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This paper is a study of boundedness and other properties
of the solutions of nonlinear partial differential equations of

the form
(1-1) Au = P(xl; Loy ** xn)f(’u/)
where P(xi, %3, + -, %,) is positive, and u(x;, 23, - - - x,) is to be

defined in some region of Euclidean n-space, and du =
S, 0%u/0x is the Laplacian of u. In particular, we con-
sider the case f(u) = e*.

Our principal result is concerned with the nonexistence
of entire solutions, An entire solution wu = u(®x:, X2, « -, %x)
will be defined as a solution which though continuous for
0 =< r < « is twice continuously differentiable for 0 < 7 < co,
Other results are concerned with the general form of and
explicit bounds for solutions,

In the literature on the subject [3, 4, 5, 8, 9, 11, 12] conditions
have been given on f(u) in order that the equation

1.2) du = f(u)
or, more generally, the differential inequality
(1.3) du = f(u)

will have no solutions u = wu(x, 2, -+, 2,) having two continuous
derivatives for all finite values of x, 2, ---,z,. The most general
conditions which exclude such solutions, obtained by Keller [5], are:
fu) >0, f/(u) = 0 for —co < u < oo and

S:[S:f(t)dt]_”zdu < o

For n = 2 Redheffer [10] showed that the monotonicity of f(w) may
be dispensed with.
In §2 we shall consider a more general question for the equation
o° 0*
1.4 du = P(z, y)e*, P(z,y) > 0, —’:T—Z"'—Z-
o0x oY
While the coefficient P(x, y) will be assumed to be positive and
twice continuously differentiable for 0 < » < co, P(zx,y) will be
permitted to vanish or to become singular in a manner specified in
the statement of the Theorem 2.1. If P(z, y¥) has such a singularity
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it will, of course, be reflected in the singular behaviour of the solu-
tions of (1.4). We shall thus give conditions on P(x,y) which ex-
clude entire solutions of (1.4). An example of such a solution is
% = r which solves equation (1.4) with P(x, y) = e™"/r.

For n = 2 it is well known that the function

(1.5) Wz, 7) = logl_‘_f'lgf_()ziw

is a solution of
(1.6) du, = 4¢*

if f(2) is an analytic function satisfying |f(z)| <1 and |f(?)]| = 0 in
the domain considered. In §3 we show, conversely, that every
solution of (1.6) is essentially of this form. This converse result is
necessary if it desired to use (1.5) and the theory of bounded analytic
functions to obtain general properties of the regular solutions of (1.6).
If the solution u(z,z) of (1.6) is regular in a disk |z| < R, Theorem
3.1 leads to a bound for % in this disk. If |f(?)| <1l in [z|< R
then, by Schwarz’ lemma | f'(z) |/1 — | f(z) ? < R/R* — | z|*. Hence, a
solution of (1.6) which is regular for |z| < R is subject to the
inequality.

R

y2) < log ————— .
u(z, z) < log T F

For z = 0, this leads, in particular, to the well known fact that the
equation (1.6) can not have twice continuously differentiable solutions.

In § 4 comparison theorems are proved and explicit bounds are
obtained for the solutions of

(1.7) du = P(r)f(u)
or, more generally
1.8) du = P(r)f(u) .

The behaviour of these solutions at an isolated singularity is in-
vestigated.

2. Entire solutions. The main result is:

THEOREM 2.1. Let

@.1) SS P, y)dady = O(r,) (for small 7,)

r<rg

and



BOUNDS FOR THE SOLUTIONS OF A CERTAIN CLASS 119

2.2) g'ta(t)dt = 0(r) €>0
0
where
2.3) a(r) = Lraaog P)ds .
21 Jo
If either
@.4) |“eu-rmret (og ry=ridr = o=
or
(2.4)/ Sme(i—ﬁ)g(r)qﬂ(1—2§)+s2nslz (log r)‘ﬁ‘edr — oo
where

(i) ¢ isaconstant such that ¢ = (2 — e)(1 — B) where 1/2< <1
and € > 0 but small. And
(ii) the function g(r) is a solution of

% %(r%) = %S:A (log P)do

such that rg’(r) —0 as r— 0.
Then (1.4) cannot have a solution which is twice continuously
differentiable for 0 < r < « and continuous for 0 < r < co.

That such solutions of (1.4) may exist for certain P(z, y) is shown
by the example u = »", n = 2 where P(z, y) = n*r" %",

Proof. If we set
(2.5) u=v—logP
equation (1.4) becomes
(2.6) dv = e’ + 4(log P) .

We introduce the notation
. 1 2w
(2.7) w(r) = —\ wv(r, 6)db .
27 Jo
By Green’s formula for the circle |[z| < r < R

“dvdxdy= S % S

lzisr lzl=r
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where 7 is the exterior normal. On account of 0/on = 9/dr it follows
that

Srgzzdvrdﬁdr = S ov —rdf = 1"~§ v(r, 6)do .
0J0 0 or

o or

With the help of (2.6) and (2.7), this yields

2.8) T%w(y) - _21;”)(3 + A(log P))yrdodr .

o(r) is single valued and twice continuously differentiable for » < R.
Because of (2.3) and (2.5), (2.8) is equivalent to

rdo(r) _ 1 r
(2.9) - 2ng S P(z, y)errdodr + Sota(t)dt.

Since w is continuous, it follows from assumption (2.1) and (2.2) that
(2.10) ra’(r) — 0

as r—0.
Differentiating (2.8) with respect to » and using (2.3), we obtain

1 d(,dw 1 SZ“
. = —\ e'df .
2.11) : dr<dd ) or) + o=\ o'd
Since ¢f is convex for all & the right hand side of (2.11) can be
estimated by
Z:S;fu[r,())dﬁ

27
21 S 6v(r,0)d0 2 61/2:8 — em('r) .
T Jo 0

Hence (2.11) yields

(2.12) d‘i <TO§TC:> > ro(r) + rev
We now set
(2.13) o(r) = g(r) + f(r)

where ¢(r) is a solution of

208p) -

which is continuous at the origin; that is, we compute g(r) from

(2.14) 2 (g(r)) = STta(t)dt .
dr 0
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Because of our assumption on the behaviour of o(r) at » = 0, g(»)
will be continuous at » = 0. Inequality (2.12) then takes the from

(2.15) L(rlL) 2 reyer

where 7(r) = ¢/, Introducing the new independent variable by
o0 = log r and setting

(2.16) F=f+20
inequality (2.15) yields
(2.17) F = z(p)e”

where dot denotes the differentiation with respect to o. Since the
right hand side of (2.17) is always positive F(p) is convex in o there-
fore, w(r) is convex in log .

Now suppose (1.4) and, therefore, also (2.17) has entire solutions.

We observe that F(p) must be positive for all o in (—co, o).
Indeed, from (2.16), we get, F(0) = 2 + e°(df(e?))/)dr. Since by (2.14)
and the assumption (2.2), ¢'(r) = O(r**) we have, lim,_,r¢’(r) = 0.
Hence, by (2.10) and (2.13) lim,_, 7@’(r) = lim,_, 7f’(r) = 0. It follows,
therefore, that lim,._.. F(o) = 2. But, by (2.17) F(p) is convex in p
and we have, consequently,

(2.18) F(o) =2

throughout (— =0, oo). It, therefore, follows that F(o) is ultimately
positive. We choose p, large enough so that F(p) > 0 for o > p, and
set

(2.19) ¢ = FF.
Differentiating with respect to o and using (2.17) we have
(2.20) do=7 = TF*1e" I~ + F-1fe

where v is a constant to be chosen later.
Using the inequality [Hardy-Littlewood-Polya] A + B = (A/a)*(B/B)?
where ¢« + 8 =1, 0 £ a, 8 < 1. the inequality (2.20) yields

(2.21) gﬁ'gﬁ—f = (1 — B)ﬁ—llg—?e(l—ﬁ)FF1—,s_7F'vzg_r .
Now we consider two cases:

Case I. Let 28 —v =0, 1/2< B <1. Then the inequality (2.21)
becomes

(2.22) Fo—% > C ri-Peli—H1F Fri=s3
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where ¢, = (1 — B)*'8~F. Since F'=2 we have F = (2 — ¢)p if p is
sufficiently large. Moreover, since e“—#FFUu-%) g increasing for
F > 38 — 1/1 — B, inequality (2.22) yields

¢'¢—2ﬁ g czfl—ﬁp1—3ﬂecﬂ

provided (2 — €)p >38—-1/1 -, ¢, = ¢,(2—¢)'* and ¢ = (2—¢)1 — B).
Integration of (2.22) gives

(2.23) L r_1r 1 ] >ec Sep et=P9pe=(log ) =3y |
28 — 1L (o) ¢ (o) T "lewo

Since F' is convex and increasing in o, ¢'~*(p) tends to zero as p — co.
Hence, the left hand side of (2.23) is bounded as o0 — <. This con-
tradicts the assumption (2.4).

Hence the inequality (2.17) and also (1.4) does not have entire
solutions.

Case II. Let 28— v >0, 1/2< B < 1. The inequality (2.21)
becomes in this case

doT = ¢, TP -E-TgU—HIF Q1
where we have used (2.18). But since
Fri—f=igi=0F > gu=pe—ae{(2 — g)p}—57
provided (2 — ¢)p > (v + 8 — 1)(1 — B)~!, we have
G671 = c2uNTRet o2 — &)

Choose vy =1+ ¢, € >0. Then 8> (1 + ¢)/2. Therefore, integration
with respect to p gives

(2.24) _1_[

&

11
¢ (00)  8%0)

] > Caspeu—ﬁ)g(m,,.(l—zﬁ)+(ez—s/2>(log T)—ﬁ_sdr

where ¢, = ¢,(2 — &)~F—.

If it were true that u = u(x, y) is entire, the left-hand side of
(2.24) would remain bounded as p— o. Since by (2.4) the right
hand side of (2.24) is unbounded, this leads to a contradiction.

This completes the proof of Theorem 2.1.

3. General solution. Let u(x, y¥) be of class C* in the region
D of x, y-plane and satisfy (1.6). Introducing the new independent
variables z =  + iy and Z = ¢ — 7y equation (1.6) becomes

(3.1) U; = e
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where 0/0z = 1/2(3/0x — (0/0y)) and 06/07Z = 1/2(0/ox + i(d/0y)). How
we prove

THEOREM 3.1. Ewvery solution of (1.6) which is twice continuously
differentiable in a given region D can be written in the form

e, = log L

where f(z) is analytic in D such that | f'(z)| #0 and | f(z)| < 1.
Proof. According to an observation which goes back to Bieberbach

[1] a regular solution of (1.6) can be associated with an analytic
function of z in the following manner: We set

Q:uzz—uz

where % is a solution of (1.6) or, equivalently, of (3.1) and we
compute @;. We have, with the help of (3.1), @; = 0. Thus, @ is
found to satisfy the Cauchy-Riemann equations. Since @ is continuous,
it must therefore be regular analytic function w(z).

If we set

(3.2) o= e
and observe that
V. = €MU; — u,,)
we find that +« is a solution of the linear differential equation
(3.3) V., + OR = 0.

Since w(z) is analytic in z the general solution of (3.3) contains the
analytic solutions of the equation

(3.3) F"(z) + 0(z)F(z) = 0

because, for an analytic F, we have F'(z) = 0F/oz. The general
solution of (3.3) can, therefore, be written in the form

Vv o= A%Y(2) + B ()

where ++, and 4, are two linearly independent (analytic) solutions of
(3.3) which may be assumed to be normalized by

(3.4) Pips — Pl =1

and A* and B* are constants with respect to d/0z — differentiation
used in (8.3) i.e., 0A*/6z = 0B*/0z = 0. Since these are Cauchy-
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Riemann equations for functions in z we have A* = A(z), B* = B(z)
where A and B are analytic. The general solution of (3.3) is, there-
fore, found to be of the form

(3.5) ¥ = A@)V.(2) + B@R)v(2)

where A, B, +, and 4, are analytic functions in D. In view of (3.2),
equation (3.5) can be written

(3.6) ¢* = A@W(2) + B()(2) .

Now the proof of the theorem will follow from the following lemma:

LEMMA 3.1. Let +, and +, be linearly independent solutions of
the differential equation (3.3) where w(z) s analytic in D. If A(z)
and B(z) are analytic in D and if the expression

(3.7 K(z,2) = AR)V(z) + B(2)v:(2)

1s real throughout D but does not vanish identically then K(z, Z)
can be written in the form

K(z2) = £|o@) " F [7(2)

where d(z) and ©(z) are two linearly independent solutions of (3.3)
for which

(3.8) 7(2)0'(2) — 0(2)T'() = 1.
Proof. Since K(z,z) is real, we have
(3.9) A@)(R) + B@)1(2) = AR)i(2) + B@E)() -
Differentiation with respect to z and (3.4) give
PRVI(R)AR) — 1) A ()] + T(2)[Vi(2)B() — B'(@¥.(2)] = —B() .
Setting

(3.10) 9(2) = Vi(R)AR) — v.(2)A'(2)
and

(3.11) Iz) = vi(2)B(z) — +.(2)B'(2)
we have

(3.12) Y.(2)F(?) + ¥.(2)h(2) = —B() .

But the left-hand side of (3.12) is a solution of (3.3)’; hence (—B(z))
satisfies
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B, + w(®B =0

where w(z) is an analytic function. But since B(z) is analytic in z,
B"(z) + w(z)B(z) =0,

consequently, B is of the form

(3.13) B(z) = ayr.(2) + Bvu(2)

where @ and 8 are constants. Arguing in the same manner (3.4)
and (3.9) give

(3.14) A(Z) = 14.(2) + 09(2)

where v and ¢ are constants.

Also from (3.12) and (3.13), ¥,(2)/v,(2) = — ((h(z) + B)/(9(2) + «)).
But since +r,(2)/¥,(2) is analytic in z and, moreover, since +r, and
are linearly independent, we must have §(z) + @ = 0 and h(z) + 8 = 0,
or equivalently

(3.15) (Y + 0P )Yl — (Yl + oYY, = —@
and
(3.16) (@, + By )V] — (@] + By, = —f

respectively. With the help of (3.12), (3.14), (3.15) and (3.16) the
equation (3.7) becomes

(3.17) Kz 2) = 79[ + B v [ + Gy + ado,

Now let o(z) and 7(z) be any other solutions of (3.3) such that
A (2) = ad(2) + br(2) and ¥,(2) = co(z) + dz(z) where a, b, c and d are
constants satisfying

(3.18) ad —bc =1
and
(8.19) b(va + ac) + d(eéB + aa) = 0.

This is possible if the determinant
D=vlal*+ B|c|* + 2Re(acc)

does not vanish. Evidently this can always be achieved as long as
not all numbers «, B and v are zero. However a, 8 and v cannot
all be zero since, in view of (3.17) K(z, %) would then be identically
zero, and this case is excluded.

Substituting +, and 4, in (3.17) and using (3.19) we obtain
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Kiz,z)=|oc@)Hy|lal?+ B|c| + acax + aca}

Now we consider the following two cases:

Case I. Let 8+#0, v 0. We set a # 0 and ¢ = 0 then, with
the help of (3.18) and (3.19), (3.20) becomes

K(z,2) =|o@) v|al’ + [t() P |d P (By — [a]) .
(i) Let v>0, By — |a]? = m (m is a positive integer). Hence,
K(z,2)=|o" "+ |T*

where 0* = o(v |a [)'* and 7% = tm'*(v | a [*)~*"* are solutions of (3.3)".
(ii) v>0, By — |a* = —m. In this case

K(z,2) = |0 [ — | 2% .
(iii) Let vy <0, By — |a|* = m. Then
K(z7) = —|o* [ — |o* |
(iv) v<0, By — |aP = —m. This gives
K(z,2z) = —|o*P+|T*]7.
Case II. Let 8 =0, vy =0. We set a,b= 0. With this choice
(3.18) and (3.19) reduce (3.20) to
Kz 2) = —|o, [ + |7,

where |o,| = |o|(@@)'®*"* and |z,| = a~'* |7 |(@B)"* and are solutions
of (3.3).

Summing up, we have thus proved that, if the function K(z, ?)
is real, it must have either of the three following forms

(1) Kz, 2) =t —|of
(2) Kz 2) =|t["+ o H(S)
(3) Kz 2) = —jcif = |of

where ¢ and 7 are solutions of the differential equation (3.3)’ normalized
by (3.8). The case K(z,2) =|o|* — |7|* is evidently not essentially
different from case (1). Case (3) can be excluded immediately, since
beacuse of (3.6) and (3.7) K(z,7) must be positive. This also shows
that, in case (1), we necessarily must have

(8.21) [7(®)] > [o(2)].

We now define
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(3.22) flz) = 2@
7(z)

In view of (3.8) we have

(3.23) F1e) = o
T%(2)

and thus |6+ |7P=1+|fR@ P/ f'(®)| incase 2) and |zf— |0 [*=
A — | f® P/ ()| in case (1). Comparing this with (3.6), (3.7) and
(S) we find that wu(z, Z) must be either of the forms

Z) — |f(2) |
YA =T

7 — | f'() ]
u(z, Z) = log e

Z) — 1+ /)
w(z, ) = logW .

Since the last two functions are not solutions of (1.6), these cases
are excluded. Hence any real solution of (1.6) must be of the from

2 = log L@
e B =g T R
where because of (3.21) and (3.22) |f(?)| <1 and in view of (3.23)

[f(z)] =+ 0.
This completes the proof of Theorem 3.1.

4. Bounds for the solutions of 4, = P(r)f(u). Let

0* 0 o
A = e
0x? * oxs * 0%,

denote the n-dimensional Laplace operator and let D, and S, stand
for the open sphere a + @} + .-+ + 22 < »? and its boundary

A .
respectively. We are concerned here with functions
®=0@@eD,,0<r<R)
which are of class C?® in D, and satisfy the differential equation
4o = P(r)F(®)
or, more generally, the differential inequality

(4.1) dw = P(r)F(w) .
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Nehari [6] found explicit bounds for the solutions of the differential
equation 4w = F(u) or, more generally the differential inequality
Adu = F(u) which are regular in a disk. We shall obtain here a more
general result, which also applies to certain equations of the form
(4.1).

LEMMA 4.1. Let F(t) and G(t) be positive and differentiable
functions for —oo <t < oo and such that the integrals
S‘” dt S“’ dt
o F(t) " Jo G(2)
exist, and let W = W@, x5y -+, x,) and v = v(x, X, ---x,) be two
Sunctions related by the identity

= dt _ (~.dt_
(4.2) Lf@“&am'
Then
(4.3) Ao - 4
Fo) — GW)

provided F'(w) = G'(v).

Proof. We write & for one of the variables x, %,, -+, 2, and
differentiate (4.2) twice with respect to x. This yields

v W,
G(v)  F(w)

Vi ;G . w, v, B (W)
Gv) G(w)  Fl) G@

Summing over all x, and using the fact that F'(w) = G'(v), we get (4.3).
We derive the following corollary.

COROLLARY 5.1. If v = v(®, Xy, +-+, T,) 18 @ function satisfying
the differential imequality

4.4) dv < Pot, E>1

where P = P(x,, @, +++, %,) 1s posttive, and 1f F(u) is such that

“ dt k
4.5 F’ LA L
(4.5) (ano—k_l
then, the function w defined by
(4.6) 1 _ S"’ dt
(k — 1)k v F(t)
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1s subject to the inequality
(4.7) du < PF(u) .

Setting G(v) = v* in Lemma 4.1, the proof of the Corollary 4.1

is immediate.
As an application of Corollary 4.1, we prove the following result.

THEOREM 4.1. If the function @ = w(x,, X, <+, %,) satisfies the
inequality

(4.8) Aw = r*F(w)

where F(w) is such that F’(a))rdt/F(t) < 9/8 and F'(w) = 0 then the
function u defined by

(1,.2 . p2)2(R2 — ,rZ)Z _ Soo dt 0 R
20F' “F@) <e<r<
is such that
w=u.

Proof. Consider the function v defined by

1
e pz)a(Rz . ,’.2)01

(4.9) v=—

(r

where « is a constant to be determined later. Differentiating (4.9)
twice with respect to one of the variables z = x,, we obtain

v, = — 22 n 2z
(" = ) B =) @ = o) (B~ )
o = _ 2a dr*a(a + 1)
B e e ¥ NG TE
X 2a _ 8a'a’
0 — O (@® — ) (= o) R — )
4eta(ce 4 1)

(7’2 _ p2)a(R2 _ 7,.2)&-)—2 *
Summing over all z = z, and choosing @ = 1/4 we get,
dv < 37”2}247)9 .
2
Now let v = (2'%y)/(5'2R*"* then we have

(4.10) dy < r*y°
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where ¥y is given by

()"

Now applying Corollary 4.1 to (4.10), we obtain,
du £ r*F(u)
when u is defined by

(r2 — pz)z(Rz — ) _ Soo dt .
20R « F(t)

Clearly, #'(0) =0 and 4— > as »r— R or o—r. The fact that
o < u now follows from Osserman’s lemma [8]. This proves our
assertion.

THEOREM 4.2. Let f(w) be positive, nondecreasing, differentiable
Sunction in (— oo, o) for which

exists and
(= dt
@.11) f (w)gw% <142 (> 0).
If
@ u(r) = sup (@)

where w(Q) ranges over all functions of class C* in D, which satisfy
4.1). Then

4.12) Ca(R — 7y’ < Sw dt

R? u(r)?(_i)—

in case P(r) = a (a > 0).

(4.13) COggrife =y - _dt
R wir) F(2)

?:f P(’)") = B/r”/1+l (,8 > 0) a’l’bd

s comr ey [ o
R ulr) f(t)

if P(r) = yr*%* (v > 0)



BOUNDS FOR THE SOLUTIONS OF A CERTAIN CLASS 131

where
(4.15) ooy = L r <7 —2)
4n
and
_ 1 _
(4.16) €M = g 5 U >n —2).

The inequalities (4.12), (4.13) and (4.14) are sharp.

The case A = 0 had been considered by the author in [2].

Proof. Consider the function g = g(r) defined by

CONR — ) _ 1 Sw dt

(4.17)
Vi p(r)Js f(2)

where p(r) is positive, monotonically increasing and twice continuously
differentiable and C is a positive constant to be chosen later. De-
noting by « one of the variables x, and differentiating twice with
respect to x we have

4dex(R? — 7?) g, 2x (= dt
4.18 kA L A g -
(4.18) 7 PF) pzmgg )
_de(R— ") 8’ Gu dop(rlg. . _g.f"(9)
R R pflg)  p(r)flg) () f9)
2p(r) (= dt 4x’p(r) (= d
4.19 -
(4.19) 2<r>g GGG Saf(t)

8a*p*(r) g
() o ft)

where dot denotes differentiation with respect to »°. With the help
of (4.17) and (4.18), (4.19) becomes

Joo  _ _ 8ca? 4¢(R? — 7r*) | 16ex*p(r)(R* — r?) | 4dea?
e R A
, (R 2)2 PR — 1) T
x f'(g)ep(r) [2 o) ]
S dt
10( ) FOR

Summing over all z, and using (4.11) it reduces to
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49 < 40{% - 77:2—(1@ -2 4x)} _ 16(R* — r)er'p(r),

o PO = R
(4.20)  2e(R — ) {27«215@”) +np(r) _ 20 g x)} .
B p(r) p(r)

We now consider the following cases:

Case 1. Choose p(r) such that p(r)/p(r)(2r*p(r)/p(r)) —n/(1+\)) =0.
(i) If p=0 or p = a where « is an arbitrary positive constant
then (4.20) becomes

49 -2
(4.21) Wgélc{n rn — 2 ).

If, 4 < n — 2 it follows that 4g < 4necaf(g) and if C is given by
(4.15), we have

(4.22) dg9 < af(g) .

If A > n — 2 the right hand of (4.21) attains maximum for R = r
and the value of (4.16) for C again leads to (4.22). Since §(0) =0
and increases to « as r-—» R the proof of (4.12) will follow from
Osserman’s lemma [8].

REMARK. If a =1 the left hand inequality (9) of Theorem 1 of
Nehari [6] becomes a particular case of this result.

(ii) If 2r(r)/p(r) — (n/l + A) = 0 or p = +"'**8 where S is an
arbitrary positive constant then (4.20) gives

[N PO S S
B ) §4cln oz (n — 2 4)»)}.

If C is given by the values (4.15) and (4.16), we have
dg = Br"*flg) .
Now the proof of (4.13) will follow from Osserman’s lemma [8].
Case 1I. Assume p(r) to satisfy
2rp(r)(pr) + np(r)p(r) — 2r%(1 + Np(r) = 0

or p(r) = vr~** where v is an arbitrary positive constant. Then
(4.20) reduces to

49 <4c{n—l"2_n—2—4x}
v flg) T 2 i

Now if C takes the values (4.15) and (4.16) respectively, we have
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dg = yr"=*f(g)

and (4.14) is proved with the help of Osserman’s lemma [8].
We derive the following corollary:

COROLLARY 4.2. If w satisfies the equation
Aw = Brri+igituln >0, n=2)

where £ 18 an arbitrary constant, then

)\le 2
(4.23) w0 = <0(X),3T"/1+1(R2 — 7-2)2> ’

Also the behaviour of w s such that

m(logw>g nh i
logl/r/ = 1 4+ )

r—0

Indeed, setting f(¢t) = ¢'*“/» in (4.13), we have (4.23), where w = u.
Taking logarithm on both sides, we have, from (4.23)

AR? n n
Be(\W)(RE — r?)? 1+ r

log w < Mlog

Dividing by log 1/ and letting » — 0

m(logw>§ nn )
log 1/r 1+

r—0

A similar result could also be proved about the solutions of the
equation
dw = yrelgrHein

The next theorem concerns the lower bounds for the maximum
of the solutions of (4.1).

THEOREM 4.3. Let f(w) satisfy the conditions of theorem 4.2
with (4.11) replaced by

< dt
4.11) ! —— =1+, A>0).
(4.11) ref =1 (> 0)
1f
G o) = Sup (@)

where w(Q) ranges over all functions of class C* in D, and which
satisfy (4.1) then
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(4.24) S‘” dt < E(R* — %)
o f(¢) 2n
if p(r) = £ where £ is an arbitrary positive constant,
= dt _ ormii (R — g A )
4.25 S < 2, A >1,
(4.25) VIl = on <"> Sy
provided p(r) = or"—**-1 (6 > 0).
(4.26) 5” dt o pr R — ) (n = 3)
v f(8) 6
n case p(r) = pr'* (¢ > 0). However, in 2-dimensional case
(4.27) S‘” dt < vrY(R: — 7%)
v f(t) 4
where p(r) = vrl, v and 1 being arbitrary positive constants.
Proof. Consider the function A = h(r) defined by
: ot 1 (= dt
(4.28) o - S (0 >R >"r)
Bn P AW ¢

where p(r) is positive, monotonically increasing and twice continuously
differentiable. Clearly, & belongs to the class C?in D,. Differentiating
(5.28) twice with respect to & = x, we obtain

_m o_ h, . 2xp(r) i‘” dt
v e B @
1 h,., 4dach,p(r) hif'(h) 29 dt
4.29 —_ = - —
A2 == TRem T Fpn T pnrm P A NG}

_ 4xp(r) g“ dt Bxp(r) S‘” dt )
p(r) Jn f(t) pi(r) Ji f(2)

Using (4.29) and summing over all z,, we obtain

_4h 47'20(')) =1 P 17
=1 L _1
e - iy TP [ ==L -

_2¢p+ni)x o — 7t
D n

Since f” > 0 we obtain with the help of (4.11)

wan o1 b Pormb B 420
Fp) =" mp " »

Now we consider the following cases.
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Case I. Choose p such that » =0 or, p = ¥ where £ is an
arbitrary positive constant. Hence (4.30) reduces to

(4.31) 4dh = £f(h) .
Consequently (G)' implies

hir) = v(r).
Since we can take p arbitrarily close to R, we have

S“ dt _ &R — 1)
o ft) T 2m

Case II. Assume p(r) to be such that
nPp(r)p(r) + 20°p(r)p(r) — 2nr*pi(r) = 0

or p = 0r"**' where 0 is an arbitrary positive constant, n > 2,
A > 1 and such that » < (47n/1 + \). Hence (4.30) becomes

_ 21— 2\, m—2iim
h = {1 B2 }57‘ AR

Using (G)' and arguing as above, we obtain

Soo dt é a,r.n—ZIZ—I(RZ _ 7,.2) .
v f(t) — 2n

Case III. Choose p to satisfy
np(r)p(r) + 20r°p(r)p(r) — (1 + M)2r*p*(r) = 0

or p = pr'* where p is an arbitrary positive constant and n = 3.
Hence (4.30) gives

4h = i?f_rmf(h) )

Using the same argument as above, we have

r dt _ prii(R — o)
- f) 6

Case IV. Assume p to be such that 2r*p + npp — 2r*p* = 0 or
p = vr' where v and [l are arbitrary positive constants. Consequently

4h = v(1 — Irf(h) .

And, as above we conclude
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S“’ dit < vri(R* — 7%) )
o f0) 4

This completes the proof of the theorem.
We derive the following corollaries:

COROLLARY 4.3. In case of a function @ regular in D, and
which satisfies the differential equation

N = Spn—2li—t {1 _2Mn —2) }wwm
n(\n + 1)

where 6 s an arbitrary positive constant, n > 2, v > 1 and such
that n < (4N/1 + \) we have

<5¢n—m_217(%z — Tz)y so.

And also the behaviour of w is such that

H—m<loga)>2xn——2 .
logl/r/ — Xx-—1

r—0

Indeed, setting f(¢) = ¢'*» in (4.25), where v = w, we obtain

Wt > 2nN
= 87.n_2/1—1(R2 - ,',.2) ‘

Taking logarithm on both sides, we get

2n\ +>\7@,—210g_1_.

o(R — r?) r—1 r

log @ = N log

Dividing by log 1/r and taking the limit

E—ﬂ(logw)zxn—z )
logl/y/ — AN—1

r—0

COROLLARY 4.4. If 4 = 0*/ox? + 0*/ox: + 0*/ox: is a 3-dimensional
Laplace operator and o satisfies the equation

Aw = L apirgrain
3

we have

@

[\

(;ﬁmy



BOUNDS FOR THE SOLUTIONS OF A CERTAIN CLASS 137

and
7+— [ log w
1 = }>1
rl—r.? <]og 1/7'> -

COROLLARY 4.5. If the function @ tis regular in D, and satisfies
the differential equation

4o = 5(1 — Dyriw+u <A U 5_2>
0 o0

we have

(i) =
ort(R* — %)
and also the behaviour of w is such that

Hﬁ(%‘;g—l%)g In.

r—0

The proof of Corollaries 4.4 and 4.5 is exactly the same as that of 4.3.
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