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RINGS OF ANALYTIC FUNCTIONS

JULIANNE SOUCHEK

If F is an open Riemann surface and A(F') is the set of
all analytic functions on F, then A(F') is a ring under point-
wise addition and multiplication, This paper is concerned with
proper subrings B of A(¥) which are isomorphic images of
A(G), the ring of all analytic functions on an open Riemann
surface G, under a homomorphism ©® which maps constant
functions onto themselves, The ring K has the form {go¢:
g€ A(G), ¢ an analytic map from F into G}, and will be
denoted R4, Relations between ¢, R; and the spectrum of
Ry are given as necessary and sufficient conditions for the
existence of a Riemann surface G such that R is isomorphic
to A(G).

Open Riemann surfaces will be denoted by F and G, the rings
of all analytic functions on F and G with pointwise addition and
multiplication will be denoted by A(F) and A(G), and @ will denote
a homomorphism from A(G) into A(F') which maps constant functions
onto themselves. Let @ be such a homomorphism. In [5, pp. 272-
273] H. L. Royden shows there is an analytic mapping ¢ of F' into
@ such that @(g) = g - ¢, and that if @ is an isomorphism onto A(F)
then ¢ is a one-to-one, onto analytic mapping. If ¢ is an analytic
mapping of F' into G, then @ defined by @(g9) = gog, g€ A(G), is a
homomorphism from A(G) into A(F) which preserves constant func-
tions. When ¢ is one-to-one and onto, @ is an isomorphism.

The image of A(G) under @ is the set {gog: ge A(G), ¢ is an
analytic map of F' into G} denoted by R,. R, is a subring of A(F)
and contains the constant functions, since @(\) = A for )\ a constant
function. The following conditions are equivalent: R, properly contains
the constant functions, @ is an isomorphism, ¢ is not a constant
function. Theorems 1 and 2 give other relations between ¢ and R,.

THEOREM 1. If R, properly contains the constant functions,
then R, contains 1/f whenever feR,, f(z) = 0 on F, if and only if
é maps F onto G.

Proof. Let ¢ map F' onto G, feR,, f(¢) #0 on F. Then f =
Oh for some heA(G) and 1/he A(G) if h(y) # 0 for ye G. Suppose
h(a) = 0. Since a = ¢(2) for some ze F, 0 = h(a) = h($(2)) = Oh(z) =
f(®). This contradicts f(z) #0 on F. Thus h(a) #0 for ac@,
1/he A(G), and 1/f = @(1/h) e R,.

Suppose R, contains 1/f when feR;, f(z) 0 on F. Let acG.
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There is gec A(G) such that g(e) =0 and g(w) =0 for w=a [1,
pp. 591-592]. The function @gec R;. If @g(z) = go¢(2) = 0 for ze F,
then there is h e R, such that (®g)h) =1. There is ke A(G) such
that & = @k. Then (9g)(Pk) =1 and @(gk) =1 but @ is an iso-
morphism implies gk = 1 and g(a)k(a) = 1. This contradicts g(a) = 0.
Therefore g(¢(z)) = 0 and ¢(z) = a for some z¢ F.

A straightforward argument shows

THEOREM 2. If R, properly contains the constant functions,
then R, separates the points of F if and only if ¢ is one-to-one.

Let R be a ring of analytic functions defined on F. The spectrum
of R, 3R, is the set of nonzero homomorphisms 7 from R into the
complex numbers such that w(A) = A for A a constant function. For
2z e F the point evaluation mapping 7, = {(f, f(x)): f€ R} is a homo-
morphism from R into the complex numbers, and z,(\) = ) for » a
constant function. Therefore YR always contains the point evaluation
mappings defined on R. In [5, p. 272] H. L. Royden shows that the
spectrum of A(F') is the set of point evaluation mappings 7z, defined
on A(F), xeF. For feR let f= {(x, zf): T e XR}); 7 is a function
from R into the complex numbers. Let R denote {f: fe R}. With
pointwise addition and multiplication B is a ring containing the con-
stant functions and is isomorphic to K under f— f

For yeG, let 4, denote an element of YA(G). The mapping
P = {(y, v,): ye G} is a one-to-one function from G onto JA(G). If
R = ®(A(G)) and @ is an isomorphism, L = {(z, 7-®): tc IR} is a
one-to-one funection from XR onto XYA(G). The mapping 7w — 7@ =
¥, —y which is P~'oL defines a one-to-one correspondence between
YR and G when @ is an isomorphism.

THEOREM 3. Let R, = ®(A(GR)), @ be an isomorphism from A(G)
into A(F) which preserves constant functions. Let M be the func-
tion from SA(F) into XR, defined by M(m,) = ﬂx]%. Then M 1s
onto if and only if ¢ is onto, and M is one-to-one if and only if ¢
18 one-to-one.

Proof. The proof that M is one-to-one if and only if ¢ is one-
to-one follows from Theorem 2 and the fact that A(F') separates the
points of F.

Let we¢ 3R;. Then 7o® e JA(G) implies there is y € G such that
wo® = +,, where +,(9) = g(y) for ge A(G). There are two cases:
yed(F), yes(F). If yeo(F), then y = ¢(x) for some xe F and
7(Pg) = g(y) = 9(¢(x)) = @g(x) for every ge A(G), w(Pg) = dg(v) for
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every f = @ge R,. This implies 7 = M(x,). If y ¢ é(F'), then y # ¢(x)
for x ¢ F, and it may be shown that for every xe F there is fe R,
such that w(f) « f(x). Let xzeF. Then ¢x)cG. yecG, y#*s(x),
and A(G) separates the points of G implies there is a g € A(G) such that
9(y) # 9(¢(x)). From @(g)e R, and n(Pg) = g(y) # 9(8(x)) = Dg(x) it
follows that = = M(w,) = 7|z 5

Forme ZR,, 1@ = +, € ZA(G), and it has been shown 7 € M(ZA(F))
if and only if y < ¢(F).

From Theorem 3 and since XR; and G are in one-to-one corre-
spondence, it follows that the point evaluation maps in IR, are in
one-to-one correspondence with the points ¢(x) € ¢(F'), and the elements
of 2R, which are not point evaluation maps are in one-to-one corre-
spondence with the points in G — ¢(F").

Theorem 4 contains a necessary condition which a subring R of
A(F) must satisfy if R is to be @(A(G)), the isomorphic image of
A(G) under @ for some open Riemann surface G. The corollary to
Theorem 5 gives a set of sufficient conditions on R in order that R
be @(A(G)) when &g = gog and ¢: F'— G is an onto mapping.

Suppose F' is an open Riemann surface, pe F, f is analytic at
p and 7 is a local uniformizer which maps a neighborhood of p onto
{z: |2] < ¢} for some p >0, z(p) = 0. There is a number » > 0 such
that for='(z) = 3.2, a2 for |z| <. The multiplicity of f at p is
defined as inf {k: k£ == 0 and a; # 0}, denoted n(p; f). The multiplicity
n(p; f) of f at p does not depend on 7. If R contains functions other
than constants, m = inf {n(p; f): fe R} is defined, and =n(p; f) = m
for some fe R.

THEOREM 4. Let peF, R, contain functions other than con-
stants and let m = {inf n(p; f): fe R;}. There is a local uniformizer
T at p with the properties: 7(0) = p, for some o >0, T maps {z:
|z] < o} onto a neighborhood of p, and if fe R, for(z) = 3.2, a;(z")
for |z| < p.

The proof of Theorem 4 is based on two lemmas:

LEmMA 1. If peF, m = inf{n(p; f): feR,} and feR,, then
n(p:f) = km, where k is a positive integer.

LEmMMA 2. Given >, ¢2' convergent for |z] <p, ¢, # 0, m =0,
there is 3,2, bz convergent for |z| < o, b, = 0, such that (32, bz )" =

co T
. A
2 m G2

Lemma 1 follows from the two relations: For fe R,, f = go¢ for



236 JULIANNE SOUCHEK

some g € A(G), which implies n(p; f) = (n(p; ¢))(n(6(p); 9)), and if m =
inf {n(p; f): fe R,} then n(p; ¢) = m. Lemma 2 is proved by defining
W a subset of the natural numbers N as W ={neN:b,b, +--, b,
can be defined in such a way that the coefficients of 2* for 1 < m <
1<m+n—1of 2, 02)™ and 3,2, ¢;2° are equal} and using induc-
tion to show W = N.

Proof of Theorem 4. Let 7, be a local uniformizer about » such
that 7,(0) = p. If m = inf {n(p; f): f € R,}, thereis f,e R, and p >0
such that f,o7,(2) = 3o, c% for |z2| < p,c, # 0, and the range of
a2t contains |z| < o™

There is a power series >\, 2%, b = ¢, such that > ,.c =
Gz bz)™ for |z| < o as stated in Lemma 2. k() = 32, b7 is
defined for |z| < p, is one-to-one, and its range contains |z| < p.
Thus k~'(y) is defined for |y| < o and f,o7,0k™'(z) = (32 bi(k™'(2))))™ =
zm for |z] < p, 7,0k(0) = p. The function 7 = r7,ok™" is a local
uniformizer about p and there is f,e R, such that f,or(z) = 2™ for
|z] < p.

Let feR;, f not a constant function. Then foz(z) = 32,0
for |z| < p. Let N denote the natural numbers and define W =
{ne N: for(2) = 3\fo @p;, 2™ + 2™vh,(2), where h,(2) = 332, b,,:2" and j;
are nonnegative integers, 0 = j, <j, < --- <Jj.}.

It follows from Lemma 1 that for |[z|<p,fet(R) = D2, a7 =
@y + ;2" 4 2™1h(2), where h,(0) =0. If ke W, then for(z) =
S @ 2™+ 2 khy(2), hi(0) = 0. Since fe R,;, 2™ € R, and constants
are contained in R;, 2™*th,(z) = f(2) — Xt an; 2" € R,. If by # 0,
w(p; 2™*hy) = MGy, and  for(2) = D a,; 2™ + 2mk+th, (2), where
Rpn(®) = 2. b2t on |z|< o and jii, > Jk. If R, =0, then the
above statement is true with a,;,, =0, %, =0. By induction
W = N and for(z) = 320 @,2™ on 2] < p.

If R, a subring of A(F'), has the property that for every ac F,
fe R, for some local uniformizer z about a, fo7(2) = >, a;(z™*)" for
m(a) = inf {n(a; f): fe R}, then R has property (£). If R contains
functions other than constants and has property (§), then for ac F,
m(a) = inf {n(a; f):fe R} = 1 if R separates the points of F.

THEOREM 5. If R is a subring of A(F') which contains func-
tions other than constants and has property (&), then there is an
open Riemann surface G, an analytic mapping ¢ of F onto G, and
a separating subring S of A(G) such that S 1s tsomorphic to R
under f— fop, feS.!

Proof. Let G = {m,: pc F} where ©, = {(f, f(p)):fe R} and ¢ =
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{(p, m,): pe F'}. The topology on G will be that which makes ¢
continuous and open. If N, is an open neighborhood of pe F, then
N, ={m;:qeN,} is an open neighborhood of 7,. The set G with
this topology is a connected Hausdorfl space.

Let peF, w,eG and m = inf {n(p; f): fe R}. By the same argu-
ment used in the beginning of the proof of Theorem 4, there is a
function f,e R and a local uniformizer z about p such that z(0) = p
and f,ot(z) = 2™ for |z| < p'™ for some p >0. Then for feR,
for(z) = 3%, ai(z™) = g,(z™) for |z| < p'™, g, analytic on |z] < p.

It will be shown that o.= {(z", 7.,):|2| < p'"} is a local
uniformizer about =,. If 2" =z, then for(z) = g,(") = g;(z) =
fot(z,), for fe R implies =, = 7.,, which implies that o. is a
function. If 7., = 7., then in particular f,o7(z,) = f,°7(2,), which
implies 2" =27, and 0. is one-to-one. Since the relations z™ — 2z —
7(2) — ¢(7(2)) = 7., are open and continuous, ¢, is open and continuous.
Thus o. is a homeomorphism from {w: |w| < p} onto got({z: [z]| < p'™}) =
N, .
’ IfreW=o0,(z| <p)no.(z| <p,), there are points z, 2, such
that 7. (2,) = 7.,(2,). Then for,(2,) = fot,(z,) for every fe R, and 2" =
F(22)) = £i(z(@)) = g,,(@), s0 gy, is analytic on {w: |w| < oy}, which
contains o7 (W). This shows that 2/ = 0700 (27%) is analytic on o7 (W)
to o7 (W). The function o. is a local uniformizer of a neighborhood of
7, and G is a Riemann surface.

For feR, let f={(x,, fp):peF}, S={ffeR). Since f is
continuous and ¢ is open, f is continuous. The function f is analytic
at 7,, because if |w| < p, w = z™, then foo (w) = f(7..) = f(z(2)) =
Seoaz™) = >, a;w'.  The mapping ¢ is analytic at p, because
07 epoT(2) = 07N, () = 2™ for |z| < p'™. With pointwise addition and
multiplication, S is a ring and is isomorphic to R under the mapping
7—fop = f. The ring S separates the points of G. Since S contains
functions which are not constant and are analytic on G, G is an open
Riemann surface.

If S is to be A(G), then by Theorem 3 the mapping M(r,) =7, |,
from TA(F) to XR must be onto, since ¢ is an onto mapping of F' to
G. Thus IR may contain only point evaluation mappings and IR = G.

COROLLARY TO THEOREM 5. If R ts a subring of A(F') which
properly contains the constant functions and has property (&), if
SR contains only point evaluation mappings, and R contains all
fe A(F) such that for,(2) = .2, a:(k™) for |z| < p'™, peF, m=
inf {n(p: f): fe R}, then R = G s an open Riemann surface, and R
is isomorphic to S = A(G).

1 This result and proof are similar to one given by M. Heins for a subfield of
the field of all meromorphic functions on a Riemann surface [2, pp. 268-269].
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Proof. Everything except S = A(G) was shown in the proof of
Theorem 5. The function fe A(G) if and only if for every =, cG,
foo,p(w) = 3=, aw for |w)<p. Let feA), peF, m,eG, and
fA:ongD'. ThAen fe A(Ii’) and fe R, because for |z| < o™, for,(2) =
Fog(t,(R)) = f(T. ) = foo. (2") = 32, ai(z")'.

If R={fop:fe8S} and S separates the points of G, then R
separates the points of F if and only if ¢ is a one-to-one function.
If S separates the points of G, and S = A(G), then R may not separate
the points of F, because if it did ¢ would be a one-to-one, onto
analytic function from F to G, and R = A(F). If S == A(G) there
may be a surface H, a mapping ¢, and a separating subring T of
A(H) such that ¢, is analytic and one-to-one but not onto, and T =
A(H).

In this part of the paper it is noted that if R = @(A(G)), then
SR with the Gelfand topology is an open Riemann surface, and R
which is isomorphic to R, is the ring of all analytic functions on ZR.
Theorem 8 gives sufficient conditions on a subring R of A(F') and on
R in order that SR be an open Riemann surface and B be a ring of
analytic functions on XR. In conclusion sufficient conditions for R
to be A(ZR) are given.

If R is a ring of complex valued functions on F', then the Gelfand
topology on XR is the weakest topology on XR which makes each
element of R continuous, where R = {f: fe R}, F= {(zr, mf): mweZR}.
Let 7,e ZR, K be a finite subset of B, ¢ > 0. An open neighborhood
of 7, will be {re2R: |f(r) — fizm,)| < ¢ for feK}. If R = O(AG))
and @ is an isomorphism, then YR and XA(G) with the Gelfand
topology are homeomorphic under the mapping L(7) = 7@ from SR
onto YA(G). The mapping P(y) = +, from G onto JA(G) with the
Gelfand topology is one-to-one, onto and continuous. The mapping P
is also open. As Royden observes [4, pp. 287-288], this is a con-
sequence of a theorem of Remmert that an open Riemann surface
can be mapped one-to-one and holomorphically into C* [3, p. 118].
Thus P~'oL is a homeomorphism from YR with the Gelfand topology

onto G.

THEOREM 6. If R is a subring of A(F) such that R = O(A(G)),
and if @ 1s an tsomorphism which preserves constant functions, then
IR with the Gelfand topology is an open Riemann surface, and R is
the ring of all analytic functions on XR. Moreover R is 1.8s0morphic
to R.

Proof. The spectrum of R with the Gelfand topology is a
Hausdorff space. It is homeomorphic to G under the mapping L—'oP,



RINGS OF ANALYTIC FUNCTIONS 239

and is connected. Let n,e YR where ¢ecG, +,c3A(G), and L~'P
maps g — 9, — T,. If N, is a neighborhood of ¢ then N, = L~*>P(N,)
is a neighborhood of m,. There exists h,c A(G) which has a simple
zero at q [1, pp. 591-592]. &, is a local uniformizer on a neighbor-
hood of ¢, N, =h;'(|z| < p) for some o >0. If o, = h,ly, then
hyo07'(2) = z for |z| < p. For he A(G), ye N, My) = 32 ai(h,(y))'.
If f,, = @h, then fq is a local uniformizer on N, = L~ P(N,).
From f,(z,) = h,(y) follows f(z,) = h,oP~"oL(m,), T, € N, Wthh implies
fq is a homeomorphism of N, onto Izi <p. If =, eN N N, then
Ful@) = hy(@) = Soah, @) = Seoaifu(@)) since m,eN, or
yeN,. The function f. is a local umformlzer on N, and XR is a
Riemann surface.
The ring R is contained in A(ZR), because if f e R, T, € N,
Z—fq(ﬂy), then fof;'(z) = f(7,) = h(y) = 370 @b (W) = 2, ai( Folm,)) =
2o.a:2. The function T(g9) = 7, is an analytic map of G onto XR.
If ¢ is analytic on IR, then 6-Te A(G) and 6 e R because 0(r,) =
0oT(q) = vo(0°T) = 7,(f) for f= @(6-T). This implies § = 7. Thus
R = A(SR). Since R contains functions which are analytic and are
not constant on YR, YR is an open Riemann surface.

THEOREM 7. Let R = ®(A(GF). If 7eXR, then 7T7'(0) is a
principal maximal ideal of R, and every principal maximal ideal
of R is the kernel of Te SR. If 7#-%0) is generated by f, then f is
a local homeomorphism on a meighborhood Nz of % and if we N,
EeR, then k(r) = 32, a(f(7))'.

Proof. If #e€XR, then To® = +,€ JA(G) and 77(0) = @(y;%(0)).
The kernel of +,, M, = +;'(0), is a principal maximal ideal of A(G),
and every principal maximal ideal of A(G) is a kernel of ¢ JA(G)
[5, pp. 271-272]. If h generates M,, then ~ has a single zero and it
is a simple zero at ¢ [5]. Thus % is a homeomorphism on a neighbor-
hood of ¢, N,. If f= @h, then 7#-'(0) is the ideal generated by f. Also
7 is a uniformizer on N3 = L= P(N,), and if we N3, ke R, then
E(m) = 32, a(f(7))' as shown in the proof of Theorem 6.

LEMMA. Let S be a ring of continuous functions on X with
identity. Then X is not connected if and only if S is contained in
a ring @ of continuous functions on X, where Q =1, + I, I, I,
proper ideals of Q, I, N I, = {0}.

THEOREM 8. Let R be a subring of A(F') which properly contains
the comstant functions, and suppose R is not contained in a ring Q
of continuous functions on XR where Q = I, + I,, I,, I, proper ideals
of @, NI ={0}. If for zeXR, T7'(0) is a principal ideal of R
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generated by f and f, the function in R which corresponds to fin
R, is a homeomorphism on a meighborhood of %, and for m in this
netghborhood, ge R, mg = 3.2, a(nf), then YR is an open Riemann
surface and Risa ring of analytic functions on YR.

Proof. The spectrum of R with the Gelfand topology is a Haus-
dorff space. By the lemma YR is connected. Let 7€ XYR. There is
7 a homeomorphism of N: onto |z| < o for some o > 0. If we N,
g€ R, then §(n) =37 > ai A7) If re N,NN,= Wthenf',ofz Y Fu(m)) =
F@) = 32, afu(@)' implies Fofit is analytlc on fu(W). {(N, f):
7we YR} defines an analytic structure on YR. It is immediate that
Rc A(CR). Since R contains functions which are not constant and
are analytic on YR, ¥R is an open Riemann surface.

If {R,} is a sequence of subrings of A(F') such that R, satisfies
the conditions of Theorem 8, XR,|, = YR, R,_,C R,, then the chain
has a maximal element, {fe¢: fe A(ZR) and ¢(x) = 7,, v F}. Let
#e 3R, and 7 be a local homeomorphism at #. If R, satisfies the
conditions of Theorem 8 and contains all functions g in A(F) such
that §(7) = 32, ai(f(7)) for te N2, © and 7 elements of SR, then
R ACR), because if geRl, then there is 7 e YR, such that §o f~1
is not analytic on {2: |2| < p} which implies §¢ A(ZR)).

The author wishes to thank Professors H. B. Curtis and H. E.
Lacey for their suggestions and encouragement.
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