u].
We set

v = aw, + a'n, w — hwx + Vu .

Then

/s = (Vf + ^^'^2 — afbwx) Λu + jw2 A w19 0 φ Ίe F .

Let

a2 = 7 ,

w2 = α~^2, wγ — orιul9 u = cm3 .

Then

/i = (y* — cwz) Λ or-1!* + u2Λu3 ,

A = (2/β — c 'w) Λ α " 1 ^ + ^ i Λ % 3 ,

/ 3 = x A oίus + u2 A ut .

We have the result on setting x4 — or\yA — cw2), x5 = or1(yδ — c'wj,
y = αα;, and noting that y e [#4; α?5, u19 u2] Π [̂ 5; ^4, u19 u2].

THEOREM 6. Let dim ^ — 5. Lβί {/„ /2, /3} 6e α basis for an
J^f — 2 subspace H such that dim ΠLi [/i] = 2. Then <%S has a basis
{u19 u29 Uz, x±, xδ} such that f19 /2, A have representations given by either
(i) or (ii) below.

( i ) A = x4Au, + u2AUz, A = %5Au2 + u,Au^ A = U/\V
y, y' e [xA1 x5; u19 u29 u3]9ue <uly u2>,

(ii) f19f2 as in (i). With u e <^,^2>, u' e ζu19u29u^9 A =
y Ay\ y, yr e [x4, x5; u19 u2, u3],0^yeF.

Proof. The proof involves a suitable choice of a basis of ^ 9 as
in the proof of Theorem 5, and the use of the following lemma.

LEMMA 7. Let fe £?2 and (μ19 u2y any two-dimensional subspace
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of [/]. Then either
( i ) there exist v, we [/] such that f = ΊUYAU2 + v/\w, O ^ γ e ί 7 ,

or (ii) there exist v\ wf e [f] such that f = uγ A v' + u2 A w'.

Proof. Let {u19 , u4} be any basis of [/]. By Lemma 9 of [4],
/ has a representation f = uλAu + vAw, where ζu, v, wy = ζu21 u3, u4y.
If ^ Λ ^ Λ / = 0, then ζux, u2y Π ζv, wy Φ 0, and it is easy to see
u2 e ζv, wy since ux ί ζu, v, wy. If uλ A u2 Λ / Φ 0, then <χ, i62, v, tί;)> =
[/], and u = auγ + bu2 + cv + dw with 6 ^ 0 . Then / = buλ A u2 +
[̂ i Λ (cy + dw) + vΛw]. By Corollary 8 of [4] and since J*f(f) = 2,
the term in square brackets has irreducible length one.

We can in fact replace the basis {fl9 f2, /3} in Theorem 3 by the
basis {/Σ + /2, /2, /8}. Then [/x + /2] n [/2] Π [/3] has dimension two.
We obtain:

THEOREM 7. Let dim %f = 5, H an <2f — 2 subspace of dimension
three. Then H has a basis which is either of type (i) or type (ii) in
Theorem 6.

Examples of such bases are the following:

EXAMPLE 1. / ^ ^ Λ ^ Ί - ^ Λ U Z , f2 = xδAu2 + uxAu3 ,

f3 = u2A x4 + u3 A x5 .

EXAMPLE 2. Λ, /2 as in Example 1. / 3 = u2 A (uλ + %3) + £4 Λ asβ

2* dim ^ = 6*

three-dimensional Jίf — 2 subspaces. If if is an ^2^ — 2 sub-
space with a basis {/lf /2, /3} and dim ^ = 6, then dim Σ L i [/i] = 5 or 6.
The first case was discussed in § 1. We show that, in the second case,
H has a basis of pairwise-P6 vectors, and there are three possibilities
for such a basis.

Suppose dim Σ<=i [fλ = 6 Now each pair in {f19 f2, f3} is either a
P5-or a P6-pair. Thus either {fl9 f2, /3} is pairwise-P5 or at least one
pair is a P6-pair. The first case is then reduced to the second.

THEOREM 8. Let H be an S^ — 2 subspace, and let {f19 /2, /3} be
pairwise-P5, independent in H such that dim X = 1 [f{] = 6. Then
(Σί=i [/iD ^ α s α ^^ ΐ s {̂ i, %2, ̂ 3, x4, x5, XQ) such that there are represen-
tations

/x = x4 A uγ + u2 A us ,
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= %Q A u + v A u3 ,

Proof. There exists a three-dimensional subspace ^ of % con-
tained in each [ft] (see [1], p. 14). The proof is similar to that of
Theorem 5. We choose a basis {uly u2, v3, y4, y6, y6} of ΣS=i [A] *m order
to obtain representations fλ = y4Au, + u2A v3, f2 = yδΛu2 + u,A v3,
fz = Vβ Λ w, + w2 A w3, and <wx, w2, w3y = <wt, u2, ̂ 3> = ^ 0 Without
loss of generality, we can assume w2 e ζuίy u2y. Then wx e ζu19 u2y, for,
if not, <(ux, u2, wλy = %S0 and (fx + /2 + /3) has irreducible length 3 (see
[4], Th. 7). Moreover % ? < ^ ) and u<£ζu2y (see proof of Lemma 3).
Thus <(wly w2y = <yi? ^2> and wz = λ(v3 + %) for some O ^ λ e ί 7 and
^ G <X, %2>. Then Λ = ylAu, + ^2Λ(v3 + ΰ), h = 2/ίΛ 2̂ + ^iΛfe + ^),
and f3 = yQAw1 + Xw2 A (vs + %). The appropriate choice of new basis
vectors gives the required representations.

COROLLARY 3. Let H be an J^ — 2 subspace, and let {flf f2J /3}
be pairwise-Pδ, independent in H such that dim Σ?=i [f%] — 6 Then
{/i, /2, /3} is α (1, 1) basis for <Λ, /2, /3>.

Proof. Choose a suitable representation of /3.

LEMMA 8. Let {fίy /2, /3} δe α (1, 1) δαsis o/ an ^f — 2 subspace
satisfying (i) dim Σ?=i [/*] = 6» (") {/i> Λ} is α PQ-pair. Then {f19 f2}
can be extended to a (1, 1) δαsis o/ pairwise-P6 vectors of ζflf f2, /3)>.

Proof. We choose a basis {u^ u2, a?3, , £6} of Σ?=i [/ί] so that

/ ^ ^ Λ ^ + MΪΛ a?4, / ^ ^ Λ ^ + ^ Λ ^6

(Lemma 4). Also f = u>_Ay + u2Ay', and we can take

O , 2/'> c <u21 x39 , a?β>

([4], Lemma 9). Let y = u + Σ = 3 α ^ , y' = uf

{̂ , %'} G <X>. We can choose λ, μ e F such that
where

λ

/33

and +

are both nonzero. Then gs = (λ/Ί + μf2 + /3) extends {/x, f2} to a basis
of </» /2, /3> and [flr8] n <^3, ^> = 0, [g3] Π <^5, 6̂> = 0.

In Lemma 8, we can in fact take
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A = u,Ax3 + u2Ax4 ,
fz = iii Λ xδ + u2 A x6 ,

/ s = w 1Λ^ + w !Λ y\ <3f, y'y c<u2, x39 . . , α;6>

and does not intersect each [/J, i ^ 3.

THEOREM 9. Let H be an ^ — 2 subspace. Let {f19 f2, /3} be
pairwise-Pδ, independent in H such that dim Σ;=i [fύ = 6 TAew
<̂ /i> /2> fs} has a (1> 1) basis of pairwise-PQ vectors.

Proof. Using the representations of fίyf2,f3 obtained in Theorem 8
and Corollary 3, we take gx = (f, + / 8 ) . Then {gl9 f2, f3} is a (1,1) basis
{#i, / J a P6-pair, and [g,] n [/2] Π [/3] = <^i, <>. The result follows by
Lemma 8.

COROLLARY 4. Lei {f19 f2, /3} 6β α (1, 1) basis for an ^f — 2 sub-
space such that Σ i = 1 [fi] = 6. Tfeβπ ίΛ,erβ βα isί α (1, 1) δαsίs of pair-
wise-P6 vectors for </x, /2, /3>.

THEOREM 10. Let H be an £f — 2 subspace, dim i ί >̂ 3. Lei
{/i» Λ> /s} &e independent in H such that (i) dim Σ?=i [/•] — 6> (")
Πΐ=i [fi\ ~ 0. Γ/̂ ew {/i, /2, /3} are pairwise-P6 and for any basis {uL, u2)
of [/i] Π [/2], (Σ<=i [fi]) has a basis {u19 u2, x3, - , x6} such that {f19f2,f3}
have representations f, = u, A x3 + ^2Λ^4, /2 = uλ A x5 + ^ 2 Λ x^ /8 =

+ x6Av2, < w l f ^ 2 > = <a;5, £6>, < ^ , v2> = <a;3, x 4>.

Proof. If {/i, /2, /3} were not pairwise-P6, we would have a con-
tradiction of (ii). Since {flf f2) is a P6-pair, the choice of representa-
tions of fuf2 is immediate (Lemma 4). Let

[/3J = \ ^ 3 , Xi, Z19 Z2/y X% G \XZ] Uly U21 \y X± G \Xi\ tin ^2i *

It is not difficult to show we can represent fz = xf

zAwι + x[Aw21 where
<(w19 w29 x'4y = ζx'4, z19 z2y, a n d t h u s {w19 w2} e [zx1 z2; x'4], a n d fγ = u, A x[ +

u2Ax[ (using Lemma 9 of [4] and proof of Lemma 4).

In a similar fashion, without altering u, or u2, we can choose

Xh G [X*>] Ίln U2\1 XQ G [X6f 1l19 Xz\) \U^ XQ/ = \Zu Z2/ >

so that f2 = ttx Λ &ί + ^ 2 Λ »ί, /s = a?ί Λ Vi + a?ί Λ ^2> where ^ ^ t;2, x'^ =
<^e, α J, a;ί>. Thus {v19 v2} e [x[9x[; xί]. From above, /3 is also xίAwx +
x[ A w2y and {w19 w2} e [̂ 5, Xe; »J] With respect to the independent set
{x'iAx'j}, the coefficient of x3Ax[ is zero in the second expression
obtained for /8, and the coefficient of #5 Λ x'Q is zero in the first. It
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follows that neither term appears in /3. We have the result on placing
Xi for x'i9 i = 3, , 6.

LEMMA 9. Let H be an Sf — 2 subspace. Let {f19 /2, /3} be {in-
dependent in H satisfying

( i ) dimΣS=i[/J = 6,
(ii) {fuft} is a P6-pair,
(iii) dim ΠLi [fi] = 1.

Then there exists #3 e </i, /2, /3)> such that {/lf /2, #3} is α δαsis o/
pairwise-PQ vectors for </!,/2,/3> am? f | U [/<] = [#3] Π [/1] Π [/2]

Proof. There are representations /1 = %1Λ»8 + ^2Λ#4, /2 = uxAx*> +
^2 Λ a?β, and Σ U [/*] = <X, ^2, αs, , O Let f lU [/i] = <^>. Then
u e <χ, ̂ 2)>. Without loss of generality, we can take u = uL. By Lemma 9
of [4], fs = uλΛw + w' Λ v, <w, w\ v} c <u2, xZi , α;6>. If {f19 f2, /3}
are pairwise-P6, we have the result.

Case 1. Suppose {/„ /3} is a P6-pair and {/2, /3} is a P5-pair. Then
we can take f3 = uλAw + x4Avr (use Lemma 6 and (iii)), where

Let [/J n [/3] = <^, 2/, :*/'>. Then {y, ^} e [xδ, x6; u2]. Therefore

f^ = u,Aw + x4Av\we [xδ, x6; u2, x4], v' e [xδ, x6; u2] .

Let v' = axδ + bxQ + cu2. Choose 7 ^ 0 such that 7 + c Φ 0. Let
9's= fs + 7/i. Then {βr3, / J and {/2, r̂3} are P6-pairs.

Case 2. Suppose {/̂  /3}, {/2, /3} are both P5-pairs. This and (iii)
imply dim ([/J n [/3]) + ([/2] Π [/3]) = 5, which exceeds the dimension
of [/3]. Hence this case is not possible.

LEMMA 10. Iffe£?2 andfe ^ Λ f e , xs, x4] + [#4; x2]Λ[^3; x2] where
[/] = <«i» •> 4̂>, ^ e ^ / e a?i Λ [x2] + [x4; a?i, ̂ 2] Λ [xs; x19 x2].

Proof. Apply Lemma 7 to <(x19 x2y and notice that the coefficient
of x4 A xz is nonzero in /.

THEOREM 11. Let H be an ^f — 2 subspace, dim H ^ 3. Let
{fiy ft* Λ} be pairwise-PQ and independent in H satisfying

( i ) d i m Σ U [ / J = 6,
(ii) dim Γ1U [/J = 1.

Then for <^> = ΠS=i [fi] &nd any vector u2 such that (uλ, u2y = [/J Π [/2],
there exists a basis {uly u2, x3y , x6} such that fγ = uγ A x3 + u2 A xit

f2 = u, A %δ + u2 A x6, fz = ^1Λ 2/ + Xi A x6, where y e <u2, xs, , α;6>,
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y £ <χ, x3, xδy, y $ [fi], i = 1,2. Furthermore, there exists g3 such
that </x, / 2, #3> = </i, Λ, Λ> αwd #3 = ux Λ u2 + v A w, ve [x4; u19 u2],

w e [x6; ul9 u2] and gz = v' A wf + jx4 A x6y 0 Φ Ύ e F, v' e [u^ x4, x6], wf e

\U2*, X4, XQ\

Proof. The proof involves choosing a suitable basis of Σ L i [fi]
and the use of Lemma 6 and 7. To obtain the form of #3, we use
Lemma 10.

LEMMA 11. Let H be an & — 2 subspace. Let {f19 f2, fs} be in-
dependent in H such that

( i ) d imΣU[/d = 6>

( ϋ ) {/i,/2} is a P6-pair,
(iii) dim DU [A] = 2;

then {/i, f2} can be extended to a basis of pairwise-P6 vectors for

Proof. By a suitable choice of basis vectors for ]Γj=1 [/J, and the
application of Lemma 7, we have two possible cases. One case implies
{/i» Λ> Λ} is a (1, 1) basis and the result follows by Lemma 8. This
case is when either {f19 /3} or {/2, /3} is a P6-pair. Thus, the other
possible case is when both {f19 /3} and {/2, /3} are P5-pairs. Then /L —
WiΛa?8 + ^2Λ^4, /2 = %iΛ^5 + u2AxQ with ΣS=i [/ί] = <X> ^2, »3> > β̂>
By Lemma 7, / 3 is either ^ Λ v + ^ Λ w or ^ Λ ί ί ί + v'Λ wf. The
first case implies {/x, /2, /3} is α(l, 1) basis and Lemma 8 applies. In
the second case, we can take vf e [/J, wf e [/2]; i.e., v'e [xB, x4; u19 u2],
wf e [x5, x6; ulf u2]. In fact, we can take v' e [x3; x4, ulf u2], and vr —
x3 + auγ + bu2 + cα;4. Now wf — dxδ + a'uγ + 6'u2 + c'£C4. We then show
c' — cd = 0, by considering the determinant of (α^ ), where α4 i is defined
as follows. Let z = A + f2 + /3- We can express

^ = ^i Λ w2 + w3 Λ w4 -h w5 Λ w6 .

For i = 1, 2, α^ is the coefficient of u{ in wά. For i = 3, , 6, aiS is
the coefficient of a?< in tt;^ This determinant is ± (c' — cd). If it is
nonzero, £f($) = 3. Hence it must equal zero. Then a suitable choice
of basis vectors of Σ?=i [/;] will allow us to assume that c = 0 in v'
and c' = 0 in w'. Then ^3 = (/3 — /x + /2) will extend {/̂  / J to a pair
wise-P6 basis for </„ /2, /3>.

We have sufficient reason now to assert the following theorem.

THEOREM 12. Let {f19 f2, f3} generate a three-dimensional ^f — 2
subspace H, and dim Σί=i [/ΐ] = 6. ΓAe^ f ί Λαs α δαsίs of pairwise-
P6 vectors {gly g2, g3) which either form a (1, 1) basis of H or have in-
tersection Πi=i [θi] with dimension 0 or 1. Moreover, if {fly f2} is a



178 M. J. S. LIM

ir, then this pair can be extended to a basis of pairwise-P6 vectors
of H.

EXAMPLES. H is generated by {f, f2, /3} where
( i ) /L = MiAflJs + M2Λ»4»Λ = ^ΛaJβ + W2Λ %β,

fz = u,A (u2 + a?8 + χδ) + ̂ Λx6;
(ϋ) A, Λ as in (i), f3 = u,Ax, + u2A %δ;
(ϊϋ) /1, /2 as in (i), /3 = x3 A xδ + £4 Λ αβ

maximal £f — 2 subspaces, dim ^ = 6. We shall now obtain
this main theorem:

THEOREM 13. Le£ if δe αw Sf — 2 subspace and dim ̂  = 6.
Tfcβn dim if ^ 3.

We prove this theorem by a series of lemmas, which show
dim H > 3, in fact, dim H Φ 4. We take two three-dimensional =Sf — 2
subspaces <(/x, /2, /3)> and ζf, /2, /4> and show their sum is not an Jίf — 2
subspace. Theorem 12 allows us to take {flf /2, /3} and {/lf /2, /4} to
be pairwise-P6, and there are 6 cases to consider since dim Π;=i [/•] =
0, 1, 2 and a similar intersection property holds for the second set.

The following results are true for any dimension n of ^ unless
otherwise specified.

LEMMA 12. Let H be an ^ — 2 subspace. Let {ft, f2, f3} be in-
dependent pairwise-P6 in H satisfying

( i ) dim Σ U [/,] - 6,
(ϋ) ΠS=i[Λ]=O.

If f^^f2i independent of {f19f2,fB}, satisfying
(a) d imΣU[/ ί ] = 6
(b) {/1,/2,/J is pairwise-P6

(c) dim n*=i,2,4 [/*] = 1,
then </i, , /4)> is πoί α^ Jif — 2 subspace.

Proof. By Lemma 10, Σ?=i [/i] has a basis {wlf w2, x3, , ίc6} such
that f = u, Ax3 + u2 A X*, f2 = wx Λ a;5 + u2 Λ £6, /3 = α;5 Λ z + xβ A z',
ζz, zry = <aj3, α;4)>. Let (u) = Π1}2A [/J. Then u e <wx, ^2> We can take
ux — u.

By Theorem 11, there exists g3 e </x, /2, /4> such that ^3 = v'Aw' +
T.τ4 Λ a?β, 0 Φ 7 e JP7 and </ly /2, ̂ 3> = </lf /2, /4>. Since {v', w', x6, a;β, «, 2'}
is independent and {x4 + azf, z) is independent for some aeF, then
3 = g3 — af3 has irreducible length 3 for some a. Hence </x, , /4)>
is not a n i ^ - 2 subspace.

Since the proofs of the lemmas involving the other cases are similar
to the proof of Lemma 8 in the sense that in each case, we exhibit
a vector of irreducible length 3 or less than 2 except in the 0-0 case,
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which we can reduce to one of the other cases, we shall simply state
the final lemma.

LEMMA 13. Let H be an £f - 2 subspace. Let {f19 /2, /„} be in-
dependent in H such that dim Σ*=i [fλ — 6 If A £ ̂ 21 independent
{A, /2, /8} such that dim | = 1 [/J = 6, ίfam </„ , /4> is woί cm ^ - 2

We have to check one more case before we obtain Theorem 13.

LEMMA 14. Let H be an £f — 2 subspace. Let {fί9 f2, fz) be in-
dependent in H, dim Σ U [/*] = 5. // /4 e j ^ 2 , /4 £ </ l f /2, /3>, and
dim Σ<=i [/ί] = 6> ί̂ βw </ l f ,/4> is woί αw ^ - 2 subspace.

Proof. We note dim X1>2,4 [/;] = 6 and apply Lemma 13.

We have now:

LEMMA 15. Let H be an £? — 2 subspace. Let {f19 , fk} be in-
dependent in H, dim Σ?=i [/<] — 6 ΓΛβw A; ̂  3. For k = 3, <(/i,/2,/3]>
Aαs α δαsis 0/ pairwise-P6 vectors.

Theorem 13 follows from Lemma 15

3* dim <%f = 7.

TΛβ ίΛrββ dimensional Jέf — 2 subspaces.

THEOREM 14. Let H be an ^ — 2 subspace of dimension ^ 3.
Let {/i, /2, /3} 6β independent in H such that dim Σ<=i [/J = 7. T/^β^
{/i> Λ? /s} contains a PQ-pair, say {f19 /2}, which can be extended to a
pairwise-Pβ basis {f19 f2, g3} of ^/x, /2, /3̂ >. Moreover, either this basis
is a (1,1) δαsΐs or dim ([/J Π [/2] Π [̂ 3]) = 1; α^d α?i7/ δαsis {uίy u2} of
ί/i] Γl [/2] ^^^ &β extended to a basis {u19 u2, x3, , x7} of [f] + [/2] + [̂ 3]
s^c/^ ίΛαί A = u,Ax3 + u2A x4, /2 = ^1 Λ x5 + u2 A xQ; and gz =
^1 Ax7 + u2Av, ve ζu2, a?3, , α;6)>, v g <(^2, a?4, α?6>, and v £ [/J αwώ

•v g [/2] m ίΛβ first case) g3 — uίAx7 + x4A xQ in the second case.

Proof. A consideration of the various intersections and sums of
[f.]y i = 1, 2, 3 shows dim Πi=i [A] is either 1 or 2, and that there are
a t least two P6-pairs in {flf f2, /3}. In the first case this independent
set is in fact pairwise-P6. The second case implies {f19 f29 /3} is a (1, 1)
basis for </ l f /2, /3>. If this basis is not pairwise-P6 but {f19 f2} and
{ΛJ/S} are P6-pairs, and {f19 /3} a P5-pair, we can choose a basis
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{uly u2, x?, , x7} to give /i = UiΛXs + u2Λx4, f2 = ^iΛ^5 + u2Ax6, / 3 =
^ΛXj + u2Λv,ve <u2, x3, , #6>. Then we can take g3 = f2 + /3. To
obtain the desired representations of {f, /2, /3} in the first case, we
use an argument similar to the ones used earlier to obtain basis repre-
sentations.

The maximal JZf — 2 subspaces, dim ^ = 7. We obtain the follow-
ing theorem.

THEOREM 15. Let H be an ^ — 2 subspace, dim ^ = 7. Then
dim H ^ 4. PFΛew dim £Γ = 4, if ftαs α (1,1) δαsΐs, ί/iree o/ wfcose
members are pairwise-P6.

The proof is contained in Lemmas 16, 17, and 18 which follow.

LEMMA 16. Let {f19 f2, /3} be a (1, 1) basis for the Sf — 2 subspace
</i» Λ, /3>. sucfc ίfcαί dim Σ<=i [/J = 7. 1/ /4 e c^2, independent of
{/i> Λ* /s} sucΛ that

( i ) dim Σ U [Λ] = 7,
(ii) </t, . ,/4> is απ .Sr̂  — 2 subspace, then </i, * ,/4> Λαs α

(1, 1) frαsis, ίferβe o/ ^Λose members are pairwise-P6.

Proof. By Theorem 14, {/„ /2, /3} can be assumed to be pairwise-
P6 with the representations given. Then it is easy to see that some
pair in {/1? /2,/ s}, say { / J J , is such that dim Σί=i,2,4 [/J = 7, and
{/i» Λr/J can be assumed pairwise-P6. The two cases given in Theorem
14, apply to {f, f2, /4}. One case gives the desired result immediately.
We can eliminate the other case by showing the presence of a vector
in ^ 3 in </x, , /4>; in fact we can take the vector f + f2 + /3 + α/4

for some suitable 0 Φ ae F.

LEMMA 17. Let H be an £f — 2 subspace. Let {f19 f2, fz) be in-
dependent in H, dim Σ L i [A] = 7. If /4 e j ^ 2 , /4 e </17 /2, /3> ŝ c/̂  ί/̂ αί

( i ) dim Σί=i [Λ] = 7,
(ii) <(/1? , /4)> is απ . ^ — 2 subspace,

then <(/*!, , /4)> fcαs α (1, 1) basis, three of whose members are pair-
wise-PG.

Proof. In view of Theorem 14 and Lemma 16, it is sufficient to
eliminate the case dim Π?=i [f] = l We use a similar procedure as
in the proof of Lemma 16, and the representations of {/J in Theorem 14.
We have two cases: (a) Γl;=i,2,4 [/*] = < O , (b) Π;=i,2,4 [/J = <^2> In
(a), <(/i, •• ,/4> contains a vector of irreducible length one. In (b),
</i> , Λ)> contains a vector or irreducible length at least three.
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In addition to these two lemmas, we note that if H is an ^ — 2
subspace, {f19 f29 /3} independent in H and (i) dim Σf=i [/*] — 6> then
{/J can be taken to be pairwise-P6 (Lemma 15) and if f4 £ </ί, f29 /3>,
dim Σ!=i [/<] = 7, then dim Σ*=i,2,4 [/J = 7; (ii) Σ U [/J = 5, and if
A £ </» /« Λ>, dim ΣUi [/*] = 7, then dim Σ U [/J - 7. Hence both
these cases reduce to the case considered in Lemma 17.

LEMMA 18. Let H be an £? — 2 subspace, and {f19 - - -, f^} be in-
dependent in H, dim Σί=i [/*] = 7. If fδ e £f29 f5 ί <Λ, , /4>, and
dim Σf=i [/ί] — 7, ί/^w </i, ,/5> is ?ιoί α^ £f — 2 subspace.

Proof. Apply Lemma 17 to {f19 , / J and {/2, , /4} taking
{/i,/2,/3} pairwise-P6. Then </x, •• ,/5> has a (1, 1) basis, contradict-
ing Theorem 4.

4* The main results*

LEMMA 19. If H is an ^f — 2 subspace and {fly f2J f3} is inde-
pendent in H, dim Σ?=i [/•] = 8, then {f19 f2, f3} is a (1, 1), pairwise-
P6 basis of <jf\, /2, /s>, αncZ we cαπ represent

f = u,Ax3 + u2Λ%4 ,

f2 = Ul A x5 + u2 Λ x6 J

/ 3 = %iΛ«7 + ^^2Λa?8

3

Σ [/<] = Oi , ̂ 2, ̂ 3, , χBy

•if Λ e ̂ , Λ ί </n Λ, /3>, α?̂ d </L, , /4> is cm ^ - 2 subspace,
then {f19 , / J is α (1, 1) basis for </„ - , /4>.

Proof. The first part is not difficult to see. Using Lemma 5 we
obtain dim [/4] Π <X, u2y ̂  1. This intersection will have dimension 2,
and /4 forms a P6-pair with one of {f19 f29 /3} since dim [/4] = 4.

Lemma 19 is extremely important as the second part states that
presence of a 3-subset {f19 f2, /3} of any basis of an Sf — 2 subspace
H such that dim Σ?=i [/*] — 8 will guarantee that the basis will be a
(1, 1) basis. We know that if dim J^ ^ 8, then in any basis of H,
we can find a 3-subset {glf g2, #3} such that dim Σ?=i [ΰλ = 6, 7 or 8.
It is by now a more or less routine, and somewhat tedious, procedure
to show the existence of a 3-subset {f19 f29 /3} in such a basis of H for
dim *%S = 8, and then by induction for dim ^ ^ 9. We shall simply
state the main result and remark here that Theorem 4 provides the
value of the maximal dimension of a (1, 1) basis.

THEOREM 16. Let dim ^ = %:>6. If H is an ^f — 2 subspace,
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then dim H ^ n — 3. // dim H >̂ 4, £feew i ϊ Aαs a (1, 1) δαsίs,
is hence a (1, l)-type subspace.
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ORTHOGONAL GROUPS OF POSITIVE DEFINITE
MULTILINEAR FUNCTIONALS

STEPHEN PIERCE

Let V be a finite dimensional vector space over the real
numbers R and let T: V—> V be a linear transformation. If
φ: xΓ V—>R is a real multilinear functional and

, Txm) = φ(xl9 , xm),

Xi, ' ,xm£V, T is called an isometry with respect to φ. We
say φ is positive definite if φ(x, •••,#) > 0 for all nonzero
xeV. In this paper we prove that if φ is positive definite and
T is an isometry with respect to φ, then all eigenvalues of T
have modulus one and all elementary divisors of T over the
complex numbers are linear.

Let V be an ^-dimensional vector space over the real numbers R.
Let T: V —• V be a linear transformation of V. The following theorem
[1, Th. 3] is easy to prove:

THEOREM 1. There exists a positive definite symmetric quadratic
form φ: V x V—»R such that

(1) φ(Tx, Ty) = φ(x, y), x, y e V

if and only if

1. all eigenvalues of T have modulus 1;

( 2 ) 2. all elementary divisors of T over the complex num-

bers C are linear.

Moreover, if T satisfies (2), then there is a positive definite symmetric
φ such that (1) holds.

Theorem 1 can also be expressed in matrix theoretic terms. If
A is a real n x n positive definite symmetric matrix and X is any
automorph of A;

( 3 ) XTAX = A ,

then X satisfies (2); moreover, if an n x n matrix X satisfies (2), then
there is a positive definite symmetric A such that (3) holds.

Let φ\ x?V—>R be a real multilinear functional. Let H be a
subgroup of the symmetric group Sm. If

183
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for all σeH and all x{ e V, i = 1, , m, then φ is said to be sym-
metric with respect to H. If

( 5 ) φ(Tx19 , Txm) = <p(x19 -xm)

for all x19 , xm e V, T is called an isometry of V with respect to φ.
(Note that if m > 2, (5) has no matrix analogue). Let Ωm(H, T) be
the set of all φ satisfying (4) and (5). Clearly Ωm(H, T) is a subspace
of the vector space of all multilinear functionals symmetric with re-
spect to H. We say φ is positive definite if

(6) φ(x, . . . , £ ) > 0

for all nonzero x in V. The set of all positive definite φ in Ωm(H, T)
is denoted by Pm(H, T). It is clear that Pm(H, T) is a (possibly empty)
convex cone in Ωm(H, T).

The following result [1] was proved as a partial generalization of
Theorem 1.

THEOREM 2. Let T: V—* V be linear. If Pm(H, T) is nonempty,
then

(a) m is even
(b) every eigenvalue 7 of T has modulus 1
(c) elementary divisors of T corresponding to Ί — ± 1 are linear.

Conversely, if m is even, all eigenvalues of T are ± 1 , and all ele-
mentary divisors of T are linear, then Pm(H, T) is nonempty.

We conjectured that if Pm(H, T) is nonempty,then (c) can be re-
placed by (c') "all elementary divisors of T over the complex field are
linear." This would provide a complete generalization of Theorem 2,
and thus justify (6) as a definition of a positive definite multilinear
functional. The purpose of this paper is to prove this conjecture.

THEOREM 3. If Pm(H, T) is nonempty, then
(a) m is even
(b) all eigenvalues of T have modulus 1
(c') all elementary divisors of T over C are linear.

Conversely, if (a), (b), and (c') hold, then Pm(H, T) is nonempty.

2. Proof of Theorem 3* Assume that Pm(H, T) is nonempty.
Parts (a) and (b) follow from Theorem 2. We now prove two lemmas.

LEMMA 1. If y is an eigenvalue of T and (x — j)k, k > 1, is a
nonlinear elementary divisor of T corresponding to 7, then 7m Φ 1
for any integer m.
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Proof. Since T is a real transformation, it has a real elementary
divisor

( 7 ) [(x - y){x - ϊ)]k .

(By Theorem 2, 7 cannot be real in this case.) Let Wbe the invariant
subspace of T determined by (7), and let S be the restriction of T to
W. Then S is an isometry of W with respect to φ, and hence Sr is
also an isometry for any integer r. Now if ir = 1, then all eigenvalues
of Sr are 1, and hence Theorem 2 implies that all elementary divisors
of Sr are linear. Therefore, Sr is the identity on W, and thus, the
elementary divisors of S are linear, a contradiction.

LEMMA 2. // Theorem 3 is true for the case H — SmJ then it is
true for any subgroup H of Sm.

Proof. Let H be a subgroup of Sm and let φ e Pm{H, T). For
each σeSm, define

( 8 ) <Pσ(%i, • • • , # » ) = <P(%oU)> •> ff*<«>) >

#i> •••> ̂ »€ F. In general, φσ is not symmetric with respect to H,
but <£>σ is positive definite and T is an isometry with respect to φo.
Set

(9) f=Σ?..

Clearly α/r is positive definite, and T is an isometry with respect to
ψ. Moreover, for any τ e 5 m , and x19 , xm e V,

= Σ

Thus π/r G Pm(Sm, T), and hence the elementary divisors of T are linear.
This proves Lemma 2.

We may assume henceforth that H = Sm and abbreviate Pm(Sm, T)
to Pm. If P m is nonempty, and T has a nonlinear elementary divisor
over C corresponding to the eigenvalue y = a + ib (b Φ 0), then there
exist four linearly independent vectors #i, , v4 in F such that
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Tv^ = av1 — bv2

Tv2 = bv1 + av2

Tx3 = v2 + av3 —

Let V be the extension of V to an ^-dimensional space over C, i.e.,
V consists of all vectors of the form x + iy, x, y e V. By linear ex-
tension, we regard T as a linear transformation of V, and by multi-
linear extension, φ becomes a complex valued multilinear functional
on x?V. Equation (5) still holds in V, but φ is no longer positive
definite. Set

βi = ΐ>i + iv2, e2 = v, - iv2

es = v3 + iv4, e4 = v3 — iv4 .

From (10) and (11),

Te1 = ye19 Te2 = je2

Te3 = je3 + v2, Te4 = ϊe4 + v2 .

By Lemma 1, Ύ is not a root of unity; thus,

φ(e19 ., elf e2, . . e2) = φ(Te19 , Γβ l f Γβ2, , Te2)

(13) - 7 * 7 * - V ( β » • • • * ! , * „ . . . , β2)

— 0 ,

unless k = m — k, where k is the number of times e1 occurs in (13).
With r = m/2, we set

r r

φifiu •••, βx, e2, •••, e2) = v .

N o w v =£ 0; o t h e r w i s e

φ(v19 , vO = 2~m9>(β1 + β2, , e, + e2)
( 1 4 ) = o ,
contradicting (6). (Note that we are using the assumption that φ is
symmetric with respect to Sm; this gives us a convenient way of
sorting expressions such as those on the right side of (14).)

Let μ = φ(vlf •••yVi, e3). Using (13) and (14), we compute,

μ = 2-m+ιφ(eί + e2, , e, + e2, e3)

= 2-m+1φ(7e1 + Ύβ2, , ye, + je2, ye3 + v2)

- Ί)v + 72-m +V(7βi + 7β2, > yeι
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φ(ffeι
ψe21 , 7% + 7e2, yes + ^

2^

- 7 - 7 > + 722-m+1

^ ( 7 2 ^ + Ύ2e2, , 72βi + 72β2, ez) .

Continuing this procedure, we obtain for any positive integer s

(15) μ = - 2 -

Let

, + ^β2, , zeι + ze2, β8) ,

where 3 is a complex variable. Then / is a continuous function of z
on the complex plane, and hence / is bounded on the unit circle.
Moreover, since 7 is not a root of unity (in particular, 7 Φ ±1),

is also bounded as s becomes large. Thus, letting s approach infinity
in (15) forces μ to become infinite, a contradiction. This proves
Theorem 3 in one direction.

Now suppose all eigenvalues of T are 1 in absolute value and all
elementary divisors of T are linear over C. Let 1 (p times), — 1 (q
times) and yd, yά = ad ± ibs, \y3 \ = 1, j = 1, , ί, be the eigenvalues
of T. Then there is a basis of V, vlf , vP, ulf , uq, xly y19 •••«?*, yβ

such that

Tvj = Vj,j = 1, . . . , p

r % = - % , i = l, . - . , ?

Γίc^ = α, % - 6,-i/y, i = 1, , t

Ty5 = δ ^ + α ^ , i = 1, , t .

Set

Wj = x , + ΐi/^

Wy = Xj - i ^ , i = 1, •••, t .

Then Vu , vp, t6lf , uq, wt, wlf , wt, wt form a basis of V of
eigenvectors of T. Let ft, , /p, ^ , , gq, hlf k19 , ht, kt be the
corresponding dual basis. If Zx, , lm are linear functionals on a space
F, then l^-'lm is the m-linear functional on x Γ F such that
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k ••• ϊm(a?i, •••, α») = Π ϊi(»ί)
i=i

Define <p as follows:

(17) ? = ΣΛ" + Σ tf + Σ P A ) f + (ΛΛ
i i i i

where r = m/2 and /(v) = f(v). Now ^ and Aλ, are not linear on the
complex space F, but they are complex valued linear functionals on V,
i.e., they are linear functionals on V but are not in the dual space
of V. Thus φ is a real multilinear functional on V. Set

Ψ = Σ ^

We assert that ψ e Pm(H, T). Clearly ψ* is symmetric with respect
to Sm9 and thus with respect to any subgroup H of Sm. It remains
to show that ψ is positive definite and that T is an isometry with
respect to ψ. It suffices to prove these last two properties for φ.
Let

x = Σ ^ i^ + Σ βjUi + Σ (Ŝ a y + \Vj)
j=l j=l J = l

be an arbitrary vector of F. Then from (17),

**, , x) = Σ «T + Σ ̂ - + 2Σ [ ( | ) 2 + ( | ) 7Σ T Σ ^ Σ

Since m is even and ajy βjy δjy X3- are all real, φ is positive definite.
Now let zk, k = 1, , m, be arbitrary vectors in V, with

Σ(18) zk = Σ α^ i y + Σ δAi^i + Σ
i i

Then

(19)

From

(20)

(16)

Tzk

V

i = i

5 = 1

+ Σ5 = 1

ckj +

Σ {-hi)Uj
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k = 1, , m. Let

ekj = a3 ckj + bjdkj

fkj = asdkί — bjCkj .

Then from (19) and (20)

φ(Tzlf •• ,K f f l )

(21)
k-l,j I J2k-Uj \l e2k,j _ J2k,j \

V TT fe2k-l,j _ f2k-Uΰ\( e2k,j i J2k,j \

It is easily verified that

f̂cj I fkj _ ?̂ /Cfcj i dk

2 2i h\ 2 2%
(22)

^fej /fej _ rγ I Gkj &kj j

2 2i 5\ 2 2i /

Using (22) in (21) and the fact that | τ , | = 1, we obtain

φ(Tz19 , Tzm) = φ(zlf , Zm) .

This completes the proof of Theorem 3.
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ON THE GROWTH OF ENTIRE FUNCTIONS
OF BOUNDED INDEX

W. J. PUGH AND S. M. SHAH

A class E of entire functions of zero order and with
widely spaced zeros has been defined and it is proved that if
fe E then / ' , / " , e E. Furthermore / is of index one. This
class includes many functions which are both of bounded index
and arbitrarily slow growth. If / is any transcendental entire
function then there is an entire function g of unbounded
index with the same asymptotic behavior. When / is of infinite
order then it is of unbounded index and we simply take g = f.
When / is of finite order we give the construction for g.

DEFINITION 1. An entire function f(z) is said to be of bounded
index if there exists an integer ikf, independent of z, such that

f{n)(z)

for all n and all z. The least such integer M is called the index of f(z).

Although functions of bounded index have been the object of a
number of recent investigations (cf: [3], [5], [6], [7]-[9]), little is known
about their properties, and most of the following natural questions
seem to require further study.

I. What are the growth properties of functions of bounded
index:

( a ) can they increase arbitrarily rapidly,
(b) can they increase arbitrarily slowly,
(c) is it possible to derive the boundedness (or the unbounded-

ness) of the index from the asymptotic properties of the logarithm of
the maximum modulus of f(z), i.e., logikf(r, /)?

II. Classes of functions of bounded index:
(a) find classes of functions of bounded index,
(b) is the sum (or product) of two functions of bounded index

also of bounded index?

Question I(a) was settled by Shah [8] who proved that the growth
of functions of bounded index is at most of the exponential type of
order one. (See also Lepson [6].) Shah [8] and Lepson [6] have con-
structed functions of arbitrarily slow growth and of unbounded index.
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In the present note we derive a simple answer to Question I(b) from
the consideration of

Functions with widely spaced zeros. Let f(z) be an entire func-
tion of genus zero, and let {aj}J=1 be the sequence of its zeros. We
say that f(z) has widely spaced zeros if the zeros {aό} are all simple
and

I a, I ̂  a = 5, | an+ί | ^ an | an\ (n = 1, 2, 3, . .) .

Using this definition we prove

THEOREM 1. Let f(z) have widely spaced zeros. Then, for all z,

|/<»>(*) I < max {\f(z) |, \f'(z) \) (n = 2, 3, 4, . . .) .

COROLLARY 1.1. Functions with widely spaced zeros are of bound-
ed index.

COROLLARY 1.2. There exist functions of bounded index and of
arbitrarily slow growth.

Corollary 1.1 may also be considered as a contribution to Question
II(a). Corollary 1.2 answers Question I(b). Other contributions, due
to separate efforts of the present authors, will be found elsewhere.
In [9] Shah proves that all solutions of certain classes of linear differ-
ential equations are of bounded index. In his doctoral dissertation,
Pugh shows that the functions

F.(z) = Π (l + 4-) (σ > 8) ,

and

/,(*) = Π (l - q'z) (0<(i<k)>
3=0 \ 16/

are of bounded index. As a contribution to Π(b), Pugh [7] has shown
that the sum of two functions of bounded index need not be of bounded
index.

Our second result clarifies one aspect of Question I(c). We prove

THEOREM 2. Let f(z) be any transcendental entire function of
finite order. It is always possible to find an entire function g(z), of
unbounded index such that

log M(r, f) — log M(r, g) (r —> oo) .
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Choosing f(z) to be of bounded index, we see that it is always
possible to find functions of unbounded index with the same asymp-
totic behavior as f(z).

The authors gratefully acknowledge the help of Professor Albert
Edrei who suggested the class of functions with widely spaced zeros,
and indicated the connection between Theorem 2 and the results of [2].

1* Successive derivatives o£ functions with widely spaced
zeros*

LEMMA 1. Let f(z) be an entire function with widely spaced
zeros {α, }JU. Let {6,-}̂  (16,-1 ^ | bj+1|), be the zeros of f{z).

Then

(1.1) i % t d < I bn\ £ I aH+ι I , (n^2,b = 1.6) ,
b

and

(1.2) (l + 2 R + d) \aί 1< 16,1 ̂  Iα,!, (R = 2.4, d = 10~3, l α j ^ α ^ δ ) .
\ a /

Proof. In §§ 1-3, we shall write 1.6 = 6, 2.4 = R, 10~3 = d,
1 + (2R + d)fa = 1.9602 - c. Put

and

(1.3)
f{z)

Our proof of the lemma depends on obvious applications of Rouche's
theorem [4, p. 254].

Let z — reiθ and

(1.4) I a J < r < | an+1 \ , (n ^ 1) .

Clearly

Re (zg.(z)) = ΣΣ

i=i r + I a3-1

and hence
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• i-ι r + I a5

In particular by the definition of widely spaced zeros we have

n ^ n 25 , ^ o x(1.5)

(1.6)

I g,(z) I ^
I α . + 1 I 26

> 2

(«• ^ 2) .

For hn{z) we have

^ \ I U-n+l +
1 ttn+i 1 V

1.25

6 - 1

2.8 (n ^ 2) .

(1.7)

Now in the disc

(1.8)

grn(2) has n poles, and, by the theorem of Gauss-Lucas [10, p. 6],
exactly (n — 1) zeros. The function hn{z) is regular in the disc (1.8),
and by (1.6) and (1.7)

\gn{z)\>\K{z)

Hence, by Eouche's theorem

gn(z) + hn(z) =
f(z)

has exactly (n — 1) zeros in the disc (1.8).
We have thus proved

(1.9)

Similarly, for

(1.10)

\®ψ± < I δ. I , (n ̂  2) .

= I « I = T I α» ( 1 < 7 < 1.01, it ̂  2)
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we have

^ (I an+11 - 7 I an I)-1 + (1.1)(| an+2 | - 7 | an \)~ι

^ (7 I an I + I a, I)"1 < | flrΛ(s) | .

Again by Rouche's theorem f'(z)/f(z) has exactly (n — 1) zeros in
any disc with center at the origin and a radius r satisfying (1.10).
Hence

I δ- i l < 7 I a J (rc ̂  2) ,

and letting 7 —> 1 + , we obtain

(1.11) I 6n_! I ̂  I an I (w ̂  2) .

The second of the inequalities (1.2) also follows from (1.11).
We complete the proof of the lemma by showing that

implies

{1.13)

Thus ff(z) will have no zeros in the disc (1.12) and, therefore

0 I a , I < I &x I ,

which is the first of the inequalities (1.2).
In order to verify (1.13) notice that (1.12) and the definition of

widely spaced zeros imply

1 / 1 _ f 1 )
α j l l + c V α i ( i " 1 ) / 2 - cJ

> 0 .

This completes the proof of Lemma 1.

LEMMA 2. If f(z) has widely spaced zeros all the derivatives

f'(z),f"(z), "

have the same property.

Proof. It is sufficient to prove that if f(z) has widely spaced
zeros, the zeros of f'(z) are also widely spaced. By (1.2)

<1.14) 9.801 <: c I cii I < I δx 1 .
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By (1.1) and (1.2)

I b n\ ^ I an+11 , (n^l)

f \ a n + 2 \ < \ b n + ι \ ,

Hence

(1.15) \an an

b I α w + 1 1
> an (n ^ 1) .

The relations (1.14) and (1.15) show that the &'s are widely spaced.

2* Minimum distance between a zero of f(z) and a zero of
/'(#)• The inequalities (1.1) do not preclude the possibility that

I an+1 — bn\ be very small. In this section we show that

(2.1) inf \aό -bk\> 2R + d .

I. From now on, we denote the zeros of fίk)(z), in order of as-
cending moduli by {a^}γ=1. By definition <> = an and / ( 0 ) = /.

II. We consider systematically the sets

Dk(p) = U {«: I * - «P \^P) (P > 0, k = 0, 1, . . . ) .

LEMMA 3. If f(z) has widely spaced zeros, and if zgD0(R), then

(2.2)
/(*)

Proof. The identities

^ - ι

dz\f(z)J f(z) V

imply

+
oo - J \ 2

Σ )
=i \z — a d \ J

Hence, the inequalities (2.2) follow from the single inequality

(2.3)

If z%

i=i \ z - a ά

), and I 2 I < \a11, then



<2.4)

and

(2.5)

Hence
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\z- a1\> R
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Σ 1 - of 1

so t h a t (2.3) holds i£ \z\<\a1\.
In general, the relations

a n I ̂  I 21 < I α n 4
^ l ) , 2

imply

<2.6)

provided

{2.7) n ^ 2 ,

Similarly, for j > n + 1

<2.8) ( s - α , ( ̂  ( a j [ - [ a n + ι \

< TO .

'''1 - 1) [ an+ί |

Finally,

<2.9)

with

(2.10)

\z — an

Γ ^
I z — an+ι \ K

^ — + ( m a x {\z- a n \ , \ z - α n + 1 1 } ) " 1

K

"n I \ ( o " - 1) I α» I
2 ' 2

Combining (2.6), (2.8), (2.9) and (2.10), we find, for n ^ 2,

ll + λ + 2
Λ (o - 1) I α, I

- 1) , 1 , 2
Σ ^ i2 (α" - {a -

I t is easily seen that (2.11) holds for n = 1 also and that (2.11) im-
plies (2.3). Hence the lemma is proved.
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LEMMA 4. If ze D0(2R + d), then f'{z) Φ 0.

Proof. If z e D0(2R + d), then for some n,

(2.12) \z- an\^2R + d = 4.801 .

Hence, if j < n and w ̂  2,

- I an_! | ^ | a J - | aΛ-11 - (2i2

If i > n, then

- I a n I - +

6 |

10

6 I a

ϊ ό 1 5

By (2.12), (2.13), and (2.14) we have, for n^

(2.15)

f'(z) 10(% - 1)

4.801

1
4.801

6 |α.

1 (w - 1)
3 cίn{n~

10 yί 1

6 J = » + I I α,

12 α ( t H

Again, it is easily seen that (2.15) holds for w = 1 also. The
expression on the right of (2.15) is positive and consequently in
D0(2R + d), f'(z) Φ 0 unless f(z) = 0. On the other hand f'(z) Φ 0 if
f(z) = 0 because all the zeros of f(z) are simple. This completes the
proof of Lemma 4.

3* Proof of Theorem 1. Because all the derivatives of f(z)
have widely spaced zeros, Lemmas 1 to 4 apply to all of the functions
f{k)(z), (k = 0, 1, 2, 3, •)• In particular Lemma 4 shows that the sets
Dn_2(R) and D^JJH) are disjoint for n ^ 2.

Hence, by Lemma 3, at least one of the two inequalities

(3.1) < 1

must hold.
Thus, for all z

(3.2) I/<•>(*) I < max{ |/^(z) |, \f^2\z) |} (n = 2, 3, 4, . . .)

Theorem 1 follows from (3.2) by an obvious induction over n.
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4* Proof of Theorem 2. In this section we assume familiarity
with the most elementary results and notations of Nevanlinna's theory
of meromorphic functions.

Let f(z) be a given entire, nonrational function of finite order.
A theorem of Edrei and Fuchs [2; p. 384 and p. 390, formula (3.5)]
asserts the existence of an entire function h(z) such that h(0) = 1 and

(4.1) N(r, - ί ) ~ log M(r, h) ~ log M(r, f) (r — + oo) .

We take g(z) to be of the form

(4.2) g(z) = h(z)P(z) ,

where

(4.3) P(z) = Π (l + f Y .
i=i \ dάJ

The quantities dd are positive and satisfy the following conditions:
( i ) dx>e\ dj+ί>d) ( i = l , 2 , 3 , •••);
(ii) for t >̂ djf

j(j + 1) . ί\ogM(t,f)\1'*
2 < \ logί I β

Since f(z) is not rational

l o g M ( ^ , / ) _ ^ + o o ( ί _ + c o )

logί

and hence it is possible to satisfy condition (ii).
Putting

we see that

(4.5) n(t) = 0 (0 S t < dj, n(ί) - M _ ± i l (^ ^ t < dk+ι)

Hence, if

(4.6) dk ^ t < dk+1 (k ^ 1)

(4.5) and condition (i) imply

(4.7) n(t) < 2k < log dk ^ log t < ί1'2 (k ^ 1) .

By (4.6), (i) and (4.5)
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(4.8) 49 ^ 1 + -r
n(t) k

By (4.6), (ii), (4.5) and (4.4)

n(t) log ί < log Λf(ί, /){. l0

ΆH A'* = o(log M(t, /))
UogΛΓ(ί,/)J(4.9)

By (4.1), (4.2) and the elements of Nevanlinna's theory

(1 +.o(l)) log M(r, f) = N(r, - i ) ^ N(r, A )

^ log Λf(r, flO < log M{r, h) + log M(r, P)

= log M(r,

Hence, in order to obtain Theorem 2 it is sufficient to show that

(4.10) logM(r,P) 0 o o )

log M(r, /)

and to remark that #(2) cannot be of bounded index because it has
zeros of arbitrarily high multiplicity.

The relation (4.10) follows readily from the identity [1, p. 48]

t(t + r)

which, in view of (4.7), (4.8) and (4.9), leads to

log M(r, P) < n(r) log r + r Γ ^ ^ + r f ~ £~3/2d£
Jr t2 Jr2

= o(logΛΓ(r,/)) (r—+oo) .
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EXISTENCE OF TRICONNECTED GRAPHS WITH
PRESCRIBED DEGREES

S. B. RAO AND A. RAMACHANDRA RAO

Necessary and sufficient conditions for the existence of a
p-connected (linear undirected) graph with prescribed degrees
du d2, --,dn are known for p = 1, 2. In this paper we solve
this problem for p = 3.

Let dlf d21 , dn be positive integers and let dγ ^ d2 ^ <J dn.

LEMMA. If a triconnected graph G exists with degrees d19 d2, ,

dn, then

(1) dt^Z.

(2) d19 d21 , dn is graphical, i.e., there exists a graph with these
degrees.

(3) dn + dn_γ ^ m — n + 4 where 2m = Σ?=i ^*
(4) 1/ cZw + dw_1 = m - n + 4, ίfcew m ^ 2n — 2.

Proof. (1) and (2) are evident. To prove (3), let xny xn_x be the
vertices of G with degrees dn and dw_L respectively. Then the num-
ber of edges in G — {xn1 ŵ_1} is m — (dn + dn_x — 1) or m — (dn + dlw_1)
according as xn, xn^ are adjacent or not adjacent in G. Also G — {xn,
xn-i} is connected, so (3) follows. If now dn + dn_γ — m — n + 4, then

2m :> dn + dn_, + S(n - 2) = m + 2n - 2 .

This completes the proof of the lemma.

THEOREM. Conditions (1) to (4) o/ the lemma are necessary and
sufficient for the existence of a triconnected graph with degrees
d^ d21 , dn.

Proof. Necessity was proved in the lemma.
To prove sufficiency, first let conditions (1), (3) be satisfied and

let dn + dn_γ — m — n + 4 = n + X where 2 S λ, ̂  n — 2. Let k be
the number of d{ such that 1 ^ i <Ξ n — 2 and ^ = 3. Then define

ei = d4 — 2 for i = fc + 1, , n — 2 .

Then we have

nγΛdi = 2m - dn- dn_, = 3w + λ - 8 ,

203
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Define now η = n — 2 — λ and ε = k — η. Then η ^ 0, and ε :> 2
since

2m^m — n + 4 + 3k + 4(n — 2 — k)

= m + 3n — k — 4

and so

X = m — 2n + 4:^n — k .

Write now

1 for i = 1, 2, .--, ε ,

e< = • 2 for i = ε + 1, , k ,

di - 2 for i = k + 1, , n - 2 .

Then Xfr;2 e< = 2(π — 3) and so there exists a tree T with degrees
e19 eΛ_2, attained by the vertices xlf , xn_2i say, in that order [2].
Take two more vertices xn_γ and a;,, and join them. Also join each of
ff»-if ^ to a?< for i = 1, , ε, fc + 1, , n — 2. Of the 37 vertices
xε+1, •••,%, join dΛ - 1 — 1 — ε — n + 2 + k to ajn_j. and the rest
(dn — 1 — ε — n + 2 + k in number) to xn. Note that

dn_x — 1 — s — n + 2 + k = dn_γ — λ - 1 :> 0 .

The graph we thus obtain has degrees dlf -—,dn and is triconnected
since any vertex of T with degree in T less than 3 is joined to either
xn^ or xn.

Next let conditions (1), (2) be satisfied and let

dn + d«_i ^ m — w + 3 .

Then (4 < m — ^ + 2, so there exists a biconnected graph G with
degrees c ,̂ d2, ---, dn [2]. If G is not triconnected, let ^ , x, be two
vertices such that G — {̂ , x̂  } is disconnected. Let C19 C2, be the
components of G - {xi9 Xj}. By (1), | Cg\ ^ 2 for 0 = 1, 2, . Also
by hypothesis,

m — di — d3- ̂  w — 3 ,

so it follows that one of the components, say Clt contains a cycle.
We first prove that there exists an edge (x, y) in CL and two

chains μ19 μ[ of G connecting x and y such that (x, y), μλ, μ[ are dis-
joint except for x and y, and μγ is contained in Cx. Since G is bicon-
nected, there exists a chain connecting α̂  and x3- with all intermediate
vertices in C2.

If now two vertices x, y with degree two in Cx are adjacent and
belong to a cycle of Clf the required edge is (x, y). So we may take
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that no two vertices of degree two in Cx can belong to a block (on
more than two vertices) and be adjacent. Let B be any block of CΊ
which is not an edge. If some cycle of B has a chord (x, y), then
(x, y) is the required edge. Otherwise, by the results of [1], two
vertices y, z of degree two in B will be adjacent to a vertex x of
degree three in B. If w is another vertex of B adjacent to x, then
there is a chain connecting w to y in B — {x}. This chain together
with (x, w) may be taken as μ19 To get μ[, go from x to z along
(x, z), from z to xζ or xd (through another block of Cι at z if necess-
ary), then to y. Thus (x, y) is the required edge.

Let now (x, y) be an edge of C1 chosen as explained above. If
C2 is a tree, take any edge (u, v) of C2. Then (u, v) is a chord of a
cycle of G. If C2 is not a tree, choose an edge (u, v) of C2 such that
there are chains μ2, μf

2 of G connecting u and v, (u, v), μ21 μ2 are dis-
joint except for u, v, and μ2 is contained in C2.

We define fG(s, t) to be the number of components of G — {s, t}.
Now we will make a modification on G so that the degrees of the
vertices are unaltered, f(xi9 xό) decreases and f(s, t) does not increase
for any two vertices s and t.

First we associate with x, a subset A(x) of {xi9 xό) by the follow-
ing rule. Xi e A(x) if and only if there is a chain v connecting x to
x{ with all intermediate vertices in CΊ such that v is disjoint with
(x, y) and ^! except for x. Similarly A(y) is defined. If C2 is a tree,
put A(u) = il(v) = {»<, %}. Otherwise A(%), A(v) are defined in a manner
similar to that of A(x) and A(y). Now A(a?), A(y) are made nonempty
by a proper choice of //^ and A(u), A(v) are made nonempty by a pro-
per choice of μ2 (in case C2 is not a tree).

Now suppress the edges (x, y), (u, v) and join x to one of u, v and
y to the other as follows. Join x to u if A(α ) ^ A(u) and A(i/) ^ A(v)
whenever such a choice is possible. Let the new graph thus obtained
be H. To be specific we take that x is joined to u in H.

First we show that H is biconnected. Obviously G1 = G — (a?, 2/)
is biconnected. Now we show that (u, v) is a chord of a cycle of Gx.
If C2 is a tree, then the cycle is

(u, x) + £ φ , 7/] + (y, v) + [v, , p j + (plf x^ + (Xi, p2) + [p2, , u]

where p19 p2 are suitable pendant vertices of C2. Otherwise the cycle
is

μ2[u, v] + μ'2[v, u]

where if μ2 contains the edge (x, y), then (x, y) is replaced by μλ[x, y]
and the resulting cycle is made elementary.

Trivially now fG(xi9 xό) = fH(%n χj) + l Next we will show that



206 S. B. RAO AND A. RAMACHANDRA RAO

(5) fa(s,t)^fH(s,t)

for any two vertices s and t. For this it is enough to show that
x, y are connected and u, v are connected in H — {s, t}.

First let s = x{. Now x, y, u, v belong to a cycle in H — {α J, so
(5) follows. So we may take {s, t) Π {xi9 %j} = 0 .

Now let 8 = x. Then to prove (5) it is enough to show that u, v
are connected in H — {x, t} when t Φ u and t Φ v. This is evident if C2

is a tree or ί ί μ2. So let t e μ2 and C2 be not a tree. If A(t&) Π
A(v) Φ 0 , there is a chain connecting w, v in i ί — {ce, t}. So we take
without loss of generality A(u) = xό and A(v) = x{. If now xseA(y),
then w, v are connected through a?,- and y in H — {x, t}. So we take
A(y) = xt. If XjβA(x)f then 7/ would not have been joined to v, so
A(x) = Xf Now in G, ^j is connected to some vertex z of μL by a
chain with all intermediate vertices belonging to CL but not to μλ.
Now we obtain a chain connecting u, v in H — {x, t} by going from
u to α̂  , Xj to z, z to y along /̂ ^ y to ^ , and a?€ to v. Thus we may
take {s, ί} n {»<, x, , a;, T/} = 0 .

Next let s — u. If £ $ μiy then (5) is trivial, so let t e μγ. Sup-
pose first that C2 is a tree. Then we obtain a chain connecting x, y
in H — {u, t} by going from x to Xt or £Cy, then to v through a suita-
ble pendant vertex of C2 and then to y. If C2 is not a tree, the
situation is similar to that of the preceding paragraph. Thus we take
{s, t) n {xi9 Xj, x, y,u,v} = 0.

If none of s, t belongs to μ19 then (5) is trivial. So let seμ^
Suppose now that C2 is a tree. Then for any fixed vertex ί, there

are chains in H — {s, t) from one of u, v to both xt and xj9 and a
chain from the other (of the vertices u, v) to x{ or xά. Hence u, v
are connected and (5) follows.

Suppose next that C2 is not a tree. Obviously we may take
se μ1 and t e μ2. If now A(x) Π A(y) Φ 0 or A(w) Π A(v) ^ 0 , then
again (5) follows. So we may take A(x) = xi9 A(y) — x3 , A(u) = Xj
A(v) = Xi Now we obtain a chain connecting x,y in fZ" — {s, ί} by
going from x to w, % to αjif xy to y. This proves (5) completely.

Now by a repeated application of the above procedure we reduce
the graph until finally /(s, ί) = 1 for any two vertices. The final
graph has degrees d19 d21 , dn and is triconnected and this completes
the proof of the theorem.

Perhaps necessary and sufficient conditions, similar to the condi-
tions (1) to (4) above, for the existence of a p-connected graph with
prescribed degrees dlf d2, , dn can be obtained for all p ^ 3, but
the authors have not yet succeeded in this.
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ON THE MAXIMAL MONOTONICITY OF
SUBDIFFERENTIAL MAPPINGS

R. T. ROCKAFELLAR

The subdifferential of a lower semicontinuous proper con-
vex function on a Banach space is a maximal monotone opera-
tor, as well as a maximal cyclically monotone operator. This
result was announced by the author in a previous paper, but
the argument given there was incomplete; the result is proved
here by a different method, which is simpler in the case of
reflexive Banach spaces. At the same time, a new fact is
established about the relationship between the subdifferential
of a convex function and the subdifferential of its conjugate
in the nonreflexive case.

Let E be a real Banach space with dual E*. A proper convex
function on E is a function / from E to (— oo, + o o ] , not identically
+ co, such that

/((I - \)x + \y) ̂  (1 - λ)/(s) + *>f(v)

whenever xeE, y eE and 0 < λ < 1. The subdifferential of such a

function / is the (generally multivalued) mapping df:E-+E* defined

by

df(x) = {x*eE* \f(y)^f(x) + <y - x, O , VyeE} ,

where <•,•>• denotes the canonical pairing between E and E*.

A multivalued mapping T: E—+ E* is said to be a monotone oper-

ator if

ζx0 — x19 x* — x?y ^ 0 whenever x* e T(x0), x? e T(xλ) .

It is said to be a cyclically monotone operator if

<£0 - x19 xf> + + <xn_, - xn, x*_x> + <xn - x0, xΐ> ̂  0

whenever x* e T(x4), i = 0, , n .

It is called a maximal monotone operator (resp. maximal cyclically

monotone operator) if, in addition, its graph

G(T) = {(x, x*) I x* e T(x)} c E x # *

is not properly contained in the graph of any other monotone (resp.

cyclically monotone) operator TΊE—+E*.

This note is concerned with proving the following theorems.

209
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THEOREM A. If f is a lower semicontίnuous proper convex func-
tion on E, then df is a maximal monotone operator from E to E*.

THEOREM B. Let T:E—*E* be a multivalued mapping. In
order that there exist a lower semicontίnuous proper convex function
f on E such that T == df, it is necessary and sufficient that T be a
maximal cyclically monotone operator. Moreover, in this case T
determines f uniquely up to an additive constant.

These theorems have previously been stated by us in [4] as
Theorem 4 and Theorem 3, respectively. However, a gap occurs in
the proofs in [4], as has kindly been brought to our attention recently
by H. Brezis. (It is not clear whether formula (4.7) in the proof of
Theorem 3 of [4] will hold for ε sufficiently small, because x* depends
on ε and could conceivably increase unboundedly in norm as ε de-
creases to 0. The same oversight appears in the penultimate sentence
of the proof of Theorem 4 of [4]). In view of this oversight, the
proofs in [4] are incomplete; further arguments must be given before
the maximality in Theorem A, the maximality in the necessary con-
dition in Theorem B, and the uniqueness in Theorem B can be regarded
as established. Such arguments will be given here.

2* Preliminary result* Let / be a lower semicontinuous proper
convex function on E. (For proper convex functions, lower semiconti-
nuity in the strong topology of E is the same as lower semicontinuity
in the weak topology.) The conjugate of / is the function / * on E*
defined by

(2.1) f*(χ*) = sup {<x, α?*> - f{x) \ x e E] .

It is known that / * is a weak* lower semicontinuous (and hence
strongly lower semicontinuous) proper convex function on i?*, and that

(2.2) f{x) + f*(x*) - <α, x*> ̂  0, Vx e E, Vx* e # * ,

with equality if and only if x* e df(x)

(see Moreau [3, §6]). The subdifferential 3/*, which is a multivalued
mapping from E* to the bidual E**, can be compared with the sub-
differential df from E to E*, when E is regarded in the canonical way
as a weak** dense subspace of £7** (the weak** topology being the
weak topology induced on ϋ7** by E*). Facts about the relationship
between df* and df will be used below in proving Theorems A and B.

In terms of the conjugate / * * of /* , which is the weak** lower
semicontinuous proper convex function on i?** defined by
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(2.3) /**(#**) = sup {<&**, x*> - /*(&*) I x* e E*} ,

we have, as in (2.2),

(2.4) /**(£**) + /*(&*) - <x**, £*> ^ 0, Vα;** e # * * , Vx* e E* ,

with equality if and only if ^** e3/*(x*) .

Moreover, the restriction of /** to E is /(see [3, §6]). Thus, if E
is reflexive, we can identify /** with /, and it follows from (2.2) and
(2.4) that 3/* is just the "inverse" of df, in other words one has
x e df*(x*) if and only if x* e df(x). If E is not reflexive, the relation-
ship between 3/* and 3/ is more complicated, but 3/* and df still
completely determine each other, according to the following result.

PROPOSITION 1. Let f be a lower semίcontίnuous proper convex
function on E, and let x*eE* and x**eE**. Then a?** e3/*(£*)
if and only if there exists a net {xf | i e l } in E* converging to x*
in the strong topology and a bounded net {Xi\ίe 1} in E {with the
same partially ordered index set I) converging to .τ** in the weak**
topology, such that xf e df(x{) for every iel.

Proof. The sufficiency of the condition is easy to prove. Given
nets as described, we have

by (2.2), where /(#*) = /**(#<). Then by the lower semicontinuity of
/ * and /** we have

f**(x**) + /*(&*) ^ liminf {/**(^) + /*(&?)}

= lim <χ, xty = <&**, £*> .

(The last equality makes use of the boundedness of the norms | | ^ | | ,
iel.) Thus ^ * e 3 f ( ^ ) by (2.4).

To prove the necessity of the condition, we demonstrate first that,
given any x**eE**, there exists a bounded net {y^iel} in E such
that yi converges to x** in the weak** topology and

(2.5) lim/d/i) = /**(£**) .

Consider f + ha, where a is a positive real number and ha is the lower
semicontinuous proper convex function on E defined by

(2.6) ha(x) = 0 i f \\x\\ ̂ a , h a ( x ) = + o o i f \ \ x \ \ > a .

Assuming that a is sufficiently large, there exist points x at which
/ and ha are both finite and ha is continuous (i.e., points x such that
fix) < +°° and 11 a? 11 < a). Then, by the formulas for conjugates of
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sums of convex functions (see Moreau [3, pp. 38, 56, 57] or Rockafellar
[5, Th. 3]), we have (/ + ha)* = / * Π hi (infimal convolution), and
consequently

*(2.7) (/ + KY* = (/* Π h*)* = /** + hi

Moreover hi(x*) = a\\x* || for ever x* eE*, so that

*,**(&**) - sup {<£**, £*> - α || £* || | a;* e #*}

_ (0 if || a?** || ^a ,

= t + oo if || a?** || >a .

Hence by (2.7), given any x**eE**, we have

(2.8) /**(£**) = (/ + ha)**(x**)

for sufficiently large a > 0. On the other hand, it is known that, for
any lower semicontinuous proper convex function g on E, g** is the
greatest weak** lower semicontinuous function on i£** majorized by
g on E (see [3, § 6]), so that

(2.9) g**(x**) = liminfflf(i/) ,

where the "liminf" is taken over all nets in E converging to x** in
the weak** topology. Taking g = f + ha, we see from (2.8) and (2.9)
that

f**(x**) = \imiτd[f(y) + ha(y)] f

implying t h a t (2.5) holds as desired for some net {Vi\ie 1} in E such
t h a t yt converges to $** in the weak** topology and \\yi\\^a for
every ie I.

Now, given any £ * e i 7 * and #** eδ/*(a?*), let {Vi\iel} be a
bounded net in E such t h a t T/̂  converges to #** in the weak** topology
and (2.5) holds. Define et ^ 0 by

Note that lim s* = 0 by (2.5) and (2.4). According to a lemma of
Br^ndsted and Rockafellar [1, p. 608], there exist for each ίel an
^ G £7 and an x* eE* such that

The latter two conditions imply that the net {xf \ i e 1} converges to
x* in the strong topology of £7*, while the net {^ \ίel} is bounded
and converges to #** in the weak** topology of E**. This completes
the proof of Proposition 1.
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3* Proofs of Theorems A and B. In the sequel, / denotes a
lower semicontinuous proper convex function on E, and j denotes the
continuous convex function E defined by j(x) = (l/2)||x||2. We shall
make use of the fact that, for each xeE, df(x) is by definition a
certain (possibly empty, possibly unbounded) weak* closed convex sub-
set of 2?*, whereas dj(x) is (by the finiteness and continuity of j, see
[3, p. 60]) a certain nonempty weak* compact convex subset of i?*.
Furthermore

(3.1) d(f + j) = df(x) + dj(x), VxeE

(see [3, p. 62] or [5, Th. 3]). The conjugate of j is given by j*(x*) =
(1/2) || x* ||2, and since

(/ + j)*(x*) = (/* Πi*)(**) = min {f*(y*) + i*(x* - ?/*)}

([3, §9] or [5, Th. 3]) the conjugate function (f + j)* is finite and
continuous throughout E*.

Proof of Theorem A. Theorem A has already been established by
Minty [2] in the case of convex functions which, like j, are every-
where finite and continuous. Applying Minty's result to the function
(/ + i)*> we may conclude that d(f + j)* is a maximal monotone op-
erator from E* to E**. We shall show this implies that df is a
maximal monotone operator from E to 1?*.

Let T be a monotone operator from E to E* such that the graph
of T includes the graph of 3/, i.e.,

(3.2) T(x) 3 df(x), VxeE .

We must show that equality necessarily holds in (3.2).
The mapping T + dj defined by

(T + dj)(x) = T(x) + dj(x)

= K + xf I x* e Γ(a;), x? e #(&)}

is a monotone operator from E to £7*, since T and 3j are, and by (3.1)
and (3.2) we have

(3.3) (T + dj)(x) ^ d(f + j)(x), Vx e E .

Let S be the multivalued mapping from E* to i?** defined as follows:
#** G S(x*) if and only if there exists a net {xf \iel} in E* converg-
ing to x* in the strong topology, and a bounded net {x{\ie 1} in E
(with the same partially ordered index set /) converging to #** in the
weak** topology, such that
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It is readily verified that S is a monotone operator. (The boundedness
of the nets {xt\ie 1} enters in here.) Moreover

(3.4) S(x*) D d(f + j)*(x*), Va;* e E* ,

by (3.3) and Proposition 1. Since 3(/ + j)* is a maximal monotone
operator, equality must actually hold in (3.4). This shows that one
has x e 3(/ + j)*(x*) whenever x e E and x e £(&*), hence in particular
whenever x* e (T + dj)(x). On the other hand, one always has
x*ed(f+j)(x) if xed(f + j)*(x*) and xeE. (This follows from
applying (2.2) and (2.4) to / + j in place of /.) Thus one has
%* G d(f + i)(a?) if x* e (T + 3j)(αO, implying by (3.3) and (3.1) that

(3.5) T(x) + dj(x) = 3/(α?) + 3i(α?)f V^ G # .

We shall show now from (3.5) that actually

T(x) = 3/(a?), Vα? e JE7 ,

so that df must be a maximal monotone operator as claimed. Suppose
that x G E is such that the inclusion in (3.2) is proper. This will lead
to a contradiction. Since df(x) is a weak* closed convex subset of £ * ,
there must exist some point of T(x) which can be separated strictly
from df(x) be a weak* closed hyperplane. Thus, for a certain yeEf

we have

sup {<2/, α*> I x* e T(x)} > sup {<>, £*> | ^ e df(x)} .

But then

sup {<>, 2;*> I ̂ * G T(x) + 3i(α)}

- sup {<!/, α;*> I a;* G Γ(α)} + sup {<τ/, y*y \ y* e oj(x)}

> sup {<>, α;*> I x* G 3/(α)} + sup {(y, ?/*> | /̂* e

= sup {<2/, ^*> ! 2* G

inasmuch as 3J(x) is a nonempty bounded set, and this inequality is
incompatible with (3.5).

Proof of Theorem B. Let g be a lower semicontinuous proper
convex function on E such that

(3.6) dg(x) =) df(x), Vx e E .

As noted at the beginning of the proof Theorem 3 of [4], to prove
Theorem B it suffices, in view of Theorem 1 of [4] and its Corollary
2, to demonstrate that g = f + const.

We consider first the case where / and g are everywhere finite
and continuous. Then, for each x e E, df(x) is a nonempty weak*
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compact set, and

(3.7) f'(x; u) = max {<u, £*> | x* e df(x)}, VueE ,

where

f'(x; u) = lim [f(x + Xu) - f(x)]/X
;.io

[3, p. 65]. Similarly, dg(x) is a nonempty weak* compact set, and

(3.8) g'(x; u) = max {(μ, α*> | x* e dg(x)}, Vu 6 E .

It follows from (3.6), (3.7) and (3.8) that

(3.9) f'(x; u) ^ g'(x; u), VxeE,VueE .

On the other hand, for any x e E and y e E, we have

Λv) - /(») = (V((l - λ)α? + \y;y - x)dx ,
Jo

= \ ̂
Jo

(see [6, § 24]), so that by (3.9) we have

f(y) - f(χ) ^ g{y) - g(χ), vα? eE,vyeE.

Of course, the latter can hold only if g = / + const.
In the general case, we observe from (3.6) that

dg(x) + dj(x) 3 df(x) + dj(x), VxeE ,

and consequently

9(0 + Λ(») => d(f + i)(a?), Vα; e E ,

by (3.1)(and its counterpart for g). This implies by Proposition 1 that

(3.10) d(g + j)*(x*) Z) 3(f + i)*(a?*), Vaj* e .&* .

The functions (/ + j)* and (̂  + i)* are finite and continuous on £7*,
so we may conclude from (3.10) and the case already considered that

(9 + JT = (/ + 3)* + α

for a certain real constant α. Taking conjugates, we then have

(3.11) (g + 3)** = ( f + 3 ) * * -a-

Since (g + j)** and (/ + i ) * * agree on E with # +j and f + j, re-
spectively, (3.11) implies that
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and hence that g = f + const.

REMARK. The preceding proofs become much simpler if E is re-
flexive, since then 9/* and d(f + i)* are just the "inverses" of df
and d(f + j), respectively, and Proposition 1 is superfluous. In this
case, S may be replaced by the inverse of T + dj in the proof of
Theorem A.
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CONVERGENCE OF A SEQUENCE OF TRANSFORMATIONS
OF DISTRIBUTION FUNCTIONS-II

R. SHANTARAM

A previous paper of the present author was devoted to the
study of the convergence properties of the iterates of a certain
transformation of distribution functions (d.f.'s) of a random
variable (r.v.). In this paper the definitions and some of the
results are extended to the case of bivariate d.f.'s.

l Definition and preliminaries* Throughout this paper F(x, y)
will denote the bivariate d.f. of a nonnegative random vector (X, Y).
More precisely, (i) F(x, y) is monotonic nondecreasing; i.e., for a > c,
b > d we have

[F(x, y)\a

c:l = F(a, b) - F(a, d) - F(c, b) + F(c, d) ^ 0 .

(ii) F(x, 0) = F(0, y) = 0 for all x and y. (iii) .F(+oo, +oo) = liraXtV^
F{x, y) — 1 and (iv) F(x, y) is left continuous in each variable; i.e.,

lim F(x + h,y) = F(x, y)
Λ-»0—

for all x and y with a similar left continuity in y.
We shall let Fx(x) — F(x, oo) and F2(y) = F(^y y) be the marginal

d.f.'s of X and Y respectively and μ(i, j) = EiXΎ5) be a product
moment of order i + j when it exists finitely. Hence μ(ί, 0) and μ(0, i)
are the ί-th moments of the marginal d.f.'s Fx and F2 respectively.
For brevity we let μ = μ(l, 1).

Let us remark at this point that (1) all of the results of this
paper (and more) follow immediately from the univariate case if F is
the d.f. corresponding to a product measure; i.e., X and Y are in-
dependent and (2) although we are dealing explicitly with the bivariate
case, the treatment and the results carry over in a direct way to
distributions in the positive quadrant of Rn, n >̂ 3.

We develop now the requisite background material before introduc-
ing the bivariate transform in § 2.

The following two lemmas for integration by parts are basic.
These formulas are known [11], but apparently not readily available,
and so we give them in a form convenient for our use.

LEMMA 1.1. Assuming the existence of the double Riemann-
Stieltjes integral we have
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(χ> y)

-[[g(x,b)-g(x,0)]df(x,0)
(1.1) Jo

- Γ [0(0,2/)-0(0, a/)K/"(0, y)
Jo

where

[h(x, y)\l$ = h(a, b) - h(a, 0) - h(0, b) + h(0, 0) .

LEMMA 1.2.

(1.2) Π7(aO<to(a, 1/) = \af(x)d[g(x, b) - g(x, 0)] .
J o j o Jo

It is well known that the double Riemann-Stielt jes integral exists
when, for example, one of the functions / and g is continuous and
the other is of bounded variation (cf. [3]).

LEMMA 1.3. If G(x> y) is continuous and the bivariate d.f. of a
nonnegative random vector except that G(oo, co) is arbitrary, then

(1.3) \~\~G(x, y)dF{x1 y) = ( T [ l - F,(x) - F2(y) + F(x, y)]dG(x, y).
Jo Jo Jo Jo

Proof. Let a > 0, b > 0 and S = [0, a] x [0, b]. Using (1.1) and
simplifying we get

( G(x, y)dF(xf y) = A+ [[F^x) - F(x, b)]dG(x, b)
)s Jo

(1.4) + \\F*(y) - F ^ V)WG{a, y)

- G(a} b)[l - F(a, b)]

= A + B

where

A - ί F*(x, y)dG{x1 y)
JS

and

(1.5) F*(x, y) = l - Ft(x) - F2(y) + F(x, y)

= Pr(X ^ x, Y ^ y) ^ 0 .

Now B ^ 0. In fact, since Fx{x) - F(x, b) and F2(y) - F{a, y) are
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nondecreasing functions in x and y respectively we have

B ^ G(a, bftFM - F(a, b)] + G(a, b)[Ft(b) - F(a, b)]

- G(a, δ)[l - F(a, b))

= -G(a, b)F*(a, 6) ̂  0 .

Next, noting (1.2) and integrating by parts

\TG(X, y)dF(x, y) ^ \'G(X, bfflFfr) - F(x, b)]
Jo J δ Jo

= - [[FAx) - F(x, b)]dG(x, b)
JO

+ G(a, bftFάa) - F(a, b)] .

S co Γb ΓcojΌo

I and \ I . Combining
o J O }a }b

these results we obtain

(1.6) { ( T + Γ Γ + Γ p J G ^ , y)dF(x, y)^-B^0.
Uojδ J α J 0 Ja Jb )

If now

c = \~[°G(x, y)dF{x, y) < co
Jo Jo

the left side in (1.6) is

c - ί G(x, y)dF(x, y) ^ -B ^ 0 ,
J-s

and letting a—>oo,6—• co we get B-~>0. Hence A-^c as a and h

approach co. If, however, c — +00, since B ^ 0 it follows from (1.4)

that A ^ \ G(x, y)dF(x, y) and letting α, b —> co we get A = + co. The
JS

lemma is proved in any case.

COROLLARY. For m :> 1, n ^ 1

\ xm-ιyn-1F*(x, y)dydx

0 Jo

where F* is defined in (1.5). In particular,

(1.8) μ= [°[°F*(x,y)dydx.
Jo Jo

We now recall that the characteristic function (c.f.) f(t, tf) of a
d.f. F(x, y) is called an analytic c.f. if there exists a function A(z, zr)
of two complex variables which is defined and holomorphic in a neigh-
borhood of the origin and which coincides with / for real values of z
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and z\ The lemma below is an extension of the necessity part of
Theorem 7.2.1 in [5].

LEMMA 1.4. If F(x, y) has an analytic c.f. then there exists a
positive constant R such that

F*(x, y) = o[e~{rx+r'y)], x, y —> oo

for all positive r, r' smaller than R.

Proof. If / is holomorphic in {{z, z'): \ z | < p, \z'\ < p'} for some
p > 0, pf > 0, then it is holomorphic at least in the "band" {(z, zr):
\lmz\ < p, \Imz'\ < p'} (cf. [2], [8]). Put R = min(p, p') and Imz = t,
Im z' = t'. Let x > 0, y > 0. Then

exp (tu + t'v)dF(u, v)

exists finitely for max(|ί|, \t'\) < R. Pick positive numbers r, r! such
that r < R, rf < R and then s, s' such that r < s < i? and rr < s' < i2.
Then there exists a positive constant C such that

S
ooΓco

\ exp (su + sfv)dF(u, v)
x jy

^ exp (sx + s'y)F*(x, y) .

Thus for 0 < r < R, 0 < r' < R

0 <£ JF7*^, i/) exp (rx + r'τ/)

= F*(x, y) exp (sx + sfy) exp [ — (s — r)x — (sr — r')̂ /]

<̂  C exp [ — (s — r)x — {sr — r')y] —»- 0 as a;, 7/ —> oo .

2. The bivariate transform* We now define the bivariate trans-
form and its iterates. Let F(x, y) have finite moments μ(i, j) of all
orders (i 2> 0, j ^ 0). Define the sequence {Gn} of absolutely continuous
d.f/s as follows. Put

S z Γy
\ F*(u, v)dvdu

o Jo

for x > 0, y > 0 and zero elsewhere. For ^ ^ 1 let

G +i(«, 1/) = [a(n, I)]"1 [?Gί(tt,
Jo Jo

for x > 0, y > 0 and zero elsewhere. Here

Gϊ(u, v)dvdu
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and G*(u, v) = 1 - G(

n

1](u) - G{

n

2)(v) + Gn(u, v) where

Gΐ\u) = Gn(u, +00) and G^(v) = Gw(+oo, v) .

In view of (1.8) Gn(x, y) is indeed an absolutely continuous d.f.
for n^l. Furthermore, if X and Y are independent so that
F(x, y) = F1(x)F2(y) we see that the bivariate transform of F is the
product of the univariate transforms introduced in [10] of the marginal
d.f/s Fx and F2. In the general case, however, no such simple re-
lationship exists. This is important to the understanding of why a
separate treatment of the two dimensional case is necessary and also
helps explain the difficulty in strengthening part (v) of Theorem 4.1.

In this section we obtain the relation between the moments of F
and of Gn for n ^ 1.

THEOREM 2.1. If the moment generating function (m.g.f.) M(t19 t2)
of F{x, y) exists in a neighborhood N of the origin then the m.g.f.
M*(t19 t2) of G^x, y) exists in N and

(» 2) ( / A ) W ( i f .) &) M + ], i2 0

M*(t19 0) - G«ί1)-
1[3ilf/3ί.ko> - 3^/3^1(00,], t, Φ 0M

M

M

(tit

*(tlt

*(0,

*(0,

ί2) = (μtJz)
0) = (^ί,)-1

0) = l

[dM/dU\itlM - dM/i

[dMldtχo,t2) -dM/i

IvΓ (i \ -L 11
•*•'-*• 2 x ^ 2 / ~Γ~ -*-J>

5/1 1 / rat 0•̂  ^ 2 j ( 0 , 0 ) J > ^ 1 '^ "

9/1 1 / =£ 0
' Ί | ( O > O ) J J ^ 2 ~̂  ^

where the arguments of M* are in N and M1 and M2 are the m.g.f .'s
of the marginal d.f/s F1 and F2, respectively.

Proof. Clearly Λf *(0, 0) = 1. Further, the existence of the m.g.f.
M in N implies the existence of Mt(u) and M2(u) for (u, 0) e N and
(0, u) e N respectively. Consider first the case tt > 0, t2 > 0, (tly t2) e N.
The first assertion in the theorem follows at once from Lemma 1.3
by using G(x, y) = (ehx — l)(eHy — 1) and noting that

ΛP(ίn t2) = 1 \ exp (t,x + t2y)F*{x, y)dydx .
Jo Jo

The result follows similarly when t{t2 Φ 0, tγ and/or t2 negative.
We now turn to the second equation in (2.1) and merely sketch the
proof. Since the m.g.f. M defines a holomorphic function in a "band"
containing N, the integral

π
Jo Jo

exp (tjX + t2y)dF(x, y)

converges uniformly in compact subsets of N. Hence, for (tl9 t2) e N,
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I exp fax + t2y)dF(x, y)
o Jo

5O

(d/dt2) exp fax + t2y)dF(x, y)
)
X5

y exp (ίjB + t2y)dF(x, y) .

Thus, the quantity in square brackets on the right side of the second
equation in (2.1) reduces to

y(eh* — i)dF(x, y) .

Use of Lemma 1.3 again gives us the result. The third equation in
(2.1) is proved in the same way. The theorem is completely proved.

We shall write μ(i, j; n) to denote EGn(XΎj), i ;> 0, j ^ 0, n ;> 1.
The following results are easily proved. If F has a m.g.f., these
results are obtained as corollaries to Theorem 2.1.

THEOREM 2.2. Let m ^ 1, n ^ 1. // μ(i, j) exists finitely for
0<^i<=/in, Otίj^ίn then μ(i, j; 1) exists finitely for 0 <, i ^ m — 1,
0 ^ j ^ n — 1. In this case

(2.2) μ(i, j; 1) = μ(i + 1, j + l)/(i + l)(i + 1)^ .

THEOREM 2.3. J/ μ(ΐ, J) exists finitely for all nonnegative in-
tegers i and j, then for all such i and j and n ^ 1,

(2.3) μ(ί, j; n) = ( n f ι) (n f J) μ(n + i, n + j)/μ(n, n) .

3* A convergence theorem for d.f.'s on a finite rectangle*
In this section we prove the following theorem:

THEOREM 3.1. If F(x, y) is a finite distribution on the rectangle
[0, a] x [0, 6], i.e., F(a, b) = 1, but F(x, y) < 1 for x < a or y < b.
Then

ί[l - exp (-x/a)][l - exp (-y/b)],

lim Gn(x/n, y/n) = G(x, y) = j min (x, y) ^ 0

(o elsewhere.

To prove the theorem we need several inequalities concerning the
growth rates of moments which we now obtain. For every nonnega-
tive real number m, n, p, q and real number t, we have
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μ(2m, 2ri) + 2tμ(m + p, n + q) + t2μ(2p, 2q) = E(XmYn + tXpYq)2 ^ 0

so that, if the moments are positive and finite we get

(3.1) μ(2m, 2n)μ(2p, 2q) ^ μ\m + p, n + q) .

Let r, s be positive integers. Letting 2m = r + 1, 2w = s + 1,
2j> = r — 1, 2? = s — 1 in (3.1) and then s + 1 = r we obtain

(3.2) μ(r + 1, s + l)/μ(r, s) ^ μ(r, s)/μ(r - 1, g - 1)

(3.3) ^(r + 1, r)/μ(r, r - 1) ^ //(r, r - l)//^(r - 1, r - 2) .

Similarly,

(3.4) μ(s, s + l)/^(s - 1, s) ^ ^(s - 1, s)/μ(s - 2, s - 1) .

Setting 2m = 2#> = r, 2n = 2q = s in (3.1) we get

(3.5) μ(r + 1, s)/μ(r, s) ^ μ(r, s)/μ(r - 1, s)

and its dual

(3.6) μ(r, s + l)/^(r, s) ^ //(r, s)/^(r, s - 1) .

Lemma 3.1 through 3.4 are proved under the hypothesis of Theorem
3.1.

LEMMA 3.1.

(3.7) lim μlln(n, n) = ab .
n—»oo

(3.8) lim μlln(n + i, n + j) = ab, i ^ 0, j ^ 0 .
n—>°o

Proof. Similar to Boas [1].

COROLLARY.

(3.9) lim μ(n + 1, n + l)/μ(n, n) ~ ab .
n—*oo

LEMMA 3.2.

(3.10) l i m μ ( n + i , n ) / μ ( n + i — 1, n ) = a , i ^ l
n—*oo

(3.11) lim μ(n + i, n)/μ(n, n) = α% i ^ 0 .

Proo/. It suffices to prove (3.10) since (3.11) follows from it.
Let i = 1. Clearly lim sup^oo μ(w + 1, n)fμ(n9 n) ^ α. Since

μ(n, n + l)/^(^, n) ^ 6 ,
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we have from (3.5), for n Ξ> 2,

μ(n + 1, n)/μ(n, n) ^ b~ιμ{n, n)/μ(n — 1, n — 1)

which implies that the lim inf of the left side is at least b"xab = α.
For a general i we use (3.5) and induction on i to get

a Ξ> μ(n + ί + 1, n)/μ(n + i, n)

Ξ> μ(n + i, n)lμ{n + ΐ — 1, n) —> α, as w —> co .

Similarly we have the dual results

(3.12) lim μ(n, n + j)/μ(n, n + j - 1) = b, j ^ 1 .

(3.13) lim μ(n, n + i)//ί(w, %) = bd, j ^ 0 .

LEMMA 3.3.

(3.14) lim μ(n — i, n)/μ(n — ί — k, n) = ak, i ^ 0, k ^ 0 .

Proof. It suffices to consider k = 1, i ^ 1.

//(w — i, n)/μ(n — ί — 1, n)

_ μ(?& — i, t^) /^(^ — ^ — 1, n — i — 1) μ(% — i, n — i)
μ(n — ί, n — i) μ(n — i — 1, n) μ(n — i — 1, n — i — 1)

μ(n, n) μ(n, n + i + 1) μ(n, n)

— b\b-ι)i+ιab = α, as w — co

in view of (3.10)-(3.13).
In a similar fashion

(3.15) lim μ(n, n — i)/μ(n, n — i — k) — bk, i Ξ> 0, k ^ 0 .
7l->oo

LEMMA 3.4.

(3.16) lim μ(n + i, w + j)/μ(n, n) = α'ί '̂, i ^ 0, i ^ 0 .

Proo/.

μ(n + i, ^ + i)/i(w, ^)

= [/̂ (̂  + i,n-

—+aΨ, as π

by (3.14) and (3.15).
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We are now ready to prove Theorem 3.1. The moment E(XiYi),
i, 3 ^ 0, of Gn(x/n, y/ri) is

t %yl(™ j~ *Xlμ(n + i,n+ j)lμ{n, n) (Theorem 2.3)

which converges to aH\ bjjl (Lemma 3.4). This last quantity is the
moment of order (i, j) of G(x, y) given in the statement of the theorem.
The result now follows by the bivariate moment convergence theorem.
We observe that the limit distribution is the product of two univariate
distributions; i.e., the limiting random variables are independent.

Examples 5.1 and 5.2 illustrate this theorem.

4* D.F.'s on an infinite range* In this section let F be dis-
tributed on the whole positive quadrant of the plane; i.e., F(x, y) < 1
for all real x and y.

Let {cn}, {dn} be sequences of positive real numbers and use the
following abbreviations. (Superscripts indicate the appropriate marginal
d.f.'s) Hn(x, y) = Gn(cnx, dny),

Ht{x, y) = l - m\x) - H™(y) + Hn(x, y),

G*(x, y) = l - G^(x) - G™(y) + G(x, y)

I Ht(x, y)dydx, and b = \ \ G*(x, y)dydx. We note that bn =

EHn(XY) and b = EG{XY). We further recall that a d.f. is proper
if there is no straight line in the xy-jΛane which contains the whole
mass of the distribution. The main result of this section is the fol-
lowing theorem.

THEOREM 4.1. Let positive real numbers cn and dn exist such
that limw_oo Hn(x, y) = G(x, y) and l im^^ Ht{x, y) = G*(x, y) where
G(x, y) is a proper d.f. Let lim sup^oo cjcn^ = lλ < oo and lim supπ_oo
djdn^ = l2 < co. Then

( i ) {bn} is a bounded sequence.
( ii ) l i t t le bn = b < oo.
(ii i) lim^oo cjc^, = I, and lim^̂ oo djdn^ = l2 exist.
(iv ) ltl2 ^ 1 and equality holds if F has an analytic c.f.
( v ) For i ^ 0, μiΛ{Hn) —>μifi(G) as n—> co where

μitj(ψ) = E9(X*Y') .

( vi) If an-+ α, af

n —> α' as n —> co where anJ a'n, a, a', are all
positive, then lim^oo Hn(anx, ar

ny) = G(ax, a'y).
(vii) limn-.β.Hίί)(a0 - G{1)(x) and \imn^ H(

n

2)(y) = G{2)(y) uniformly
in x and y.
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(viii) G(x, y) is continuous and the convergence Hn(x, y) —> G(x, y)
is uniform in x and y.

Proof. The first five parts of the theorem follow as in Theorem
4.1 in [10]. As for the remainder, we first prove that G(x, y) is
continuous. This involves several steps.

Step 1.

S ιλχcι2y G*(u, v)dvdu, x > 0, y > 0 .
o Jo

This is easily proved.
H%(x, y)dx is uniformly bounded for n suffici-

0

ently large.

Proof. Since bn —> b < oo, there exists N and M > 0 such that
I H*(u, v)dvdu <g M for all y > 0. Since H*(u, v)

0 J 2//2

is monotonic decreasing in v, we have for n > N and all y > 0

M ^ Γ T H*(u, v)dvdu ^ JL\~H*(U, y)du
JO J2//2 2 JO

which proves our result.

S CO

H*(x, y)dy is uniformly bounded for n sufficiently
0

large.
Step 4. Let

S xΓy

\ H*(u, v)dvdu, (x, ?/) G [α, oo) x [α, oo), α > 0 .
aja

Then there exists a subsequence {gnfc(x, y)} converging uniformly to

S xΓy

\ G*(u, v)dvdu .
aja

Proof. It is clear by the bounded convergence theorem that
gn—*9 pointwise. To obtain a subsequence converging uniformly we
shall show that {gn} is uniformly bounded and equicontinuous and then
appeal to the Arzela-Ascoli theorem [6, p. 242].

First {gn} is uniformly bounded since |gn(x, y)\ <̂  bn ^ M. Now
we prove that it is equicontinuous. Let ε be given, (ε < 1). Choose
N and M > 0 such that for n > N

ί oo r oo

H*(x, y)dy < M and sup y\ H*{x, y)dx < M .
0 2/>0 JO

This is possible by Steps 2 and 3. Next, pick δ < min (ε, εa/M), δ > 0.
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Let Ix — x'\ < δ, Iy — y'\ < δ and for deίiniteness let xf < x, y' < y.
(Other cases are similarly handled.) Then, for n > N

\9n(x, V) - 9n(x', V')\ ^ B

where

c =

A =

S x Γy

\ H*(u, v)dvdu

\ \ Hnu, v)dvdn

^(x- x')(y - y') < δ < ε .

(v - yf)
y'

, y')du ^{y- y')M/a < §M/a < ε

using Step 2. In a similar fashion

B = S x Cyf

I H*{u, v)dvdu
x'Ja

Step 4 is proved.
We now turn to the proof of the continuity of G(x, y). Clearly,

G is continuous at (c, 0), c > 0 since by Step 1 G(x, y) ^ Mxy and
G(c, 0) = lim^oo Hn(c, 0) = 0. Similarly, G is continuous at (0, 0) and
at (0, d), d > 0. Hence let c > 0, d > 0 and consider continuity at
(c, d). Let ε > 0 be given, ε < 1. Choose a > 0, 4α < min (c, d, ε, l/l19

l/l2, Iβ, l2d) and let

S l1χΓi2y
\ G*(u, v)dvdu .

a J a

Note that g(c, d) is defined. Since H*(u, v) is continuous for each
n ^ 1, it follows from Step 4 that g(x, y) is continuous in [α, oo) x [α, oo).
Let Ύ] > 0 be the delta needed for the given ε and (c, eZ) in the de-
finition of continuity of g. Further by Step 1,

G(x, y) = g(x, y) + \\\ +\ \ +\\\
U θ Jα Jα JO J O JOJ

b~ιG*(u, v)dvdu, lλx > α, l2y > a .

This equation is also true for x = c, y = d. Choose δ < min (η, a).
Then, for \x — c\ < δ, \y — d\ < δ we have that (x, y) belongs to the
domain of g and

A = \g(x, y) - g(c, d)\< ε

B = S aΓl2d
I G*(u, v)dvdu

0 Jl2y

C = \\1X'\'G*(U, v)dvdu

< al21 y - d \ < ε

ε .



228 R. SHANTARAM

Hence, \G(x, y) - G(c, d)\ ̂  A + B + C < 3ε. The proof of the con-
tinuity of G(x, y) is completed. Since Hn(x, y) converges to G(x, y)
and these are all continuous d.f.'s, the bivariate version of a familiar
result [9, p. 438] asserts that the convergence Hn—>G is uniform.
This uniform convergence now yields parts (vi) and (vii) of the theorem
immediately. Theorem 4.1 is completely proved.

REMARK 1. A consequence of (ii) is the asymptotic equivalence:
cndn ~ μ(n + l,n + ΐ)/b(n + l)2μ(n, n) where b = EG(XY). Thus, the
theorem gives the asymptotic nature of only the product of the norm-
alizing sequences in terms of the rate of growth of the moments of
F. It might be natural to seek conditions under which the normalizers
will be given by

cn ~ kμ(n + 1, n)/(n + l)μ(n, n)

dn ~ μ(n, n + l)/bk(n + l)μ(n, n)

for some constant k > 0. If (4.2) holds, it is natural to expect 1/k
and bk to correspond to the first moments of the marginal d.f.'s Gί

and G2 of the limiting d.f. G. This is true and is seen as follows.
By a straightforward calculation

μUQ{Hn) ~ μ(n + 1, n)/cn(n + l)μ(n, n) —> 1/k

under (4.2). Letting

fn(x) = 1 - H™(x),f(x) = 1 - G^(x), gn{x) - \* fn(u)d
Jo

•U

and g(x) = \ f(u)du we have gn—*g by the bounded convergence
Jo

theorem. In fact, applying the Arzela-Ascoli theorem to {gn}, it is
easy to conclude that gn, —> g uniformly in x, where nr is a suitable
subsequence of the natural numbers. It now follows by the Moore-
Osgood theorem [7, p. 285] that

lim lim gn,(x) = lim lim gn,(x); i.e.,

lim μUHn) = Γ [ l - G{l)(u)]du = μlt0(G) .
' JoSince μu0(Hn) —• 1/k it follows that μίtQ(G) = 1/k. Similarly, μOtl(G) = bk.

Incidentally, we have proved that μlf0(Hn) —• μlf0(G), and μo>1(Hn) —> μOtl{G)
under the condition (4.2).

REMARK 2. Part (v) of the theorem asserts the convergence of
μi}j(Hn) to μifj(G) only for i = j . Remark 1 above extends this to
the case i = 0, j = 1 and i = 1, j = 0 under the condition (4.2). It



CONVERGENCE OF A SEQUENCE OF TRANSFORMATIONS 229

might be interesting to investigate if the general moment convergence
is a consequence of (4.2) but we shall not pursue that in this paper.

REMARK 3. Under the conditions of the theorem and (4.2) the
following relations for the growth rates of the moments of F are easily-
obtained:

( i ) μ(n + 1, n + 1) ~ μ(n + 1, n)μ(n, n + ϊ)/μ(n, n)
(ii) μ(n + 2, n + l)μ(n, n)jμ{n + 1, n + l)μ(n + 1, n) ~ k
(iii) μ(n + 1, n + 2)μ(n, n)/μ(μ + 1, n + ϊ)μ(n, n + 1) ~ l2 .

We observe that (4.2) is valid if, for example, X and Y are in-
dependent and the cn and dn are normalizers satisfying the conditions
of Theorem 4.1 in [10] corresponding to the d.f.'s of X and Y re-
spectively. Theorems 4.2 and 4.3, below, illustrate situations where
X and Y are dependent and (4.2) holds.

THEOREM 4.2. Let U and V be independent positive r.v's having
analytic c.f.'s. Then the n-th iterated transform of the joint d.f.
of X = UV and Y = V, suitably normalized converges to the pro-
duct of simple exponential d.f.'s.

Proof. Uuder the stated conditions all the moments Xn and σn

respectively of U and V are finite and the moments of the d.f. of
(X, Y) and of its nth iterated transform are given by

μ(ί, j) = EiXΎ*) - EiU^EiV^) = λ,σί+i

μ(i, 3\ n) - il n-<-i(λn+i/λn)(<72n+ί+i/(72w) .

Choosing the cn and dn as in (4.2) with b — 1, k = 1 we see after some
simplification that μi}j(Hn) —> il j ! as n—>°°. (Here we have used
Lemmas 4.2 and 4.3 in [10]). Such a choice of cn and dn is valid
since cn+ί/cn and dn+ί/dn are bounded. Indeed they approach 1. The
theorem is proved.

REMARK. If U and V have independent exponential distributions
then the joint probability density function (p.d.f.) of X and Y is the
one considered in Example 5.3.

We close this section with the following result illustrating a
situation where the normalizers are as in (4.2) but the limit d.f. is
not necessarily a d.f. of independent r.v.'s. To prove the theorem
we merely need to verify that the mements of G(x, y) determine it
uniquely. This follows readily from the following sufficient condition
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for the determinateness of a moment sequence {miS}, namely, that the
series ΣΓi=o m^y'lil jl have a nonvanishing radius of convergence
(cf. [4, P ' 217]).

In the present case

and this clearly satisfies the sufficiency condition.

THEOREM 4.3. Let X and Y be independent positive r.v.'s with
d.d.f.'s fί(x) and f2(y) respectively and having analytic c.f.'s (so that
the moments Xn and σn of X and Y respectively are all finite). Let
further Xn+1σJ\nσn+1 ~ a where 0 < a < oo. Define the p.d.f.

f{x, y) = af(x)f2(y) + bf{y)Mx)

where a + b = 1 and a, b are positive real numbers. Then the norm-
alizers (4.2) lead to the limiting d.f.

G(x, y) = [X\y(Ae-ukl-vk2 + Be-uJc*~vkήdvdu
J J

where kγ — (a + b/a), k2 = (α + ba), fc3 = (6 + αα), and fc4 = (δ + a/a)
A = αfc1fc2 α^d B — bk3k±.

COROLLARY. If a Φ 1, G(aj, 2/) is wo£ ίΛe d.f. o/ independent
r.v.'s. // α = 1, G(x, y) is the product of exponential distributions.

The hypothesis of the theorem are satisfied if, for example,

f(x) = exp (-x), x > 0;f2(y) = a exp(-ay), y > 0

where a > 0.

5* Examples* This section contains three examples. The first
two examples illustrate Theorem 3.1; the third one illustrates Theorem
4.2.

EXAMPLE 5.1. Let α, 6, c be positive real numbers such that

a + b + c < 1. Then the d.f. of a bivariate Bernoullian random vector

is:

la 0 < x, y ^ 1

α + δ 0 < x ^ l , 2/ > 1

J
1 max (#, 2/) > 1

v0 m i n (x, y) <£ 0
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with μ = E(XY) = a where a = 1 — a — b — c. It is easily verified
that the n-th iterated transform of F(x, y) is the joint d.f. of two
independently distributed random variables with a common d.f. given
by [1 - (1 - x)n] for 0 < x < 1 and one for x > 1. Thus Gn(x, y)
converges to the degenerate distribution (degenerate at the origin).
But Gn(x/n, y/n) converges to the product of exponential d.f.'s.

EXAMPLE 5.2. Consider the bivariate distribution with p.d.f.
f(x, y) = x + y for 0 < x, y < 1 and zero elsewhere. The computation
of Gn is unwieldy but

Mi, 31 n) =

(n + i + l)(n + 3)^)(n + 2)ι

where (α)(r) = α(α + 1) «(α + r — 1) for a positive integer r and
(α)(0) = 1. It follows that the moment of order (i, j) of Gn(x/n, y/n)
converges to il jl and hence the limiting d.f. is the product of simple
exponential d.f.'s.

EXAMPLE 5.3. Let f(x, y) = y~ι exp ( — y — x/y), min (x, y) > 0 and

zero elsewhere be a joint p.d.f. Here Theorem 4.2 applies and the
limiting d.f. is again the product of simple exponential d.f.'s if we
choose cn — 2n, dn ~ 2 as given by (4.2).

Acknowledgment. The author is grateful to Professor W. L.
Harkness for his help in the preparation of this paper.

The author is also thankful to the referee for his many valuable
comments.

REFERENCES

1. R. P. Boas, Entire functions, Academic Press, New York, 1954.
2. R. Cuppens, Decomposition des functions caracteristiques analytiques, C. R. Acad.
Sci., Paris 263 (1966), A86-A88.
3. T. H. Hildebrandt and I. J. Schoenberg, On linear functional operations and the
moment problem for a finite interval in one or several dimensions, Ann. of Math. (2),
34 (1933).
4. M. Loeve, Probability theory, D. Van Nostrand Co., Princeton 1963.
5. E. Lukacs, Characteristic functions, Hafner Publishing Co., New York, 1960.
6. I. P. Natanson, Theory of functions of a real variable, Frederick Ungar Publishing
Co., New York, 1955.
7. J. M. H. Olmsted, Real variables, Appleton-Century-Crofts Inc., New York, 1959.
8. I. V. Ostrovskii, Decompositions of multidimensional probability laws, Soviet Math.
7 (1966), 1052-55.
9. E. Parzen, Modern probability theory and its applications, John. Wiley, and Sons,
Inc., New York, 1960.



232 R. SHANTARAM

10. R. Shantaram and W. L. Harkness, Convergence of a sequence of transformations
of distribution functions, Pacific J. Math. 31 (1969), 403-415.
11. W. H. Young. On multiple integration by parts and the second theorem of the
mean, Proc. Lond. Math. Soc. (2) 16 (1917).

Received April 17, 1969.

THE STATE UNIVERSITY OP NEW YORK AT STONY BROOK



PACIFIC JOURNAL OF MATHEMATICS
Vol. 33, No. 1, 1970

RINGS OF ANALYTIC FUNCTIONS

JULIANNE SOUCHEK

If F is an open Riemann surface and A(F) is the set of
all analytic functions on F, then A(F) is a ring under point-
wise addition and multiplication. This paper is concerned with
proper subrings R of A(F) which are isomorphic images of
A(G), the ring of all analytic functions on an open Riemann
surface G, under a homomorphism Φ which maps constant
functions onto themselves. The ring R has the form {goφ:
geA(G), φ an analytic map from F into G}, and will be
denoted Rφ. Relations between φ, Rφ and the spectrum of
Rφ are given as necessary and sufficient conditions for the
existence of a Riemann surface G such that R is isomorphic
to A(G).

Open Riemann surfaces will be denoted by F and G, the rings
of all analytic functions on F and G with pointwise addition and
multiplication will be denoted by A(F) and A(G), and Φ will denote
a homomorphism from A(G) into A(F) which maps constant functions
onto themselves. Let Φ be such a homomorphism. In [5, pp. 272-
273] H. L. Royden shows there is an analytic mapping φ of F into
G such that Φ(g) — g © φ, and that if Φ is an isomorphism onto A(F)
then φ is a one-to-one, onto analytic mapping. If φ is an analytic
mapping of F into G, then Φ defined by Φ(g) = goφ, geA(G), is a
homomorphism from A(G) into A(F) which preserves constant func-
tions. When φ is one-to-one and onto, Φ is an isomorphism.

The image of A(G) under Φ is the set {goφ: geA(G), φ is an
analytic map of F into G) denoted by Rφ. Rφ is a subring of A(F)
and contains the constant functions, since Φ(λ) = λ for λ a constant
function. The following conditions are equivalent: Rφ properly contains
the constant functions, Φ is an isomorphism, φ is not a constant
function. Theorems 1 and 2 give other relations between φ and Rφ.

THEOREM 1. If Rφ properly contains the constant functions,
then Rφ contains 1/f whenever feRφ> f(z) Φ 0 on F, if and only if
φ maps F onto G.

Proof. Let φ map F onto G, feRφ, f(z) Φ 0 on F. Then / =
Φh for some h e A(G) and 1/h e A(G) if h(y) Φ 0 for y e G. Suppose
h(a) — 0. Since a = φ(z) for some zeF, 0 = h(a) = h(φ(z)) = Φh(z) =
f(z). This contradicts f(z)Φθ on F. Thus h(a) Φ 0 for aeG,
l/heA(G), and 1/f = Φ(l/h)eRφ.

Suppose i?^ contains 1// when feRφ, f(z) Φ 0 on F. Let αeG.

233
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There is geA(G) such that g(a) = 0 and g(w) Φ 0 for wΦa [1,
pp. 591-592]. The function ΦgeRφ. If Φ#(z) = g°Φ(z) Φ 0 for zeF,
then there is heRφ such that (Φg)(h) = 1. There is fceA(G) such
that h = Φ&. Then (Φg){Φk) = 1 and Φ(#&) = 1 but Φ is an iso-
morphism implies gk = 1 and g(a)k(a) = 1. This contradicts #(α) = 0.
Therefore #(̂ (2)) = 0 and 0(s) = a for some ^eί 1 .

A straightforward argument shows

THEOREM 2. If Rφ properly contains the constant functions,
then Rφ separates the points of F if and only if φ is one-to-one.

Let R be a ring of analytic functions defined on F. The spectrum
of R, ΣR, is the set of nonzero homomorphisms π from R into the
complex numbers such that π(\) = λ for λ a constant function. For
xeF the point evaluation mapping πx — {(f,f(x))' f^R} is a homo-
morphism from R into the complex numbers, and πx(X) = λ for λ a
constant function. Therefore ΣR always contains the point evaluation
mappings defined on R. In [5, p. 272] H. L. Royden shows that the
spectrum of A(F) is the set of point evaluation mappings πx defined
on A{F), xeF. For feR let / = {(π,πf): πeΣR}; f is a function
from ΣR into the complex numbers. Let R denote {/: feR}. With
pointwise addition and multiplication R is a ring containing the con-
stant functions and is isomorphic to R under /—>/.

For yeG, let ψy denote an element of ΣA(G). The mapping
p = {(yy ψy): yeG} is a one-to-one function from G onto ΣA(G). If
R = Φ(A(G)) and Φ is an isomorphism, L = {(π, πoφ): πeΣR} is a
one-to-one function from ΣR onto 2Ά(G). The mapping π-^πoφ —
ψy~+y which is P~ι°L defines a one-to-one correspondence between
ΣR and G when Φ is an isomorphism.

THEOREM 3. Let Rφ = Φ(A(G)), Φ δe cm isomorphism from A(G)
into A(F) which preserves constant functions. Let M be the func-
tion from ΣA(F) into ΣRΦ defined by M(πx) = πx\Rφ. Then M is
onto if and only if φ is onto, and M is one-to-one if and only if φ
is one-to-one.

Proof The proof that M is one-to-one if and only if φ is one-
to-one follows from Theorem 2 and the fact that A(F) separates the
points of F.

Let πeΣRφ. Then πoφ e ΣA(G) implies there is yeG such that
πoφ =z ψyy where ψy(g) = g(y) for geA(G). There are two cases:
yeφ(F), y£φ(F). If yeφ(F), then y = φ{x) for some xeF and

π(Φg) = g(y) = g(Φ(x)) = Φg(x) for every geA(G), π(Φg) = Φg(x) for
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every / = ΦgeRφ. This implies π = M(πx). lίyί Φ(F), then y φ φ(x)
f o r xeF, a n d i t m a y b e s h o w n t h a t f o r e v e r y xeF t h e r e i s feRφ

such that π(f) Φ f(x). Let xeF. Then φ(x)eG. yeG, yφφ(x),
and A(G) separates the points of G implies there is a g e A(G) such that
g(y) Φ g(Φ(x)). From Φ(g) e Rφ and π(Φg) = g(y) Φ g(φ(x)) = Φg(x) it
follows that π φ M(πx) — πx\R .

For π e ΣRφ1 πoφ = ψye ΣA(G), and it has been shown π e M(ΣA(F))
if and only if yeφ(F).

From Theorem 3 and since ΣRΦ and G are in one-to-one corre-
spondence, it follows that the point evaluation maps in ΣRΦ are in
one-to-one correspondence with the points φ(x) e Φ(F), and the elements
of ΣRΦ which are not point evaluation maps are in one-to-one corre-
spondence with the points in G — Φ(F).

Theorem 4 contains a necessary condition which a subring R of
A(F) must satisfy if R is to be Φ(A(G))1 the isomorphic image of
A(G) under Φ for some open Riemann surface G. The corollary to
Theorem 5 gives a set of sufficient conditions on R in order that R
be Φ(A(G)) when Φg = goφ and φ: F—>G is an onto mapping.

Suppose F is an open Riemann surface, pe F, f is analytic at
p and τ is a local uniformizer which maps a neighborhood of p onto
{z: \z\ < g} for some p >0, τ(p) = 0. There is a number r > 0 such
that foτ~\z) = Σ Γ = o α ^ for \z\ < r. The multiplicity of / at p is
defined as inf {k: k Φ 0 and αλ ^ 0}, denoted n(p; / ) . The multiplicity
niv; f) of / at p does not depend on τ. If i? contains functions other
than constants, m = mΐ{n(p] / ) : f ei?} is defined, and n(p; f) = m
for some fe R.

THEOREM 4. Let p e F, Rφ contain functions other than con-
stants and let m = {inf n(p; / ) : feRφ}. There is a local uniformizer
τ at p with the properties: r(0) = p, for some p > 0, τ maps {z:
\z\ < p} onto a neighborhood of p, and if feRφ, f°τ(z) = ΣΓ=o^i(^m)ί

for \z\ < p.

The proof of Theorem 4 is based on two lemmas:

LEMMA 1. // peF, m = inf {n(p; f): fe Rφ) and feRφ, then
n(p;f) = km, ivhere k is a positive integer.

LEMMA 2. Given ^ΣJZ-^C^ convergent for \z\ <p, cm Φ 0, m Φ 0,
there is Σ*°°=i M* convergent for \z\ < p, bγ Φ 0, such that (ΣΓ-i 6<2*)w =

Lemma 1 follows from the two relations: For feRφJ f= goφ for
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some g e A(G), which implies n(p; f) == (n(p; Φ))(n(φ(p); g)), and if m =
inf {n(p; / ) : feRφ} then n(p; ψ) = m. Lemma 2 is proved by defining
W a subset of the natural numbers N as W = {n e N: blf 62, , bn

can be defined in such a way that the coefficients of zί for 1 ^ m <̂
ί ^ m + w — 1 of (ΣΠ=i &i^)m and ΣΓ=m ̂  are equal} and using induc-
tion to show W = N.

Proof of Theorem 4. Let zp be a local uniformizer about p such
that τp(0) = p. If m = inf {^(p; / ) : / e RΦ}, there is /„ e Rφ and /> > 0
such that fP°τp(z) = Σ^m^s* for | s | < p, cm Φ 0, and the range of
ΣΠ=mC*s* contains |«| < jθm.

There is a power series ΣΠ=i M% &Γ = cm, such that Σî mCiίδ* =
(ΣΓ=i M Γ for I«I < p as stated in Lemma 2. &(z) = ΣΓ=i M is
defined for |«| < /o, is one-to-one, and its range contains \z\< p.
Thus Λ-1^) is defined for \y\<p and/poTpofc-1^) = (ΣΓ=i δΛA - W Γ =
^m for |2 | < p, τpok~\0) = p. The function τ = τTok~ι is a local
uniformizer about p and there is fpeRφ such that fpoτ(z) — zm for
| s | < / 0 .

Let feRφ, f not a constant function. Then /°r(«) = Σ<^o «»«*
for I s I < p. Let N denote the natural numbers and define W =
{neN:foτ(z) = ΣUa^.z^ + zm^hn(z), where hn(z) = ΣΓ=i &»,<«* and i ,
are nonnegative integers, 0 = j 0 < j \ < < jn}.

It follows from Lemma 1 that for \z\<p1foz(z) = y£^=0aiz
i^

a0 + amjlz
mjι + z^h^z), where ^(0) = 0. If keW, then foτ(z) =

ΣjLoamj.z
mji + z

mjkhk(z)1 hk(0) = 0. Since feRφ, zmeRφ and constants
are contained in Rφ, zmjkhk{z) = f(z) - Σ<=o α w i . s m * e ^ . If Λfc Φ 0,
w(p; ^miA;Λ&) = mjk+1 and /oτ(a ) = Σiίo1 α«i^ m i ί + zmj^hk+ι(z), where
ΛΛ+I(«) = ΣΓ=i δfc+i,*̂  on \z\< p and jk+1>jk. If Λfc = 0, then the
above statement is true with amjk+1 = 0, λfc+1 = 0. By induction
W = JV and /oτ(2) = ΣΓ=o α«»2mi on |«| < p.

If iϋ, a subring of -4(2^), has the property that for every aeF,
feR, for some local uniformizer z about α, f°τ(z) = ΣΓ=o α^^^O 4 for
m(α) = inf {w(α; f):feR}, then ϋ? has property (ί). If R contains
functions other than constants and has property (f), then for aeF,
m(a) = inf {n(a; f):feR} — liΐR separates the points of F.

THEOREM 5. If R is a subring of A(F) which contains func-
tions other than constants and has property (ξ), then there is an
open Riemann surface G, an analytic mapping φ of F onto G, and
a separating subring S of A(G) such that S is isomorphic to R
under f-+f<>φ, feS.1

Proof. Let G = {πp: peF} where πp = {(f,f(p)):feR) and φ =
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{(p, πp): peF}. The topology on G will be that which makes φ
continuous and open. If Np is an open neighborhood of p e F, then
NZp = {πq; q e Np} is an open neighborhood of πp. The set G with
this topology is a connected Hausdorff space.

Let p e F, πpeG and m = inf {n(p; f):feR}. By the same argu-
ment used in the beginning of the proof of Theorem 4, there is a
function fpeR and a local uniformizer τ about p such that τ(0) = p
and fpoτ(z) = zm for \z\ < ρίlm for some p > 0. Then for / e i 2 ,
foT(z) = ΣΓ=o «*(«*)* = #/(*m) for |z | < ^1 / w, ^ analytic on \z\ < p.

It will be shown that στ — {(zm, πτU)): \z\ < ρUm) is a local
uniformizer about πp. If z? = s?, then foτ{z^ = g/(zΓ) = 0/(sΓ) =
/or(22), for / e i ? implies ττΓ(Zi) = πΓ(Z2), which implies that σr is a
function. If πτ{tύ = τrΓ(β2> then in particular /^rfe) = /P°r(s2), which
implies #Γ = Γ̂> and σΓ is one-to-one. Since the relations zm—+z—*
τ(z) —> 0(r(z)) = τrr(2) are open and continuous, σΓ is open and continuous.
Thus σ. is a homeomorphism from {w: | w \ < p) onto φoτ({z: \ z \ < ^1/m}) =

If 7ΓG W — cϊτ2(\z\ < p2) Π crri(|^I < (O,), there are points z19 z2 such
that πTl(Zj) = τrΓ2(^2). Then /o^fe) =f°τ2(z2) for every / e J?, and ^Γ1 =
/i(Γi(Si)) = fi(τ2(z2)) = gfl(

z?2)> s o ^A ί s analytic on {w:\w\< ft}, which
contains σr2(T7). This shows that zf1 — σ~^oσH(z™2) is analytic on σ~2

ι{W)
to σ~l(W). The function α Γ is a local uniformizer of a neighborhood of
τrp, and G is a Riemann surface.

For feR, let / = { ( ^ , / ( ? ) ) ) : p 6 ί 1 } , S = {/:/e#}. ^Since / is
continuous and φ is open, / is continuous. The function / is analytic
at πp, because if \w\ < p, w = 2W, then f°στ(w) = f{πτ{z)) = /(r(«)) =
ΣΓ=o <Xi(̂ m)ί = Σ?U ttiW*. The mapping ^ is analytic at ^, because
σ-ιoφoτ(z) = σ-\πτω) = zm for |^ | < |01/w. With pointwise addition and
multiplication, S is a ring and is isomorphic to R under the mapping
f-+f°Φ = / • The ring S separates the points of G. Since S contains
functions which are not constant and are analytic on G, G is an open
Riemann surface.

If S is to be A(G), then by Theorem 3 the mapping M(πp) = πp\R

from ΣA(F) to ΣR must be onto, since φ is an onto mapping of F to
G. Thus ΣR may contain only point evaluation mappings and ΣR = G.

COROLLARY TO THEOREM 5. If R is a subring of A(F) which
properly contains the constant functions and has property (ξ), if
ΣR contains only point evaluation mappings, and R contains all
feA(F) such that f<>τp(z) = Σ*~=o a^z")* for \z\ < ρίlm, peF, m =
inf {n(p: / ) : fsR}, then ΣR = G is an open Riemann surface, and R
is isomorphic to S = A(G).

1 This result and proof are similar to one given by M. Heins for a subfield of
the field of all meromorphic functions on a Riemann surface [2, pp. 268-269].
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Proof. Everything except S = A(G) was shown in the proof of
Theorem 5. The function feA(G) if and only if for every πpeG,
f°σZp(w) = Σr=o (LiW* for \w\ < p. Let feA(G), peF, πpeG, and

f = foφ. Then feA(F) and feR, because for \z\ < ρllm, /°r p(s) =

foφ(τp(z)) = f(πTpω) = foσTp(zm) = Σr=o α<(zw)\

If R = {foφ fe S} and S separates the points of G, then R
separates the points of F if and only if φ is a one-to-one function.
If S separates the points of G, and S = A(G), then i? may not separate
the points of F, because if it did φ would be a one-to-one, onto
analytic function from F to G, and R = A(F). If S Φ A(G) there
may be a surface H, a mapping φ1 and a separating subring Γ of
A(H) such that & is analytic and one-to-one but not onto, and T =
A(H).

In this part of the paper it is noted that if R = Φ(A(G)), then
ΣR with the Gelfand topology is an open Riemann surface, and R
which is isomorphic to R, is the ring of all analytic functions on ΣR.
Theorem 8 gives sufficient conditions on a subring R of A(F) and on
R in order that ΣR be an open Riemann surface and R be a ring of
analytic functions on ΣR. In conclusion sufficient conditions for R
to be A(ΣR) are given.

If R is a ring of complex valued functions on F, then the Gelfand
topology on ΣR is the weakest topology on ΣR which makes each
element of R continuous, where R = {f'.feR}, f = {(π, πf): πeΣR}.
Let π0 e ΣR, K be a finite subset of R, ε > 0. An open neighborhood
of τr0 will be {πeΣR: \f(π) - f(πo)\ < ε for feK). If R = Φ(A(G))
and Φ is an isomorphism, then ΣR and ΣA(G) with the Gelfand
topology are homeomorphic under the mapping L(π) = πoφ from ΣR
onto ΣA(G). The mapping P(y) = ψy from G onto 2Ά(G) with the
Gelfand topology is one-to-one, onto and continuous. The mapping P
is also open. As Royden observes [4, pp. 287-288], this is a con-
sequence of a theorem of Remmert that an open Riemann surface
can be mapped one-to-one and holomorphically into C3 [3, p. 118].
Thus P~ιoL is a homeomorphism from ΣR with the Gelfand topology
onto G.

THEOREM 6. If R is a subring of A(F) such that R = Φ(A(G)),
and if Φ is an isomorphism which preserves constant functions, then
ΣR with the Gelfand topology is an open Riemann surface, and R is
the ring of all analytic functions on ΣR. Moreover R is isomorphic
to R.

Proof. The spectrum of R with the Gelfand topology is a
Hausdorff space. It is homeomorphic to G under the mapping Zr^oP,
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and is connected. Let πqeΣR where qeG, ψqeΣA(G), and L~ιoP
maps q-~+ψg—»πq. If Nq is a neighborhood of q then Nπ<j = L~ίoP(Nq)
is a neighborhood of 7rff. There exists hqeA(G) which has a simple
zero at q [1, pp. 591-592]. Λ,g is a local uniformizer on a neighbor-
hood of q, Nq = h~\\ z\ < p) for some p > 0. If c^ = Ag |^, then
hqoσ~\z) = z for \z\<ρ. For ΛeA(G), i/eiSΓff, h(y) = ΣΓ=o αA,(i/))\

If fq = φhq then /ff is a local uniformizer on JV^ = L~1oP(Nq).
From /β(ττy) = Λff(i/) follows fq(πy) = hqoP~ιoL{πy), πy e Nπq, which implies
/ g is a homeomorphism of JV^ onto \z\ < p. If πye Nπqί Π iVffg2, then
Afo) = M#) = ΣΓ=o a%ihqi(y)y = ΣΓ̂ o α4( A(^))* since ' 7Γy e ^ 2 or^ 2

2/ G i\Γg2. The function /ff is a local uniformizer on Nπ and -ΓJ? is a
Riemann surface.

The ring R is contained in A(ΣR), because if felt, πyeNπq,
z = Mπy), then M " 1 ^ ) = f(πy) = Λ(l/) = ΣΓ= ^
ΣΓ=o «»«*. The function T(q) = 7Γg is an analytic map of G onto ΣR.
If 0 is analytic on ΣR, then ^ Γ e i ( G ) and θeR because θ(πq) =
^oΓ(g) = ψq{θoT) = τrff(/) for / = Φ{θoT). This implies ^ = /. Thus
jξ = Aίi/J?). Since β contains functions which are analytic and are
not constant on ΣR, ΣR is an open Riemann surface.

THEOREM 7. Let R = Φ(A(G)). If πeΣR, then TΓ^O) is a
principal maximal ideal of R, and every principal maximal ideal
of R is the kernel of π e ΣR. If ίr~1(0) is generated by f, then f is
a local homeomorphism on a neighborhood N* of π and if π e NpL,
k 6 R, then k(π) = ΣΓ=o ^(/(TΓ))*.

Proof. If πeΣR, then ττ°Φ = ψqeΣA(G) and π-'φ) = Φ(ψ^(0)).
The kernel of ψq, Mq = ^^(O), is a principal maximal ideal of A(G),
and every principal maximal ideal of A(G) is a kernel of ψ e ΣA(G)
[5, pp. 271-272]. If h generates Mq, then h has a single zero and it
is a simple zero at q [5]. Thus h is a homeomorphism on a neighbor-
hood of q, Nq. If / = Φλ, then if-̂ O) is the ideal generated by/. Also
/ is a uniformizer on N% = L~1oP(Nq), and if π e Ni, tceR, then
k(π) — ΣΓ=o a,i(f(π)y as shown in the proof of Theorem 6.

LEMMA. Let S be a ring of continuous functions on X with
identity. Then X is not connected if and only if S is contained in
a ring Q of continuous functions on X, where Q = Iι + J2, Iu I2

proper ideals of Q, £ n I2 = {0}.

THEOREM 8. Let R be a subring of A(F) which properly contains
the constant functions, and suppose R is not contained in a ring Q
of continuous functions on ΣR where Q = Iι + I2, Ily I2 proper ideals
of Q, Iι Π I2 = {0}. If for πeΣR, 7Γ-1(0) is a principal ideal of R
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generated by f and /, the function in R which corresponds to f in
R, is a homeomorphism on a neighborhood of π, and for π in this
neighborhood, g eRf πg = ΣΓ=o α»(^/)S then ΣR is an open Riemann
surface and R is a ring of analytic functions on ΣR.

Proof. The spectrum of R with the Gelfand topology is a Haus-
dorff space. By the lemma ΣR is connected. Let πeΣR. There is
/ a homeomorphism of N% onto \z\ < p for some p > 0. If π e N^t

geR, then g(π) = ΣΓ=o a^fo))*. lΐπe NZlΠNπ2=W then fcoff^faπ)) =
fi(π) = ΈT=oai(f2(π))i implies Z^/-1 is analytic on f2(W). {(NπJπ):
πeΣR} defines an analytic structure on ΣR. It is immediate that
R c A(ΣR). Since R contains functions which are not constant and
are analytic on ΣR, ΣR is an open Riemann surface.

If {Rn} is a sequence of subrings of A(F) such that Rn satisfies
the conditions of Theorem 8, ΣRn\Rl = ΣRlf Rn^ciRn, then the chain
has a maximal element, {foφ: feA{ΣR^) and φ(x) = πx, xeF}. Let
πeΣRί and / be a local homeomorphism at π. If Rί satisfies the
conditions of Theorem 8 and contains all functions g in A(F) such
that g(π) = Σ7=o ai(f(π)Y f°r πeiV^ π and π elements of ΣRίy then
Rx = AiΣRJ, because if ggRly then there is πeΣRι such that g°f~h

is not analytic on {z: \z\ < |θ} which implies g £ A(ΣRt).

The author wishes to thank Professors H. B. Curtis and H. E.
Lacey for their suggestions and encouragement.
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THE PRINCIPLE OF SUBORDINATION APPLIED
TO FUNCTIONS OF SEVERAL VARIABLES

T. J. SϋFFRIDGE

In this paper we consider univalent maps of domains in
Cn(n ^ 2). Let P be a polydisk in C\ We find necessary and
sufficient conditions that a function /:P—>O be univalent and
map the polydisk P onto a starlike or a convex domain. We
also consider maps from

Dp = {z:\z\p< l } c θ

\ Z \ P = \(ZlfZ2, •• , « n ) | p = Σ I ^ I Π ' ^ = X

U=i J

into Cn and give necessary and sufficient conditions that such
a map have starlike or convex image.

In [4] Matsuno has considered a similar problem for the hyper-
sphere D2dCn. His definition of starlikeness is different from that
used in this paper, but the results show that the two definitions are
equivalent. However, his definition of con vex-like is not equivalent to
geometrically convex.

1* Preliminary lemmas* For (z19 z2, , zn) = z G Cn, define | z\ =
max l g ί ^ \z3 \. Let Er = {z e Cn: \ z | < r} and i? = EΊ. Let ^ be the
class of mappings w: E —>Cn which are holomorphic and which satisfy
w(0) = 0, R e lwj(z)/zd] ^ 0 w h e n \z\ = \ z5 \ > 0, (1 ̂  j ^ n) w h e r e w =
(w19 w21 , wΛ). The following lemmas are generalizations of Theorems
A and B of Robertson [5, p. 315-317].

LEMMA 1. Let v(z; t): E x I—+Cn be holomorphic for each te I =
[0,1], v(z; 0) = z, v(0, t) = 0 and | v(z; ί) | < 1 ^/^βπ 2 e £7. 7/

( 2 ) lim \{z - v(z; t))/tp] = w(z)
ΐ->0+

exists and is holomorphic in E for some p > 0, then we^.

Proof. The hypothesis (2) implies that limί_>0+ vd(z; t) = z5 (here
v(z; t) = (v^z; t), v2(z; t), , vn(z; t)) so

2zM vtet)l s {z. t)

z3 + ^-(^ t)

is holomorphic for zeE, z3- ̂  0 (1 <^ j ^ n). By Schwarz lemma,
I v(z; t)\^\z\ and hence Re [ψά(z; t)/zs] ^ 0 when | z \ = | ^ | > 0. Setting

; £) = (f^ α/r2, . . . , ψn)9 (z e E, zxz2- -zn Φ 0) we observe that
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lim ψ(z; t)/tp = w(z)
t-*0+

for these values of z and using continuity of w we conclude we^.

LEMMA 2. Let f:E—>Cn be holomorphic and univalent and
satisfy /(0) = 0. Let F(z; t): E x I-+Cn be a holomorphic function
of z for each tel = [0,1], F(z; 0) = f(z), F(0, t) = 0 and suppose
F(z) t) <f for each t e I (i.e., F(E; t) af(E) for each t e I). Let p > 0
be such that limt_0+ F(z;0) — F(z; t)/tp = F(z) exists and is holomorphic.
Then F(z) = Jw where we^. Here F and w are written as column
vectors and J is the complex Jacobian matrix for the mapping f.

Proof. Since F(z; t) < f for each tel, there exists v: E x I-+E
such t h a t f(v(z; ί)) = F(z; t) where |v(z; t)\^\z\. W r i t i n g / a s a column

vector we have f(v(z; t)) = f(z) + J(v(z; t) — z) + R(v(z; t), z) where
j J?(ζ, z) I/I ζ - z I — 0 a s I ζ - z \ - > 0. H e n c e

F(z; 0) - F(z; t) = jίz - v(z; t)\ _ R(v(z; t), z)
tp \ tp J tp

and the lemma follows from Lemma 1.

2 Starlike and convex mappings of the polydisk*

DEFINITION. A holomorphic mapping f:E-+Cn is starlike if / is
univalent, /(0) = 0 and (1 - t)f < f for all t e I.

THEOREM 1. Suppose f:E-+Cn is starlike and that J is the
complex Jacobian matrix of f. There exists w e & such that f = Jw
where f and w are written as column vectors.

Proof. Apply Lemma 2 with F(z; t) = (1 - t)f(z). Then

M = lim /(*) ~ (1 ~ *)/(*) = i i m F(z; 0) - F(z; t)

and the theorem follows from Lemma 2.

We now consider the conclusion of Theorem 1 in component form.
Let Jj be the matrix obtained by replacing the jth column in / by
the column vector /, 1 ^ j ^ n. Then the i t h component w5 of w is
det (Jy)/det J. Theorem 1 therefore says that if / is starlike then
Re [det (Js)/z3- det J ] ^ 0 when | z | = | zd \ > 0. Also,

{ 3 ) fj = &LW, + Mlw2 + + y±wn , 1 ^ j ^ n
dz, dz2 dzn
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and equating coefficients in the power series using (3) we find

Wj(z) = Zj + terms of total degree 2 or greater .

Now suppose | z{0) | = | zf | > 0 and let ak, (l^k^n)be such that 40) =
ahzf\ Then | ak | ^ 1, (1 <J k S n). Consider Wj(z)/Zj — u(z3) where z
is restricted to the set,

z = (a19a2, "-,an)z, , | s y | < 1 .

Then Re u{zό) Ξ> 0, 0 < | zά | < 1 and u{zά) ~>1 as zd —> 0. Since Re w(z, )
is a harmonic function of zjf we conclude Re u(zά) > 0, | zά | < 1 and

{ 4 ) Re [Wj-ίs)/̂ -] > 0 when | z \ = \ zό \ > 0 .

We now prove the converse of Theorem 1.

THEOREM 2. Suppose f:E—>Cn is holornorphίc, /(0) = 0, J is
nonsingular and that

{5 ) f(z) - Jw, w e &> .

Then f is starlike.

Proof. Since det J X ) when z = 0, / is univalent in a neighbor-
hood of 0. It is clear that {r: 0 ^ r ^ 1 and / is univalent in Er) = A
is a closed subset of [0, 1], We will show that A is also open and that
if / is univalent in Er then f(Er) is starlike with respect to 0.

Let r > 0 be such that / is univalent in Er, (0 < r < 1). Let z
be fixed, \z\Sr and let v(z; t) be such that f(v(z; t)) = (1 - f)f(z),
— ε<t<t0 where ε is small and positive and t0 > 0. This is possible
since det J Φ 0.

Then

v(z; t) = v(2; 0) + J-^(-f(z))-

(6) = z- J-'.J wt + g(t)

v(z; t) = z — tw +

by (5). Here \g(t)\/t->0 as ί-^0. Using (4), we conclude \v(z;t)\
is a strictly decreasing function of t. Hence each point of the ray
(1 — t)f(z), 0 < t ^ 1 is the image of a point v(z; t) e Er for each z such
that I z ^ r. We conclude that f(Er) is starlike with respect to 0.
We now show A is open. Observe that / is one-to-one in the closed
polydisk Er for if \z \ ^ | ζ | =r r, z Φ ζ and /(β) = /(ζ) then by (6) and
(4) we can conclude that for t positive and sufficiently small there are
functions v(ζ; ί), v(z; t) such that v(ζ; t), v{z, t) e Ery v(ζ; t) Φ v(z; t) and
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f(v(z; ί)) - (1 - t)f(z) = (1 - ί)/(ζ) = /(v(ζ, ί)) which is a contradic-
tion.

We now define a continuous nonnegative function φ: E x E-+R
(R is the real numbers) such that 0(2, ζ) = 0 if and only if f(z) = /(ζ),
^ ^ ζ . We show that φ is positive on the closed set Er x Er and hence
has a positive minimum on this set. This will imply / is univalent
in Er+ε for some ε > 0 and hence A is open. For z, CeE, define
G(z, ζ) = det (an) where

^-(zlyZ2y ...,Zd,ζi+1, . . . , ζ j , ( * , = «

and / = (f19f2, ••-,/,).
Now set 0(s, ζ) = I G(z, ζ) | + Σ?=i l / » - /i(O |. Then <5(s, z) =•

I det (J(z) I > 0 while

φ(z,ζ)>0 when f(z)Φf(ζ).

If /(z) = /(ζ) for some z, ζeE, z Φ ζ then the columns of G(z9 ζ) are
not linearly independent so G(z9 ζ) = 0 and 0(z, ζ) = 0. The proof is
now complete.

THEOREM 3. Suppose f:E—>Cn is holomorphic, f(0) = 0 and that
J is nonsingular for all zeE. Then f is a univalent map of E onto
a convex domain if and only if there exist univalent mappings
fj (1 fg j ^ n) from the unit disk in the plane onto convex domains
in the plane such that f(z) = T(f(zι)Jf2(z2) - ,fn(zn)) where T is a
nonsingular linear transformation.

Proof. It is clear that if / satisfies the conditions given in the
theorem, then / is univalent and f(E) is convex. We will prove the
converse.

Suppose / is a univalent map of E onto a convex domain. Let
A = (A19 A2, , An) where A, ̂ 0 (1 ^ j <£ n) and let

At\Z) — \ ^ l ^ λ j ^2^ > " " " > %n@ n )

where — 1 ^ t ^ 1. Then

F(2; ί) - l/2[f(At(z)) + /(A_t(z))] < / 0 ^ ί ^ 1

and F(z) t) satisfies the hypotheses of Lemma 2 with p = 2. Using
the same notation as in Lemma 2, we have
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•- ,Fn)

<7) ~J ίΞΊ~ V"^f + ' Z k l t ,

I O "SΓ1 X ^ A A y <y ® J 3

fe = 2 i = l OZiOZy.

and also î 7 = J ^ , w e ^ . Hence we find that w3- = det J ( i )/det J where
J{j) is obtained from J by replacing the jth column by F written as
a column vector. Fix k,l <^ k ^ n and choose Ak = 1, Aι = 0, I Φ k,
1 <; I <^n. Suppose | z \ = | z3- \ > 0, jf Φ k and ^̂  = 0. Then w3-/Zj = 0
and since Re(w3jz3) ^ 0 when \z\ — \ z3- \ > 0 we must have w3- = 0. We
have therefore shown that for 1 ^ j ^ n and 1 ^ A: ̂  π we have

<8) *M + zM± = ψ+>
oz% ozk ozk

where Re [ψk(z)/zk] ^ 0 when | z \ = | zk \ > 0. With A; as before, fix I,
l<^l<,n, Iφk and choose Afc = 1, Ax = ε > 0 and Am = 0, 1 <£ m ^ w,
m ^ &, ί.

Using (8) we conclude

w> εΨτΊdet J

where G5 is obtained from det J by replacing the jΓth column by the
column 32fjozιdzk(l ^ m ^ n). Hence Re [zkZι/Zj Gj/detJ] ^ 0 when

z\ = \zj\ > 0. Since Re [z^/Zj Gj/det J] = 0 when «A2Z = 0 we see
that G3 = 0 for each i, 1 ^ j g n.

Since the system of equations

has solution

det J ~~ =

we conclude

-^£=- = 0 1 ^ m ^ π .

This implies

{ 9 ) fm(z) — Σ aj,mΦj,m(Zj) 1 ^ 7Π ̂  Π

where ^ i f W is analytic on the unit disk in the complex plane. Using
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(8) we conclude ψj>m = ψ3 tk (1 ^ m, k ^ n) provided the constants ajtm

in (9) are appropriately chosen. The theorem now follows readily
from (8).

EXAMPLE 1. Let f: E-+C2 be given by f(z) = (zL + az\, z2) where
a is a complex number, a Φ 0. Clearly / is univalent. Letting / = Jw,
we find wx = z1 — azl, w2 = z2 so / is starlike provided | a | < 1. Note
that Theorem 3 implies the suprising result that none of the sets f(Er)
is convex (1 > r > 0).

EXAMPLE 2. Let f:E-+C2 be given by f(z) = (z^Os), z2g(z)),
C where # is holomorphic, 0 g #(£7). Then / = Jw implies

(10)

and / is starlike if and only if Re (^(z)/^) ^ 0, ze E. Conversely, one
can show that if / : E-+C2 is holomorphic, / = Jw where w e & and
wjz1 = w2/z2 then there exists g:E—>C,g holomorphic, 0 £ g(E) such
that (10) holds and / = ( ( α ^ + a2z2)g, (b^ + b2z2)g), (αx62 =̂  ̂ δ j . In
these cases the intersection of the polydisk E with an analytic plane
azγ + βz2 = 0 maps into an analytic plane S/Ί + yf2 = 0. Interesting
choices of # are g(z) = (1 — z^)-1 and gr(z) = [(1 — zx)(l - ^s)]"1.

3* Extension to convex and starlike maps of Dp. Since the
details of the proofs for the results in this section are similar to those
in §'s 2 and 3, we omit the details. We wish to find lemmas which
apply to Dp (Dp is defined in equation (1)) in the same way that
Lemmas 1 and 2 apply to the polydisk. The crucial point is that given
equation (6) with 0 Φ zeDp we wish to conclude

I v(z; t)\p<L\z\p w h e n 0 < t < ε

for some ε > 0. This will be true provided
for t sufficiently small. That is

zά — < Σ?=i I ZJ

- 2* Re wj/zj + f I w,./zs \ψ12 + Σ
0

wd < ± | zά

or

Re

when ί is sufficiently small, ί > 0. Hence we define ^ p for p ^ 1 by
w e ^ p if w: DpaCn-> Cn, w(0) = 0, w holomorphic and
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(ID
Re2>; K IM -Σi\w,\ 2:0

zeDp,w = (w19 w2, , wn).

We now have the following lemmas and theorems which correspond
to the lemmas and theorems of §§ 2 and 3.

LEMMA 3. Let v(z; t): Dp x I—+Cn be holomorphic for each tel>
v(z, 0) = z, v(0, t) = 0 and \ v(z; t) \p < 1 when z e Dp. If

lim [(z - v(z; t))/tp] = w(z)

exists and is holomorphic in Dp for some p > 0, then w e &v.

LEMMA 4. Let f:Dp—+Cn be holomorphic and univalent and
satisfy /(0) = 0. Let F(z; t): Dp x I—+Cn be a holomorphic function
of z for each tel, F(z, 0) = f(z), F(0; t) = 0 and suppose F(z; t) <J
for each tel. Let ρ>0 be such that \imt^0+(F(z; 0) - F(z; t))/tp = F(z)
exists and is holomorphic. Then F(z) = Jw where w e &\.

THEOREM 4. If f: Dp—+Cn is starlike then there exists we^p

such thatf— Jw. Conversely, iff: Dp—>Cn,f(0) = 0, J is nonsingular
and f — Jw, w e &p then f is starlike.

THEOREM 5. Let f: Dp—*Cn,f(0) = 0 and suppose J is non-
singular. Then f(Dp) is convex if and only if F = Jw where w e &P

for each choice of A — (Aly A2, , An), Aά ^ 0 (1 ^ j ^ n) and F is
given by (7) with z e Dp.

Now set p = 2. It is easy to see that Theorem 4 above is equiva-
lent to Matsuno's Theorem 1 [4, p. 91]. Consider f:D2—>C2 given
by f(z) — (zi + azli zz) Theorem 5 shows that f(D2) is convex if and
only if | a \ ̂  1/2 while Matsuno's Lemma 3 [4, p. 94] implies / is convex-

like if and only if | a \ ̂  3α/"3"/4. This shows that convex-like is not
equivalent to geometrically convex.

REFERENCES

1. S. Bergman, The kernel function and conformal mapping, Mathematical Surveys,
Vol. V., Amer. Math. Soc, New York, 1950.
2. S. Bochner and W. T. Martin, Several complex variables, Princeton Univ. Press,
1948.



248 T. J. SUFFRIDGE

3. R. Gunning and H. Rossi, Analytic functions of several complex variables, Prentice-
Hall, Englewood Cliffs, N. J., 1965.
4. Takeshi Matsuno, Star-like theorems and convex-like theorems in the complex vector
space, Sci. Rep. Tokyo, Kyoiku Daigaku, Sect. A 5 (1955), 88-95.
5. M. S. Robertson, Applications of the subordination principle to univalent functions,
Pacific J. Math. 11 (1961), 315-324.

Received May 19, 1969. This research was supported by the National Science
Foundation, Grant GP 8225.

UNIVERSITY OP KENTUCKY

LEXINGTON, KENTUCKY



PACIFIC JOURNAL OF MATHEMATICS
Vol. 33, No. 1, 1970

ON SECONDARY CHARACTERISTIC CLASSES IN
COBORDISM THEORY

WEI-LUNG TING

This paper introduces into cobordism theory a new notion
borrowed from ordinary cohomology theory. Specifically, let
ξ be a U(n)-hundle over the CW-complex X. Let E and Eo

be the total spaces of the associated bundles whose fibers
are respectively the unit disc E2n c Cn and the unit sphere
g2n-i c QnΛ i>n e c i a s s i fy i n g m a p for ξ gives rise to an element
Uξ e Ω2u(E,Eo). One defines the Thorn isomorphism φ: Ωu(X) -»
Ωq

σ

+2n(E, Eo) by φ{%) = (p*x)Ut: and Euler class, e(f) of ξ, by e(f) =
p*-ij*(Uξ). For each a = (au a2, - - •), let <?/«(<?) e i^ 'CX) be
the Conner-Floyd Chern class of ξ, and S«: i2&(X, Γ) ->
i2?,+2|α|(X, Γ) be the operation defined by Novikov. Then one
has the relation, Sβ(e(f)) = c/«(f) e(f). Now if f is a bundle
such that e(£) = 0, then one can define a secondary character-
istic class

Σa(ξ) e ΩΪ(X) mod (Sa - cfa(ξ)MX)

by using the above relation. The object of this paper is to
study some of the properties of such secondary characteristic
classes.

Secondary characteristic classes adapt particularly to the study of
embedding and immersion problems. Massey and Peterson and Stein
developed secondary characteristic classes in ordinary cohomology
theory [4] [7] [8], and Lazarov has studied secondary characteristic
classes in ^-theory [3]. We hope the secondary characteristic classes
given here, and the operations on cobordism, defined by Novikov, will
have some applications on embedding and immersion problems.

The organization of the papers is as follows. In §1 we collect
some results on cobordism theory and give the definition of secondary
characteristic classes of cobordism theory. In §2 we give an example
and carry out some computations of these characteristic classes.

1* Definition of secondary characteristic classes* Let ξ be a
[/(w)-bundle over the CW-complex X. Let E and EQ be the total
spaces of the associated bundles whose fibres are respectively the unit
disc E2n c Cn and the unit sphere S2n~ι c C\ Then the Thorn complex
is the quotient space E/Eo. In particular, if we take ξ to be the
universal ί7(w)-bundle over BU{ri), then the resulting Thorn complex
M(ξ) is written MU(n). The sequence of spaces

249
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(MU(0), Af 17(1), , MU(n), •)

is a spectrum. Associated with this spectrum we have a cohomology
functor, the groups of this cohomology functor are written Ωιr(X, Y)
and called complex cobordism groups. We know that £?£(.) is a mul-
tiplicative cohomology theory and Ω^P), where P is a point, is a
polynomial ring Z[x19 x2f , xi9 •] where Xι e Ωΰ2i(P).

Next for each Z7(w)-bundle ξ over X the classifying map for ξ
induces a map

7: M{ξ) > MU(n) .

The map 7 represents an element Uξ e Ω2ΰ(E, Eo). We define the Thorn
isomorphism

φ: Ωl(X) > Ωh+**(E, Eo)

by φ(x) = (p*x)U€.
Now we need the following known theorems:

THEOREM 1 (Conner-Floyd) [1]. To each ξ over X and each
a = (a19 a2, ••) we can assign classes cfa(ξ) e Ωtya](X), called the
Conner-Floyd classes, with the following properties:

( i ) c/0(f) = l ;

(ii) cfa(g*ξ) = g*cfa(ξ);
(iii) Whitney sum formula cfa{ξ@η) = Σiβ+r=a(ofβξ)(cfrη);
(iv) Let ξ be a U(l)-bundle over X, classified by a map X >

/
BU(1), and let the composite X > BU(1) > MU(1) represent the
element w e Ω\j(X). Then cf^ξ) = w.

THEOREM 2 (Novikov) [I]. For each a = (a19a29 •••) there exists
an operation

Sa: ΩUX, Y) >Ωγ^(X, Y)

with the following properties:

( i ) So = l;
(ii) Saf*=f*Sa;
(iii) Sa is stable: SJ = δSa;
(iv) Cartan formula

Sa(xy) = Σ (Sβx)(Sτy);
β+ΐ=a

(vi) If we Map (X, ikf*7(l)) cΩl(X) then Sm(w) = wk+1, and

Sa(w) = 0ifaΦ(k);

(vii) Suppose that ξ is an U(n)-bundle over X then we have
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Cfa(ξ) = tp-'

where φ is the Thorn isomorphism for i2*.

DEFINITION 3. The Euler class of a U(n)-bundle ζ over X; de-
noted e(ζ), is p * " 1 i * ( ^ ) , where j * : Ωy(E19 Eo) > Ω\j(E) is induced
by the inclusion j : E > (E, Eo), and the isomorphism p*: Ω\j(X)

Ω\j{E) is induced by the projection p: E > X.

The following propositions are not difficult to prove:

PROPOSITION 4. If ξ is a trivial, then e(ξ) = 0.

PROPOSITION 5. For the Euler class, the relation

holds.

PROPOSITION 6. If a U(n)-bundle has an nonzero cross section,
then e(ξ) = 0.

From Theorem 2 we have cfa(ζ) = φ~ιSaφ(l) so that

Therefore we have Sae(ξ) = cfa(ξ)e(ζ).
Now let ξ be a bundle such that e(ξ) = 0, then the long exact

sequence for (E, Eo) breaks up into short exact sequences.

0 > ΩUX) > ΩUE0) — ΩT(E, Eo) > 0. Let aζ e Ωf~\EQ)
such that d(aζ) — Uξ. Then every element in Ω\j{E0) can be written
uniquely as xaζ + y where x e Ωir{2n~l)(X) and y e Ω\j{X). In particular,
write Sa(a) — xaζ + y. Then we apply δ and find that x — cfa(ξ). If
α1 is another element with (α1) = Uξ, then Sα(αx) = cf^a1 + y\ Then
y — yι£ (Sa = cfa{ξ))Ω2u~\X). Thus we can define a natural trans-
formation Σa, from [/"(^-bundle whose β(f)-class vanishes, to a natural
quotient of β#. If ξ is a such bundle Σa(ζ) takes values in Ω$(X)
mod (Sa — cfa(ξ))Ωu(X) and is the coset of y.

The following property can be easily proved:

PROPOSITION 7. // ξ has a nonzero cross section then Σa(ξ) = 0.

2 Example. Consider U(n + 1) as a principal U(n)-hundle over
S2n+1 for n > 1. Let £ be the associated complex vector bundle. Then
the sphere bundle is the complex Stiefel manifold U(n + 1)/U(n — 1).
Since Ωψ{S2n+ι) = 0, then Σa(ξ) is defined.
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Let tn be the Thorn space of S2n+1 with respect to ξ, we have
the short exact sequence

0 > ΩlΓ'iS2^1) > Ωln~\U(n + 1)/U(n ~ 1)) > Ωp(tn) > 0 .

Since H*(U(n + 1)/U(n — 1)) = Λ[72n-i> Ύ2n+1] be the exterior algebra
generated by 72Λ_i and γ2%+1 of dimensions 2n — 1, 2n + 1 respectively.
Therefore by [2] we have Ω*(U(n + 1)/U(n - l))Λ[72-i, 72n+1] (8) * W )
Let 7 2 n - ι e β£(EΓ(n + 1)/C7(n - 1)), %n+ι e Ω*{U(n + 1)/U(n - 1)) such

that μz(%n-i) = 72«-i, μ»{Ί2n+i) = 72Λ+i, where ^ β : β j > £Γ*( , Z) is the
map defined by the Thorn class (see [2] for definition), the group
Ωf-\U{n + 1)1 U{n - 1)) is Z + Z with generators τ 2 n - 1 and %,,+JCP1]
where [ C P ^ e β ^ P ) is a generator of β£(P). The group Ω2un~\S2n+ι)
is infinite cyclic with generator 7^+ifCP1], and so δ(72w-1) = ± Ϊ7e. We
know that S(1)72%_i = cfarfzn-i + ίnWi where ±67 2 % + 1 represents Σω(ξ).
Since Ωu(U(n + 1)/U(n — 1)) injects into Ωu{U(n + 1)), we can compute
it in Ωu(U(n + 1)). Now by using the notation of [9, p. 40] we have
the monomorphism

μ*: Ω*(U(n + 1)) >ΩUQ»+i x W )

By induction, we can determine Sω if we know Sω in QΛ+1 and its

behavior under cross products. By [9] we have Qn+ι = SCPnVS1 and

since Sω commutes with the suspension map

so we need only know S(1) in Ωl{CPn). By [2, p . 52] we know t h a t

Ωi(CPn) is a free £?£(P)-module with basis 1, wn, •• , (w Λ ) n where

wn e Map [CPn, MU(1)] c Ωl(CPn). Moreover, the inclusion

i: CPn~1(zCPn

has ί*wn = wn_!. By Theorem 2 we have S{1)(wn)
j = j(wn)

j+\ hence
S ( 1 ) s (^) i - sSω(wny = sj(wny

+1 = js(wn)
j+1, here s(wj% s(wΛ) i+1 in

Ω*(SCPn) are the images of ( w j \ (^u) ί + 1 under the suspension map s
respectively. From above data and an argument, similar to [9, p. 53],
we obtain SUDY^-! = (n — l)72w+i> hence cfω = 0 and δ = w — 1. Now
we compute (S(1) - c/(1)) fl2

EΓ

n-1(iSan+1) = S^Ωf-'iS2^1), which is generated
by Sω(%n+ί[CP1]). By [5] we have SM^ICP1]) = 2%n+1. Therefore
Σω(ξ) ^ O i f π - 1 ^ 0 mod (2).
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CONTINUOUS COMPLEMENTORS ON J5*-ALGEBRAS

PAK-KEN WONG

This paper is concerned with continuous and uniformly con-
tinuous complementors on a i?*-algebra. Let A be a i?*-algebra
with a complementor p and Ep the set of all p-projections of
A. We show that if A has no minimal left ideals of dimen-
sion less than three, then p is uniformly continuous if and only
if Ep is a closed and bounded subset of A. We also give a
characterization of the boundedness of Ev.

Let A be a complex Banach algebra and let Lr be the set of all
closed right ideals of A. Following [4], we shall say that A is a right
complemented Banach algebra if there exists a mapping p: R-+Rp of
Lr into itself having the following properties:

(Cl)

<C2)

<C3)

<C4)

-Rn
R +

if R, c R2,

R" =
Λ» =

:ψ =
then

(0)

A

Rξa

(Re
(Re

(Re

R? (R,

Lr);

Lr);

Lr);

i, Rz 6 L r)

The mapping p is called a right complementor on A. In this paper
a complemented Banach algebra will always mean a right complemented
Banach algebra. We also use p(R) for Rp.

For any set S in a Banach algebra Ay let St and Sr denote the
left and right annihilators of S in A, respectively. Then A is called
an annihilator algebra if, for every closed left ideal / and for every
closed right ideal R, we have Ir = (0) if and only if I = A and Rι =
(0) if and only if R = A. If Irl = I and Rlr = R, then A is called a
dual algebra.

We say that a Banach algebra A has an approximate identity if
there exists a net {ea} in A such that | |βα | | ^ 1, for all a, and limα eax =
limα xea = x, for all xe A. Every i?*-algebra has an approximate
identity.

A minimal idempotent / in a complemented Banach algebra A is
called a p-projection if (fA)p = (1 — f)A. If A is a semi-simple an-
nihilator complemented Banach algebra, then every nonzero right ideal,
no matter whether closed or not (see [4; p. 653]), contains a p-projec-
tion. Let A be a complemented 5*-algebra with a complementor p.
Since, by [4; p. 655, Lemma 5], the socle of A is dense in A, A is
dual (see [3; p. 222, Th. 2.1]). Let E (resp. Ep) be the set of all
self-adjoint minimal idempotents (resp. p-projections) in A. Then, for
each e e E, there exists a unique P(e) e Ep such that P(e)A = eA. It

255
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can be shown that P is a one-to-one mapping of E onto Ep. We call
P the p-derived mapping of p. The complementor p is said to be con-
tinuous if P is continuous in the relative topologies of E and Ep induced
by the given norm on A (see [1; p. 463, Definition 3.7]).

Let A be a dual i?*-algebra. It has been shown in [1; p. 463,
Th. 3.6] that the mapping p: R—+ (Rι)* is a complementor on A(ReLr).
In this case Ev = E, P is the identity map, and therefore p is uniformly
continuous.

The concept "p is continuous" can be defined for any semi-simple
annihilator complemented Banach *-algebra in which xx* = 0 implies
x = 0. In fact, let A be such an algebra and p a given complementor
on A. By [2; p. 155, Th. 1], every maximal closed right ideal of A
is modular. Therefore [1, p. 462, Corollary 3.4] holds for A. Hence
the mapping P exists as in the case of J3*-algebra and so the concept
of continuity of p can be defined.

In this paper, all algebras and spaces under consideration are over
the complex field C.

2. Lemmas. In this section, unless otherwise stated, H will
denote a complex Hubert space and A = LC{H), the set of all com-
pact operators on H. There exist many complementors on A. If H
is infinite dimensional, then all complementors on A are continuous
([1; p. 471, Th. 6.8]). However if dimiϊ is finite, this is not true in
general as is shown in [1; p. 475]. If dimiί ^ 3, then every continu-
ous complementor on A is uniformly continuous (see [1; p. 471, Corol-
lary 6.6]).

If u and v are elements of ί f ,M0D will denote the operator on
H defined by the relation (u ® v)(h) = (h, v)u, for all heH.

LEMMA 1. Let A be any C*-subalgebra of bounded operators on H
and Ed A the set of all self-adjoint minimal idempotents. The E
is a closed subset of L(H), all bounded operators on H.

Proof. Let {en} c £ be a sequence converging to some ee A.
Clearly e2 = e and e* = e. In order that e e E, it suffices to show that
e(H) is one dimensional. Since (u 0 #)* — v £ξ) u and since each en is
a self-ad joint minimal idempotent, we can write en = unζ>§un, where
uneH and || un \\ = 1 (n = 1, 2, •)• Let v, w e H be such that e(v) Φ 0,
e(w) Φ 0. Since {(v, un)} is bounded, there exists a subsequence {v, uk)}
of {(v, un)} and a nonzero constant aeC such that (v, uk) —>a. Since

\\auk - e{v)\\ ^ \a - ( v , u k ) \ \\uk\\ + \\ek - e\\ \\v\\ ,

we have auk—+e(v). Similarly we can show t h a t there exist a sub-
sequence {ut} of {uk} and a nonzero constant beC such t h a t but —>e(w)..
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It follows now that be(v) = ae(w), which shows that e(H) is one dimen-
sional. This completes the proof.

LEMMA 2. Let H be finite dimensional, p a complementor on A
and Ep the set of all p-projections in A. If Ep is a closed and
bounded subset of A, then p is continuous.

Proof. Let ee E and let {en} be a sequence in E such that en —* e.
Write en = un 0 un, e = u 0 u, where un, ue H and \\un\\ = \\u\\ = 1
(n = 1, 2, •)• Since if is finite dimensional, there exists a subsequence
{uk} of {wΛ} such that uk—>uf for some u' e H; clearly \\u'\\ = 1 and
u' ® u' = u $ξ) u. Thus u = <m', where a = (w, %') and | α | = 1. Let
%£ = auk. Then eΛ = MJ. 0 uf

k. Let P be the p-derived mapping of p.
Since P(ek) is a minimal idempotent and since P(ek)A = e^A, we can
write P(βfc) = u'k 0 i/Λ, where vj. 6 i ϊ (fe = 1, 2, • ). Similarly P(e) =
M ® ? ; with veH. Since 2£p is bounded and since | | i 4 | | = 1, {v'k} is
bounded. Since ΐf is finite dimensional, there exists a subsequence
{v't} of K } such that v't-+v' for some v'eH. As 11 JP(ββ) 11 ̂  1, v' Φ 0.
Since P(βt) = % ί 0 v j — > % 0 # ' and since E'p is closed, it follows that
also u§§v'eEp. Then both u(g)v',u(ξs)veEp. However, by [1, p.
466, Lemma 5.1] for any ueH, there exists a unique such v. Thus
v — vr. Hence P(et) —> P(e). Therefore P is continuous and so is p.
This completes the proof.

3* Main theorem. Throughout this section A will be a i?*-
algebra with a complementor p. Then A is dual (see § 1). Let {It: te T)
be the family of all minimal closed two-sided ideals of A. Then, by
[3; p. 221, Lemma 2.3], A = (Σ* ̂ *)o> the 2?*(oo)-sum of / t. Since each
It is a simple dual B*-algebra, It = LC{Ht) for some Hubert space
£Γt(ί e T). It has been shown in [4; p. 652, Lemma 1] that p induces
a complementor pt on It1 which is given by pt(R) = p(i?) Π /« for all
closed right ideals R of It(te T).

Let E (resp. 2£t) be the set of all self-adjoint minimal idempotents
in A (resp. in It) and let Ep (resp. El) be the set of all ^-projections
in A (resp. in It). Clearly Et = E f] It and Eι

p = Ep f) It(t eT). It can
be shown t h a t , if u Φ v(u, ve ϊ 7 ) , then \\eu — ev\\ = 1, for all eueEu,
and ev e Ev. Since each β e E belongs to some Ity E = \Jt Et. Similarly,
if u Φ φ ^ e ϊ 1 ) , then \\fu - fv\\ = maximum (\\f \\, \\fv\\) ^ 1, for all
fu e Ep and fveE£; Ep = \JtEl. Thus p is continuous if and only if
pt is continuous for all teT (see [1; p . 464]).

THEOREM 3. Let A be a B*-algebra which has no minimal left
ideals of dimension less than three and p a complementor on A. Then
the following statements are equivalent:
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( i ) p is uniformly continuous.
(ii) There exists an involution *' on A for which Rp =

for every closed right ideal R of A (and hence there exists an equi-
valent norm || | |' on A which satisfies the B*-condition for *').

(iii) The set Ep of all p-projections in A is a closed and bounded
subset of A.

Proof, (i) —(ii). This is [1; p. 477, Th. 7.4].
(ii) => (iii). Suppose (ii) holds. Let El be the set of all p-projec-

tions in It(teT). By [1; p. 465, Corollary 4.4], each fteE} is self-
adjoint in *'. Hence \\ft\\' = 1. Since each El is the set of all self-
adjoint (in *') minimal idempotents in It1 by Lemma 1, El is closed in
|| | |'. It is now easy to show that Ep is closed and bounded in || | |.
This proves (iii).

(iii) => (i). Suppose (iii) holds. If Ht is finite dimensional, then
since It — LC(Ht), it follows from Lemma 2 that pt is continuous. If
Ht is infinite dimensional, then by [1; p. 471, Th. 6.8], pt is continu-
ous. Therefore each pt is continuous and so p is continuous. We
now show that p is uniformly continuous. For each te T, let Qt be
a ^-representing operator of Ht onto itself (see [1; p. 467, Definition
5.4]). By [1; p. 470, Th. 6.4], Qt is a continuous positive linear operator
with continuous inverse Qγι

m We may assume that | |QrΊI = h where
HQrMI denotes the operator bound of Qγι on Ht(t e T) (see [1; p. 472,
Corollary 6.10]). We claim that {||Qt||} is bounded above. On the con-
trary, we assume that there exists a sequence {Qn} c {Qt} such that
\\Qn2\\ ^ 5nf where QT denotes the square root of Qn (n = 1, 2, •••)•
Since | |Q"11| = 1, we can choose uneHn such that \\un\\ = 1 and
\\Qnun\\^2. Since | |QJ/ 2 | |^5w, we can choose vneHn such that
| |vn | | - 1, (un, vn) = 0 and \\Q\l*vn\\ ^ 5n. Let an = \\Qψvn\\~ι and hn =
anvn + un. Then

(K, QnK) - (un, Qnun) = ai(vn, Qnvn) + an(Qnun, vn)

+ an(vn, Qnun)

^l-2an\\Qnun\\

^ 1 - 4αn .

Since an ^ 1/5^, we have

(K, Qnhn) - (un, Qnun) ^ 1 - i i
on 5

Therefore

— ^ (K, QJιn) - (un, Qnun) = an(vn, Qnhn) + an(un, Qnvn)o
^ an\{vn, Qnhn)\ + 2an .
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Hence we get

Now let

f = K 0
(K, QΛn)

By the definition of Qn,fneEp. Since ||feΛ|| ^ | |wj | = 1 and since

(feΛ, Qnhn) = a\{vn, Qnvn) + an(Qnun, vn)

+ an(vn, Qnun) + (un, Qnun)

it follows from (#) that

II f /.. \ | | _ \(V», QnK)

" — (K,QnK) 5
Since ||v*|| = 1, ||/«|| > (w — 2)/5, contradicting the boundedness of Ep.
Therefore {||Qt||} and {HQr111} a r e bounded. By using the argument
in [1; p. 479], it is easy to show that p is uniformly continuous. This
completes the proof of the theorem.

Finally we give a characterization of the boundedness of Ep.
Let R be a closed right ideal of A and let PR be the projection

on R along Rp, i.e., PR(x + y) = x for all xeR,yeRp. Since Rp =
{# e A: PΛ(α0 = 0}, P^ is continuous. Now let {Jλ: XeΛ} be the set of
all minimal right ideals of A. Since A is dual, each / ; is automatically
closed. For every XeΛ, let Pλ be the projection on Jλ along

THEOREM 4. Lei A δβ α B*-algebra with a complementor p. Then
the following statements are equivalent:

( i ) The set Ep of all p-projections in A is a bounded subset of A.
(ii) {|Pλ\: λ e A) is bounded, where \Pλ\ denotes the operator

bounded of Pλ.
(iii) There exists a constant k such that

Λ H ^ + ^ H ^ I I ^ H ( i = 1 , 2 ) ,

for all Xj_ e Jλ, x2 e p{Jχ) (λ e Λ).

Proof, (i) ==> (ii). Suppose swp{\\f\\:feEp} ^ c, where c is a con-
stant. Let / be a minimal right ideal of A. Then there exists an
/ € Ep such that J = fA and Jp = (1 - f)A. Let xeA. Since
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Pλ\ < c. This proves (ii).
(ii) ==> (iii). Suppose t h a t sup {\Pχ\: XeΛ} <; k — 1, where A: is a

constant. Then, for all Xί e Jλ, x2 e p(Jλ) (XeΛ), we have

p J I <̂  (k — 1) \\x1 + a?2|| ^ k \\xj_ + a?2|| .

I t now follows from \\x2\\ — \\Xi\\ S \\Xi + #211 t h a t 11 #211 ^* & 11 #1 + #211 ••

(iii) => (i). Suppose (iii) holds. Let feEp and xeA. Since # =

(1 — f)x + fx, by (iii), fc | | x | | ^ | | /x | | . As a j?*-algebra, A has an

approximate identity {ea}. Since | | β α | | ^ 1, | | / β α | | ^ k\\ea\\ ^ k. I t now

follows from | | / β α | | ~-> | | / | | t h a t | | / | | ^ fc. This completes the proof of

the theorem.

I t is Professor B. J . Tomiuk who aroused my interest in this topic.

I wish to express my hearty thanks to him. I also wish to thank the

referee for discovering an error in my previous demonstration of

Theorem 3.
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ON A REGULAR SEMIGROUP IN WHICH
THE IDEMPOTENTS FORM A BAND

MIYUKI YAMADA

This paper is a continuation of a previous paper, in which
the structure of certain regular semigroups, called generalized
inverse semigroups, has been studied. A semigroup is called
strictly regular if it is regular and the set of all its idem-
potents is a subsemigroup. A generalized inverse semigroup
is strictly regular, but the converse is not true. Hence, the
class of generalized inverse semigroups is properly contained
in the class of strictly regular semigroups. The main purpose
of this paper is to establish some results which clarify the
structure of strictly regular semigroups. The concept of a
quasi-direct product of a band (that is, an idempotent semi-
group) and an inverse semigroup is introduced, and in parti-
cular it is proved that any semigroup is strictly regular if and
only if it is a quasi-direct product of a band and an inverse
semigroup.

A regular semigroup S (for the definition, see [1]) is called
strictly regular if the set E of idempotents of S is a subsemigroup
of S. If the set E of a regular semigroup S satisfies a (nontrivial)
permutation identity xLx2 xn — xπωxπ{2) x-u)i where π is a (non-
trivial) permutation of 1, 2, , n, then it can be proved (see [6]) that
I? is a subsemigroup of S (in fact, E is a normal band1) and hence S
is strictly regular. In this case, S is particularly called a generalized
inverse semigroup. Thus any generalized inverse semigroup is strictly-
regular, but the converse is not true. In the previous paper [6] the
author studied the structure of generalized inverse semigroups and
established the following theorem:

THEOREM. A semigroup is a generalized inverse semigroup if
and only if it is isomorphic to the quasi-direct product of a left
normal band, an inverse semigroup and a right normal band.

The main purpose of this paper is to establish a similar result for
the class of strictly regular semigroups. Any notation and terminology
should be referred to [1], [6], unless otherwise stated.

2* Greatest inverse semigroup decompositions* In this section,
we shall determine the greatest inverse semigroup decomposition of a
given strictly regular semigroup.

1 An idempotent semigroup T is called a band. If abed — acbd is satisfied for
any elements a, b, c, d of T, then T is said to be normal.
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Let R be a regular semigroup. Then for any aeR, there exists
x e R such that axa = a and xax = x. Such an element x is called an
inverse of a. An inverse of a is not necessarily unique.

Reilly and Scheiblich [4] has proved the following lemma:

LEMMA 1. ([4], Lemma 1.3.) Let e be an idempotent of a strictly
regular semigroup S. Then, every inverse of e is an idempotent.

According to a recent information, the following two lemmas have
been also obtained by a paper of T. E. Hall submitted to the Bull.
Australian Math. Soc, though the author did not see yet the paper.

LEMMA 2. Let S be a strictly regular semigroup, and E the band
{i.e., the idempotent semigroup) consisting of all idempotents of S.
Let e, f be elements of E such that efe — e and fef = /. Then, for
any a, ceS12, any inverse x of aec is also an inverse of afc.

Proof. By the assumption, we have (aec)x(aec) = aec, x(aec)x = xΫ

efe = e and fef = /. Let α*, c* be any inverses of a, c respectively.
(If a = 1 or c = 1, then we take 1 as 1*.) Since aecc*(cxa)a*aec =
aec, we have a*aecc*(cxa)a*aecc* = a*aecc*. Moreover, cxa{a*aecc*)cxa~
cxaecxa = cxa. Since a*a, cc* and e are all idempotents and since S is
strictly regular, the element α*αecc* is an idempotent. Since a*aecc* is
an inverse of cxa and is an idempotent, it follows from Lemma 1 that
cxa is also an idempotent. This means that cxa is an inverse of a*afcc*.
(In general, let E-^ ^ {Er: 7 e Γ}(Γ semilattice; Er rectangular band)
be the structure decomposition (for the definition, see [5] or [6]) of E.
Since efe = e, fef = f, there exists Er such that e,feEr. Hence for
any ξeEa and ηeEβ, we have ζeη, ξfη e Earβ. Therefore any idem-
potent τ which is an inverse of ζeη is also an inverse of ξfη.)

Hence we have

a*afcc*(cxa)a*afcc* — a*afcc*, a*afcxafcc* = a*afcc*

and accordingly

(2.1) (afc)x(afc) = afc .

Next, we shall consider about the element x(afc)x.

afc(x(afc)x)afc = afc (by (2.1))

and

2 S1 means the adjunction of an identity 1 to S if S has no identity. If 5 has
an identity, then S1 means S itself.
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(x(afc)x)afc(x(afc)x) = x(afc)x (by (2.1)) .

Therefore, x(afc)x is an inverse of afc. Accordingly, by using the
same method used to get the relation (2.1), we have

(2.2) (aec)(x(afc)x)(aec) — aec .

Hence, x(aec)x(afc)x(aec)x = x(aec)x. Since x is an inverse of aec, we
have

(2.3) x(afc)x = x .

Therefore, it follows from (2.1), (2.3) that x is an inverse of afc.

Let R be a regular semigroup. If a mapping φ:R—+R satisfies
the condition

(2.4) for any x e R, xφ{x)x = x and <p(x)xφ(x) = φ(x) ,

then φ is called an inverse operator in R. It is obvious that R has
at least one inverse operator. It is also easy to see that an inverse
operator in a regular semigroup R is unique if and only if R is an
inverse semigroup.

Now, let S be a regular semigroup. Let Ω be the set of all inverse
operators in S. We define a relation σ on S as follows:

(2.5) aσb if and only if {φ(cad): φ e Ω) = {φ(cbd): φeΩ}

for any elements c, d of S1. Then, σ is clearly an equivalence relation
on S.

Further, we have

LEMMA 3. If S is strictly regular, then σ is a congruence rela-
tion on S.

Proof. Let α, 6 be elements of S such that aσb. Let h be any
element of S, and c, d any elements of S1. Suppose that

xe {φ(c(ah)d): φeΩ} .

Then, x e {φ(ca(hd))ι φ e Ω). Since aσb,

xe {φ(cb(hd))ι φ eΩ) = {φ(c(bh)d): φeΩ} .

Hence {φ(c(ah)d): φeΩ} a{φ{c{bh)d): φeΩ}. We can also easily prove
the converse relation. Therefore, we have ahσbh. By a similar meth-
od, we can prove that haσhb. Hence, σ is a congruence relation on S.

LEMMA 4. If S is a strictly regular semigroup, then the factor
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semigroup S/σ of S mod σ is an inverse semigroup. Let E be the
band consisting of all idempotents of S, and E ~ Σ {^r: 7 e Γ}(Γ semi-
lattice; Er rectangular band) the structure decomposition of E.

Then,
(1) for any ee Er, the congruence class ( e S/σ) containing e is

Er, and
(2) the basic semilattice (i.e., the semilattice of idempotents) of

S/σ is E/σE = {Er:y e Γ}, where σE is the restriction of σ to E.

Proof. It is obvious that S/σ is regular. Let x denote the con-
gruence class ( e S/σ) containing x. If s e S/σ is an idempotent, then
sσs2. Hence an inverse s* of s is also an inverse of s2, and hence we
have s2 = (ss*s)(ss*s) = s(s*s2s*)s = ss*s = s. Thus, s is an idempotent.
It is clear that x is an idempotent if x itself is an idempotent. There-
fore, it follows that x e S/σ is an idempotent if and only if x itself is an
idempotent. Next for any e, feE, we shall show that eσf if and only
if efe = e and fef = f. Suppose at first that eσf. Then, {φ{e)\ φ e Ω} =
{φ(f):φeΩ}. Since ee {<p(e): φeΩ}, we have ee{φ(f): φeΩ). Hence
efe = e and fef = /. Conversely, let efe = e and fef = /. Then, eσf
follows from Lemma 2. Thus, eσf if and only if efe = e and fef = /.
This means that σ gives the structure decomposition of E and ac-
cordingly that E/σE is isomorphic to Γ. Since the set E/σE of idem-
potents of S/σ is commutative, S/σ is an inverse semigroup having
E/σE as its basic semilattice.

Let G be an inverse semigroup, and L the basic semilattice of G.
Let S be a strictly regular semigroup, and E the band consisting of
all idempotents of S. If there exists a homomorphism ζ of S onto G
such that U {f"1^): teL} — E and the structure decomposition of E
is E ~ Σί?""1^)- teL}, then we say that S is a regular extension of
E by G.

REMARK. According to Clifford and Preston [2], the above mention-
ed ζ is unique if it exists. Further, we have the following result:
Let (?!, G2 be inverse semigroups having Lly L2 as their basic semi-
lattices respectively. Let S be a strictly regular semigroup, and E
the band consisting of all idempotents of S. Let ξ19 ξ2 be homomor-
phisms of S onto G19 G2 respectively such that \J {ζτ\t): te LJ =
U {?Γ1^)- % £ £2} = -2/ and the structure decomposition of E is given as
each of {fr'OO: t e LJ and {frW: ^ e L2}(that is, # - Σ {ίΓW^e LJ
and £7 ̂  Σ {ίΓ1^): w e L2}). Then Gx ~ G2, L,. = L2, and ζ19 ξ2 induce
the same congruence relation on S.

THEOREM 1. Let S be a strictly regular semigroup, and E the
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band consisting of all idempotents of S. Then, S is a regular ex-
tension of E by an inverse semigroup.

Proof. Let σ be a congruence relation on S defined by (2.5).
Then, it is easy to see from Lemma 4 that S is a regular extension
of E by S/σ.

Now for σ defined by (2.5), we have the following theorem:

THEOREM 2. If S is a strictly regular semigroup, then σ defined
by (2.5) gives the greatest inverse semigroup decomposition of S.

Proof. Let δ be any congruence relation on S such that S/δ is
an inverse semigroup. Let a, ae S, denote the congruence class con-
taining a mod δ. Now, let x, y be elements of S such that xδy. Since
xδy, any inverse x* of x is also an inverse of y. Hence, xx*x = x,
x*xx* = χ*9 yx*y = y and x*yx* = x*. Therefore, each of x, y is an
inverse of x*. By the assumption, S/δ is an inverse semigroup and
hence an inverse of x* must be unique. Thus we have x = y, that
is, xδy.

3* Quasi-direct products* In the previous paper [6], the author
introduced the concept of quasi-direct products. We shall generalize
that concept in this section.

Let R be an inverse semigroup, and L the basic semilattice of R.
Let E be a band whose structure decomposition is E ~ ]Γ, {Ea: ae L}.
Define equivalence relations π19 π2 on E as follows:

(3.1) eπj if and only if ef = / and fe = e.

(3.2) eπ2f if and only if ef = e and fe=f.

For an element e e E, let e, e be the equivalence classes containing e

mod πly π2 respectively. Put E = {e: e e E}y E = {e: e e E}, Ea = {e: e e Ea)

and Ea - {e: e e Ea}, aeL. Then, clearly E = X {Ea: aeL] and E =

X {Ea: a e L}(where Σ means disjoint sum). Further, for any eeEa,

(e, e) is contained in the product set Ea x Ea of Ea and Ea. Conversely

for any (e, f) e Ea x Ea, there exists a unique element h of Ea such

that (h, h) = (e,f). Since R is an inverse semigroup, every element

ξ of R has a unique inverse. We shall denote it by ζ"1.
To each ordered pair (ξ, rj) of elements ζ, η of R, let correspond

a mapping ρ{ζ>v): (Eξζ-i x Eζ-iζ) x (Eηη-i x Eη-iη)-+Emξv)-i x E{ζη)-ιζv. If
the system {/0(ί,7): f, ^ei2} of these mappings /0(e,7) satisfies the follow-
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ing condition (3.3), then this system {piξ>v): ζ, ηe R) is called a set of
quasi-direct factors of E with respect to R:

Hereafter, we shall use the following notations.

means

and

« « «
P(ξ,w)°Rp{r]^){(e11f1), (e2, / 2 ) , (e 3,/ 3))

means

for elements e19 f, e2J f2, e8, / 3 such t h a t eι e Eζξ-i, f e Eξ-iξ, e2 e Eηη-ι>
f2 e Er-iv, e, G Evu-i and / 3 G EU-IV.

[ (1) If ί, 37 G L, then /^^((g;, Λ), (e2, /2)) - (e/*, 5 ) , where

β, / are elements of ϋ^, i ^ respectively such that e = e19

e=f19f=e2 and f = f2 .

(3.3) J ( 2 ) P(H,»)°LPu,y) — P{ζ>f]v)° RP{v,») f ° r a l l ξ, 7], V G R .

(3) For any ξeR, eeEξζ-i and feEζ~iζ, there exist

, G ̂ - i^ and & G .S^-i such that

P(ξ,ζ-U)°RPίζ-i,ζ)((e,f), (h, ft), (e,/)) = (e, /) .

The author does not know whether such a system {̂ (ί)3?): f, ^ G i?} always
exists or not for given R and E. However, we shall show later that
a set of quasi-direct factors of E with respect to R always exists if
E, R have some special types.

Now, suppose that {p{ζ,v): ζ, ηeR} is a set of quasi-direct factors

of E with respect to R. Let EX R={((e,f), f): e e Eζξ-hfe E$-iξ, ξ e R},
and define multiplication in E X R as follows:

(3.4) ((elf f), ζ )((β2, / 2 ) , 7j) = (p{ξfV)((e19 f), (ea, / 2)), ^ ) .

Then, E X R becomes a strictly regular semigroup which has R as
its homomorphic image and embeds E as the band of its idempotents.
It is easy to see from the definition of the multiplication in E X R
and (1) of (3.3) that E is embedded in E X R as the band of idem-
potents of E X R and R is a homomorphic image of E X R, while it fol-
lows from (2), (3) of (3.3) that E X R is a strictly regular semigroup.
Hereafter, we shall call E X R the quasi-direct product of E and R
determined by {pίς,η): ξ9ηeR}.
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EXAMPLES. I. Let R be a weakly C-inversive semigroup (see [6];
Ljapin [3] has called R a completely regular inverse semigroup), that
is a semigroup such that

(1) the idempotents of R form a semilattice L,
(2) there exists a subgroup R(ά) of R containing a for every

aeL, and the collection {R(a):aeL} of all R(a) satisfies (a) R =
^{R(a)\aeL}, and (b) R(β)R(y) a R(βy) for all β,jeL.

Of course, i? is an inverse semigroup and satisfies ζξ~ι = ζ~xξ and
(^(ί5?)"1 = (f^)" 1^) = ζζ~ιVV~ι f° r aU f > V e •#• Let £ be a band
having 2? ~ Σ {̂ «: ^ e ^} a s i^s structure decomposition. Now, define
a mapping /0(e,,,: (i?^-i x Eξζ-i) x ( i ^ - i x Eηη-ι)->Eξη{ζη)-ι x Eiξη)~iζrj

for every ordered pair (f, ̂ ) of elements of R as follows:

(3.5) P(ξ,v)((βi> fi)> (&2i fι))(= P(ξ,v)((βy ?), (/ ,/))) = (β/, e/) ,

where e, / are elements of Eζξ-i and Eηη-i respectively such that e =
βΊ> β = /i> / = ̂ 2 and / = /2. The existence of such elements e, / and
their uniqueness are easily verified.

Then the system {p{ς9η):ξ9 ηeR] satisfies the conditions (1), (2), (3)
of (3.3) and becomes a set of quasi-direct factors of E respect to R.
Hence, there exists the quasi-direct product E X R of E and R deter-
mined by {p(ς,η): f, ηeR}. That is,

fEχR = {((e,/), £):eeEu-i,feEs-ie,£eR}, and multi-

plication in E X R is given by

((£!> fi), y)((&2j fz)i ^ ) — (i°(5?,y)((βΊ>/i)> (̂ 2> Λ))? ^ )

where e, / are elements of E^-i and -27̂ -1 respectively

Wch that e = e19e = f19 f = e2 and / = /2 .

On the other hand, let I? X R (L) be the spined product (for the defini-
tion of spined products, see [5] or [6]) of E and R with respect to
L. Then E M R (L) = Σ iE<* x J2(α): α: e L} by the definition of spined
products. Define a mapping φ: £7 X R (L) —>E X R as follows: <£>(e, ξ) =
((e91), f), (e, ξ) e E M R (L). Then it is easy to see that φ is an iso-
morphism of E M R (L) onto E X R. Hence, in this case the quasi-
direct product E X R means the spined product E X R (L).

II. Let R be an inverse semigroup, and L the basic semilattice
of R. Let E be a normal band having the structure decomposition

E ~ Σ {-E«: ̂  G L}. Since £7 is a normal band, E and i? are a left
normal band and a right normal band respectively (see [6], [7]); hence
ef = ef for e, fe E and ef=ef for β, / e J?.
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Now, define a mapping ρ{ξ>v): (Eξξ-i x Eξ-iξ) x (Evv-i x Ev-ιv) —>

Eξη{ξη)-ι x E{ξv)-iζη for every ordered pair (f, 37) of elements ξ,η of R

as follows:

(3.6) Λ^)((£l, Λ), (e2, /2)) = (eA £&) ,

where h, g are any elements of E{ξv){ζV)-i and E{ξη)-i{ξv) respectively.

It was proved by [6] that eji and gf2 do not depend on the selec-

tion of h, g and hence piξ}V) is well-defined. It is also seen from [6]

that the system {piξ,v): ζ.ηeR) satisfies (1), (2), (3) of (3.3) and becomes

a set of quasi-direct factors of E with respect to R. Hence, we can

consider the quasi-direct product E X R of E and R determined by

{Pu,η):ζ, ηzR).
That is,

EχR = {{(e,f)ίv)ιeeEn-i,fεEy-ιyJveR}, and multi-

plication in E X R is defined by

2,/*), V) = (P(e,*>((eΊ,/i), (^,/2)), f?)

f?) - ((ejί, gf2), ζη) ,

where h, g are any elements of Eζv{ζv)-ι and E{ξη)-ιξη re-

spectively.

On the other hand, we can also consider the quasi-direct product

Q(E ® i? (g) J ; L) of j©, ^ and i? in the sense of [6]. Define a mapping

• e R. Then, it is easy to verify t h a t this φ is an isomorphism of

Q(E ® R® E; L) onto E X R.3 Hence, the concept of quasi-direct

products just introduced above is a generalization of the old concept

of quasi-direct products introduced by [6].

Now, let R be an inverse semigroup whose basic semilattίce is L.

Let E be a band having L as its s t ructure semilattice (for the defi-

nition of s t ructure semilattices, see [6]). Examples I and II show t h a t

there exists a quasi-direct product of E and R if, in particular, R is

a union of groups or E is a normal band. However, in case t h a t R

and E have no restriction we do not know whether there exists a

quasi-direct product of E and R or not. Therefore, we s ta te it as an

open problem:

3 Moreover, we have the following result: If R, E are the inverse semigroup and
the normal band given in II, then a quasi-direct product of E and R is uniquely

determined up to isomorphisms and is isomorphic to Q(E® R® E; L)(hence of course
to the above-mentioned E x R). A proof of this result will be given later elsewhere.
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PROBLEM. Let R be an inverse semigroup whose basic semilattice
is L. Let E be a band having L as its structure semilattice. Is
there a quasi-direct product of E and L? In case that a quasi-direct
product of E and L exists, is it unique?

4* A structure theorem* In this section, we shall show that
any strictly regular semigroup is isomorphic to a quasi-direct product
of a band and an inverse semigroup. More precisely, let S be a strict-
ly regular semigroup and E the band consisting of all idempotents of
S. Let σ be the congruence relation on S which gives the greatest
inverse semigroup decomposition of S. Then as was shown in Theo-
rem 1, S is a regular extension of E by S/σ. Further it will be shown
in this section that such a regular extension of E by S/σ which is
isomorphic to S can be obtained as a quasi-direct product of E and S/σ.

Let S be a strictly regular semigroup, and E the band consisting
of all idempotents of S. Let E ~ Σ {Ea: a e L}(L semilattice) be the
structure decomposition of E. Let σ be the congruence relation on S
which gives the greatest inverse semigroup decomposition of S. Put
S/σ = R. Let x denote the congruence class containing xe S mod σ.
As was shown in the § 2, E/σE (where σE is the restriction of σ to E)
is the basic semilattice of S/σ. Hence we can assume that E/σE = L.
Of course, in this case E/σE = {Ea: aeL} = {E-: eeE/σE}.4L

Now, we construct a set of quasi-direct factors p{~x,y) of 2? with

respect to R as follows: Let E = i?/^ and i£ = £y7Γ2, where πγ, π2

are the equivalence relations on E defined by (3.1) and (3.2) respec-

tively. Let E- = E-/πι and E-e/π2. For every ordered pair (x, y) of

elements x, y of R, define a mapping

pCxry): (£-._, x 4_,_) x (£.-_, x I - ; ) —> ^ , - χ x ^ - ^

by

(4.1) P(χ,y)((eΊ,fι), (e2,f2)) = ( M ( M )*, (UV)*UV) ,

where %, v are elements of S such that ^ = x, v = y, uu* = e19 u*u —

fu vv* = e2 and v*v = f2 (u*, v*, (uv)* are inverses of u, v, uv respec-
tively5). For an element x of a regular semigroup, hereafter we shall,
use the notation x* to denote an inverse of x. Hence, for example,
α* means any inverse of a.

The existence of u, v in (4.1) and their uniqueness are obvious

4 When we regard e as a subset of E, we denote it by Ee. Hence, Eτ = U7a if
and only if e = α, i.e., Ea3e.

5 For any two inverses %i, ̂ 2 of u, uui = uuz and uiu = ^2^. Hence, 'M-w* and u*w
do not depend on the selection of an inverse u* of u.
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from the following result:

LEMMA 5. For any elements x of R, e of ExΈ-i and f of EΈ-\Έ,

there exists a unique element u of S such that ΰ = x, uu* = e and

u*u — f. In fact, u = exf has these properties.

Proof. Let u = exf. Since x — xx*xx*x = (xx- 1 )^- 1 ^) — exf —

efx, we have # = ex/ = %. Now, we can take fx*e as an inverse of

u (see [4]). Hence, let u* = fx*e. Since e = xx~ι — xx* = ΐΰ6* = uu*,
both e and uu* are contained in i?;. Hence, e = eMi6*e = e(exf)(fx*e)e =
(exf)(fx*e) = m&*. That is, e = %w* Similarly, we obtain w*% = /.
Therefore, of course e = ^^* and / = u*u. Next, we shall prove that
such an element u is unique. Let v be any element of S such that

v — x, vv* — e and v*v = f. Since uu* = OT*, ̂ * U = /y*/y and it = v,
we have vv*uu* = u^*, 6̂>iί 6̂̂ '*/ ;̂ = u*u and t66rv. Since ucτi;, v*uv* — v*.
Hence,

^ = uu*u — (vv*uu*)u = vv*u(u*u) = vv*u(u*uv*v)

= vv*(uu*u)v*v = v(v*uv*)v = w*t; = v .

Consequently, w = v.

When we consider an element x of R as a subset of S», we shall
denote it by SΊ. Of course S^ = Sy if and only if x = y, i.e., xσy.

LEMMA 6. For xeR,

( 1 ) Sx = {exf: e e SxΈ-i( = Exx-ι), f e Sx-ix( = E-x-ix)},

( 2 ) I Sx I = I Exx-ι I I Ex-ιx |6, α^d

( 3 ) for e,e'e Ex~i and for f, f e EΈ-iΈ, exf = e'xf if and only if

e = e' and f = f .

Proof. Let exf be an element of {exf eeS^-iffeS^i ^}. Then

since exf = xx~ιxx~ιx = x, ex/ is an element of SΈ. Conversely let

y G SΈ, and put T/?/* = e' and τ/*τ/ = / ' . y — x implies y* is an inverse

of x. Hence y = T/T/*?/ = yy*%y*V = e'a?/'. Therefore, 7/ is contained

in the set {exf'.eeE^-^feE^-i^}. Thus (1) is satisfied. Since (2) is

obvious from (1) and (3), we next prove only the part (3). Suppose

that exf = e'xf, e, e' e E-x-i and /, / ' e Ex-iΈ. Then exf = e'xf = x.

As is seen from Lemma 5, these elements satisfy (exf)(exf)* = e,

(e'xf)(e'xf)* = e', \exf)*(exf) = f and (e'xf)* (e'xf) = f . Since exf =

e'xf, it follows from the above that e = e' and f = f . Conversely,

6 If A is a set, the notation | A | means the cardinality of A.
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suppose that e = ?, / = /', e, er e E^-i and /, / ' e EΈ-ιΈ. Then, we

have exf= x = β'a?/', (exf)(exf)* = e = P = ie'xf'){e'xff)* and

(exf)*(exf) =f = f' =

Hence by Lemma 5, two elements exf, e'xf9 must be the same.

COROLLARY. // R is finite, then | S | = Σ.e* I ^W-i II %-^ V

Proof. Obvious.

For every ordered pair (x, y) of elements x, y of R, anyway ρ(ΈtV)

is well-defined. Let Ω = {ριΈ,V): x,yeR} be the collection of all these
p{Έ,y}. Then, it is easy to see that Ω becomes a set of quasi-direct
factors of E with respect to R, that is, Ω satisfies the conditions (1),
(2), (3) of (3.3). We shall give a proof only for the condition (2) which
is the most complicated condition among the three.

We should prove

(2) of (3.3): p{ΊSf,τ)(pvf?,((g;, / i ) , ( β 2 , / 2 ) ) , ( e a , / 8 ) )

By Lemma 5, there exist unique u, v, w such that ΰ — x, uu* = e19

u*u = fly v — y, vv* = e2, v*v = /2, ^ = z, ww* = ei and w*w = /8.

Hence ρa,τ)((eu f), (β2,/2)) = (uv(uv)*, (uv)*uv), and hence ̂

Pίxy,z)(Pπc,y)((ei> fl), ($ /

= (uvw(uvw)*, (uvw)*uvw) .

On the other hand, p{y,z)((e2, f2), (e3, f3)) = (vw(vw)*, (vw)*vw). Hence
fe,P)((^A fc,?)((β2,/4, (e3,/3))) = ^(s,̂ )((β» /1), (vw{vw)*, (vw)*vw)) =
(uvw(uvw)*, {uvw)*uvw). Accordingly, (2) of (3.3) is satisfied. Since
fl is a set of quasi-direct factors of E with respect to R, we can
consider the quasi-direct product E X R of E and R determined by Ω.

Now,

(4.2) EXR = {((e,/), x): » ei2, βeE^-i, f eEv-i*}

and multiplication in £? X iϋ is of course given by

((e19 /i), ̂ )((e2, /2), ^) = (^(^((e^ /J), (e2,

As to the connection between these S and E X R, we have the
following theorem which is the main result of this paper:

THEOREM 3. Let S be a strictly regular semigroup, and E the
band consisting of all idempotents of S. Let R be the greatest inverse
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semigroup homomorphic image of S. Then, S is isomorphic to a
quasi-direct product of E and R.

Proof. Take the quasi-direct product EX R obtained by (4.2), and

consider the mapping φ\ S—+EXR defined by φ(x) = ((xx*,x*x), x), x e S.
It is obvious from Lemmas 5 and 6 that φ is one-to-one and onto*
Further, we have

<p(x)φ(y) = ((xx*, χ*χ), χ)((yy*, y*y), y)

= (Pcχ,y)((MΪ*f %*%), (yy*7 y*y))9

Hence, φ is an isomorphism.

Finally the author is indebted to Professor Naoki Kimura for
valuable discussions and for substantial help in the development of the
material of this paper.
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