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A generalization of the Hausdorff dimension of sets is given
by restricting the lengths of the intervals in the covering
family., The dependence of this dimension on the choice of
covering family is studied by considering the set of points in
the countable unit cube I» whose coordinates are the values
of the dimensions of some set for a fixed, countable collection
of covering families, General conditions are given in order
that two families yield the same dimension on each set, and
that a covering family give the ordinary Hausdorff dimension.

In 1919, Hausdorff [3] introduced a notion of dimension for sub-
sets of the unit interval. For any set K, this dimension is H(E) =
sup {v: M (E) > 0}, where N(E) = inf {J(I(I;)): UIL; 2 E}; and it can
take any value between 0 and 1, being 1 in the case that F has posi-
tive Lebesgue outer measure. This notion of dimension can be genera-
lized in various directions and the approach taken here follows Bill-
ingsley [1]. In particular, consider the dimension H’(E) given by the
outer measure M(E) = inf {¥(m(C))): UC; 2 E & C;c _#}, where m
denotes Lebesgue measure and _# is any collection of m-measurable
sets containing sets of arbitrarily small measure. If _# contains the
intervals and their finite unions, then H'(E) assumes only the values
0 and 1, as m(E) = 0 or not. Thus for the study of sets of Lebesgue
measure zero, it appears that # cannot be too large with respect to
the family of all intervals. Accordingly, the dimension H'(E) is studi-
ed only where _# is any collection of intervals containing intervals
of arbitrarily small length and where _# is closed under translations,
i.e., where _# is completely determined by the length of its members.
Rather than use the set of these lengths to describe _Z it is more
convenient to use the set S of their negative logarithms, which is
unbounded in (0, «). The dimension then becomes a function S(E) of
the set E and the unbounded set S. In §2, dimension is defined for
a certain family % of nondecreasing functions, c.f. [2], [4], [5], which
greatly facilitates the study.

The principal results concern the dependence of S(Z) on the choice
of the covering set determined by S, and are obtained by considering
the set “Z(S, T') of points in the unit square whose coordinates are
respectively S(E) and T(E), for some set E. If 2 denotes the pro-
duct of the closed unit interval with itself countably many times,
Theorem 5 shows that the set of points in 2, whose coordinates are
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S.(E) for some E and fixed sequence of unbounded sets {S,}, is pre-
cisely the intersection of all cylinders in £ determined by the sets
A(S;, Si), 7 < k. A characterization of ZZ(S, T') directly in terms of
the relative gaps in the sets S and 7 is given by Theorem 6. The
set “#(S, T) is closed and star-shaped with respect to the diagonal
0<2=y=1 and Theorem 7 shows that these are characteristic pro-
perties. Theorem 9 gives an especially simple necessary and sufficient
condition on S and T for the equivalence: S(&) = T(Z) for all sets
E. The remaining theorems of §4 show that for this equivalence, an
unbounded set S may be replaced by an increasing sequence {s,} and
that lim s,,,/s, = 1 is a necessary and sufficient condition that {s,} give
the ordinary Hausdorff dimension for all sets E.

1. Preliminaries. Let & Dbe the collection of all real-valued
functions f, defined on (— o, ) with the property that z <y —
0= fly) — flx) £y —x. The following elementary properties of &
will be continually used without mention:

fe F —f+ ae Z a any constant ;

fes and 0 a<1l—afes;

fLrge s and 0=a,8sl,a+B=1—af+BgecF;
Vsi.e s for f,e &, if VY f.(x,) < = for some &, ;
ANf.e 7 for f,e Z if Nfu(x,) > —co for some .

Let S, T, ete., denote unbounded sets in (0, ) and let fe . &7 .
Define S(f) = liminf f(x)/x, over x— o, x e S. For fe . # S(f) satis-
fies: 0 < S(f) £ 1. The number S(f) is called the Hausdorff dimen-
sion of f with respect to S. The following properties are immediate
consequences of the definition:

S(ASf.) = AS(f.) over finite collections {f,} ;
S(f + a) = S(f);

S(af + Bx) = aS(f) + 8 ;

S(fV Bx)y=S(f)VEB.

LEMMA 1. Given ¢ >0, fe &, and unbounded sets S, :++,S,,
there is g€ # such that (i) g(0) = 0, g(x) = (Su(f) — e)x, for xS,
k=1,2,---,p; and (i) S(9) = S(f) for all unbounded S.

Proof. Choose x, > 0 large enough so that f(x) = (S.(f) — ¢)x for
x=w, x€8S,k=1,.--,p. Write g(x) = (f(x) Vv 0) + x,. Then ge. &
and ¢(0) = 0. Moreover, if 0 < a < x,, then g(x) = x = (S.(f) — &).
For =, and xeS,, g(x) = f(®) = (S«(f) — )z, which proves (i).
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Finally, from the construction of g(x) it is clear that S(g) = S(f) for
all unbounded S.

LEMMA 2. Let f,e &, n=1,2, .. and unbounded sets S,, S, -+
be given. There is fe F such that S,(f) = liminf S,(f,) as n— oo,
for each k=1,2,---,

Proof. By Lemma 1, it can be assumed that for each =, f,(0) =
0 and f.(x) = (Si(f.) — )z, for xe S,k <n and ¢,—0 as n — oo,
For each k and n choose z,,,¢ S, such that %,,— « as n— « and
Sul@n) = (Su(fo) + )%, Let C, = Vio, (%, — fu(®,,1)) and put g,(x) =
S.(x) vV (x — C,). Finally write f = Ag.. Since ¢,(0) = 0, it follows
that fe # Moreover, S.(g9,) = 1 for each &t and » implies S,(f) =
Si(Awzn 9,) for all m. If & <m, then Ag, = A(Si(f.) — €,)x over
n = m, so that S,(f) = liminf S,(f.) as »n— . On the other hand,
from the construction of C,, it follows that for k < n, f(z,,) =

(Si(fa) + €)%y Since x, , — oo as n— oo, Si(f) < liminf S,(f,) as

N —> o,

2. The Hausdorff dimension of sets. Let _# be the set of
all continuous, real-valued, nondecreasing functions y¢ defined on [0, o)
such that #(0) = 0 and g(x) =1, for ® = 1. Let _#,, be the subset
of _# consisting of those g in _# which are sub-additive, i.e.,
@+ y) < p(x) + p1(y). Finally, given a subset E of [0, 1], let _Z(E)
be the subset of _# consisting of all functions ¢ in _# supported
by E, i.e., (a,b) N E = ¢ implies p(a) = p(b). The set _~Z (E) may be
void. The operator 4, defined on _#Z by du(x) = sup (#(y + x) — #(y))
over all ¥ =0, is clearly a projection of _# onto _+#,. The proper-
ties of subadditive functions needed here are given by

LEMMA 3. If pe 7, then (i) p(te) = pm)t/(t + 1) for t,x = 0;
and (i) p(x) > 0 for > 0.

Proof. If t =0, (i) is obvious. Otherwise

) = ptat™) = (Gl + [¢7]) = A + 7)) ,

where [z] denotes the greatest integer <z. This shows (i). Part (i)
follows from (i), since p(¢) = t/(t + 1).

Corresponding to each p in _Z, there is f.€ & defined by f.(z) =
V(x — y — log 4p(e7)) over y = . The following estimates for f.(x)
will be needed:

LEMMA 4. For pe _#, —log Adp(e™™) = fu(x) < log 2 — log du(e™™).



72 ROBERT J. BUCK

Proof. The first inequality is trivial. By Lemma 3 4dp(e~®) <
2¢'~"4pu(e~?), which establishes the second inequality.

Using the correspondence p— f,, the Hausdorff dimension of func-
tions € _# can be defined by writing S(¢#) = S(f.), for each unbound-
ed set S. Given any set E < [0,1], the Hausdorff dimension of E
with respect to S is defined to be the number:

S(E) = sup {S(p): pe #(E)},
taking S(E£) = 0 in the case that _#(F) = @. The connection between
S(E) and the classical Hausdorff dimension of FE is given by

THEOREM 1. ([2],[4]) S(E) = sup {7: \s,(E) > 0}, where \g,,(E)=
inf{¥(I;): Ul; 2 E & —logl(l;)e S}.

Proof. Let 8 < S(E) and {I,} be a covering of E by intervals
such that —log I(I;})eS. By Lemmas 1 and 4, 2¢~% = dp(e=*) for
se S and some pe _#(K), so in particular

2(UL)) = 1/2 24p(Iy) = 1/2 .

It follows that A (#) > 0, and hence S(F) = sup {v: \g,, (&) > 0}. To
show the reverse inequality, g, (F) > 0 implies that

1(®@) = (s, ()" Ns, (£ 0 [0, 2])

belongs to _#Z(E). Moreover p(x + ¢~*) — p(x) < (Ng,(E))'e77* for all
%, so that by Lemma 3, f.(s)/s — (log (\s,,(E))/s = v for all se S; and
it follows that S(E) = sup {7: s, (&) > 0}.

The fact that Mg, is a sub-additive and monotone set function
implies
THEOREM 2. Given any countable collection {FE,} of subsets of

[0,1], S(UE,) = YVS(&,) for all unbounded sets S.

Let & be the collection of all sets £ of the form: E = {{: & =
Ye,é, ¢, =0 or 1} for some positive, nonincreasing sequence {&,} with
Y&, < 1. For such sets E, the function p;, defined on [0, o) by z(v) =
sup {Ze, 27 ¢ = Ye,,}, belongs to 2 (F) and is sub-additive.

THEOREM 3. If Ee <&, then S(E) = S(yz) for all unbounded
sets S.

Proof. Let ne _#(FE) and consider s€ S such that &,,, < e~ <
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£,. Since E is contained in the union of the 2**! intervals:
I(ely * ey sk+1) = [2?’:183‘53‘) Z?iie]EJ + Ek-ﬂ] )

and any two of these intervals intersect in at most one point, it fol-
lows that An(e™*) = 27% = dp(e=*)/2. By Lemma 4, fi(s) < log 4+f.(s)
for se S, so that S(\) = S(xz).

Since S(¢) = S(f,.), Theorem 3 shows that for Ee &, there is
fe & such that S(E) = S(f) for all S. The converse is also true.

THEOREM 4. For each fe &, there is E;c & such that S(f) =
S(E;) for all unbounded sets S.

Proof. If f is bounded, then S(f) = 0 and E, can be taken to
be void. Thus assume f(x) — ~ as x— o and without loss of genera-
lity, f(0) = 0. Select a positive, nonincreasing sequence &, satisfying
f(=log &) = klog 2. Such sequences exist since f is continuous non-
decreasing and tends to o« as x-— . Moreover, since f(x) — % is
nonincreasing, & < 1/2 and §&,., < &,/2, which implies Y&, < 1. Let
E = E; be the set {&:& = Ye,&,¢6, =0 or 1}, and let ¢ = pz. For
seS and &, S e <&, logpue®) = —log2 — f(s), so that f(s) =
—log 4 + f.(s) by Lemma 4. Also log p(e*) < log 2 — f(s), which shows
f(s) < log2 + f.(s). Since these inequalities hold for all se S, this

proves S(f) = S(E).

If 57 = {(as): for some E e &, g = S(E) for all S}, and if <2 =
{(Bs): for some fe &, Bs = S(f) for all S}, then Theorems 3 and 4
show 57 = .22 -. The situation for arbitrary subsets of [0, 1] is more
difficult and the results are restricted to countable collections {S,} of
unbounded sets.

For any pair of unbounded sets S and T, let &Z(S, T) = {(«, B):
a=S8(f),8=T(f) for some fe & }. From the properties of &% and
S(f) for fe. & listed in §1, it is clear that <#Z(S, T) is star-shaped
with respect to each point (a, a),0 < a < 1. Moreover, Lemma 2 im-
plies that .<2(S, T') is always closed. Let

Q={x);0=e, <1,r=1,2-.-}.

For each pair of natural numbers j, k¥ with 7 <k, let A, , be the cy-
linder in Q: 4;, = {(®,): (z;, %) € &(S;, Sp)}. Finally, let S2[{S,}] =
{(a)): for some E < [0,1], ), = Su(E), k=1,2,---}.

THEOREM 5. Given any countable collection of umbounded sets
{Sk}y %[{Sk}] = ﬂAM over _7 < k.

Proof. Suppose (a,)e SZ[{S;}]. Let j <k and E < [0,1] such
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that a; = Sy(&), a, = Su(&). If a; = a, then (a;, &) e Z(S;, S;) so
(a,)e A;,. Thus assume «; + «, and by symmetry, consider only the
case «; < «,. Then given any ¢ > 0, there is fe & such that

Su(E) —e < Si(f) = SWE) and S,(f) = S;(E).
The function g = fV S;(E)x belongs to .&# and
Si(g) = Si(E), S(E) — e < Su(g) = Su(E) .

Since #(8S;, S;) is closed, this shows («,) € 4;,, and hence SZ[{S,}] &
NA4;, over j <k. Now suppose (¢,)€ NA;,. Then for every pair
Jj <k, there is f;,c . with x; = S,;(f;,,) and x, = Si(f;.). For each
pair of natural numbers p, n, write

o = NFi:k=porj=p,k+j=p+n}.

By Lemma 2, for each p, there is g,€.%# such that S,(g,) = lim inf
Si(95,.) a8 m— oo, for each k = 1,2, -... Now write £ = UL, over
p=1,2---. By Theorems 2 and 4, for each k, Sy(E) = VS.(g,) =
lim, inf S,(g:,,) = ;. On the other hand, if p # k, then either g,, <
Sip OF Gpn = for for n = k, depending whether p <k or p >k. Thus
Si(E) = Su(gr) V V poer lim,, inf Si(9,..) < x,, for each k, which shows
(z,) e ZZ[{S:}].

In general, if the sequence {S,} contains more than two terms,
the set SZ°[{S;}] properly contains the set {(x;): for some fe & x, =
Sk(f)’ k= 1’ 2y "'}‘

3. The set ZZ(S,T). The results of §2 show that the set
SZ[{S;}] is determined by the sets <Z(S;, Si),s < k. This section
lists a few of the properties of .<Z(S, T'). The first of these is a
characterization of .<Z(S, T) solely in terms of the sets S and T.

For each z, let A(x, S, T') consist of all pairs («, 8) with 1 >a =
8 >0 and (B8/a, x(1—B)/1—a)NS=@. Let B(x,S, T) be the set
of all pairs (a, 8) with (8,a)ec A(x, T, S). Finally let &7 (S, T) =
limsup A(t, S, T) as t— oo, te T, and <Z (S, T) = limsup B(s, S, T') as
s— 0,5 8.

THEOREM 6. For every pair of unbounded sets S and T,
A8, T)=CL( (S, T)u =S, T)) .

Proof. Suppose (a, 8) e .7 (S, T). If a =p, then (a, B)e Z(S, T).
Thus assume 8 < «. Then for some unbounded subset 7, of T, the
intervals I, = (t8/a, t(1 — B)/(1 — @) do not intersect S for te T,. De-
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fine a function f in .&# by

fw) = BtV (@ — @1 -8y, if cel,tel,

oax, otherwise .

Then S(f) =« and f(t)/t =B for te T, and so T(f) < B. It follows
that 8S(f) =z aT(f) and (1 — B)(1 — S(f)) = 1 — &)1 — T(f)). Since
(S, T) is closed and star-shaped with respect to (0,0) and (1, 1) it
follows that Cl(7(S, T)) & <#(S, T). A similar argument shows
Cl(= @S, T)) < (S, T). On the other hand, let f belong to .# If
S(f) = T(f), then (S(f), T(f)), belongs to Cl(s7 (S, T)U <Z(S, T)).
Thus assume S(f) = T(f) and by symmetry in S and T, assume S(f) >
T(f). It suffices toshow that S(f)>a >8> T(f) implies (a, 8) € (S, T).
In this case, it can be assumed by Lemma 1, that f(s) > as for all
se S and that there is an unbounded subset T, of 7 on which f(¢)<
Bt. Since fe F f(s) = (s =) Vv 0) + f(t) for all pairs s and ¢t. If
te T, and s < ¢, this implies as < gt. If s = ¢, then as<<s —t + Gt.
These last two inequalities imply (¢t8/a, t(l — B)/(1 — ) NS = @ or
(o, B)e A(t, S, T') for each te T,. It follows that (a, B) e .7 (S, T).

As was noted before .ZZ(S, T') is always closed and star-shaped
with respect to all points (@, ®),0 < a < 1. These two properties
actually characterize the shape of .<Z(S, T') as is seen by

THEOREM 7. Let <2 be a closed set in the wnit square, 0 <
a, B <1, star-shaped with respect to (0,0) and (1,1). There are un-
bounded sets S and T such that & = Z2(S, T).

Proof. The theorem is obvious if .2Z is the diagonal 0 < a=8 <1,
since for S =T, (S, T) is this diagonal. Otherwise, there is a
sequence («,, 8.),0 < a,, B, <1,a, =+ B, which is everywhere dense
in &2 Select a sequence of intervals (a,, b,) such that a,— - as
n-— ,b, < a,, and

bn/an = (a;1 - 1)/(18;;1 - 1)1 if &, < 18%
b.ja, = (8, — Df(a;' — 1), if a, > 8, .

If «, < B, the interval (a,,bd,) is called an interval of type I. If
a, > ,, the interval (a,, b,) is said to be of type II. In each interval
of type I, let s, = a,8./a,, and in each interval of type II, let ¢, =
a,2,./58,. In either case the constructed point belongs to (a,,b,). Let
S consist of all the points a,, b, and the points s,. Let T consist
of all the points a,, b, and the points ¢,. Assume first that (a, 8) e .2
If « =8, then (a,B)e #(S, T). Thus suppose & == £ and by sym-
metry in S and T assume « > £. Select a sequence of intervals I, =
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(a,, b,) of type II, such that o, — « and B,— 8. Define f in &# by

aa,\/ (& — (L — ab,), if el,,n=1,2 -
ax, otherwise .

flw) =

Then S(f) = a and for t, eI, f(t.)/t. = aB.ja, vV 1 — (1 — )1 — B,)/
(1 — «,)) which tends to 8 as »— . Thus T(f) = £, which shows
# < A(S, T). To show the reverse containment it is sufficient, by
Theorem 6, to show .7 (S, T)S .2 If (a,B8)e (S, T), then for a
subsequence ¢, of {t,}, ((.8/a, t,(1 — B)/A —a)) NS = @. This implies
Bija, < Bl and (1 — B)/(1 —a) < (1 — B)/(1 — &,). Since .2 is star-
shaped with respect to (0, 0) and (1, 1), this shows («a, B) ¢ .2

4. Equivalence of unbounded sets. By Theorem 5 of §2 the
statement, S(F) = T(&) for all £ < ]0, 1], is the same as, S(f) = T(f)
for all fe . # The induced equivalence relation, S = T, deserves some
study.

THEOREM 8. For all unbounded sets S, S = CI (S).

Proof. Since S = CI(S), it is clear that S(f) = CI(S)(f) for all
fe . On the other hand, there is a map : CI(S) — S such that
|1 — x/y(z)] < 1/x for each e Cl(S). If fe.& then

Js) = (s — @) v 0] + fl)

for every pair s, xz. Hence f(y(2))/y(x) < 1/x + (1 + 1/x)f(x)/z for all
x € Cl(S). It follows that S(f) < Cl(S)(f) for fe . and so S = CI(S).

The related partial ordering: S = T, if and only if, S(f) < T(f)
for all fe. & again equivalent to S(F) < T(E) for all E< [0, 1], has
the following characterization.

THEOREM 9. A mnecessary and sufficient condition that S< T, is
that there exist a function ¢: T— S such that lim t/p(t) = 1, as t— oo,
teT.

Proof. If @: T— S and t/p(t)—1 as ¢ — oo, te T, then for fe . Z,
Flo®) £ [(p(t) — t) v 0] + f(t), which implies

Fle@)/p(t) = |1 — t/pt) | + /) (f(B)/1) .

Hence S(f) < o(T)(f) < T(f). On the other hand, assume S(f) = T(f)
for all fe # In particular this is true for g(x) = V(s/2 A (x — s/2))
over seCl(S). Here, S(g) = 1/2 < T(g9). For each te T, let s(t) =
sup {s:s€S,s <t} and s'(t) = inf{s:seS,s =t}. Then s(t) and s'(t)
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belong to Cl(S) and it is easy to see that g(f) = s(¢)/2 V (¢t — s'(t)/2).
Now let 6: T — Cl(S) be defined by

o — |50 I Us'0) < sty
s'(t), otherwise .

If 0 <e<1/2, then for ¢t e T, t sufficiently large, 1/2 — ¢ < g(¢)/t, which
means 1 — 2¢ < s(f)/t or s'(¢)/t =1 + 2¢. Since ¢ satisfies: 1 < ¢/0(¢) <
s'(t)/t or 1 = t/6(t) = s(t)/t, it follows that |1 — ¢/6(t)| < 2¢ and so
t/0(t)—1 as t— oo, te T. If 4:Cl(S)— S is the mapping introduced
in the proof of Theorem 8, then the composition, ¢ = -0, satisfies
the required property, i.e., t/p(t) —1 as t — oo, te T.

Given any unbounded S, let I, = [n,, n, + 1), for %, nonnegative
integers, be a sequence of intervals such that Sc U, and I, N S is
nonempty. Let s, = inf {s:seSNI,}. Then {s,} S CI(S) and so {s;} =
S. On the other hand the map ¢: S — {s,} defined by o(s) = s,, if
se SN I,, clearly satisfies the condition of Theorem 9. This proves

THEOREM 10. Given any unbounded S, there is am increasing
sequence {s,} such that S = {s.}.

The final result concerns the classical Hausdorff dimension H(f),
where H = (0, o).

THEOREM 11. If S = {s,} and s, < s,.,, then S = H, if and only
iof, lims,../s, =1, as n— oo,

Proof. If s, = = s,1,, then for fe 7, f(s,41) = 8,00 — @ + f(®),
so that f(S.1)/Sw+1 = Sn+:/S. — 1 + f(®)/x. In the case that s,,,/s,—1
as n— oo, it follows that S(f) < H(f) for all fe #. Since S S H, this
shows S = H. Conversely, if S < H, then for g = V(asA(x—(1—a)s)
over se€ S, H(g) = S(f) = «a, for a fixed a,0 < o < 1. Thus, in par-

ticular for the points

z, = as, + (1 — a)s,.,, iminf g(z,)/x, = lim inf a/(a +
1 — a)s,1/s,) = a as m— . Thus s,.,/s,—1 as n — oo,

5. Connection with other dimension functions. Dimension
can be defined for more general classes of intervals, _# cf. [1], i.e.,
where _# need not be closed under translations. It is known that
if _# is the class of r-adic intervals, then the dimension H'(E) de-
termined by _# coincides with the usual Hausdorff dimension H(E),
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as an easy application of Theorem 11 shows, taking
S ={-log Fx(I):Ic_7}.

For which classes _/, does the dimension S(E), where
S ={-log xI):Ic _g},

coincide with that determined by _#? More generally, for which _Z
do there exist unbounded sets S, such that S(E) coincides with H'(E)
determined by _#? In general, the solution of these problems is not
known. Notice that for such classes 7, the dimension H'(E) is neces-
sarily a translation invariant dimension, so that one might ask if this
property is also sufficient.

The author is indebted to Professor F. Bohnenblust for his advice
and guidance during the preparation of this paper, which formed a
part of the author’s Doctoral dissertation submitted to the California
Institute of Technology.
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