TANGENTIAL CAUCHY-RIEMANN EQUATIONS AND UNIFORM APPROXIMATION

MICHAEL BENTON FREEMAN
TANGENTIAL CAUCHY-RIEMANN EQUATIONS
AND UNIFORM APPROXIMATION

MICHAEL FREEMAN

A smooth (C^∞) function on a smooth real submanifold M of complex Euclidean space C^n is a CR function if it satisfies the Cauchy-Riemann equations tangential to M. It is shown that each CR function admits an extension to an open neighborhood of M in C^n whose \bar{z}-derivatives all vanish on M to a prescribed high order, provided that the system of tangential Cauchy-Riemann equations has minimal rank throughout M. This result is applied to show that on a holomorphically convex compact set in M each CR function can be uniformly approximated by holomorphic functions.

1. Extension and approximation of CR functions. Each point p of a smooth real submanifold M of C^n has a complex tangent space H_pM. It is the largest complex-linear subspace of the ordinary real tangent space T_pM; evidently H_pM = T_pM \cap iT_pM. Its complex dimension is the complex rank of M at p. The theorem of linear algebra relating the real dimensions of T_pM, iT_pM and their sum and intersection shows that if M has real codimension k its complex rank is not less than n − k.

DEFINITION 1.1. M is a CR manifold if its complex rank is constant. It is generic if in addition this rank is minimal; that is, equal to the larger of 0 and n − k. A smooth function f on M is a CR function if ker \bar{\partial}_pf \supset H_pM for each p in M.

Here f is assumed to be extended in a smooth manner to an open neighborhood of M and \bar{\partial}_pf is regarded as the conjugate complex-linear part of the ordinary Fréchet differential d_pf. Since the condition on \bar{\partial}_pf is independent of the extension chosen, the definition makes sense. Computational equivalents to it and some elaboration are given in §2. A more comprehensive treatment of these ideas is found in the paper by S. Greenfield [1]. It should be mentioned that his definition [1, Definition II. A.1] of CR manifolds also requires that the distribution p \mapsto H_pM be involutive. That assumption is not needed here.

If M is a complex submanifold of C^n, then it is CR with complex rank equal to its complex dimension. It is not generic if it has positive codimension. Of course the CR functions on M are just its holomorphic functions.

At the other extreme, every real hypersurface is a generic CR
manifold of complex rank $n - 1$. These frequently have no nontrivial complex submanifolds, which is true for example of the usual $2n - 1$ sphere in \mathbb{C}^n.

M is a generic CR manifold if its complex rank is everywhere zero, which is the totally real [5] case.

An example of a proper generic CR submanifold which is neither totally real nor a hypersurface can of course only be found if $n \geq 3$. There is one in \mathbb{C}^3, a 4-sphere S^4 given as the intersection of the usual 5-sphere and a real hyperplane transverse to it. Let

$$
\rho_1 = |z_1|^2 + |z_2|^2 + |z_3|^2 - 1
$$

and $\rho_2 = z_1 + \overline{z}_2$, where z_1, z_2, z_3 are the usual coordinates for \mathbb{C}^3, and let $S^4 = \{\rho_1 = \rho_2 = 0\}$. It follows from (2.2) below that S^4 has the requisite properties. Furthermore, S^4 has no nontrivial complex submanifolds (since the 5-sphere does not).

Theorem 1.2. If f is a CR function on a generic CR manifold M in \mathbb{C}^n and m is a nonnegative integer, then there is an extension of f to a smooth function f_m on an open set $U \ni M$ such that $\bar{\partial}f_m$ vanishes on M to order m in all directions.

This result is known [3, Lemma 4.3] and [5, Lemma 3.1] when M is totally real. It is also proved in [2, Th. 2.3.2'] when M is a real hypersurface. A local version which does not require that M be generic is proved in [5, Lemma 3.3].

Theorem 1.2 plays a key role in a program outlined by L. Hörmander for showing that CR functions can be uniformly approximated by holomorphic functions. The basic idea is to take a compact set K in M and a given CR function f on M and find a solution g of $\bar{\partial}g = \bar{\partial}f$ with $\sup_K |g|$ small. Then $u = f - g$ is holomorphic and approximates f uniformly on K with error no larger than $\sup_K |g|$.

In Hörmander’s implementation of this idea, Theorem 1.2 implies that a certain bound on an L^2 norm of the Sobolev type is imposed on $\bar{\partial}g$. The existence of solutions to $\bar{\partial}g = \bar{\partial}f$ subject to the same a priori bound [2] and a Sobolev inequality are used to estimate $\sup_K |g|$. This proof appears in [3] and [5] for the cases cited above. Since the only step of it which depends on the complex rank of M is the conclusion of Theorem 1.2, this proof will, without further modification, yield a result on uniform approximation.

Theorem 1.3. If M is a closed generic CR submanifold of a domain of holomorphy U in \mathbb{C}^n and K is a compact subset of M holomorphically convex with respect to U, then each smooth CR func-
tion on \(M \) is a uniform limit on \(K \) of functions holomorphic on \(U \).

In fact, the same method in conjunction with Theorem 1.2 will prove the stronger statement that approximation holds in the \(C^\infty \) topology; c.f. [5, Th. 6.1]. One merely replaces \(\sup_K |g| \) by a \(C^k \) norm of \(g \) on \(K \).

In the totally real case, it is known that the holomorphic convexity of any given compact subset \(K \) with respect to some domain of holomorphy is a consequence of the absence of complex tangent vectors. This follows from the fact [3, Th. 3.1] and [5, Corollary 4.2] that each \(K \) has arbitrarily small tubular neighborhoods which are domains of holomorphy. However, the case of the \(2n - 1 \) sphere in \(\mathbb{C}^n \) shows that in the presence of complex tangent vectors holomorphic convexity must be assumed. When there is complex tangency, the problem of determining holomorphic convexity of a given compact subset of \(M \) is very difficult, even for the examples mentioned above.

It should be remarked that in Definition 1.1 and Theorem 1.2 \(\mathbb{C}^n \) may be replaced by any complex manifold, and if this manifold is Stein [2], it may replace \(U \) in Theorem 1.3. No significant modification of the exposition is required.

2. **CR manifolds and functions.** Each real-linear map \(L: \mathbb{C}^n \to \mathbb{C}^k \) is uniquely expressible as a sum \(L = S + T \) where \(S, T: \mathbb{C}^n \to \mathbb{C}^k \), \(S \) is complex linear, and \(T \) is conjugate complex linear. If \(J: v \to iv \), a direct computation shows that \(S = \frac{1}{2}(L - JLJ) \) and \(T = \frac{1}{2}(L + JLJ) \). Applying this result to the Fréchet differential \(d_p\rho \) of a smooth map \(\rho: \mathbb{C}^n \to \mathbb{C}^k \) at \(p \) there results

\[
d_p\rho = \partial_p\rho + \bar{\partial}_p\rho
\]

in which \(\partial_p\rho \) is the complex linear part of \(d_p\rho \) and \(\bar{\partial}_p\rho \) the conjugate complex linear part.

Each point of \(M \) has an open neighborhood \(U \) in \(\mathbb{C}^n \) on which there exists a smooth map \(\rho = (\rho_1, \cdots, \rho_k): U \to \mathbb{R}^k \) with maximal rank \(k \) on \(U \) and satisfying

\[
M \cap U = \{ z \in U : \rho(z) = 0 \}.
\]

Regarding \(\mathbb{R}^k \) as contained in \(\mathbb{C}^k \) in the usual way, and applying the remarks above to Definition 1.1, it follows that \(M \) is CR if and only if \(\bar{\partial}\rho \) has constant complex rank on \(M \cap U \), and is generic exactly when this rank is maximal. When \(k \geq n \) this means that \(H_pM = 0 \), which is the totally real case. The case of interest here is \(k \leq n \), when \(M \) is generic if and only if \(\bar{\partial}\rho \) has complex rank \(k \) on \(M \cap U \). Henceforth, it is assumed that \(k \leq n \). Since it is clear that \(\bar{\partial}\rho = (\bar{\partial}\rho_1, \cdots, \bar{\partial}\rho_k) \) it
follows that the condition

\[(2.2) \quad \bar{\partial}\rho_1 \wedge \cdots \wedge \bar{\partial}\rho_k \quad \text{has no zeros on} \quad M \cap U \]

is necessary and sufficient that \(M \) be a generic \(CR \) manifold.

From Definition 1.1 and (2.2) it follows that a smooth function \(f \) on \(M \) is \(CR \) if and only if

\[(2.3) \quad \bar{\partial}f \wedge \bar{\partial}\rho_1 \wedge \cdots \wedge \bar{\partial}\rho_k = 0 \quad \text{on} \quad M. \]

Equivalently, since \{\(\bar{\partial}\rho_i, \cdots, \bar{\partial}\rho_k \)\} is, at points of \(M \), by virtue of (2.2) part of a basis for the space of conjugate-linear functionals on \(\mathbb{C}_n \), there exist smooth functions \(h_i, \cdots, h_k \) on \(U \) such that

\[(2.4) \quad \bar{\partial}f = \sum_{j=1}^{k} h_j \bar{\partial}\rho_j + O(\rho) . \]

Here \(O(\rho) \) denotes a form which vanishes on \(M \cap U \). It is a standard result [4, Lemma 2.1] that if \(g \) is a smooth \(O(\rho) \)-form there exist smooth forms \(g_i, \cdots, g_k \) such that

\[(2.5) \quad g = \sum_{j=1}^{k} \rho_j g_j . \]

More generally, \(O(\rho^m) \) will denote a smooth form on \(U \) which vanishes on \(M \cap U \) to order \(m \). Induction on \(m \) using (2.5) shows that if \(g \) is such a form there are smooth forms \(g_\alpha \) on \(U \) satisfying

\[(2.6) \quad g = \sum_{|\alpha| = m} \rho^\alpha g_\alpha , \]

in which the standard multi-index notation has been used. Thus \(\alpha = (\alpha_1, \cdots, \alpha_k) \) is a \(k \)-tuple of nonnegative integers, \(|\alpha| = \alpha_1 + \cdots + \alpha_k \), and \(\rho^\alpha = \rho_1^{\alpha_1} \cdots \rho_k^{\alpha_k} \). The coefficients \(g_\alpha \) are not unique on \(U \), but the fact that they are determined on \(M \cap U \) will be essential.

Lemma 2.1. If smooth forms \(g, g_\alpha \) are related on \(U \) by

\[g = \sum_{|\alpha| = m} \rho^\alpha g_\alpha + O(\rho^{m+1}) \]

then for each \(\alpha, D^{\alpha}g | M \cap U = \alpha! g_\alpha | M \cap U \). In particular, if \(g = 0 \) on \(U \) then each \(g_\alpha | M \cap U = 0 \).

Here \(D^{\alpha} = D_1^{\alpha_1} \cdots D_k^{\alpha_k}, \) where \(D_j \) denotes differentiation with respect to \(\rho_j \) and \(\alpha! = \alpha_1! \cdots \alpha_k! \).

Proof. The statement is local and since \(\rho \) has rank \(k \), the proof can be reduced to the case where each \(\rho_j = x_j \), the \(j \)th ordinary Euclidean coordinate function. Then the lemma follows from the gen-
eral Leibniz formula
\[D^\alpha(fg) = \sum_{\gamma \subseteq \alpha} \binom{\alpha}{\gamma} D^\gamma f \cdot D^{\alpha - \gamma} g \]
with \(f = x^\alpha \), noting that \(D^\gamma x^\alpha = 0 \) on \(M \cap U \) if \(\gamma < \alpha \) and \(D^\alpha x^\alpha = \alpha! \). Here \(\binom{\alpha}{\gamma} = \alpha! / \gamma! (\alpha - \gamma)! \) and \(\gamma < \alpha \) means that \(\gamma_j < \alpha_j \) for some \(j \).

3. Proof of Theorem 1.2. The proof is an induction on \(m \) in which \(f_{m+1} \) is obtained by subtraction of an \(O(\rho^{m+1}) \) function from \(f_m \). Similar procedures have been used in [2, Th. 2.3.2'], [3, Lemma 4.3], and [5, Lemmas 3.1 and 3.3]. The one used here borrows ideas from all of these. Since the totally real generic cases where \(k \leq n \) are treated in [3] and [5], it will be assumed that \(k \geq n \). However, the proof below can be read with \(k \geq n \), with some slight modifications.

In the presence of complex tangent vectors, the only known result is local in nature [5, Lemma 3.3]. Its proof refers to a particular local coordinate system for \(C^n \) and uses an initial extension \(f_0 \) which is independent of the coordinates normal to \(M \). This feature is clearly not preserved by the patching construction intended here, so an arbitrary extension of \(f \) must be admitted at each step. This introduces remainder terms of the form \(O(\rho^m) \), and it is necessary to keep an accurate account of their effects.

To begin the induction, extend a given CR function \(f \) from \(M \) to a smooth function \(f_0 \) on an open set \(U \supset M \).

First assume that the representation (2.1) holds on \(U \). Then \(\tilde{\partial} f_0 \) is of the form (2.4) and if \(u = \sum_{j=1}^k \rho_j h_j \) it is clear that \(\tilde{\partial} (f_0 - u) = O(\rho) \).

In general \(U \) has a locally finite cover by open sets \(U_j \) on each of which there exists a defining function \(\rho_j \) presenting \(M \cap U_j \) as in (2.1) and an \(O(\rho_j) \) function \(u_j \) satisfying \(\tilde{\partial} (f_0 - u_j) = O(\rho_j) \) on \(U_j \). If \(\{ \varphi_j \} \) is a partition of unity subordinate to \(\{ U_j \} \) and
\[(3.1) \quad u = \sum \varphi_j u_j \]
then
\[(3.2) \quad \tilde{\partial} (f_0 - u) = \sum \varphi_j \tilde{\partial} (f_0 - u_j) - \sum \varphi_j \partial u_j \cdot \partial \varphi_j . \]

By construction each term of either sum in (3.2) vanishes on \(M \). Therefore so does \(\tilde{\partial} f_1 \) if \(f_1 = f_0 - u \).

For the inductive step assume that \(m > 0 \) and \(f \) has an extension \(f_m \) to \(U \) such that \(\tilde{\partial} f_m \) vanishes on \(M \) to order \(m \). A global modification of \(f_m \) will again be obtained by patching local ones, so the construction is again begun by assuming that \(M \) is globally presented by (2.1).
Then by (2.6) there are smooth $(0, 1)$ forms g_a such that

$$
(3.3) \quad \overline{\partial}f_m = \sum_{|\alpha| = m} \rho^a g_a .
$$

Hence

$$
(3.4) \quad 0 = \overline{\partial}^2 f_m = \sum_{|\alpha| = m} \sum_{j=1}^k \alpha_j \rho^{a_j-1} \overline{\partial}\rho_j \wedge g_a + O(\rho^m) ,
$$

in which $\alpha - j$ denotes $(\alpha_i, \ldots, \alpha_j - 1, \ldots, \alpha_k)$ if $\alpha_j > 0$. Wedge this equation with $\overline{\partial}\rho_1 \wedge \cdots \wedge \overline{\partial}\rho_k$ (missing) to show that for each j

$$
(3.5) \quad 0 = \sum_{|\alpha| = m} \alpha_j \rho^{a_j-1} \overline{\partial}\rho_1 \wedge \cdots \wedge \overline{\partial}\rho_k \wedge g_a + O(\rho^m) .
$$

Now for fixed j, the map $\alpha \rightarrow \alpha - j$ is a one-to-one correspondence of $\{\alpha: |\alpha| = m \text{ and } \alpha_j > 0\}$ with $\{\beta: |\beta| = m - 1\}$. Therefore (3.5) may be rewritten as

$$
0 = \sum_{|\beta| = m-1} (\beta_j + 1) \rho^{a_j} \overline{\partial}\rho_1 \wedge \cdots \wedge \overline{\partial}\rho_k \wedge g_{\beta + j} + O(\rho^m) .
$$

and Lemma 2.1 applied to deduce that $g_{\beta + j} \wedge \overline{\partial}\rho_1 \wedge \cdots \wedge \overline{\partial}\rho_k = 0$ on M. Since this holds for every j and β, it follows from the linear independence of $\overline{\partial}\rho_1, \ldots, \overline{\partial}\rho_k$ on M that for each α, $|\alpha| = m$, and each $j, 1 \leq j \leq k$, there is a function $h_{\alpha j}$ such that

$$
(3.6) \quad g_{\alpha} = \sum_{j=1}^k h_{\alpha j} \overline{\partial}\rho_j + O(\rho) .
$$

When substituted for g_{α} in (3.3) and (3.4) this relation yields

$$
(3.7) \quad \overline{\partial}f_m = \sum_{|\alpha| = m} \sum_{j=1}^k \rho^a h_{\alpha j} \overline{\partial}\rho_j + O(\rho^{m+1})
$$

and

$$
(3.8) \quad 0 = \sum_{|\alpha| = m} \sum_{i,j=1}^k \alpha_j \rho^{a_j} h_{\alpha i} \overline{\partial}\rho_j \wedge \overline{\partial}\rho_i + O(\rho^m) .
$$

The expression (3.7) suggests modifying f_m by

$$
(3.9) \quad (n + 1) \overline{\partial}u = \sum_{\alpha, j} \rho^a h_{\alpha j} \overline{\partial}\rho_j + \sum_{\alpha, j} \sum_{i=1}^k \rho_j \alpha_i \rho^{a_i-1} h_{\alpha j} \overline{\partial}\rho_i + \sum_{\alpha, j} \rho^a \rho_j \overline{\partial}h_{\alpha j} .
$$
The first term of this is $\bar{\partial} f_m$. The second is

$$\sum_{i,j=1}^{k} \rho_j \left(\sum_{| \alpha | = m} \alpha_i \rho^{a-i} h_{a \alpha} \right) \bar{\partial} \rho_i,$$

which will be shown to equal $n \bar{\partial} f_m + O(\rho^{m+1})$.

To that end, for each $i < j$, wedging (3.8) with

$$\bar{\partial} \rho_i \wedge \cdots \wedge \hat{\bar{\partial} \rho_i} \wedge \cdots \wedge \hat{\bar{\partial} \rho_j} \wedge \cdots \wedge \bar{\partial} \rho_k$$

($\bar{\partial} \rho_i$ and $\bar{\partial} \rho_j$ are missing) gives the symmetry relation

$$0 = \sum_{| \alpha | = m} (\alpha_i \rho^{a-i} h_{a \alpha} - \alpha_i \rho^{a-i} h_{a \alpha}) + O(\rho^m).$$

Using this in (3.10) it becomes

$$\sum_{i,j=1}^{k} \rho_j \left(\sum_{| \alpha | = m} \alpha_i \rho^{a-i} h_{a \alpha} \right) \bar{\partial} \rho_i + O(\rho^{m+1})$$

which when the summation over j is performed first is

$$\sum_{| \alpha | = m} \sum_{i=1}^{k} \alpha_i \rho^{a-i} h_{a \alpha} \bar{\partial} \rho_i + O(\rho^{m+1}).$$

Noting that $\sum_{j=1}^{k} \alpha_j = n$ completes the argument that the second term of (3.9) is $n \bar{\partial} f_m + O(\rho^{m+1})$. Therefore $\bar{\partial} u = \bar{\partial} f_m + O(\rho^{m+1})$.

Thus on each U_i there is a function $u_i = O(\rho^{m+1})$ such that $\bar{\partial}(f_m - u_i) \mid U_i = O(\rho^{m+1})$. With u defined again by (3.1) and $f_{m+1} = f_m - u$ it follows as before from (3.2) that $\bar{\partial} f_{m+1}$ vanishes on M to order $m + 1$. This completes the proof.

4. Remarks. We know of no nongeneric examples where Theorem 1.2 fails. However, when M is not generic, the above proof breaks down at the inductive step from $m = 1$ to $m = 2$: Since $\bar{\partial} \rho$ does not have maximal rank it may be assumed that there is an integer $l < k$ such that $\bar{\partial} \rho_i \wedge \cdots \wedge \hat{\bar{\partial} \rho_i} \wedge \cdots \wedge \bar{\partial} \rho_j$ has no zeros on M but $\bar{\partial} \rho_i \wedge \cdots \wedge \bar{\partial} \rho_j = 0$ on M if $j > l$. Thus there are more unknowns g_a than equations available from (3.4). There are very simple cases where this occurs:

Example 4.1. If the usual coordinates of C^2 are denoted z_1, z_2 and $M = \{z: z_2 = 0\}$ then the function $f = z_2 \bar{z}_1$ is CR, for $\bar{\partial} f = z_2 d\bar{z}_1$. The most general function u vanishing to second order on M is by (the complex analogue of (2.5)) of the form

$$u = z_2^l g_1 + z_2 z_1 d\bar{z}_1 + z_2 \bar{z}_2 \bar{\partial} g_2 + 2 z_2 \bar{z}_2 d\bar{z}_2 + \bar{z}_2 \bar{\partial} g_3.$$

for suitable smooth functions g_1, g_2, and g_3. Therefore

$$\bar{\partial} u = z_2^l \bar{\partial} g_1 + z_2 g_1 d\bar{z}_2 + z_2 z_1 \bar{\partial} g_2 + 2 z_2 \bar{z}_2 d\bar{z}_2 + \bar{z}_2 \bar{\partial} g_3.$$

Each of these terms either vanishes to second order on M or is linearly independent of $\bar{\partial}f$. Therefore no such u will satisfy $\bar{\partial}(f - u) = O(\rho^2)$.

However since f is zero on M, it obviously satisfies the conclusion of Theorem 1.2. In fact, if M is a complex manifold, each CR function f is holomorphic, so if U is a domain of holomorphy Theorem 1.2 for U and $M \cap U$ follows from Cartan's Theorem B [2], which implies that f has a holomorphic extension to U. Moreover, standard results in several complex variables show that Theorem 1.3 is true for any complex manifold M. Thus Theorem 1.2 and a consequent Theorem 1.3 may still hold in the nongeneric case, but some new ideas for proof are necessary.

REFERENCES

Received November 21, 1969. This work was supported by NSF Grant GP-8997.

Rice University
Mir Maswood Ali, *On some extremal simplexes* 1
Silvio Aurora, *On normed rings with monotone multiplication* 15
Silvio Aurora, *Normed fields which extend normed rings of integers* 21
John Kelly Beem, *Indefinite Minkowski spaces* 29
T. F. Bridgland, *Trajectory integrals of set valued functions* 43
Robert Jay Buck, *A generalized Hausdorff dimension for functions and sets* ... 69
Vlastimil B. Dlab, *A characterization of perfect rings* 79
Edward Richard Fadell, *Some examples in fixed point theory* 89
Michael Benton Freeman, *Tangential Cauchy-Riemann equations and uniform approximation* .. 101
Barry J. Gardner, *Torsion classes and pure subgroups* 109
Vinod B. Goyal, *Bounds for the solution of a certain class of nonlinear partial differential equations* .. 117
Fu Cheng Hsiang, *On C1 summability factors of Fourier series at a given point* .. 139
Lawrence Stanislaus Husch, Jr., *Homotopy groups of PL-embedding spaces* .. 149
Daniel Ralph Lewis, *Integration with respect to vector measures* 157
Marion-Josephine Lim, *L2 subspaces of Grassmann product spaces* 167
Stephen J. Pierce, *Orthogonal groups of positive definite multilinear functionals* 183
W. J. Pugh and S. M. Shah, *On the growth of entire functions of bounded index* .. 191
Ralph Tyrrell Rockafellar, *On the maximal monotonicity of subdifferential mappings* .. 209
R. Shantaram, *Convergence of a sequence of transformations of distribution functions. II* .. 217
Julianne Soucek, *Rings of analytic functions* 233
Ted Joe Suffridge, *The principle of subordination applied to functions of several variables* .. 241
Wei-lung Ting, *On secondary characteristic classes in cobordism theory* 249
Pak-Ken Wong, *Continuous complementors on B*-algebras* 255
Miyuki Yamada, *On a regular semigroup in which the idempotents form a band* 261