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Let I be a compact interval of the real line and for each
t in I, let F'(t) denote a nonvoid subset of euclidean n-space
Er, Let %;(F) be the collection of all Lebesgue summable
functions % ; I — E* having the property that u(t)c F'(f) almost
everywhere on I, Following the lead of Kudo and Richter,
Aumann defines the integral of F over I by

SIF(t)dt -——{Slf(t)dt |fe %(FU}

and, in addition to other results, establishes a dominated
convergence theorem for such integrals, Hermes has pursued
Aumann’s line of thought to obtain results concerning some-
thing akin to a “derivative” for set valued functions,

It is certainly also valid (and for control theoretic appli-
cations essential) to define the trajectory integral of F to be
the set &7 (F) of all functions which vanish at the left end-
point of I and have derivatives in < (F), The purpose of
this paper is taken to be the study of the trajectory integrals
of nonvoid, compact set valued functions. A primary goal
is the extension of the results of Aumann to include the
trajectory integral. A secondary goal is the provision of an
intuitively meaningful definition of “derivative” for set valued
functions,

Whereas | F(t)dt is a subset of K", .S4(F') is a subset of a space
I
of functions on I to E~. Taking note of the relation

(1) S[O,”Fmdr = () | e FEFY, tel,

the validity of which is obvious when & (F') is nonvoid, it is clear
that the distinction between .&4(F') and g F(t)dr is essentially that
between “function” and “value of a func[toign”. In view of this dis-
tinction, one necessarily anticipates that a study of the trajectory
integral would, in some sense, subsume that of the integral defined
by Aumann." Concrete justification for this point of view already
exists in control theory [4].

Further motivation for the study of the trajectory integral arises
in connection with the existence theory of the generalized differential
equation

t The work of Kudo, Richter, Aumann and Hermes cited previously is to be
found in references [13], [18], [1] and [11] respectively.
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(2) d" € R(tr x)! x(to) = xo ’

in the case in which the set valued function satisfies, in particular,
a condition of measurability in its first argument. Here one anticipates
that a suitably formulated dominated convergence theorem for the
trajectory integral would provide the means for a constructive proof
of existence, along classical lines, thereby providing at same time a
method of approximation to solutions. This is a question of no little
importance inasmuch as the general existence theorem of Pli§ [17]
and Castaing [5] has been established by nonconstructive methods.

The goals of this paper are achieved in the following way. After
developing, in §1, the pertinent algebraic and topological properties
of the space 2" of nonvoid compact subsets of E”, in § 2 we establish
several fundamental structural properties of Lebesgue measurable
functions on E' to Q. The concept of Lebesgue measurability for
functions on E' to 2" is due to Pli§ [16] and is a natural generali-
zation of the concept of measurability of functions with range in E”.
As Hermes has pointed out [11], Aumann’s “Borel measurability”
implies measurability in the sense defined by Plis. Some of the
theorems of §2 have already been stated, without proof and in a
somewhat less general form, by Filippov [9]. The central result of
§ 2 is Theorem 2.3 which is the counterpart of the theorem for point
valued functions which asserts that almost every point in the domain
of a summable function is a Lebesgue point of the function. This
theorem plays an essential role in the proofs of two of the major
results of the paper: Theorems 3.1 and 5.1.

Theorems 3.1 and 3.2 are the principal results of interest in § 3.
In the former, conditions are stated—the chief one of which is
measurability of F—under which .$%(F') is a nonvoid compact subset
of each of two linear topological (function) spaces. One of these
compactness properties, together with Hermes’ refinement [12, Lemma
1.2] of Filippov’s “measurable selection” lemma [8], permits a short
proof of the dominated convergence theorem (Theorem 3.2) in a form
suited to the proof of the existence theorem (Theorem 4.1) for (2).
In §3 we also devote some attention to the relationship between
Aumann’s results and our own.

Finally, in §5, we define a derivative for an element of a certain
function space which, owing to its obvious relationship to Huygen’s
principle of wave propagation, we have styled “the Huygens deriva-
tive”. The principal result (Theorem 5.1) of this section asserts,
loosely speaking, that the Huygens derivative of the trajectory
integral of a measurable function F' is almost everywhere the convex
hull of F(f). As easy corollaries to this theorem we obtain generali-
zations of some of the results of Hermes [11] mentioned previously.
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1. Algebraic and topological preliminaries. In this paper we
shall need the following Banach spaces.

E": euclidean n-space, with the scalar product of a, be E*
denoted by aob and with norm denoted by ||z|| =
(o)™

= "(I): space of continuous functions on I to E", with

supremum norm <x> = max {||z(¢)|||tel};
N e "(I). space of absolutely continuous functions on I to E*,
vanishing at the left endpoint of I, with norm % =
NECIEE
M) space of Lebesgue summable functions on I to E*,
with norm (x) = S [l x(t) || dt.
In each instance, I denotes a nondegelnerate compact interval of E'.
Throughout this paper the symbol ¢ will be used to denote the null
set. We shall also need the following classes of subsets of E" and
& "(I):
o class of nonvoid, compact subsets of E";
I class of nonvoid, compact, convex subsets of E*;
o7 "(I): class of nonvoid, compact subsets of & "(I);
27 "(I). class of nonvoid, compact, convex subsets of &< "(I).

DEFINITION 1.1. Given a field, @, of scalars and a set, K, of
vectors, together with functions + : K x K— K and X : 0@ x K— K,
K is called a quasilinear space over @ if and only if all the axioms
for a linear space obtain except (i) the distributivity of x over scalar
addition and (ii) the existence of an inverse under .

DEFINITION 1.2. For ac k', A, Be 2",

A+B={a+blacA;beB},
aA = {aa|acA}.

The following result is easy to verify.

LEMMA 1.1. With the foregoing definition (Definition 1.2) of
addition and scalar multiplication, 2" and I'" are quasilinear spaces
over the real field.

DEFINITION 1.3. Let A,BeQ",Y,Zecsz"(I)andxec E",yec &z "(I);
then we may define:
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a(x, A) = min{||z — a|| |ac A}

By, Z) = min Ky — 2)|z€e Z}
0(B, A) = max {«a(z, 4) | x € B}

o(Y,Z) =max {8y, Z)|ye Y}
0(4, B) = max {0(4, B), p(B, A)}

oY, Z) =max {6(Y, Z), 6(Z, Y)}
v(A, p) = max {poo | o e A}

Al = p(4, {0})
A(A, B) = max {v(4, p) — v(B, p) | [|p|| = 1}
A, ={xecE" | ax, A) < 9}

A(A, B) = max {4(A, B), 4(B, A)}

S, p) ={ieE"|[|§—z]|=php=0.

LEmMMA 1.2. (1) {2, o}, {{'", o}, {&Z"(1), 0} and {2"™(I), o} are
metric spaces.

(i) If AeQ™(el™) then A,cQ(el™) for all » >0 and A, =
A + 5(0, ).

(iliy If A, BeI'™ then p(A, B) = 4(A, B) and

4(A, B) = max {|v(4, p) — v(B, p)|||Ip|l = 1} .
(iv) If A, B,Cel™ then p(A + B, A + C) = 5(B, C).

Proof. The proofs of (i), (ii) and (iii) are to be found in [4].
For (iv), we have, by virtue of (iii),

0(A+ B, A+ C)=max{¥(4 + B,p) —v(A+C,p)||pll =1}
= max {V(A, p) + ¥(B, p) — v(4, p)—V(Cy D) ] ”pH = 1}
= p(B, C).

Henceforth we shall use 2, ", 57"(I), .2¢""(I) to denote the metric
spaces obtained by virtue of Definition 1.8 and Lemma 1.2 (i) and in
the cases of 2", I'" we shall suppose that the algebraic structure of
Definition 1.2 has been imposed. For a point Aec 2" we shall denote
by A* the convex hull of A; it is well known that A*el™". More-
over, if pe E* and A, Be Q*(e ™) then nA and A + B are in 2" (in
'™ |6, V. 1.4].

LEmMMA 1.3. (i) If npeE' and A,BeQ" then p(nA,7nB) =
|710(4, B).

(ii) If A, B,CeQ" then p(B*, C*) < p(A + B, A + C) < (B, C).

(ifiy If A, B,C, De Q" then p(A+ B, C+ D)< p(A4, C) + (B, D).

Proof. The proof of (i) is trivial. Part (iii) is an easy con-
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sequence of (ii) and the “relaxed” triangle law [4, Lemma 1.1]. The
second inequality of (ii) follows readily from the definitions and only
the first inequality remains to be proved. By [6, V. 2.4]

p(A* + B*, A* + C*) = p((A + B)*, (A + C)")
and then by Lemma 1.2 (iv)
p(B*, C*) = p((A + B)*, (A + C)*) .

Now for D, Ee 2" we have D c F + S(0, v), where v = p(D, E); hence
D*c E* + S(0,v) or D*C(E*), by Lemma 1.2 (ii) from which we
conclude p(D*, E*) < p(D, E). Setting D= A + B, E=A + C, the
first inequality of (ii) follows from this result and the last formula
line.

COROLLARY 1.1. Let n,ve E', A, Be Q"; then

(1) [InAll =9Il Al

(ii) JJA]l =0 and ||A|| =0 iof and only if A = {0};
(iii) [|[A+ Bli=[[All +IIBl;

(iv) [[|A]l =Bl =04, B) = |lA]l + |Bl;

(v) PpMA,vA) = |n—7|llA].

Proof. (i) through (iv) follow easily from the definitions and
Lemma 1.3. For (v) we have from Lemma 1.3 (i), (ii)

p(nA, vA) = |1 — ”/lﬁ((l T3 - 7>A’ <,OZA/>A>

= —vIp(4,{0) =inp —v]I|All.

DEFINITION 1.4. (Kuratowski.) Let _~ denote a metric space and
let _#* denote the space of all nonvoid, compact subsets of _#
metrized by the Hausdorff metric, o (cf. Definition 1.3). For a
sequence {4;} c _~Z*, lim,,, A; is the set of all xe_~ having the
property that each neighborhood of x intersects all but a finite num-
ber of the A;, whereas lim;.. A4; is the set of all x € _# having the
property that each neighborhood of 2z intersects infinitely many A,.
If lim,... A; = lim;_.. A;, the common value will be denoted by lim,_.. 4,.

LEMMA 1.4. ([14, p. 248]) If {A)c . 2% and Ae_2%, with
]imi_,.x, [O(Ai’ A) = 0, the’n limi_)m Al - A-

LEMMA 1.5. Let {A}c _#Z* and let Ac _#* be a cluster point
(in the Hoausdorfl metric topology) of {A;}; then

limAd,c Aclim4;.

j—ca i—00
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Proof. Let {A;} satisfy lim,..po(4;, A) = 0. By [14, pp. 242-
243]

lim 4; clim 4;, clim 4;, c lim 4, ;

4—00 Koo k—oo i—00

but by Lemma 1.4, 4 = lim, .. 4,,.

COROLLARY 1.2. Let {A;}CI™ satisfy || Aill =N, for some a= 05
if A=1lim;..A; then Ael'™ and lim,;... p(4;, A) = 0.

Proof. By Blaschke’s Auswahlsatz, the set U={4 NS0, \) | Ae ™}
is a compact subset of ' so that {4} has a cluster point in U. By
hypothesis and Lemma 1.5, A is the only cluster point of {4} and
then Ae'". Again since U is compact, the assertion of the lemma
follows.

LEmMMA 1.6, Let {4} C Q" satisfy, for some x =0, ||A;l| £ N\ of
A=1mA; and A=+ ¢ then AcQ" and lim AF = A*e ™.

Proof. Since [14, pp. 242-243] A is closed, the fact that Ae Q"
follows easily from the hypotheses. We shall prove that

A* = (lim A)* Clim A7 clim A7 < (lim 4,)* = 4%,

the second inequality being trivial. For the proof of the first
inequality, let xe A*; by Carathéodory’s theorem [7, p. 85] there
exist w*e 4, k=1, ---,n + 1, such that x = 31+ a,x*,

Zakzlyalcgo!k:]-’"'177/+1'

Despite Lemma 1.1, it is trivial to establish that

(o), = ) + 50,7) = Sl + SO, 7] = Y afar), -

It is easy to see that there exists K =0, independent of k=1, ..., n--1,
such that {zt}, N A, = ¢ for all ¢ = K. Letting alc{z*}, N A; there
follows >iitaale{z}, for all 7 = K; but clearly 32 a,afe AF and
we conclude that xelim Af.

For the proof of the third inequality, let #elim A}; then by
[14, p. 243] there exists a subsequence {A}} and a sequence {,}
satisfying x, € A} and lim«, = . Now for each index %, there exist
vectors §{e A4;,,5 =1, -+, n + 1 and numbers &t >0, =1, ---, k + 1,
satisfying >}l at =1 and », = 3"l a%&]. Setting X, = (&, -« -, &)
and o, = (af, ---, ak,))”, the superscript denoting transpose, we may
write ¥, = X,«;. By virtue of the fact that || 4, || <\ for all £, it
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is clear that {X,} is contained in a compact subset of the cartesian
product (n + 1 factors) E™ x --- x E". Moreover, the compact set
Si={peE"|p"=0, =1, .--,n +1; #lpt =1} contains {a,).
Hence {X,} and {«,} have cluster points X, @ respectively with @e %,
and now there follows readily z = Xa. Writing X = (&, .., &**),
it is clear that £e¢ A, =1, ---, n, so that Te A* and the proof is

complete.
2. Lebesgue measurable functions on I to 2%

DEFINITION 2.1 (Pli§ [16].) A function F:I— Q" is measurable if
and only if the set E(F, D) = {tc I| F(t) N D # ¢} is Lebesgue measur-
able for each open set D E™.

Filippov [9] has stated without proof the following easily
established result.

LEMMA 2.1. Let <& be the class of all open balls in E™ having
positive rational radii and centers with rational coordinates; then a
function F:I— Q" is measurable if and only if the set E(F, D) is
measurable for every De <.

LEMMA 2.2. If P is a closed subset of I and F:P— Q" is
continuous then there exists @: I — Q™ having the following properties:

(i) @ s continuous on I;

(ii) @) = F(t) on P;

(iii) for tel, ||@@)|| = sup{|| F(o)|||ce P}

(iv) if the range of F is in I'", so is that of @.

Proof. Define @ on P by setting @(t) = F(t) there; without loss
of generality one many assume that P is properly contained in I and
that I is the smallest interval containing P. If (¢, ¢,) is one of the
at most countably many complementary intervals of P, define @ on

(t, t,) by

o0 = (L= e+ (=)o

1 0

For any points 7, 7, in [{, £,] there follows
0(2(7), (7o) = (8, — t)'O(T(F'(t) — F(L,), To(F(t) — F(t,)))

|T - Tol _
ﬁllff’(to F(t,) ||

IA

the last inequality being a consequence of Corollary 1.1(v). The



50 T. F. BRIDGLAND, JR.

availability of this estimate makes possible the proof that @ is
continuous on I by means of an argument like that of Natanson
[15, pp. 102-104].

LEMMA 2.8. (Plis [16].) If F:I— Q" 4s continuous it is
measurable.

Filippov [9] has stated the next theorem, without proof, again
for bounded functions.

THEOREM 2.1. If F,.I—Q", k=1,2,8, .-, are measurable and
if lim p(F(t), F(t)) = 0 almost everywhere (a.e.) on I, where F: I— 2",
then F' is measurable.

Proof. (After Natanson [15, Th. 2, p. 94].) Let a,r be fixed
and such S°%a, r) e =7, the class defined in Lemma 2.1, where the
superscript denotes interior. For positive integers m satisfying mr > 1
define

Tn = B, S, r —m™), k=1,2,3,---,
Zi =Tk n=1,23"".
2n

We shall prove that
(3) EF, Sa, ) = U Z» .

Certainly 7'F is measurable by hypothesis and Lemma 2.1; thus Z7
and the right member of (3) are measurable. Then by Lemma 2.1, (3)
implies the measurability of F.

Let ¢, € E(F, S'(a, r)); then F(t) N S%a, r) # ¢ and there exists an
integer m,, m > 2, such that F(t) N Sa, r — 2m;?) #= 6. Since
O(F(t,), Fiu(t,)) — 0, it follows that p(F'(t) N S(a, » — 2m;™), F(t,)) — 0.
Consequently there exists n, = n,(m, such that if k£ =mn, then
Fy(t) N Sa, r — m;") # ¢. Hence t,e Ty for k= mn, which implies
t,e Zy and then of course t,e U, . Zn.

Now let ¢ € U.,» Z;; then there exist n, m, such that ¢, Z..
Hence t,e Ty, for k = n,; i.e., Fi(t) N Sa,r —m;") # ¢ for k = n,.
Now since p(F(t,), F'(t,)) — 0 it follows that

O(F(t) N S(a, r — m;?), F(t,)) —0 .

This in turn implies that S(a, r — m;") N F(t,) # ¢ so that certainly
F(t)n S%a, r) # ¢. Thus t,e€ E(F, Sa, r)) and (3) follows.

The necessity of the condition of the next theorem (generalized
Lusin theorem) was established, for bounded, measurable F, by Pli§
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[16]. The entire theorem, again restricted to bounded functions, was
stated without proof by Filippov [9]. For a measurable set Bc I,
let p(B) denote its Lebesgue measure.

THEOREM 2.2. A function F:I— Q" is measurable if and only
of for each 17 > 0 there exists E,C I which is closed, p(l — E,) <7
and the restriction of F to K, is continuous.

Proof. (Necessity, using a device of Natanson [15, p. 10].) Let
T, = E(F, S™(0, k)), where k is a positive integer and the tilde denotes
complementation. Now () T, = ¢ for otherwise, if t,e N T\,

F(t) N S™(0, k) = ¢

for all k, contradicting the assumption that F({,) € 2*. Hence p(N T) =
0 and since T;C T; for ¢ > j it follows that lim y#(T,) = 0. Thus for
7 > 0 there exists k, such that p(T,) < 7/4; moreover, there exists
open T D T, such that

w(T*) < p(Ty) + 7/4 < 7/2 .
Defining F*: I— 2" by

F*(ty = F(t),tel — T*,
Fr(t) = {0}, te T,

the measurability of F* follows from that of F; in addition || F*(¢) || <
k, for all teI. Hence, by the aforementioned theorem of Pli§ [16],
there exists closed E} c I such that the restriction of F™* to Ej is
continuous and p(I — Ej}) < n/2. Consequently, the restriction of F'
to the set E, = (I — T*) N E} is continuous and F, is certainly closed.
Moreover,

ol — EB) = w(T* U — E) < (T + pd — Bp) <7,

and the argument is complete.

(Sufficiency.) For each 7 > 0, denote by ®@(o,7) the continuous
extension of F, from FE, to I, guaranteed by Lemma 2.2. Let
N =27", m=1,2,3, --+; then setting

S,=1-E,
it follows that x(S,) < 2™™. Define
M; = kLZJiSk; Q=NM.

Now M, D> M, > --- so that lim p(M;) = p(Q); but since p(M;) < >, 27F
there follows p(Q) = 0. Let t,el — @; then ¢, e U — M;) so that

i1
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toceI — M;, for some 4. But then t,elI— S, for all k=1, ie.,
o(F'(t,), D(t,, 1)) = 0 for all £ = 4, and this in turn implies

lim o(F(t,), @(to, 7)) = 0 .

By Lemma 2.3, @(-, 7,) is measurable for each k& so that by Theorem
2.1 and the result just obtained, F' is measurable.

COROLLARY 2.1. If F:I— Q" 1is continuous (measurable) then
the function F*:1—I" defined by F*(t) = (F(t))* is continuous
(measurable).

Proof. The assertion concerning continuity is immediate from
Lemma 1.3 (ii). Now suppose F' is measurable; by Theorem 2.2, for
n > 0 there exists closed E,cI such that p(I — E,) <7 and the
restriction of F to E, is continuous. But by Lemma 1.3 (ii), the
restriction of F'* to E, is continuous. Another application of Theorem
2.2 yields the measurability of F*.

The next two lemmas were originally stated for bounded functions;
an examination of their proofs (vide [12]) reveals, in the light of
Theorem 2.2, that this boundedness restriction is superfluous.

LEmMA 2.4. (Hermes-Filippov.) Let g: E™— E* be continuous
and let H:I— Q" be measurable. If r:I— E™ is measurable and
r(t) € g(H(t)) on I then there exists measurable v:I— E™ satisfying
v(t) € H(t) and r(t) = g(¥(t)) on I.

LEMMA 2.5. (Hermes.) Let R:I1— Q" be measurable and let
w: I— E" be measurable; them there exists measurable r:I1— E™
satisfying r(t) € B(t) and || w(t) — ()| = a(w(t), R(t)) on I.

The next lemma was originally stated by Hermes [11, Lemma
1.1] for bounded functions; again by virtue of Theorem 2.2, the
boundedness restriction is superfluous. A function F:I— Q" is
approximately continuous at te I if and only if there exists a measur-
able set Bc I for which ¢ is a point of density and such that the
restriction of F' to B is continuous at ¢.

LemMA 2.6, If F:1— Q" is measurable then F 1s approximately
continuous a.e. on I.

DEFINITION 2.2. (i) Let F:I— Q" if there exists a Lebesgue
summable function A: I— E' such that || F(¢)|| < h(t) on I then F is
integrably bounded.
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(ii) Let A be an index set and let F,:I— Q" for all ve 4; if
there exists a Lebesgue summable function h:I— E' such that
|| F.(t) || = h(t) for all tel and all vye A then {F,|ve A} is uniformly
integrably bounded.

The next lemma has an easy proof which will be omitted.

LEMMA 2.7. (i) If F:I— Q" is continuous it 1is integrably

bounded.
(ii) If F:I— Q" 1is integrably bounded then the function F*
defined in Corollary 2.1 has the same integrable bound as F.

DEFINITION 2.3. Let F:I— Q" be such that for each ¢el the
function o(F'(e), F(t)) is summable on I. A point te I for which

lim 7;~lg“”p(F(r), F(t)dr = 0
n—0 t

is called a Lebesgue point of F.

THEOREM 2.3. If F:I— Q" is measurable and integrably bounded
then almost all tel are Lebesgue points of F.

Proof. Theorem 2.2 and the continuity of o(c, o), together with
Lusin’s theorem for real valued functions, implies that o(F(c), F(t))
is measurable for each ¢el. Let h be an integrable bound for F}
without loss of generality one may suppose that #Z(¢) > 0 on I. By
Corollary 1.1 (iv), o(F(z), F(t)) < h(z) + h(t) for all z,tel. Hence
o(F(o), F(t)) is summable on I for each tel. Now by Lemma 2.6
and [15, Th. 5, p. 255] almost all points of I are, at once, points of
approximate continuity of F' and Lebesgue points of k. Let ¢ be
such a point and let B I be a measurable set for which ¢ is a point
of density and such that the restriction of F' to B is continuous at
t. For » >0, set

Bn) =1[t,t + 71N - B).

Then, given ¢ > 0, one may choose 7 = 7(¢, t) > 0 sufficiently small
that the following three conditions are satisfied:
(i) for e B,\(n), o(F(7), F(t)) < ¢/6;
(ii) (By(n)) < en/6h(t);
t+
(iif) S, "I h(e) — h(t) | de < 1e/3 .
By virtue of (i), (i), (iii) and Corollary 1.1 (iv) there follows



54 T. F. BRIDGLAND, JR.

W“ISIHP(F&), F(t))dr = 77“153 o, PE @), F®)dr + v“‘SBﬂ(v)p(F(z'), F(t))dr

<3+ [IFE |+ 1) e

1

<3+ 77| 710 — ho)| de + 2hOT RB0)
<€gB8+¢8+¢83=c¢.

Thus lim,_,, 7}“ISW(O(F(T), F(t))dr = 0, and a similar argument shows
t
that the left hand limit is also zero.

We close this section with the following important lemma on the
measurability of composite functions.

LEMMA 2.8. Let D be a monwvoid, open subset of E'* x E™ and
let R: E* x E*»— Q" satisfy:

(i) for each t im the projection of D on E*, R(t, o) is continu-
ous on the set D, = {xc E* | (¢, x) € D};

(ii) for each x in the projection of D on E™ and each compact
interval I E* for which I X {x} C D, R(o, x) is measurable on I;

(iii) for each compact C C D there exists a Lebesgue summable
function h,: E*— E*' such that || R(t, x)|| < h(t) on C.

If I is a compact interval in E' and S is a compact ball in E™
satisfying I x S D then for each continuous function x:I— S the
function R(e, 2(0)) is integrably bounded and measurable on I.

Proof. If the assertion of the lemma is true with “continuous”
replaced by “step” as the restriction on x: I— S then the validity of
the original statement, insofar as measurability is concerned, follows
by virtue of (i) and Theorem 2.1 since a continuous function x: I— S
may be uniformly approximated by step functions. Hence suppose
that for ¢, e S, k=1, ---, m, 2*: I— S is defined by

x*(t) = Cp, teIk: k=1, e, M,

where I=UI, I;NI,=¢ for j+#k and each I, is an interval.
Then for an open set K < E*, E(R(c, x*(c)), K) = U M;,

MJ:{teIJ|-R(tyc,)nK7& ¢}, ,7=1, cee, M.

But by (ii), each M; is measurable so that E(R(c, 2*(c)), K) is measur-
able. Integrable boundedness of R(o, #(c)) is an easy consequence of

(iii).

3. Trajectory integrals of measurable functions. In this
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section we set I = [0, 1] without loss of generality and suppose that
F:I— Q" is a given function. As in the introduction we denote by
Z(F) the set of all Lebesgue summable functions w:I— E" having
the property that u(t) € F(t) a.e. on I. Let .7~ on <°*(I) be defined by

(70t = | a@z, tel,

and define
) = T F(F) .

S (F) may be considered as a subset of any of a number of Banach
spaces but the ones we shall be primarily concerned with here are
z™(I) and 1" ().

Lemma 3.1. (i) If F:I— Q" 1is measurable and integrably
bounded then Z (F) +# ¢.
(ii) If F: I—1TI™ then 7 (F) is a convex subset of £ 7(I).

Proof. That there exists a measurable v:I— E" satisfying
y(t) € F(t) a.e. on I follows from Lemma 2.4 by taking g =0, » =0,
and H = F. The assertion of (i) then follows by the integrable
boundedness of F. The proof of (ii) is trivial.

THEOREM 3.1. If F:I— I'" is measurable and integrably bounded
then A4 (F)e 27 "(I); moreover, S (F) is a weakly compact subset of
N e (I).

Proof. From Lemma 3.1 and the linearity of .7~ follow the facts
that .&4(F) is nonvoid and convex; that .&%(F') is conditionally compact
follows readily from the integrable boundedness of F' together with
the Arzela-Ascoli theorem. The first assertion of the theorem will
be established if we show that S4(F') is closed in &"(I). To this end
let we F(F) and let {w,}C .S(F) satisfy lim (w,, — w> = 0. Now
W,(t) e F(t) a.e. on I so that with % denoting the integrable bound
on F' we obtain

Hw(t) — wt) || = [[w(t) — wa(t) [| + || w(t) — walt) ||

F [ walty) — wa(t) || < & + H:ik(r)df ‘

for ¢ > 0 and m sufficiently large. Thus w is absolutely continuous
on I and it is easy to see that there exists measurable UcC I, u(I— U) =
0, having the following properties:

(i) (¢) exists on U;

(ii) each te U is a Lebesgue point of F.
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The validity of (ii) is of course a consequence of Theorem 2.3. With
v being the function defined in Definition 1.8, by virtue of Theorem
2.2, the Lusin theorem for real valued functions and the continuity
of y(e,°) on I' x E™ [3, Lemma 1] there follows the fact that
Y(F'(o), p) is measurable for each pe E". By virtue of Lemma
1.2 (iii) and Corollary 1.1 (iv) there obtains |v(F(t), p)| < h(t) for all
(t, p) eI x E™ and thus v(F(c), p) is summable for pc E”. Moreover,
there exists measurable VI, (I — V) =0, such that for all
(t, p) e V x E™ and all m,

Wa(t)op = V(F (), D) -
Thus for all m, all pc £ and all ¢, ¢, ¢ 1,

[walt) = wat)]ep < | FE), piic ;

in particular for te U, » > 0, all m and all p such that ||p|| =1,

7 lwalt + 1) — wa)]ep < 77| UEE), p)dE
= w(F(), p) + 77| "o E), Foyz

the final inequality being a consequence of Lemma 1.2 (iii). For all
» > 0 such that ¢ + pe I, the convergence of w, to w implies that

77wt +7) — w®)] = im 77w, +7) — wa®)] .

This and the last formula line imply that for ||p|| =1, teU, >0
and t + nel,

t
t

7t + 1) = wlop < 9FO, p) + 7] 0EE), Fe)ds

Letting 7 — 0+ in this inequality yields, for ||p|| =1,
W(t)ep = V(F(2), p)

and in turn this implies [19, Th. 5.3] that @ (¢) € F(¢). Thus is S (F')
closed.

For the proof of the second assertion of the theorem, let x be a
weak limit point (i.e., a limit point relative to the weak topology in
N e (I)) of “(F). By [6, 1V. 13.31] there exists a sequence
{z,.} © F(F) which converges pointwise to « on I. But by the first
assertion of the theorem, there is a subsequence {x,,} which converges
in #*(I) to « so that necessarily e .S(F). Thus is .(F) weakly

closed. Now ”S q(T)dt “ < S h(z)dz for all ¢ € & (F') and all measurable
E E
E cI; hence by [6, IV. 8.11] and the absolute continuity of the set
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function g h(z)dr, Z(F') is weakly sequentially compact in &2*(I).
Since .7~ ig linear and continuous with respect to the metric topologies
in &ZrI) and ¥ vz ™(I), by [6, V. 8.15] S(F) is weakly sequentially
compact in 4z "(I). Now the weak compactness of S4(F) is a
consequence of [6, V. 6.1].

THEOREM 3.2. Let F,F,.I—I", k=1,2,3, ---, satisfy
lim o(F(¢t), F(t)) = 0

on I, if {F,} is uniformly integrably bounded and each F) is measur-
able then A (F,) and A (F) are in 27 "(I) and lim o( 4 (F}), S45(F)) =0.

Proof. That 4(F,) e 2 ") is a consequence of Theorem 3.1.
That F is measurable is implied by Theorem 2.1. Let & be a uniform
integrable bound for {F,} and let teI be fixed; by hypothesis and
Corollary 1.1 (iv) we find that, given ¢ > 0, there exists K = K (¢, t)
such that for k> K, ||F@)||<e+ ||Fu@®)|| <¢+ k(). Thus F is
integrably bounded by % and from Theorem 8.1 there follows
F(F) e o ™(I). Now there exists w, € .&(F) such that B(w,, SA(F'))=
d(FAF), SH(F)). Let q,e F(F,) be such that w, = .77q, and, by
Lemma 2.5, let u,e F(F') satisfy || u,(t) — q.(?)]|] = a(q.(t), F(t) <
B(F.(t), F(t) on I Then 5(A(Fy), S(F) = <wy — .7 u; but

<.~ 7y = (10 = wE@) | &= = | ataue), Fee)ds

and since «a(q,(t), F(t)) —0 on I and a(q.(t), F(t)) < 2h(t) on I it
follows from [6, III. 6.16] that lim <w, — .Zu,> = 0. Hence

lim 6((F), S(F)) = 0.

There also exists y, € S(F') such that B(y,, S5(F})) = (HAEF), FAF,)).
Let u,e & (F) satisfy y, = Zu, and, by Lemma 2.5, let g, e F/(F)
satisfy || wu(t) — qu(®) || = a(u,(t), F(t)) = p(F (1), Fi(t)) on I.  Then
G(AF), AF) = yr — T qip; but

W= 71 = | lu®) — 0@l dr = | (@), Fule)ds .

Arguing as in the preceding part of the proof we conclude
lim 6(A(F), SA(F,) =0

and the proof is complete.

DEFINITION 3.1. Let .o be a set of functions on I to E"; then
G(t; &) ={p(t) | pe S}, tel.
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LemMA 3.2. If either of the following conditions is satisfied
then for all tel, G(t; &¥)e ™

(i) Lezx);

(ii) & 1is a mnonvoid, convex, weakly compact subset of
A e ™(I).

Proof. (i) is an immediate consequence of [4, Th. 1.4]. For (ii)
we observe first of all that by [6, IV. 12.3] there is a unique nonvoid,
convex, weakly compact subset &# < &?(I) such that & = 7.7,
By virtue of [6, V. 6.1], & is weakly sequentially compact; from [6,
IV. 8.8] it then follows that F'is bounded. The function 7;: &< »(I)— E*
defined for each fixed tc I by

t
7 =\ a@ye

i3 linear and continuous with respect to the metric topologies in
ZuI), E™; hence by [6, V. 8.15] it is continuous with respect to the
weak topologies in these spaces. Consequently .7, is bounded, convex
and weakly compact, hence, by [6, V. 3.13], closed. We conclude
that G(t; &) = 7.9 e ™.

The next lemma generalizes a result due to Hermes [12, Th. 1.2].

LemmA 3.3, If F: I— Q" is measurable and integrably bounded
then G(t; SUF)) = G(t; AF*))el™ for all tel.

Proof. By Corollary 2.1, Lemma 2.7 (ii), Theorem 3.1 and Lemma
3.2, G(t; HAEF*)el™. Certainly G(t; SHF))  G(t; LUF*)) and the
remainder of the proof coincides with the second part of Hermes’
proof for [12, Th. 1.2].

Hermes [11] has observed that: if F: I — Q" 4s Borel measurable
[1] then it ts measurable. Our next result is the combined assertion
of Theorems 1 through 4 of [1] for Borel measurable, integrably
bounded F:I— Q. It is an immediate consequence of Lemma 3.3
and Hermes’ observation.

COROLLARY 8.1. If F:I-— 2" is Borel measurable and integrably
bounded then for each te I, G(t; SA(F))el™ .

Lemma 3.3 provides the instrument for establishing the following
corollaries to Theorem 3.2.

COROLLARY 3.2. Let F,F,:I— Q" k=1,23, -, satisfy
lim p(Fu(t), F(£)) = 0
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on I; if {F,} is uniformly integrably bounded and each F, is measur-
able then for each tel, G(t; S(F}) and G(t; SA(F)) are in '™ and

lim o(G(t; SA(FW), Gt SA(F)) =0,

uniformly on I.

Proof. By Corollary 2.1 and Lemma 2.7, each F; is measurable
and {F7} has the same uniform integrable bound as {F,}. By Theorem
2.1, F' is measurable and, by an argument like that used in Theorem
3.2, F is integrably bounded. Thus by Corollary 2.1 and Lemma 2.7,
F* is measurable and integrably bounded and, by hypothesis and
Lemma 1.3 (ii), lim o(Fy*(¢), F*(t)) =0. From Theorem 3.2 there
follows lim o(SA(F), S4(F*)) = 0 and this result together with [4,
Th. 1.5] implies

lim o(G(t; FA(FY)), G(¢; SAF) =0,

uniformly for ¢ e I. The proof is completed by application of Lemma
3.3.

COROLLARY 3.3. Let F,:I— Q" k=1,2,38, .-, satisfy the follow-
ing conditions:

(1) {F.} 1s uniformly integrably bounded;

(ii) for each k, F, is Borel measurable;

(iii) F(t) = lim F,(t) extsts and is nonvoid for each tel. Then
F:I— Q" and, for each tel,

lim G(¢; S(F) = G(t; AF) el™ .

Proof. By virtue of (i), (iii) and Lemma 1.6, F:I— Q" and
lim F7(t) = F*(t). Lemma 2.7 implies that {F} has the same uniform
integrable bound as {F} so that Corollary 1.2 yields lim o(F'(¢), F**(t)) =
0. The observation of Hermes quoted above, together with (ii) and
Corollary 2.1, yields the measurability of F;*. Now Corollary 3.2 and
Lemma 1.4 permit the assertion

lim G(t; A(FY)) = G(t; AF*)el™;
hence Lemma 3.3 yields
(7) lim G(t; SA(F) = G(t; AF*) el™ .

But the assertion of [1, Th. 5] is that the left member of this
equation is equal to G(¢; S4(F")); the proof is complete.

Discussion. It is easy to see that in Corollary 3.3, the require-
ment that F, be nonvoid, compact valued for each % can be replaced
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by the requirement that it be nonvoid, closed valued for each k.
The corresponding replacement can be made in Corollary 3.1. It is
noteworthy that Corollary 3.1 bears out the anticipation, expressed in
the introduction that a study of $4(F') subsumes, in an obvious sense,
a study of Aumann’s integral. Corollary 3.3 shows that our expecta-
tions in this direction cannot be too high; indeed, under hypotheses
of this corollary, (7) appears to be the strongest result we can obtain
within the confines of the theory developed in this paper. The
utilization of [1, Th. 5] in this corollary could be supplanted by a
counterpart of Theorem 2.1 in which Hausdorff convergence is replaced
by Kuratowski convergence. However, we have not been successful
in obtaining such a counterpart of Theorem 2.1; moreover, in view of
the proof of Theorem 2.1 it does not appear likely that such a counter-
part is valid. It is also noteworthy that the lack of such a counter-
part for Theorem 2.1 prevents the inference from [1, Th. 5] alone
that G(t; SA(F)) + ¢ for some tcl even under the hypotheses of
Corollary 3.3.

The weak compactness of S4(F') in . wz""(I) may be shown to
follow directly from the hypotheses of Theorem 3.1; the device of
using the compactness of .S4(F') in & "(I) to establish weak compact-
ness of S4(F') was a matter of convenience in the proof of that
theorem. Taking this observation into account, it is not difficult to
see that Corollary 3.2 may be established independently by means of
an argument which depends only on weak compactness of .S4(F),
Lemma 3.2 (ii), Lemma 3.3 and Lemma 2.5. Thus Corollaries 3.1,
3.2 constitute a theory which is a direct counterpart of Aumann’s
theory, the major distinction between the two theories being that
between Hausdorff and Kuratowski convergence. The discussion of
the preceding paragraph indicates that whereas these theories are
supplementary, neither implies the other.

The proof of [12, Corollary 1.1] applies with trivial modification,
taking into account Lemma 3.3, to yield

LEMMA 3.4. Let F: I— Q" be measurable and integrably bounded,
and let y e & (F*); then for each n > 0 there exists z,€ A(F') satisfy-

ing <y — z,y <.

This lemma has the following immediate consequence.

COROLLARY 3.4. If F:I— Q" 1is measurable and integrably
bounded then S(F*) is the closure of SA(F') in = "(I).

REMARK 3.1. [12, Example 2.3.] shows that with the hypotheses
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of Corollary 3.4 .&4(F') need not be closed in &*(I); there thus appears
to be no possibility of generalizing Theorem 3.2 by requiring that
F, F, have values in Q~.

Let us denote by .&7; (F') the closed (in .#.o7z"(I)) convex hull
of Z4(F') and by S7%(F'), the weak closure of .S4(F) in A4 r& ™).

THEOREM 3.3. If F:I— Q" is measurable and integrably bounded
then

FIEF) = FIEF) = AFY) .

Proof. By means of an argument like that for the second asser-
tion of Theorem 3.1 it may be inferred that .S4(F) is weakly
sequentially compact. Now there follows from [6, V. 3.13, 3.14] and
Theorem 3.1,

) C FI(F) C AT .

But from these inclusions, Lemma 3.4 and [6, IV. 13.31], the theorem
follows.

REMARK 3.2. It is easy to see that S7}(F) = % ;(F'), where
&, *(F') is the closed convex hull of & (F).

Arguing again as in the proof of the second assertion of Theorem
3.1, it follows that if F: I — Q" is measurable and integrably bounded
and if S4(F') is closed in Z"(I) then .S4(F') is weakly closed in
N re™(I).

In view of this result, Theorem 3.3 yields

COROLLARY 3.5. If F:I— Q" 1is measurable and integrably
bounded then A (F)e 7)) only if AF) = F(F*).

The final result of this section provides a marked strengthening
of Theorem 3.1 and of the assertion of Remark 3.1.

THEOREM 3.4. Let F:I— Q" be measurable and integrably
bounded; then the following statements are equivalent:

(i) AF)ezz"1).

(ii) FAF) is a nonvoid, weakly compact subset of AN o7& ™(I).

(iii) F'(t) vs convex a.e. on I.

Proof. That (iii) implies both (i) and (ii) is an easy consequence
of Theorem 3.1. For the remainder of the proof, consider the func-
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tion o(F'*(c), F(c)). By virtue of Corollary 2.1, an argument similar
to that of the first part of the proof of Theorem 2.3 permits the
assertion that this function is measurable on I. Hence the set

M= {tellpF*@), F¥) >0} = {tel|pF*(), F() > 0}

is measurable. We need prove only that if (M) > 0 then S4(F') is
a proper subset of S4(F'*). Indeed, in this event it follows from
Corollary 3.5 that .S45(F') ¢ 2#*(I) and, from Theorem 3.3, that .S45(F)
is not weakly compact. Now we observe that minor modification of
Hermes’ proof [12] of Lemma 2.4 produces the following result: there
exists a measurable function w:I— E" satisfying w(t) e F'*(t) and
a(w(t), F(t)) = p(F*(t), F(t)) for all tel. A function w so determined
thus satisfies a(w(t), F(t)) > 0 on M. Hence, if p(M) > 0 it follows
that Z#;(F') is a proper subset of & (F'*) and this in turn implies that
S(F) is a proper subset of .4(F*) and the proof is complete.

4. An existence theorem.

THEOREM 4.1. Let D be a nonvoid open subset of E' x E™ and
let R: E* x E™— I satisfy conditions (i), (i), (iii) of Lemma 2.8 on
D; then for each (t, x,)€ D there exists a solution® of
(2) Ee R(tr x)y x(to) =Xy
and every solution of (2) may be continued to the boundary of D.

Proof. There is no loss of generality in assuming that (0, 0)e D
and proving the theorem in the case (¢, x,) = (0, 0). The proof is

based on that of Hartman [10, Th. 2.1, p. 10]. Let a,b >0 be
sufficiently small that C < D, where

C={tx)eE* X E*"|0=tZa;]lz] £0).
Define a = max {t e [0, a] ’ Sthc(f)df < b}; evidently «e(0,a]. Let
7€ (0, a] be fixed; then on [0, ] the function whose value is R(t, 0)

is measurable and integrably bounded. By Theorem 3.1 there exists
w, € Fo,n(R(, 0)) and we define a function ¥, on [0, n] by

Xv(t) = wl(t)’ te [07 77] .
There follows easily
(d0) Izl = hEde < b telo 71

2 J.e. an absolutely continuous function satisfying ()€ R({, #(f)) a.e. on an
interval containing fo in its relative interior and satisfying x(fo) = o.
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(4b) 12:68) = 2t [ = || h@)de ], £, e 0,71

If » < a, let ' = min {«, 29}; then by Lemma 2.8 the function whose
value is R(t, x,(t — 7)) is measurable and integrably bounded on
[7, 9']. Hence by Theorem 3.1 there exists w, e 4, 1 (R(e, %s(c — 9))).
We extend yx, to [7, #'] by defining

Xi(t) = () + we(b), ten, 9 ;

it is easy to see that y, satisfies (4) on [7, '], hence on [0, 7']. If
7' < a the foregoing process may be iterated at most a finite number
of steps to extend the definition of y, to [0, «] in such a way that
the following property obtains:

*) Yn € SHo,a1(R7(0)), where R7”: [0, a] — ' is defined by

R7(t) = R(t, 0), t[0, 1] ,
Rﬂ(t) = R(t, Xn(t - 77))) te (7]: a]

with the family {R”|7ne (0, «]} being uniformly integrably bounded
and each member of the family measurable on [0, «].

Now let {n,} be a monotone null sequence of points in [0, a];
then by property (*) and the Arzela-Ascoli theorem {x, } contains a
subsequence (assume it is the original) which converges uniformly on
[0, «] to a limit function, yx, which is easily shown to be absolutely
continuous (cf. the proof of Theorem 3.1). Equicontinuity of {¥,.}
implies

lim y,,, (¢ — 7.) = x(®), te[0, a] ,
so that by condition (i)
(5) lim p(R™(t), R(t, x(¢))) = 0, te[0, a] .
Thus from (*), (5) and Theorem 3.2 there follows
(6) lim 0 (Ao, c(B7™), So,a(B(, 2(<)))) = 0 .
Since y, — % and .S, ,(R(e, x(°))) is compact, (*) and (6) imply that
(7) X € Fo,a(B(o, %())) .
But (7) is equivalent to the assertion that y(0) = 0 and, a.e. on [0, «],
x() € (¢, ()

and the proof of existence is complete. The continuability assertion
follows in a straightforward way from [2, Th. 4].

COROLLARY 4.1. If in the statement of Theorem 4.1 conditions
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(1), (ii), (iii) of Lemma 2.8 are replaced by (iv) R is continuous on D,
then the conclusion of that theorem remains valid.

Proof. That (iv) implies (i) is obvious; that (iv) implies (ii) is a
consequence of Lemma 2.3. Finally, (iii) follows from (iv) by setting

h(t) = max {max {|| £||| ¢ e R(z, ®)}| (z, x) e C}, te E* .

REMARK 4.1. The demonstration that all solutions of (2) may be
continued over the interval [0, «], defined in the proof of Theorem
4.1, is exactly like the corresponding proof for ordinary differential
equations. The compactness of the solution family as a subset of
Z"(]0, «]) is then an easy consequence of Theorem 3.2; this again is
a parallel to the corresponding argument for ordinary differential
equations. Invoking [5, Th. 1] and Corollary 2.1, only slight modi-
fication of the proof of Theorem 4.1 is needed to establish the more
general Pli§-Castaing existence theorem [17], [5].

5. The Huygens derivative.
DEriNITION 5.1. Let .&2e 5#"(I); given tel, if there exists
S(t) e I'" such that
lirgv“‘p(G(t + ;. ), G(t; &) + 1nS(t)) =0
7=

then S(¢) is called a right hand (Huygens) derivative of & at t. If
there exists V(t) e I'* such that

lim 7~ o(G(t — n; &) + nV(t), G(t; &) =0
70+
the V(¢) is called a left hand (Huygens) derivative of & at t.

LEMMA 5.1. The one-sided Huygens derivatives of & € 27 "(I)
are unique.

Proof. We give the proof for right hand derivatives, the proof
for left hand derivatives being similar. Let R(t), S(f) be right hand
derivatives of & at ¢; then for » > 0 it follows from Lemma 1.3 and
the triangle law that

O(R(t), S(t)) = 77 p(mR(t), 7S(t)) = 17" 0(G(t; &) + nR(t),G(t; &) +nS(1))
= 90(G(t+n; &), G(t; &) + nR())
+ 770Gt + 75 &), G(t; &) + 9S(D)) .

By hypothesis, the limit, as 7 — 0+, of the rightmost member is
zero so that o(R(t), S(¢)) = 0.
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DEFINITION 5.2. When these exist, the right hand and left hand
derivatives at t of .&¥ ¢ H™(I) will be denoted by (D*.57)(t) and (D~.&°)(t)
respectively. If the one-sided derivatives of .&” at ¢ both exist and
are equal, their common value is called the Huygens derivative of &
at t and is denoted by (D.S7)(t).

LEMMA 5.2. If F:I—TI" is measurable and integrably bounded
then

VGt FF), D) = | 9FE), D)z, tel, pe B .

Proof. Let us condense notation by defining

Mty p) = v(F(t), p) .

Then the assertion of the lemma is that w(¢, p) = St)\,(‘f, p)dz, tel,
pe E". By an argument similar to that for Theorem 3.i it follows that
Mo, p) is summable for each p e E* so that Stx(r, p)dz is well defined.
If 0eG(t; &(F)) then there exists u* e %(FQ) such that o = S:u*(z')dz-;
hence

t t
gop = gu*(r)opdf < S Mz, p)dz, tel, pe E".

We infer that w(t, p) < Stk(r, p)dr. For the proof of the reverse
0

inequality let h be the integrable bound on F’; then for » >0 and
llpll =1, (h(t) + )¢ F(t) on I. For suppose the contrary; then

h(t) < W) + 7 = ([ (M(?) + PPl = k() ,

which is absurd. Let q(¢, , p) be the unique point in the boundary
of F'(t) nearest (h(t) + n)p; then by virtue of Lemma 2.5, q(o, 1, p)
is summable and

t t t
(™ e = a7, ez = ([ 7, Dac)ep < 0t p) -
This completes the proof.

THEOREM b.1. If F:I— Q" is measurable and integrably bounded
then a.e. on I, (D.A(F))(t) = F*(¢).

Proof. By virtue of Corollary 3.4, (D.S4(F'))(t) exists if and only
if (D.S(F*))(t) exists; moreover, the two have the same value. It is
thus sufficient to show that (D.S4(F*))(t) = F*(t) a.e. on I, we shall
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carry out the proof for D+, the proof for D~ being similar. For
7 >0 we find that with , A being as defined in the proof of Lemma
5.2,

P o(G(E + 1, AEFF)), G(t; FAF*) + nF*(t))
=77 max {| o + 1, p) — [w(t, p) + M@ D] |2l =1}
= max{l§i+”x(r, pyde — nt, p)‘ { Ipl| = 1} (by Lemma 5.2)

=y max {| | Ive p) = Mt wlaz | (121 =1}
<77 aE @, Fronde = 0] R ), Foyde
(by Lemma 1.3 (ii)).

The proof is completed by invoking Theorem 2.3.

COROLLARY 5.1. If Fp:I—Q" +=1,2, are measurable and
integrably bounded, a mecessary and sufficient condition that the
closures of SA(F)) and S4(F,) be equal is that F*(t) = F.*(t) a.e. on I.

Proof. (Sufficiency.) Evidently .4(F*) = .S4(F,*) and the asser-
tion follows from Corollary 3.4.

(Necessity.) By hypothesis, Corollary 3.4 and Theorem 5.1, a.e.
on I we have

Fr(t) = (DLFE)@) = (DAE)E) = FF (1) .

For ¢, t,e I, let us set
| Pz = {[ sz g e 7))
where F:[— Q. It is not difficult to verify that for » > 0
Gt + 73 SAF)) = Gt; SAF)) + SZMF(r)dr, tt+nel,
and
Gt — 7 SAF) + | FE)ds = Gt AN, 1, ¢ 7T,

Thus if F:I— Q" is measurable and integrably bounded there follow
from Lemma 3.3, Lemma 1.3 and the foregoing identities, both

TG + 73 SAF), Gt SF)) + 97+ 0) = o7 Fe)de, Fr0)

and
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770G — 73 SUFN) + 1P ®), 6t AP = (7| F@)de, Fr0)

when 7 > 0. Together with Theorem 5.1, these last formulae establish
the following generalization of [11, Lemmas 1.2, 1.3].

COROLLARY 5.2. If F:I— Q" 4s measurable and integrably
bounded then, a.e. on I,

lim p<n~lgi+”F(f)dz, F*(t)> ~0.

REMARK 5.1. Note that now Corollary 5.1 appears as a generali-
zation of [11, Th. 1.1}.

REFERENCES

1. R. J. Aumann, Integrals of set-valued functions, J. Math. Anal. Appl. 12 (1965),
1-12.

2. J. Bebernes, W. Fulks, G. H. Meisters, Differentiable paths and continuation of
solutions of differential equations, J. Diff. Equations 2 (1966), 102-106.

3. T. F. Bridgland, Jr., On the problem of approximate synthesis of optimal controls,
J. SIAM Control 5 (1967), 326-344.

4. , Contributions to the theory of gemeralized differential equations, Math.
Systems Theory, 3 (1969), 17-50.

5. C. Castaing, Sur les equations differenticlles multivoques, C. R. Acad. Sci. Paris
(A) 263 (1966), 63-66.

6. N. Dunford and J. T. Schwartz, Linear operators, part I. general theory, Inter-
science, New York, 1958.

7. H. G. Eggleston Convexity, Cambridge Univ. Press, Cambridge, 1958.

8. A. F. Filippov, On certain questions in the theory of optimal control, J. SIAM
Control (A) 1 (1962), 76-84.

9. ————, Differential equations with many-valued discontinuous right-hand side,
Soviet Math. 4 (1963), 941-945.

10. P. Hartman, Ordinary differential equations, J. Wiley & Sons, New York, 1964.
11. H. Hermes, Calculus of set valued functions and control, J. Math. Mech. 18
(1968), 47-60.

12. ———, The generalized differential equation %€ R(t, x), Advances in Math. (to
appear)

13. H. Kudo, Dependent experiments and sufficient statistics, Nat. Sci. Rept. Ochano-
mizu Univ., Tokyo 4 (1954), 151-163.

14. C. Kuratowski, Topologte I, Monografie Mat. Tom XX, Warsaw, 1948.

15. 1. P. Natanson, Theory of functions of a real variable, Vol. I, tr. L. F. Boron,
F. Ungar Publishing Co., New York, 1961.

16. A. PliS, Remark on measurable set-valued fumctions, Bull. Acad. Polon. Sci., Ser.
Sci., Math., Astr., Phys. 9 (1961), 857-859.

17. ———, Measurable oriemtor fields, Bull. Acad. Polon. Sci. Ser. Sci., Math.,
Astr., Phys. 13 (1965), 565-569.




68 T. F. BRIDGLAND, JR.

18. H. Richter, Verallgemeinerung eines in der Statistik benotigen Satzes der
Masstheorie, Math. Ann. 150 (1963), 85-90; 440-441.
19. F. A. Valentine, Convex sets, McGraw-Hill, New York, 1964.

Received January 3, 1969, and in revised form September 11, 1969. This research
was sponsored by the National Science Foundation under grant GP-8921.

DREXEL UNIVERSITY



PACIFIC JOURNAL OF MATHEMATICS

H. SAMELSON
Stanford University
Stanford, California 94305

RICHARD PIERCE

University of Washington
Seattle, Washington 98105

EDITORS

J. DUGUNDJI

Department of Mathematics
University of Southern California
Los Angeles, California 90007

RICHARD ARENS

University of California
Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH

B. H. NEUMANN

F. WoLr K. YosHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA

CALIFORNIA INSTITUTE OF TECHNOLOGY

UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA

NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON

OSAKA UNIVERSITY

UNIVERSITY OF SOUTHERN CALIFORNIA

STANFORD UNIVERSITY
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON

* * *
AMERICAN MATHEMATICAL SOCIETY
CHEVRON RESEARCH CORPORATION
TRW SYSTEMS
NAVAL WEAPONS CENTER

Printed in Japan by International Academic Printing Co., Ltd., Tokyo, Japan



Pacific Journal of Mathematics

Vol. 33, No. 1 March, 1970

Mir Maswood Ali, On some extremal simplexes.......................... 1
Silvio Aurora, On normed rings with monotone multiplication. ............ 15
Silvio Aurora, Normed fields which extend normed rings of integers. . ...... 21
John Kelly Beem, Indefinite Minkowski spaces........................... 29
T. F. Bridgland, Trajectory integrals of set valued functions ............... 43
Robert Jay Buck, A generalized Hausdor{f dimension for functions and

SCLS e e e 69
Vlastimil B. Dlab, A characterization of perfect rings .................... 79
Edward Richard Fadell, Some examples in fixed point theory .............. 89
Michael Benton Freeman, Tangential Cauchy-Riemann equations and

URIfOTI APPTOXTIMALION . . . oo ottt et ettt e 101
Barry J. Gardner, Torsion classes and pure subgroups .................... 109
Vinod B. Goyal, Bounds for the solution of a certain class of nonlinear

partial differential equations .................coiiiiiieeiinniinina.. 117
Fu Cheng Hsiang, On C, 1 summability factors of Fourier series at a given

POINE . oo 139
Lawrence Stanislaus Husch, Jr., Homotopy groups of PL-embedding

SPACES .« .« e e et e e e e e e e e 149
Daniel Ralph Lewis, Integration with respect to vector measures. .......... 157

Marion-Josephine Lim, & — 2 subspaces of Grassmann p
Stephen J. Pierce, Orthogonal groups of positive definite
functionals ............ ... . ..

Siddani Bhaskara Rao and Ayyagari Ramachandra Rao, E
triconnected graphs with prescribed degrees . . . . . ...
Ralph Tyrrell Rockafellar, On the maximal monotonicity

THAPPINGS .« o v v veee e ettt e
R. Shantaram, Convergence of a sequence of transformati
functions. Il ........... ... . ...
Julianne Souchek, Rings of analytic functions...........

Ted Joe Suffridge, The principle of subordination applied
several variables ............... ... ... ... 00

Wei-lung Ting, On secondary characteristic classes in co

Pak-Ken Wong, Continuous complementors on B*-algebr
Miyuki Yamada, On a regular semigroup in which the ide



	
	
	

