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The subspaces of the second order Grassmann product
space consisting of products of a fixed irreducible length %
and zero are interesting not only for their own sake and their
usefulness when determining the structure of linear transfor-
mations on the product space into itself which preserve the
irreducible length %, but also because they are isomorphic to
subspaces of skew-symmetric matrices of fixed rank 2k, The
structure of these subspaces and the corresponding preservers
are known for k=1, when the underlying field F' is algebrai-
cally closed, This paper gives a complete characterization of
these subspaces when k =2 and F is algebraically clcsed.
When F' is not algebraically clesed, these subspaces can be
different.

Let % be an m-dimensional vector space over an algebraically
closed field F. Let A®*Z denote the (g)-dimensional space spanned

by all Grassmann products z, A %, x;€ F. A vector fe A*Z is said
to have vrreducible length k if it can be written as a sum of %, and
not less than k, nonzero pure (decomposable) products in A*Z . Let
% denote the set of all vectors of irreducible length £ in A®* %/, and
fe & if and only if <~(f) = k. A subspace of A*% whose nonzero
members are in & is called an & — k subspace.

An ¥ — 2 subspace H is a (1, 1)-type subspace if there exist fixed
nonzero vectors « # y such that each nonzero fe H can be written
f=xAwx; + YAy, A basis of a (1, 1)-type subspace is called a (1, 1)
basis. When dim % = 4, every <°-2 subspace has dimension one
(4], Th. 10).

It is shown here that (i) for dim Z¥ = n = 5, there always exists
an &~ — 2 subspace of (1, 1)-type and dimension two; (ii) the 2-dimen-
sional & — 2 subspaces are of (1, 1)-type; (iii) every & — 2 subspace
of dimension at least four is of (1, 1)-type; (iv) the &~ — 2 subspaces
have dimension at most (» — 3) when » = 6; and this maximum dimen-
sion is attained. Also the 3-dimensional <&~ — 2 subspaces are charact-
erized, and these are the most varied.

From [4], Theorem 5, each fe <& can be uniquely associated
with a 2k-dimensional subspace [f] of . The pair {fi, f;} is said to
be a P,-pair in &7, if [ fi] + [f.] has dimension m; and the set {f},-- -, fi}
in & is pairwise-P,, if each pair is a P,-pair, for 7 # j.

THEOREM 1. Let dimZ =n = 5. Then there always exists a
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1, 1)-type ¥ — 2 subspace of dimension two.

Proof. For n =5,u, -+, u;, independent in %, the subspace
Fuy Ay + s A\ gy Uy A\ s + Uy AUy is a (1, 1)-type & —2 subspace
of dimension two. For n = 6, u,, ---, 4, independent in %, the sub-
space {u; A Uy + Uz A\ Uy, Uy A Us + Uz A Ugy 18 & (1, 1)-type & — 2 sub-
space of dimension two.

THEOREM 2. FEvery 2-dimensional & — 2 subspace is a (1, 1)-
type subspace.

The theorem follows from the following Lemmas 1 to 4.

LEMMA 1. Let f, and f, be a Prpair in 5, a,b be monzero in
F. Then ZF(af, + bf,) = 3.

Proof. Let [f]N[f] =<x>. By Lemma 9 of [4], we can choose
a basis {x,, ---, x,} of [fi] such that f, = x, A2, + 2, A2, and a basis
{o,,%5,%,a;} such that f, = w, A2, + @A, with [f]] + [fi] = &yye e 2.
Then z = af, + bf, = . A(ax, + bx;) + ax, A2, + dx A2, and L (2) = 3
by Theorem 7 of [4].

LEMMA 2. Let f,, f: be a basis of a 2-dimensional & — 2 sub-
space. Then {f, f.} ts a P,-pair where k is either 5 or 6.

Proof. Each of [f] and [f.] has dimension four. It is easy to
see that & cannot be 4 (Theorem 10 of [4]). By Lemma 1, we conclude
k+17. If k =8, Theorem 6 of [4] implies that <~ (f, + f,) = 4. Hence
k is either 5 or 6.

DEFINITION. f, f,€ %, can be expressed in (1, 1)-form if {f,, f3}
have representations f; = Aw; + y Av;, ¢ =1,2 and <z, y> is a fixed
2-dimensional subspace of Z/.

LEMMA 3. Let {f,, f.} be a Pypair and a basts for an & — 2
subspace. Then {f,, f.} have representations

fi=YANu + U Ay,
Joe=Ys N Uy + U A\ Uy,

where {Uy, Uy, sy Yy Ys} 1S some basis of [fi] + [fa].

Proof. Let 7z, =[f.]1N[f.]. By Lemma 9 of [4], there are repre-
sentations
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fi=a, Av+ 1A,

fz =L, AW, + W, \ W, ,
where v, v;, v5) = W, Wy, Wy = %, If v, w, are dependent then
some combination of f, and f, has irreducible length < 1. Hence they
are independent. Moreover <v,, w,> N <V, vy and v, w ) N Wy, Wy
are both nonnull, and hence, without loss of generality, both v, and
w, are in {v, w,>. Thus », = av, + bw, and w, = cv, + dw,. Clearly
b+#0,c+#0. Finally

Wy = pv, + qw, + rv, r #= 0.

Setting y, = br~'c™' (@, — avy), Y5 = ©, — dw; + cqu, u, = b7'rev, U, = Wy,
u; = bv,, we obtain the desired representations.

COROLLARY 1. Let {f,, fi} be a Py-pair and {f,, [,y a 2-dimensional
¥ — 2 subspace. Then {f, f.} can be expressed in (1, 1)-form.

LEMMA 4. Let {f,, fa} be a Pypair and {f, f,y a 2-dimensional
# — 2 subspace. Then {f, f;} can be expressed in (1, 1)-form.

Proof. By Lemma 9 of [4], there are representations
fi=x ANu+vAw, fZZxL/\u’—*—v’/\w,’
where <z, C [fi] N [f:] and <u, v, w), <w', v/, w’)> are contained in

(IA] + L] —<&p)

If <v, w) N <V, w) = 0, some linear combination of f,, f, has irreducible
length 3. If <{v, w) = <¥', w) some linear combination of f,, f, has
irreducible length < 1. The result follows.

Lemma 2 implies the following lemma.

LEMMA 5. Let H be an ¥ — 2 subspace. Let {f,, +++, fi} be an
independent subset of H. Then

(i) 3z[filnlfill=z2 for 1=i<j=k;

(ii) dim 32 [fi] < dim 3%, [fi] < dim 332 [fi] + 2.

Corollary 1 implies:

LEMMA 6. Let {f,, f2 f3} be pairwise-Py; and generate a 3-dimen-
stonal & — 2 subspace. Then {f, fs f3} s a (1, 1) basis for {f, fo fo)
if [flDLAlN L)
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1. dim % = 5. It is not difficult to see that when dim Z =5,
the basis of any & — 2 subspace must consist of pairwise-P, vectors.

THEOREM 3. Let dim%Z =5, H an & — 2 subspace. Let {f,,
<o+, 3} be independent in H. Then k < 3.

Proof. Let {u, +--, u;} be a basis of Z. Then each f;,1 <1 <k,
has the form f, = > alu; Aui(l <1 <j <5),a;€F. (*) Consider the
veetor f = S5, Bifi, Bi€ F not all zero. Now £ (2) <1 if k= 4 for
some {B;} not all zero since the following is true. f= 3 B.f; =
>0 (0, T, A\ Ui (1 = 1, < %, = 5) where p(k,u), ko) = sgn op(k, k), o
a permutation of {1,2}, and {k;} are arbitrary integers 1 <k, <5.
Thus, using (*), it follows that {p(i, %,)} are linear homogeneous func-
tions of {8, -+, B:}. Then the quadratic p-relations

%(—1)”]0(?:1, R ir——ly j,u)p(joy D) j/.t—u j#+1, cc ey .77‘) =0

for all sequences (%, **, %), (Jo» * * *, J,) of integers taken from {1, - - ., n}
define (for n = 5, » = 2 in this case) five nontrivial equations, which
are in fact quadratic homogeneous equations in the indeterminates g,
e+ee, B, in F. Moreover, of these five, exactly three are independent
(see [3], pp. 289, 312). Hence, if k& = 4, then there exists a nontrivial
solution for the five equations (see [6], chapter 11). For these values
of B, -+, B, (not all zero), & (f) =< 1. Hence k < 4. The following
three vectors generate an & — 2 subspace of dimension three:

f1=%4/\%1+u3/\u2,
f2:u5/\u2+u3/\ul,
So= (s + W) Aty + Uy AUy

The following theorem is true for all n.

THEOREM 4. Let dim % = n. Let {f, --+,fi} be a (1,1) basis
for an ¥ — 2 subspace. Then k <n — 3.

Moreover, when n =5, there always exists a (1, 1)-type & — 2
subspace of dimension (n — 3).

Proof. Suppose k = n — 2. Each f; can be written f; = u, A y; +
Uy N2y 1 ST <0 — 2, where {uy, Uy, Yy, ***y Yz R1y * * *1 200y & 7. Now
Uy, Ugy Yy =+ Yo} must be independent for, if not, some linear combi-
nation of {f;} has irreducible length <1. Hence Z =<u,, Us, ¥y, * * *s Yo+
Thus z; = D ay; + B, L7 =n— 2. If B; #0, write

fi=uw A\ WY; — Bjuy) + u; A (Z;: a“-%-) .
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Hence, without loss of generality, we can assume {z;} is dependent on
{y;}. Using a similar argument, {y;} is dependent on {z;}. Hence
Yy oty Ynsy = iy *++, Za_op. Hence, for some {a;} e F, not all zero,
we have >y, = A > = faz; =y for some 0N e F; and f= >t f;
has irreducible length < 1. Hence k£ < n — 8.

Now let f; = w, Ao + Uy A ;s for ¢=1, -+, (n — 3), where
Uy +y U,y = 7. Then {f;} generate an <& — 2 subspace of dimen-
sion (n — 3).

COROLLARY 2. Let dim% =5, H an & — 2 subspace of (1, 1)-
type. Then, if dim H > 1,dim H = 2.

We pause here to introduce some notation.

DEFINITION 1. For subsets S, 7" of %/, [S; T] =<{SU T) —<T>.
In the case where S = {z, ---,2,} and T = {x,,,, -+, @}, We use the
convention [S; T'] = [, ++-, @,; ®,4y, -+ +, ¥;]. Note that in this case if
yel[S; T], then y = >\f, au;, a; € F, and at least one of «y, -+, a, is
nonzero.

DEFINITION 2. For subsets S, T of Z,SAT ={xAy:xeS and
ye T}. In the case where S is the singleton {x}, we shall write SAT
as ¢ AT. Similarly for T. Also, if S is the space {x,, «--, ¢,>, then
we shall regard S as a set and write SAT as [x, «++, 2,] AT. Simi-
larly for T.

The three-dimensional & — 2 subspace when dim % = 5. In this
context, a basis {f}, f., fi} of an & — 2 subspace H is necessarily
pairwise P;. It is not a (i, 1) basis. However, either there exists a
three-dimensional subspace %/, of % contained in each [f;], or there
exists a exists a five-dimensional subspace 27~ < % which contains
each [f;] (see [1], p. 14). In fact, %7~ = Z/. Moreover, since dim Z = 5,
dim[f,] N[f] = 38, and dim [f;] = 4, then dim N, [f;] = 2. Consequ-
ently this intersection has dimension two or three.

THEOREM 5. Let dim % = 5. Let {f,, f., s} be a basis for an
# — 2 subspace H such that [fi]lD %, t=1,2,3, where Z, is a
three-dimenstonal subspace of 7. Then Z has a basis {U,, Uy, Usy T4y T}
such that there are representations
fi=a, AU + U, A s,
o= AUy + U, AUy,
fs=UNUs + u Ay,

where Y € [ Uy, U] N [T Ty Uy, U]
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Proof. 7 has a basis {w,, w,, w;, y,, ys} such that 7, = {w,, w,, w;)
and there are representations f, =y, Aw, + W, AWs, fo=Ys AW, + W, A\ W,
(see Lemma 3). Now there exists ¥y’ e[f;] such that % ¢ %, and
Y € [Ys Ys; Wy, We, ws]. Since {f, f5, f3} is pairwise-P;, it is easy to see
Y €[y s, Wy, Wy, W] N [Us; Ysy Wi, W, ws]. Hence f; has a representation

L=y ANu+vAw % =<u,v, w,

(see [4], Lemma 9). Now if ue<w,, w,y, it is possible to find repre-
sentations of f,, f3, f;: such that they form a (1, 1) basis for H. This
contradicts Corollary 2. Hence u ¢<{w,, w,), but we[w,; w, w,]. In
fact, without loss of generality, we can take u = w, + cw, + ¢'w,.

Now <w,, w)y, {w,, uy, {v, wy intersect pairwise in dimension at least
one. Also u ¢ <w, w). Therefore we may suppose v € [w,; u], w € [w,; u].
We set

v = qw, + au, w = bw, + bu .

Then
fi=W + abw, — ddw) ANu + yw, Aw,, 0 = ve F .
Let
=,
W, = O Uy, W, = AUy, U = AUy .
Then

Ji= W — cw) ANa™u + u, \ Uy,
Jo=Ys — CwWYNa u, + u A Us
fi=oAau, + U, Au, .

We have the result on setting x, = a~'(y, — cwy), ; = a'(y; — ¢'w,),
Yy = ax, and noting that y e [x,; x5, U, u,] N [@5; X4y Uy, U]

THEOREM 6. Let dim % = 5. Let {f, f, fs} be a basis for an
& — 2 subspace H such that dim i, [f:] = 2. Then Z has a basts
{w,, Uy, Usy, X4y 5} such that fi, fo 5 have representations given by either
(i) or (ii) below.

(1) fi= AU + UAUs, fo = TAU + WAU, [5 = UNY + UsAY,
Y, Y € (@ T3 Uy Uy W], w € iy, U,

(i) fufeastn (). With ue {u,uy, U € Uy, Us, f5 = TUAU +
YNY's Yy Y € [y Tp Uy U, U], 0 = Y EF.

Proof. The proof involves a suitable choice of a basis of Z, as
in the proof of Theorem 5, and the use of the following lemma.

LEMMA 7. Let fe &5 and {u,, u,y any two-dimensional subspace
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of [f1. Then either

(i) there exist v, we [f] such that f = yu,Au, + vAw,0 #=veF,
or (ii) there exist v', w' e|[f] such that f=u ANV + u, Aw'.

Proof. Let {u,, ---, u} be any basis of [f]. By Lemma 9 of [4],
f has a representation f = u,Au + v Aw, where {u, v, w> = {u,, us;, U
If u Au,Af =0, then {u,, u,) N<{v, w> # 0, and it is easy to see
u, € v, wy since u, ¢ {u, v, wy. If u, Au, A f # 0, then {u,, uy, v, w) =
[7], and % = au, + bu, + cv + dw with b 0. Then f = bu, A u, +
[u, A (¢v + dw) + v Aw]. By Corollary 8 of [4] and since <~ (f) = 2,
the term in square brackets has irreducible length one.

We can in fact replace the basis {f, f;, f;} in Theorem 3 by the

basis {f, + fo fo f5}. Then [f, + £l N [f.] N [f] has dimension two.
We obtain:

THEOREM 7. Let dim Zz = 5, H an ¥ — 2 subspace of dimension
three. Then H has a basis which is either of type (1) or type (ii) in
Theorem 6.

Examples of such bases are the following:

EXAMPLE 1. fi = @ AU + Uy AUy fo = Ty AUy + Uy A\ Us
fs = U N @y + U AN Ts

EXAMPLE 2. f,, f; as in Example 1. f, = u, A (%, + u3) + @, A @s.
2. dim Z = 6.

The three-dimensional & — 2 subspaces. If H is an & — 2 sub-
space with a basis {f, f., f;} and dim Z = 6, then dim >3, [f;] =5 or 6.
The first case was discussed in §1. We show that, in the second case,
H has a basis of pairwise-P, vectors, and there are three possibilities
for such a basis.

Suppose dim >3, [f:] = 6. Now each pair in {f,, f;, fi} is either a
Ps-or a Pgpair. Thus either {f, f fi} is pairwise-P; or at least one
pair is a Pgpair. The first case is then reduced to the second.

THEOREM 8. Let H be an & — 2 subspace, and let {f,, 1 fi} be
patrwise-P;, independent in H such that dim D)}, [fi] =6. Then

Cho i) has a basis {w,, U, Us, 4, X5, T} such that there are represen-
tations

fi=x AU+ U AUy,
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fzzxa/\uz'i'ul/\u;;y
fazxﬁ/\u—l_v/\ugy
<u7 v> = <u1y u’2>y U/e<u1>, ue<u2> .

Proof. There exists a three-dimensional subspace %/, of Z con-
tained in each [fi] (see [1], p. 14). The proof is similar to that of
Theorem 5. We choose a basis {u,, u,, vs, ¥4, ¥s, Ys} of Diio, [fi] in order
to obtain representations f, = y, A, + Uy A Vs fo = Ys A Up + U A Vs,
Fo =Y AW, + Wy Aws, and <w,, Wy, wey = Uy, sy Us) = Z,. Without
loss of generality, we can assume w, € {u,, u,». Then w, € {u,, u,), for,
if not, <u,, u,, w,» = %, and (f, + f. + f;) has irreducible length 3 (see
[4], Th. 7). Moreover u ¢<u,> and u ¢ {u,> (see proof of Lemma 3).
Thus <w,, w,y = {u,, u,y and w, = \M(v; + %) for some 0 = rne F and
17/€<u1, u2>- Then f, = yiAu, + WA (Vs + W), fo=Ys AUy + U, N\ (V; + %),
and f; = ys A w, + Mw, A (v; + %). The appropriate choice of new basis
vectors gives the required representations.

COROLLARY 3. Let H be an ¥ — 2 subspace, and let {f, f f3}
be pairwise-P;, independent in H such that dim >3, [f;]] = 6. Then

{fis fos f3} 15 @ (1, 1) basis for {fi, fo fo-
Proof. Choose a suitable representation of f;.

LEMMA 8. Let {f, f2 f3} be a (1,1) basis of an ¥ — 2 subspace
satisfying (i) dim 355, [fi] = 6, (i) {f,, f2} is a Pepair. Then {f, fi}
can be extended to a (1,1) basis of pairwise-P,; vectors of {fi, fo fip-

Proof. We choose a basis {u,, u,, @5, -+, 2} of >_, [f;] so that
Fi= U AT+ Uy A @y o = U N\ X5 + Uy N\ X
(Lemma 4). Also f=u, Ay + u, ANy, and we can take
Y, YD Tty Xy + vy T

([4], Lemma 9). Let y =u + >\ a2, v =« + >3, B:x; wWhere
{u, w'} e<u,y. We can choose A, pz€ F' such that

a; + N« Oy + [ &
Bs B, Bs B

are both nonzero. Then g, = (\f, + pf, + f3) extends {f,, .} to a basis
of <f1y Jes f3> and [93] n <903, m4> =0, [gs] n <905, x6> =0.

In Lemma 8, we can in fact take

and
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fl =UANT + U N,
Je=u Nos + u, A%,
f3 :ul/\y+ uz/\y’y <?/, y’>C<’U/2, L3y "'7w6>

and does not intersect each [f], 7 # 3.

THEOREM 9. Let H be an ¥ — 2 subspace. Let {f,, f fs} be
patrwise-P;, independent in H such that dim 33, [fi] = 6. Then
{fi for S has a (1, 1) basis of pairwise-P, vectors.

Proof. Using the representations of fi,f: f; obtained in Theorem 8
and Corollary 3, we take g, = (f, + fi). Then {g,, f3, f3} is a (1, 1) basis
{9, f:} a Pg-pair, and [g,] N [f.] N [fs] = <w,, w.p. The result follows by
Lemma 8.

COROLLARY 4. Let {f,, f2 fo} bea (1, 1) basis for an & — 2 sub-
space such that 33 [f:] = 6. Then there exist a (1,1) basis of pair-
wise-Py vectors for {fi, fo foy-

THEOREM 10. Let H be an ¥ — 2 subspace, dim H = 3. Let

{fs for [} be independent in H such that (i) dim S, [f:] = 6, (ii)
2 [fil = 0. Then {f., fa f3} are pairwise-Ps and for any basts {u,, u,}
Of [fl] n [fz]y (qu [fz]) has a basis {uu Uy Tgy ***y xs} such that {fufzy fa}
have representations f, = U, A%y + Uy ALy fo = U A\ L5 + Uy N\ By [ =
TINW, + BNAW, = AV, + T A Vay Wy, Wop = By, Ty KV, Vo) = LTy, Ty

Proof. If {f, fs fs} were not pairwise-P;, we would have a con-
tradiction of (ii). Since {f}, f,} is a Ps-pair, the choice of representa-
tions of f}, f, is immediate (Lemma 4). Let

[f3] = <&f, @i, 2, 250, @5 € [@55 1y, Us,y |, @ € [@45 U,y %]

It is not difficult to show we can represent f, = i A w, + x; A w,, where
wy, w,, )y = L2, 2, 2., and thus {w,, w.} € [z, z,; «i], and f, = u, A @3 +
4, A @, (using Lemma 9 of [4] and proof of Lemma 4).

In a similar fashion, without altering u, or u,, we can choose
@} € [@5; wy, s, 4 € [065 Uy, @], <u, ) = {24y 2

so that f, = u, A @) + u, A @h, fo = @ A v, + 25 A v,, Where {v,, v,, e =
Lat, @, wiy.  Thus {v, v,} € [}, 2}; «f]. From above, f; is also o A w, +
L A\ w,, and {w,, w,} € [x4, x5 xi]. With respect to the independent set
{# A }}, the coefficient of «; A is zero in the second expression
obtained for f,, and the coefficient of x, A x; is zero in the first. It
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follows that neither term appears in f;. We have the result on placing
x; for xf, 7 =3, -+, 6.

LEMMA 9. Let H be an &~ — 2 subspace. Let {f., f, fs} be in-
dependent in H satisfying

(i) dim 3%, [fi] =6,

(ii) {f, fi} s a Pepair,

(iii) dim N, [fi] = L
Then there exists g,€<{fi, fo fop such that {f., f: g5} is a basis of
patrwise-P; vectors for {fi, fi foy and Ni-, [fi] = [g:] N [fi] N [f]

Proof. There are representations f, = U, A% + U A%y, fo = U, N\ T5 +
U A\ %, and D30 [fi] = <u'1: WUsgy Tgy ** %y x6>' Let Ni-, [fil = <u>' Then
u € {u;, u,p. Without loss of generality, we can take v = u,. By Lemma 9
of [4], fi=u Aw + W Av,{w, W, > Uy, Tsy + o, Tep.  If {fiy for [3}
are pairwise-P;, we have the result.

Case 1. Suppose {f, f3} is a Pypair and {f,, f3} is a P;-pair. Then
we can take f; = u, Aw + ¢, Av (use Lemma 6 and (iii)), where

<w7 Vyy U’> - <u2r Lgy =y x6> .
Let [l N[fi] = <wy, v, ¥">. Then {y, y'} € [x;, 6 u]. Therefore
Sfi= U AW+ 2, AV, we @, T Uy, @], V' €[5, T U]

Let v = aw; + bxg + cu,. Choose v % 0 such that v +¢+# 0. Let
9; = fs + 7vfi. Then {g,, fi} and {f., g,} are P,-pairs.

Case 2. Suppose {fi, f3}, {f2 J5} are both P;-pairs. This and (iii)
imply dim ([f] N [fa]) + (/] 0 [f:]) = 5, which exceeds the dimension
of [f:]. Hence this case is not possible.

LeMMA 10. If fe &5 and f e x, N\[X, &5 T + [ ] A [ @] where
[f] =<z ooy @, then fem Am] + [@4 @, 3] A [ 24, @]

Proof. Apply Lemma 7 to {x,, x,> and notice that the coefficient
of x, A\ x, is nonzero in f.

THEOREM 11. Let H be an < — 2 subspace, dim H = 3. Let
{fs, for [} be pairwise-P; and independent in H satisfying

(1) dim X%, [fi] =6,

(ii) dim N [fi] = 1.
Then for {u,y = Ni=.[f:] and any vector u, such that {u, u,y = [f]N[f]
there exists a basis {uy, Uy 5, + =+, T} such that f, = u, A2 + U, A\ @y
Li= W AT+ U ATy fo=UNY + T, NT, wWhere ye(uz, Lgy =02y x6>’
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Y& lu, & T, Y& [fil, © =1,2. Furthermore, there exists g, such
that {fy, fo 9p = {fus fo fop and g5 = U, AUy + v A w, v € [T uy, Uy,
w € [Xg; Uy, ] aNA g5 = VN W + Y, N\ T, 0 = YEF, ¥ € [y 2, ), W' €
[ws; @4y 2]

Proof. The proof involves choosing a suitable basis of 3., [fi]
and the use of Lemma 6 and 7. To obtain the form of g,, we use
Lemma 10.

LEMMA 11. Let H be an &~ — 2 subspace. Let {f,, f: f3} be in-
dependent in H such that

(i) dim 3%, [fi] = 6,

(ii) {fy, fi} s a Pppair,

(iii) dim N, [fi] = 2;
then {f.,, f.} can be extended to a basis of pairwise-P, wvectors for

o for Fe

Proof. By a suitable choice of basis vectors for >}, [f:], and the
application of Lemma 7, we have two possible cases. One case implies
{fy, fo f3} is a (1, 1) basis and the result follows by Lemma 8. This
case is when either {f, fi} or {f,, fi} is a Pspair. Thus, the other
possible case is when both {f,, fi} and {f,, f;} are Ps-pairs. Then f, =
U N\Ts + U ATy, o = U ATy + U AT With D2, [fi] = <uy, Uy, @5, « -+, Te).
By Lemma 7, f, is either w, Av + u, Aw or u, Au, + v Aw'. The
first case implies {fi, fs f3} is a(l, 1) basis and Lemma 8 applies. In
the second case, we can take v e[f], w' €[f.]; i.e., v €[xs, 2, uy, u,],
w' € [xs T Uy, u,]. In fact, we can take ' e[ 2, u, u,], and v =
%, + au, + bu, + cx,. Now w' = dxs; + a’'u, + b'u, + ¢’x,. We then show
¢ — ¢d = 0, by considering the determinant of (a;;), where a;; is defined
as follows. Let z=f, + f. + f;.. We can express

2 =W, \ W, + Wy /\ W, + W5\ Wy .

For ¢ =1, 2, a;; is the coefficient of w; in w;. For ¢ =38, ---, 6, a;; is
the coefficient of x; in w,;. This determinant is =+ (¢’ — ed). If it is
nonzero, ¥ (z) = 3. Hence it must equal zero. Then a suitable choice
of basis vectors of 3., [f:] will allow us to assume that ¢ =0 in 7'
and ¢/ =0 in w’. Then g, = (f; — f, + f.) will extend {f,, £} to a pair
wise-P; basis for {fi, fu f5)-

We have sufficient reason now to assert the following theorem.

THEOREM 12. Let {f,, f,, f3} generate a three-dimensional & — 2
subspace H, and dim 32 [f;] = 6. Then H has a basis of pairwise-
P, wvectors {g., 9., 9:} which either form a (1,1) basis of H or have in-
tersection (-, lg:] with dimension 0 or 1. Moreover, if {f., f} s a
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Py-pair, then this pair can be extended to a basis of pairwise-Pg vectors
of H.

ExaMPLES. H is generated by {f, f. fs} where

(1) fi=w AT+ U ATy [ = Uy N\ T + U A\ T,
Js = U N\ (U + X3 + X5) + T, N\ Ty

(ii) fi, fo as in (i), fo = U, A @, + Uy A\ %55

(iii) fl’fz as in (i)’ f3:x3/\x5+x4/\x6'

The maximal ¥ — 2 subspaces, dim Zz = 6. We shall now obtain
this main theorem:

THEOREM 13. Let H be an <& — 2 subspace and dim Z = 6.
Then dim H < 3.

We prove this theorem by a series of lemmas, which show
dim H ¥ 3, in fact, dim H = 4. We take two three-dimensional & —2
subspaces {f, fa f5 and {f,, f, f.> and show their sum is not an ¥ —2
subspace. Theorem 12 allows us to take {fi, f fs} and {f, f: fi} to
be pairwise-P,, and there are 6 cases to consider since dim Ni.,[fi] =
0,1, 2 and a similar intersection property holds for the second set.

The following results are true for any dimension n of % unless
otherwise specified.

LEMMA 12. Let H be an & — 2 subspace. Let {f,, f fi} be in-
dependent paitrwise-P, in H satisfying

(1) dim 35, [fi] = 6,

(ii) N [fi]=0.
If fie &2, independent of {fi, fs f3}, satisfying

(@) dim >, [fi] =6

(©) {fo fo fi} is pairwise-Py

(¢) dim Nizyeu [fi]l = 1,
then {f,, -++, foy 1s mot an ¥ — 2 subspace.

Proof. By Lemma 10, >3i_, [f;] has a basis {u,, %, 25, + -+, @5} such
that fi= U AT+ U ATy fo = U AN Ts + U A D, 5 =T A2+ 23 A\ 7y
{7, 2" = <&y, ). Let <u) = N2 [fi]l- Then u e <{u, u,»>. We can take
Uy = U

By Theorem 11, there exists g, € {f,, /5 fi> such that g, = Y Aw' +
Y, A%, 0 = ve F and {f,, f 95 = {f1y fa fop. Since {v/, w', 4, @5, 2, 2’}
is independent and {x, + a#/, 2} is independent for some a ¢ F, then
z = g, — af, has irreducible length 3 for some a. Hence <{f, -+, f>
is not an <¥ — 2 subspace.

Since the proofs of the lemmas involving the other cases are similar
to the proof of Lemma 8 in the sense that in each case, we exhibit
a vector of irreducible length 3 or less than 2 except in the 0-0 case,
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which we can reduce to one of the other cases, we shall simply state
the final lemma.

LEMMA 13. Let H be an & — 2 subspace. Let {f,, fs, fs} be in-
dependent in H such that dim 33 [fi] = 6. If f.e &5, independent
{fis for [} such that dim i, [f;] = 6, then {f,, ---, f> 1s not an & — 2
subspace.

We have to check one more case before we obtain Theorem 13.

LEMMA 14. Let H be an ¥ — 2 subspace. Let {f,, fs fo} be in-
dependent in H, dim 33, [fil =5. If fie &, figlfu fo fo, and
dim >}, [fi] = 6, then <f, «--, f> is not an ¥ — 2 subspace.

Proof. We note dim >, ,,[f;] = 6 and apply Lemma 13.

We have now:

LeEmMA 15. Let H be an &~ — 2 subspace. Let {f,, +--, fi} be in-
dependent in H, dim >f_, [fi] = 6. Then k < 8. Fork = 3,{f, fo I
has a basts of pairwise-P; vectors.

Theorem 13 follows from Lemma 15
3, dimZ = 7.
The three dimensional << — 2 subspaces.

THEOREM 14. Let H be an ¥ — 2 subspace of dimension = 3.
Let {f., fs f3} be independent in H such that dim >3, [fi] = 7. Then
{f1, for 3} contains a Pgpair, say {f., fi}, which can be extended to a
pairwise-P, basis {f, fr 95} of {fi, [ fop. Moreover, either this basis
s a (1, 1) basts or dim ([fi] N [fa] N [gs]) = 1; and any basis {u,, w.} of
[l N [f.] can be extended to a basis {u,, s, @3 «++, T} of [fi] + [fo] + [g3]
such that fi=UAT+ U ALy o =UNTs+ U ANLs; and g; =
Uy N\ @y + U ANV, VELUgy Ty + 00y By VE Uy, Ty, Ty, and  vE[f)] and
v¢&[fi]l tn the first case; g, = u, AN, + 2, A% in the second case.

Proof. A consideration of the various intersections and sums of
[£i], © =1, 2, 3 shows dim N, [f;] is either 1 or 2, and that there are
at least two Pg-pairs in {f}, f. f3}). In the first case this independent
set is in fact pairwise-P;. The second case implies {fi, /5, f3} isa (1, 1)
basis for {f, f: f5). If this basis is not pairwise-P;, but {f, f,} and
{fs fs} are Pgpairs, and {f,, f:} a P;-pair, we can choose a Dbasis
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{Uyy Ugy ®ay =+, 2} to give fi = U ALy + UAZy, [o = UNTy + U AT, fo =
Uy A\ Ty + Uy AV, VELUy, &5, -+, Xy. Then we can take g, = f, + f;. To
obtain the desired representations of {fi, fi, fs} in the first case, we
use an argument similar to the ones used earlier to obtain basis repre-
sentations.

The maximal <~ — 2 subspaces, dim Z = 7. We obtain the follow-
ing theorem.

THEOREM 15. Let H be an & — 2 subspace, dim 2z = 7. Then
dimH < 4. When dim H = 4, H has a (1,1) basis, three of whose
members are pairwise-P,.

The proof is contained in Lemmas 16, 17, and 18 which follow.

LEMMA 16. Let {f,, f2 f3} be a (1, 1) basis for the &¥ — 2 subspace
{fiy Jor fop, such that dim 32 [fi] = 7. If fi€ &5, independent of
{fu f2y fs} such that

(1) dim 3, [fi] =T,

(ii) <fyy oo, fo s an ¥ — 2 subspace, then {fy, ++-, foy has a
(1, 1) basis, three of whose members are pairwise-P,.

Proof. By Theorem 14, {f,, f,, f:} can be assumed to be pairwise-
P; with the representations given. Then it is easy to see that some
pair in {fu fz, fs}v say {fufz}: is such that dim Zi=1,2,4 [fw] =1, and
{fi, f2 fi} can be assumed pairwise-P,. The two cases given in Theorem
14, apply to {f., f» fi}. One case gives the desired result immediately.
We can eliminate the other case by showing the presence of a vector
in &, in {f,, -+, fo; in fact we can take the vector f, + f, + f; + afi
for some suitable 0 = a ¢ F.

LEMMA 17. Let H be an &~ — 2 subspace. Let {f,, fa f3} be in-
dependent in H,dim SV_ [fi]l = 7. If fie & fie LSy, for fo) such that

(1) dim 3L, [fil =7,

(1) <fiyy ++-, fo is an ¥ — 2 subspace,
then {fi, +++, fo> has a (1, 1) basis, three of whose members are pair-
wise-P;.

Proof. In view of Theorem 14 and Lemma 16, it is sufficient to
eliminate the case dim Ni.,[f;] = 1. We use a similar procedure as
in the proof of Lemma 16, and the representations of {f;} in Theorem 14.
We have two cases: @) Ni=ies [fil = <%1>, (o) MNi=12.6 [fil = <u2>' In
(@), <fi, -+, fo contains a vector of irreducible length one. In (b),
{fi +++, fo contains a vector or irreducible length at least three.
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In addition to these two lemmas, we note that if H is an & — 2
subspace, {fi, f f:} independent in H and (i) dim >3i.,[f;] = 6, then
{f:} can be taken to be pairwise-P, (Lemma 15) and if f,&<{f,, for fo)s
dim Z§=1 [fz] =1, then dim Zi=1,2.4 [f@] =T (Il) Z%=1 [fz] =5, and if
foelfu fo fo,dim 34 [fi] =7, then dim 3i,[fi] =7. Hence both

these cases reduce to the case considered in Lemma 17.

LEMMA 18. Let H be an &£ — 2 subspace, and {f,, -+, fi} be in-
dependent in H,dim 3, [fi]="T7. If fie &, fielfy, -+, fo, and
dim 3P, [fi] = T, then {fi, +-+.f5) 1s not an ¥ — 2 subspace.

Proof. Apply Lemma 17 to {f, ---,f} and {f, ---,f} taking
{Fus for [} pairwise-P;. Then (f,, ---, f;> has a (1, 1) basis, contradict-
ing Theorem 4.

4. The main results.

LEMMA 19. If H is an ¥ — 2 subspace and {f,, fo f3} s inde-
pendent in H,dim 33, [fi] = 8, then {f, f f3} s a (1,1), patrwise-
P, basis of {f,, fa fopy and we can represent

H=m AT+ U N2y,

fo= U N+ Uy A\ T
\ fi=U N+ Uy N\ 25
;l[f"] = Uy Uy Lay ===y T -

If fie Lo i@ fos For Fopy and fy, +++, f 1s an ¥ — 2 subspace,
thew {fi, +++, fi} s a (1, 1) basis for {fi, -+, f.

Proof. The first part is not difficult to see. Using Lemma 5 we
obtain dim [f,] N <u,, #.» = 1. This intersection will have dimension 2,
and f, forms a Pgpair with one of {f,, f3, f;} since dim [f] = 4.

Lemma 19 is extremely important as the second part states that
presence of a 3-subset {f, f;, f3} of any basis of an & — 2 subspace
H such that dim 3}, [f;] = 8 will guarantee that the basis will be a
(1, 1) basis. We know that if dim & = 8, then in any basis of H,
we can find a 3-subset {g, ¢., g} such that dim 33 [g;] = 6,7 or 8.
It is by now a more or less routine, and somewhat tedious, procedure
to show the existence of a 3-subset {f,, f;, f3} in such a basis of H for
dim Z© = 8, and then by induction for dim % = 9. We shall simply
state the main result and remark here that Theorem 4 provides the
value of the maximal dimension of a (1, 1) basis.

THEOREM 16. Let dimZ =n = 6. If Hisan & — 2 subspace,
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then dimH <n — 3. If dimH =4, then H has a (1,1) basis, and
18 hence a (1, 1)-type subspace.
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