THE PRINCIPLE OF SUBORDINATION APPLIED TO FUNCTIONS OF SEVERAL VARIABLES

Ted Joe Suffridge
THE PRINCIPLE OF SUBORDINATION APPLIED TO FUNCTIONS OF SEVERAL VARIABLES

T. J. SÜFFRIDGE

In this paper we consider univalent maps of domains in \(\mathbb{C}^n \), where \(n \geq 2 \). Let \(P \) be a polydisk in \(\mathbb{C}^n \). We find necessary and sufficient conditions that a function \(f: P \rightarrow \mathbb{C}^n \) be univalent and map the polydisk \(P \) onto a starlike or a convex domain. We also consider maps from

\[
D_p = \{ z : |z|_p < 1 \} \subset \mathbb{C}^n
\]

\[
|z|_p = \left(|z_1|_p^p + |z_2|_p^p + \cdots + |z_n|_p^p \right)^{1/p}, \quad p \geq 1
\]

into \(\mathbb{C}^n \) and give necessary and sufficient conditions that such a map have starlike or convex image.

In [4] Matsuno has considered a similar problem for the hypersphere \(D_\mathbb{C} \subset \mathbb{C}^n \). His definition of starlikeness is different from that used in this paper, but the results show that the two definitions are equivalent. However, his definition of convex-like is not equivalent to geometrically convex.

1. Preliminary lemmas. For \((z_1, z_2, \ldots, z_n) = z \in \mathbb{C}^n \), define \(|z| = \max_{1 \leq j \leq n} |z_j| \). Let \(E_r = \{ z \in \mathbb{C}^n : |z| < r \} \) and \(E = E_1 \). Let \(\mathcal{P} \) be the class of mappings \(w: E \rightarrow \mathbb{C}^n \) which are holomorphic and which satisfy \(w(0) = 0 \), \(\Re \frac{w_j(z)}{|z_j|} \geq 0 \) when \(|z| = |z_j| > 0, (1 \leq j \leq n) \) where \(w = (w_1, w_2, \ldots, w_n) \). The following lemmas are generalizations of Theorems A and B of Robertson [5, p. 315–317].

Lemma 1. Let \(v(z; t): E \times I \rightarrow \mathbb{C}^n \) be holomorphic for each \(t \in I = [0, 1] \), \(v(z; 0) = z, v(0, t) = 0 \) and \(|v(z; t)| < 1 \) when \(z \in E \). If

\[
\lim_{t \to 0^+} \left[(z - v(z; t))/t^p \right] = w(z)
\]

exists and is holomorphic in \(E \) for some \(\rho > 0 \), then \(w \in \mathcal{P} \).

Proof. The hypothesis (2) implies that \(\lim_{t \to 0^+} v_j(z; t) = z_j \) (here \(v(z; t) = (v_1(z; t), v_2(z; t), \ldots, v_n(z; t)) \) so

\[
\frac{2z_j(z_j - v_j(z; t))}{z_j + v_j(z; t)} = \phi_j(z; t)
\]

is holomorphic for \(z \in E, z_j \neq 0 (1 \leq j \leq n) \). By Schwarz lemma, \(|v(z; t)| \leq |z| \) and hence \(\Re [\phi_j(z; t)/z_j] \geq 0 \) when \(|z| = |z_j| > 0 \). Setting \(\psi(z; t) = (\psi_1, \psi_2, \ldots, \psi_n), (z \in E, z_1z_2 \cdots z_n \neq 0) \) we observe that
\[
\lim_{t \to 0^+} \psi(z; t)/t^\rho = w(z)
\]
for these values of \(z \) and using continuity of \(w \) we conclude \(w \in \mathcal{P} \).

Lemma 2. Let \(f: E \to \mathbb{C}^n \) be holomorphic and univalent and satisfy \(f(0) = 0 \). Let \(F(z; t): E \times I \to \mathbb{C}^n \) be a holomorphic function of \(z \) for each \(t \in I = [0, 1] \), \(F(z; 0) = f(z) \), \(F(0, t) = 0 \) and suppose \(F(z; t) < f \) for each \(t \in I \) (i.e., \(F(E; t) \subset f(E) \) for each \(t \in I \)). Let \(\rho > 0 \) be such that \(\lim_{t \to 0^+} F(z; 0) - F(z; t)/t^\rho = F(z) \) exists and is holomorphic. Then \(F(z) = Jw \) where \(w \in \mathcal{P} \). Here \(F \) and \(w \) are written as column vectors and \(J \) is the complex Jacobian matrix for the mapping \(f \).

Proof. Since \(F(z; t) < f \) for each \(t \in I \), there exists \(v: E \times I \to E \) such that \(f(v(z; t)) = F(z; t) \) where \(|v(z; t)| \leq |z| \). Writing \(f \) as a column vector we have \(f(v(z; t)) = f(z) + J(v(z; t) - z) + R(v(z; t), z) \) where \(|R(\zeta, z)|/|\zeta - z| \to 0 \) as \(|\zeta - z| \to 0 \). Hence
\[
\frac{F(z; 0) - F(z; t)}{t^\rho} = J\left(\frac{z - v(z; t)}{t^\rho}\right) - \frac{R(v(z; t), z)}{t^\rho}
\]
and the lemma follows from Lemma 1.

2. Starlike and convex mappings of the polydisk.

Definition. A holomorphic mapping \(f: E \to \mathbb{C}^n \) is starlike if \(f \) is univalent, \(f(0) = 0 \) and \((1 - t)f < f \) for all \(t \in I \).

Theorem 1. Suppose \(f: E \to \mathbb{C}^n \) is starlike and that \(J \) is the complex Jacobian matrix of \(f \). There exists \(w \in \mathcal{P} \) such that \(f = Jw \) where \(f \) and \(w \) are written as column vectors.

Proof. Apply Lemma 2 with \(F(z; t) = (1 - t)f(z) \). Then
\[
f(z) = \lim_{t \to 0^+} f(z) - (1 - t)f(z) = \lim_{t \to 0^+} \frac{F(z; 0) - F(z; t)}{t}
\]
and the theorem follows from Lemma 2.

We now consider the conclusion of Theorem 1 in component form. Let \(J_j \) be the matrix obtained by replacing the \(j \)th column in \(J \) by the column vector \(f_j \), \(1 \leq j \leq n \). Then the \(j \)th component \(w_j \) of \(w \) is \(\det (J_j)/\det J \). Theorem 1 therefore says that if \(f \) is starlike then \(\Re \{ \det (J_j)/z_j \det J \} \geq 0 \) when \(|z| = |z_j| > 0 \). Also,
\[
f_j = \frac{\partial f_j}{\partial z_1}w_1 + \frac{\partial f_j}{\partial z_2}w_2 + \cdots + \frac{\partial f_j}{\partial z_n}w_n \quad 1 \leq j \leq n
\]
and equating coefficients in the power series using (3) we find
\[w_j(z) = z_j + \text{terms of total degree 2 or greater}. \]

Now suppose \(|z^{(0)}| = |z_j^{(0)}| > 0\) and let \(\alpha_k, (1 \leq k \leq n)\) be such that \(z_k^{(0)} = \alpha_k z_j^{(0)}\). Then \(|\alpha_k| \leq 1, (1 \leq k \leq n)\). Consider \(w_j(z)/z_j = u(z_j)\) where \(z\) is restricted to the set,
\[z = (\alpha_1, \alpha_2, \ldots, \alpha_n)z_j, \quad |z_j| < 1. \]

Then \(\Re u(z_j) \geq 0, 0 < |z_j| < 1\) and \(u(z_j) \rightarrow 1\) as \(z_j \rightarrow 0\). Since \(\Re u(z_j)\) is a harmonic function of \(z_j\), we conclude \(\Re u(z_j) > 0, |z_j| < 1\) and
\[
(4) \quad \Re \left[w_j(z)/z_j \right] > 0 \quad \text{when} \quad |z| = |z_j| > 0.
\]

We now prove the converse of Theorem 1.

Theorem 2. Suppose \(f: E \rightarrow \mathbb{C}^n\) is holomorphic, \(f(0) = 0, J\) is nonsingular and that
\[
(5) \quad f(z) = Jw, w \in \mathcal{H}.
\]

Then \(f\) is starlike.

Proof. Since \(\det J \neq 0\) when \(z = 0\), \(f\) is univalent in a neighborhood of 0. It is clear that \(\{r: 0 \leq r \leq 1\text{ and } f\text{ is univalent in } E_r\} = A\) is a closed subset of \([0, 1]\). We will show that \(A\) is also open and that if \(f\) is univalent in \(E_r\) then \(f(E_r)\) is starlike with respect to 0.

Let \(r > 0\) be such that \(f\) is univalent in \(E_r, (0 < r < 1)\). Let \(z\) be fixed, \(|z| \leq r\) and let \(v(z; t)\) be such that \(f(v(z; t)) = (1 - t)f(z), -\varepsilon < t < t_0\) where \(\varepsilon\) is small and positive and \(t_0 > 0\). This is possible since \(\det J \neq 0\).

Then
\[
v(z; t) = v(z; 0) + J^{-1} \cdot (-f(z)) \cdot t + g(t)
\]
\[
(6) \quad v(z; t) = z - J^{-1} \cdot J \cdot w \cdot t + g(t)
\]
by (5). Here \(|g(t)|/t \rightarrow 0\) as \(t \rightarrow 0\). Using (4), we conclude \(|v(z; t)|\) is a strictly decreasing function of \(t\). Hence each point of the ray \((1 - t)f(z), 0 < t \leq 1\) is the image of a point \(v(z; t) \in E_r\) for each \(z\) such that \(|z| \leq r\). We conclude that \(f(E_r)\) is starlike with respect to 0.

We now show \(A\) is open. Observe that \(f\) is one-to-one in the closed polydisk \(\bar{E}_r\) for if \(|z| \leq |\zeta| = r, z \neq \zeta\) and \(f(z) = f(\zeta)\) then by (6) and (4) we can conclude that for \(t\) positive and sufficiently small there are functions \(v(\zeta; t), v(z; t)\) such that \(v(\zeta; t), v(z, t) \in E_r, v(\zeta; t) \neq v(z; t)\) and
\(f(v(z; t)) = (1 - t)f(z) = (1 - t)f(\zeta) = f(v(\zeta, t)) \) which is a contradiction.

We now define a continuous nonnegative function \(\phi: E \times E \to \mathbb{R} \) (\(\mathbb{R} \) is the real numbers) such that \(\phi(z, \zeta) = 0 \) if and only if \(f(z) = f(\zeta) \), \(z \neq \zeta \). We show that \(\phi \) is positive on the closed set \(E_r \times E_r \) and hence has a positive minimum on this set. This will imply \(f \) is univalent in \(E_{r+\varepsilon} \) for some \(\varepsilon > 0 \) and hence \(A \) is open. For \(z, \zeta \in E \), define \(G(z, \zeta) = \det (a_{ij}) \) where

\[
a_{ij} = \begin{cases} f_j(z_1, z_2, \ldots, z_j, \zeta_j, \ldots, \zeta_n) - f_j(z_1, z_2, \ldots, z_{j-1}, \zeta_j, \ldots, \zeta_n), & (z_j \neq \zeta_j) \\
\frac{\partial f_j}{\partial z_j}(z_1, z_2, \ldots, z_j, \zeta_j, \ldots, \zeta_n), & (z_j = \zeta_j)
\end{cases}
\]

and \(f = (f_1, f_2, \ldots, f_n) \).

Now set \(\phi(z, \zeta) = |G(z, \zeta)| + \sum_{j=1}^{n} |f_j(z) - f_j(\zeta)| \). Then \(\phi(z, z) = |\det (J(z))| > 0 \) while

\[
\phi(z, \zeta) > 0 \quad \text{when} \quad f(z) \neq f(\zeta).
\]

If \(f(z) = f(\zeta) \) for some \(z, \zeta \in E \), \(z \neq \zeta \) then the columns of \(G(z, \zeta) \) are not linearly independent so \(G(z, \zeta) = 0 \) and \(\phi(z, \zeta) = 0 \). The proof is now complete.

Theorem 3. Suppose \(f: E \to \mathbb{C}^n \) is holomorphic, \(f(0) = 0 \) and that \(J \) is nonsingular for all \(z \in E \). Then \(f \) is a univalent map of \(E \) onto a convex domain if and only if there exist univalent mappings \(f_j \) (\(1 \leq j \leq n \)) from the unit disk in the plane onto convex domains in the plane such that \(f(z) = T(f_1(z_1), f_2(z_2) \ldots, f_n(z_n)) \) where \(T \) is a nonsingular linear transformation.

Proof. It is clear that if \(f \) satisfies the conditions given in the theorem, then \(f \) is univalent and \(f(E) \) is convex. We will prove the converse.

Suppose \(f \) is a univalent map of \(E \) onto a convex domain. Let \(A = (A_1, A_2, \ldots, A_n) \) where \(A_j \geq 0 \) (\(1 \leq j \leq n \)) and let

\[
A_t(z) = (z^1 e^{it_1}, z^2 e^{it_2}, \ldots, z^n e^{it_n})
\]

where \(-1 \leq t \leq 1 \). Then

\[
F(z; t) = 1/2[f(A_t(z)) + f(A_{-t}(z))] \quad f < f \quad 0 \leq t \leq 1
\]

and \(F(z; t) \) satisfies the hypotheses of Lemma 2 with \(\rho = 2 \). Using the same notation as in Lemma 2, we have
\[F(z) = (F_1, F_2, \ldots, F_n) \]
\[2F_j = \sum_{k=1}^{n} A_{jk} \left(z_k^2 \frac{\partial^2 f_j}{\partial z_k^2} + z_k \frac{\partial f_j}{\partial z_k} \right) \]
\[+ 2 \sum_{k=2}^{n} \sum_{l=1}^{k-1} A_{kl} z_k z_l \frac{\partial^2 f_j}{\partial z_k \partial z_l} \]

and also \(F = Jw, w \in \mathcal{O} \). Hence we find that \(w_j = \det J^{(j)}/\det J \) where \(J^{(j)} \) is obtained from \(J \) by replacing the \(j \)th column by \(F \) written as a column vector. Fix \(k, 1 \leq k \leq n \) and choose \(A_k = 1, A_l = 0, l \neq k, 1 \leq l \leq n \). Suppose \(|z| = |z_j| > 0, j \neq k \) and \(z_k = 0 \). Then \(w_j/z_j = 0 \) and since \(\text{Re}(w_j/z_j) \geq 0 \) when \(|z| = |z_j| > 0 \) we must have \(w_j \equiv 0 \). We have therefore shown that for \(1 \leq j \leq n \) and \(1 \leq k \leq n \) we have
\[z_k^2 \frac{\partial^2 f_j}{\partial z_k^2} + z_k \frac{\partial f_j}{\partial z_k} = \frac{\partial f_j}{\partial z_k} \psi_k \]

where \(\text{Re}[\psi_k(z)/z_k] \geq 0 \) when \(|z| = |z_j| > 0 \). With \(k \) as before, fix \(l, 1 \leq l \leq n, l \neq k \) and choose \(A_k = 1, A_l = \varepsilon > 0 \) and \(A_m = 0, 1 \leq m \leq n, m \neq k, l \).

Using (8) we conclude
\[w_j = \varepsilon z_k z_l G_j / \det J + O(\varepsilon) \quad (j \neq k) \]

where \(G_j \) is obtained from \(\det J \) by replacing the \(j \)th column by the column \(\partial^2 f_m/\partial z_l \partial z_k (1 \leq m \leq n) \). Hence \(\text{Re}[z_k z_l / z_j G_j / \det J] \geq 0 \) when \(|z| = |z_j| > 0 \). Since \(\text{Re}[z_k z_l / z_j G_j / \det J] = 0 \) when \(z_k z_l = 0 \) we see that \(G_j = 0 \) for each \(j, 1 \leq j \leq n \).

Since the system of equations
\[\sum_{j=1}^{n} \frac{\partial f_m}{\partial z_j} \phi_j = \frac{\partial^2 f_m}{\partial z_l \partial z_k} \]

has solution
\[\phi_j = \frac{G_j}{\det J} = 0 \]

we conclude
\[\frac{\partial^2 f_m}{\partial z_l \partial z_k} = 0 \]

where \(\phi_{j,m} \) is analytic on the unit disk in the complex plane. Using
we conclude \(\phi_{j,m} = \phi_{j,k} \) \((1 \leq m, k \leq n)\) provided the constants \(a_{j,m} \) in (9) are appropriately chosen. The theorem now follows readily from (8).

EXAMPLE 1. Let \(f: E \to C^2 \) be given by \(f(z) = (z_1 + az_2, z_2) \) where \(a \) is a complex number, \(a \neq 0 \). Clearly \(f \) is univalent. Letting \(f = Jw \), we find \(w_1 = z_1 - az_2, w_2 = z_2 \) so \(f \) is starlike provided \(|a| < 1 \). Note that Theorem 3 implies the suprising result that none of the sets \(f(E_r) \) is convex \((1 > r > 0)\).

EXAMPLE 2. Let \(f: E \to C^2 \) be given by \(f(z) = (z,g(z), z_2 g(z)) \), \(g: E \to C \) where \(g \) is holomorphic, \(0 \in g(E) \). Then \(f = Jw \) implies

\[
\frac{w_1}{z_1} = \frac{w_2}{z_2} = 1 + \left[z_1 \frac{\partial g}{\partial z_1} + z_2 \frac{\partial g}{\partial z_2} \right] / g
\]

(10) and \(f \) is starlike if and only if \(\text{Re} (w_i(z)/z_i) \geq 0, z \in E \). Conversely, one can show that if \(f: E \to C^2 \) is holomorphic, \(f = Jw \) where \(w \in \mathcal{P} \) and \(w_1/z_1 = w_2/z_2 \) then there exists \(g: E \to C, g \) holomorphic, \(0 \in g(E) \) such that (10) holds and

\[f = ((a_1 z_1 + a_2 z_2)g, (b_1 z_1 + b_2 z_2)g), (a_1 b_2 \neq a_2 b_1). \]

In these cases the intersection of the polydisk \(E \) with an analytic plane \(\alpha z_1 + \beta z_2 = 0 \) maps into an analytic plane \(\partial f_1 + \gamma f_2 = 0 \). Interesting choices of \(g \) are \(g(z) = (1 - z_1 z_2)^{-1} \) and \(g(z) = \left[(1 - z_1)(1 - z_2) \right]^{-1} \).

3. Extension to convex and starlike maps of \(D_p \). Since the details of the proofs for the results in this section are similar to those in §'s 2 and 3, we omit the details. We wish to find lemmas which apply to \(D_p \) \((D_p \) is defined in equation (1)) in the same way that Lemmas 1 and 2 apply to the polydisk. The crucial point is that given equation (6) with \(0 \neq z \in D_p \) we wish to conclude

\[|v(z; t)|_p \leq |z|_p \quad \text{when} \quad 0 < t < \varepsilon \]

for some \(\varepsilon > 0 \). This will be true provided \(\sum_{j=1}^{n} |z_j - tw_j|^p < \sum_{j=1}^{n} |z_j|^p \) for \(t \) sufficiently small. That is

\[
\sum_{j=1}^{n} |z_j|^p (1 - 2t \text{Re} w_j/|z_j| + t^2 |w_j/|z_j|^2|^{p/2}) + \sum_{j=0}^{t} t^p |w_j|^p < \sum_{j=1}^{n} |z_j|^p
\]

or

\[
t \left(\sum_{j=1}^{n} -p \text{Re} |z_j|^p \text{Re} \left(w_j/|z_j| \right) + \sum_{j=0}^{t^{p-1}} t^p |w_j| \right) < 0
\]

when \(t \) is sufficiently small, \(t > 0 \). Hence we define \(\mathcal{P}_p \) for \(p \geq 1 \) by \(w \in \mathcal{P}_p \) if \(w: D_p \subset C^n \to C^n, w(0) = 0, w \) holomorphic and
\[
\text{Re} \sum_{j=1}^{n} w_j \cdot \frac{z_j}{|z_j|^p} / z_j \geq 0 \quad \text{if } p > 1
\]
\[
\text{Re} \sum_{j \neq 1}^{n} w_j \cdot \frac{z_j}{|z_j|} - \sum_{j=1}^{n} |w_j| \geq 0 \quad \text{if } p = 1,
\]
\[z \in D_p, \quad w = (w_1, w_2, \ldots, w_n).
\]

We now have the following lemmas and theorems which correspond to the lemmas and theorems of §§ 2 and 3.

Lemma 3. Let \(v(z; t): D_p \times I \rightarrow \mathbb{C}^n\) be holomorphic for each \(t \in I, v(z, 0) = z, v(0, t) = 0\) and \(|v(z; t)|_p < 1\) when \(z \in D_p\). If
\[
\lim_{t \rightarrow 0^+} [(z - v(z; t))/t^p] = w(z)
\]
exists and is holomorphic in \(D_p\) for some \(\rho > 0\), then \(w \in \mathcal{P}_p\).

Lemma 4. Let \(f: D_p \rightarrow \mathbb{C}^n\) be holomorphic and univalent and satisfy \(f(0) = 0\). Let \(F(z; t): D_p \times I \rightarrow \mathbb{C}^n\) be a holomorphic function of \(z\) for each \(t \in I, F(z, 0) = f(z), F(0; t) = 0\) and suppose \(F(z; t) < f\) for each \(t \in I\). Let \(\rho > 0\) be such that \(\lim_{t \rightarrow 0^+} (F(z; 0) - F(z; t))/t^\rho = F(z)\) exists and is holomorphic. Then \(F(z) = Jw\) where \(w \in \mathcal{P}_p\).

Theorem 4. If \(f: D_p \rightarrow \mathbb{C}^n\) is starlike then there exists \(w \in \mathcal{P}_p\) such that \(f = Jw\). Conversely, if \(f: D_p \rightarrow \mathbb{C}^n, f(0) = 0, J\) is nonsingular and \(f = Jw, w \in \mathcal{P}_p\) then \(f\) is starlike.

Theorem 5. Let \(f: D_p \rightarrow \mathbb{C}^n, f(0) = 0\) and suppose \(J\) is nonsingular. Then \(f(D_p)\) is convex if and only if \(F = Jw\) where \(w \in \mathcal{P}_p\) for each choice of \(A = (A_1, A_2, \ldots, A_n), A_j \geq 0 (1 \leq j \leq n)\) and \(F\) is given by (7) with \(z \in D_p\).

Now set \(p = 2\). It is easy to see that Theorem 4 above is equivalent to Matsuno's Theorem 1 [4, p. 91]. Consider \(f: D_2 \rightarrow \mathbb{C}^2\) given by \(f(z) = (z_1 + az_2^2, z_2)\). Theorem 5 shows that \(f(D_2)\) is convex if and only if \(|a| \leq 1/2\) while Matsuno's Lemma 3 [4, p. 94] implies \(f\) is convex-like if and only if \(|a| \leq 3\sqrt{3}/4\). This shows that convex-like is not equivalent to geometrically convex.

References

Received May 19, 1969. This research was supported by the National Science Foundation, Grant GP 8225.

UNIVERSITY OF KENTUCKY
LEXINGTON, KENTUCKY
Mir Maswood Ali, *On some extremal simplexes* ... 1
Silvio Aurora, *On normed rings with monotone multiplication* 15
Silvio Aurora, *Normed fields which extend normed rings of integers* 21
John Kelly Beem, *Indefinite Minkowski spaces* .. 29
T. F. Bridgland, *Trajectory integrals of set valued functions* 43
Robert Jay Buck, *A generalized Hausdorff dimension for functions and sets* 69
Vlastimil B. Dlab, *A characterization of perfect rings* ... 79
Edward Richard Fadell, *Some examples in fixed point theory* 89
Michael Benton Freeman, *Tangential Cauchy-Riemann equations and uniform approximation* ... 101
Barry J. Gardner, *Torsion classes and pure subgroups* ... 109
Vinod B. Goyal, *Bounds for the solution of a certain class of nonlinear partial differential equations* .. 117
Fu Cheng Hsiang, *On C, 1 summability factors of Fourier series at a given point* 139
Lawrence Stanislaus Husch, Jr., *Homotopy groups of PL-embedding spaces* 149
Daniel Ralph Lewis, *Integration with respect to vector measures* 157
Marion-Josephine Lim, *L – 2 subspaces of Grassmann product spaces* 167
Stephen J. Pierce, *Orthogonal groups of positive definite multilinear functionals* 183
Siddani Bhaskara Rao and Ayyagari Ramachandra Rao, *Existence of triconnected graphs with prescribed degrees* ... 203
Ralph Tyrrell Rockafellar, *On the maximal monotonicity of subdifferential mappings* ... 209
R. Shantaram, *Convergence of a sequence of transformations of distribution functions. II* ... 217
Julianne Souchek, *Rings of analytic functions* ... 233
Ted Joe Suffridge, *The principle of subordination applied to functions of several variables* .. 241
Wei-lung Ting, *On secondary characteristic classes in cobordism theory* 249
Pak-Ken Wong, *Continuous complementors on B*-algebras* 255
Miyuki Yamada, *On a regular semigroup in which the idempotents form a band* 261