CONTINUOUS COMPLEMENTORS ON B^*-ALGEBRAS

Pak-Ken Wong
CONTINUOUS COMPLEMENTORS ON B^*-ALGEBRAS

Pak-Ken Wong

This paper is concerned with continuous and uniformly continuous complementors on a B^*-algebra. Let A be a B^*-algebra with a complementor p and E_p the set of all p-projections of A. We show that if A has no minimal left ideals of dimension less than three, then p is uniformly continuous if and only if E_p is a closed and bounded subset of A. We also give a characterization of the boundedness of E_p.

Let A be a complex Banach algebra and let L_r be the set of all closed right ideals of A. Following [4], we shall say that A is a right complemented Banach algebra if there exists a mapping $p: R \to R^p$ of L_r into itself having the following properties:

(C₁) $R \cap R^p = (0)$ (for $R \in L_r$);
(C₂) $R + R^p = A$ (for $R \in L_r$);
(C₃) $(R^p)^p = R$ (for $R \in L_r$);
(C₄) if $R_1 \subseteq R_2$, then $R_1^p \subseteq R_2^p$ ($R_1, R_2 \in L_r$).

The mapping p is called a right complementor on A. In this paper a complemented Banach algebra will always mean a right complemented Banach algebra. We also use $p(R)$ for R^p.

For any set S in a Banach algebra A, let S_i and S_r denote the left and right annihilators of S in A, respectively. Then A is called an annihilator algebra if, for every closed left ideal I and for every closed right ideal R, we have $I_r = (0)$ if and only if $I = A$ and $R_l = (0)$ if and only if $R = A$. If $I_{r_l} = I$ and $R_{l_r} = R$, then A is called a dual algebra.

We say that a Banach algebra A has an approximate identity if there exists a net $\{e_\alpha\}$ in A such that $\|e_\alpha\| \leq 1$, for all α, and $\lim_\alpha e_\alpha x = \lim_\alpha x e_\alpha = x$, for all $x \in A$. Every B^*-algebra has an approximate identity.

A minimal idempotent f in a complemented Banach algebra A is called a p-projection if $(fA)^p = (1 - f)A$. If A is a semi-simple annihilator complemented Banach algebra, then every nonzero right ideal, no matter whether closed or not (see [4; p. 653]), contains a p-projection. Let A be a complemented B^*-algebra with a complementor p. Since, by [4; p. 655, Lemma 5], the socle of A is dense in A, A is dual (see [3; p. 222, Th. 2.1]). Let E (resp. E_p) be the set of all self-adjoint minimal idempotents (resp. p-projections) in A. Then, for each $e \in E$, there exists a unique $P(e) \in E_p$ such that $P(e)A = eA$. It
can be shown that P is a one-to-one mapping of E onto E_p. We call P the p-derived mapping of p. The complementor p is said to be continuous if P is continuous in the relative topologies of E and E_p induced by the given norm on A (see [1; p. 463, Definition 3.7]).

Let A be a dual B^*-algebra. It has been shown in [1; p. 463, Th. 3.6] that the mapping $p: R \rightarrow (R^1)^*$ is a complementor on $A(R \in L_r)$. In this case $E_p = E$, P is the identity map, and therefore p is uniformly continuous.

The concept "p is continuous" can be defined for any semi-simple annihilator complemented Banach *-algebra in which $xx^* = 0$ implies $x = 0$. In fact, let A be such an algebra and p a given complementor on A. By [2; p. 155, Th. 1], every maximal closed right ideal of A is modular. Therefore [1, p. 462, Corollary 3.4] holds for A. Hence the mapping P exists as in the case of B^*-algebra and so the concept of continuity of p can be defined.

In this paper, all algebras and spaces under consideration are over the complex field C.

2. Lemmas. In this section, unless otherwise stated, H will denote a complex Hilbert space and $A = LC(H)$, the set of all compact operators on H. There exist many complementors on A. If H is infinite dimensional, then all complementors on A are continuous ([1; p. 471, Th. 6.8]). However if dim H is finite, this is not true in general as is shown in [1; p. 475]. If dim $H \geq 3$, then every continuous complementor on A is uniformly continuous (see [1; p. 471, Corollary 6.6]).

If u and v are elements of H, $u \otimes v$ will denote the operator on H defined by the relation $(u \otimes v)(h) = (h, v)u$, for all $h \in H$.

Lemma 1. Let A be any C^*-subalgebra of bounded operators on H and $E \subset A$ the set of all self-adjoint minimal idempotents. The E is a closed subset of $L(H)$, all bounded operators on H.

Proof. Let $\{e_n\} \subset E$ be a sequence converging to some $e \in A$. Clearly $e^2 = e$ and $e^* = e$. In order that $e \in E$, it suffices to show that $e(H)$ is one dimensional. Since $(u \otimes v)^* = v \otimes u$ and since each e_n is a self-adjoint minimal idempotent, we can write $e_n = u_n \otimes u_n$, where $u_n \in H$ and $\|u_n\| = 1$ ($n = 1, 2, \cdots$). Let $v, w \in H$ be such that $e(v) \neq 0$, $e(w) \neq 0$. Since $\{(v, u_n)\}$ is bounded, there exists a subsequence $\{v, u_{n_k}\}$ of $\{(v, u_n)\}$ and a nonzero constant $a \in C$ such that $(v, u_{n_k}) \rightarrow a$. Since
\[
\|au_{n_k} - e(v)\| \leq |a - (v, u_{n_k})| \|u_{n_k}\| + \|e_{n_k} - e\| \|v\|,
\]
we have $au_{n_k} \rightarrow e(v)$. Similarly we can show that there exist a subsequence $\{u_i\}$ of $\{u_k\}$ and a nonzero constant $b \in C$ such that $bu_i \rightarrow e(v)$.

It follows now that \(be(v) = ae(w) \), which shows that \(e(H) \) is one dimensional. This completes the proof.

Lemma 2. Let \(H \) be finite dimensional, \(p \) a complementor on \(A \) and \(E_p \) the set of all \(p \)-projections in \(A \). If \(E_p \) is a closed and bounded subset of \(A \), then \(p \) is continuous.

Proof. Let \(e \in E \) and let \(\{e_n\} \) be a sequence in \(E \) such that \(e_n \to e \). Write \(e_n = u_n \otimes u_n \), \(e = u \otimes u \), where \(u_n, u \in H \) and \(\|u_n\| = \|u\| = 1 \) \((n = 1, 2, \cdots)\). Since \(H \) is finite dimensional, there exists a subsequence \(\{u_k\} \) of \(\{u_n\} \) such that \(u_k \to u' \) for some \(u' \in H \); clearly \(\|u'\| = 1 \) and \(u' \otimes u' = u \otimes u \). Thus \(u = a u' \), where \(a = (u, u') \) and \(|a| = 1 \). Let \(u_k' = a u_k \). Then \(e_k = u_k' \otimes u_k' \). Let \(P \) be the \(p \)-derived mapping of \(p \). Since \(P(e_k) \) is a minimal idempotent and since \(P(e_k) A = e_k A \), we can write \(P(e_k) = u_k' \otimes v_k', \) where \(v_k' \in H \) \((k = 1, 2, \cdots)\). Similarly \(P(e) = u \otimes v \) with \(v \in H \). Since \(E_p \) is bounded and since \(\|u_k'\| = 1 \), \(\{v_k'\} \) is bounded. Since \(H \) is finite dimensional, there exists a subsequence \(\{v_l'\} \) of \(\{v_k'\} \) such that \(v_l' \to v' \) for some \(v' \in H \). As \(\|P(e_l)\| \geq 1 \), \(v' \neq 0 \). Since \(P(e_l) = u_l' \otimes v_l' \to u \otimes v' \) and since \(E_p \) is closed, it follows that also \(u \otimes v' \in E_p \). Then both \(u \otimes v', u \otimes v \in E_p \). However, by [1, p. 466, Lemma 5.1] for any \(u \in H \), there exists a unique such \(v \). Thus \(v = v' \). Hence \(P(e_l) \to P(e) \). Therefore \(P \) is continuous and so is \(p \). This completes the proof.

3. Main theorem. Throughout this section \(A \) will be a \(B^* \)-algebra with a complementor \(p \). Then \(A \) is dual (see § 1). Let \(\{I_t : t \in T\} \) be the family of all minimal closed two-sided ideals of \(A \). Then, by [3; p. 221, Lemma 2.3], \(A = (\bigcup_t I_t) \), the \(B^*(\infty) \)-sum of \(I_t \). Since each \(I_t \) is a simple dual \(B^* \)-algebra, \(I_t = LC(H_t) \) for some Hilbert space \(H_t(t \in T) \). It has been shown in [4; p. 652, Lemma 1] that \(p \) induces a complementor \(p_t \) on \(I_t \), which is given by \(p_t(R) = p(R) \cap I_t \) for all closed right ideals \(R \) of \(I_t(t \in T) \).

Let \(E \) (resp. \(E_t \)) be the set of all self-adjoint minimal idempotents in \(A \) (resp. in \(I_t \)) and let \(E_p \) (resp. \(E_p^t \)) be the set of all \(p \)-projections in \(A \) (resp. in \(I_t \)). Clearly \(E_t = E \cap I_t \) and \(E_p^t = E_p \cap I_t(t \in T) \). It can be shown that, if \(u \neq v(u, v \in T) \), then \(\|e_u - e_v\| = 1 \), for all \(e_u \in E_u \), and \(e_v \in E_v \). Since each \(e \in E \) belongs to some \(I_t \), \(E = \bigcup_t E_t \). Similarly, if \(u \neq v(u, v \in T) \), then \(\|f_u - f_v\| = \max(\|f_u\|, \|f_v\|) \geq 1 \), for all \(f_u \in E_p^u \) and \(f_v \in E_p^v \); \(E_p = \bigcup_t E_p^t \). Thus \(p \) is continuous if and only if \(p_t \) is continuous for all \(t \in T \) (see [1; p. 464]).

Theorem 3. Let \(A \) be a \(B^* \)-algebra which has no minimal left ideals of dimension less than three and \(p \) a complementor on \(A \). Then the following statements are equivalent:
(i) \(p \) is uniformly continuous.

(ii) There exists an involution \(*' \) on \(A \) for which \(R^p = (R_i)^* \), for every closed right ideal \(R \) of \(A \) (and hence there exists an equivalent norm \(|| \cdot ||' \) on \(A \) which satisfies the \(B^* \)-condition for \(*' \)).

(iii) The set \(E^p \) of all \(p \)-projections in \(A \) is a closed and bounded subset of \(A \).

Proof. (i) \(\rightarrow \) (ii). This is [1; p. 477, Th. 7.4].

(ii) \(\Rightarrow \) (iii). Suppose (ii) holds. Let \(E^p_i \) be the set of all \(p \)-projections in \(I_i(t \in T) \). By [1; p. 465, Corollary 4.4], each \(f_i \in E^p_i \) is self-adjoint in \(*' \). Hence \(||f_i||' = 1 \). Since each \(E^p_i \) is the set of all self-adjoint (in \(*' \)) minimal idempotents in \(I_i \), by Lemma 1, \(E^p_i \) is closed in \(|| \cdot ||' \). It is now easy to show that \(E^p \) is closed and bounded in \(|| \cdot || \). This proves (iii).

(iii) \(\Rightarrow \) (i). Suppose (iii) holds. If \(H_t \) is finite dimensional, then since \(I_i = LC(H_t) \), it follows from Lemma 2 that \(p_t \) is continuous. If \(H_t \) is infinite dimensional, then by [1; p. 471, Th. 6.8], \(p_t \) is continuous. Therefore each \(p_t \) is continuous and so \(p \) is continuous. We now show that \(p \) is uniformly continuous. For each \(t \in T \), let \(Q_t \) be a \(p_t \)-representing operator of \(H_t \) onto itself (see [1; p. 467, Definition 5.4]). By [1; p. 470, Th. 6.4], \(Q_t \) is a continuous positive linear operator with continuous inverse \(Q_t^{-1} \). We may assume that \(||Q_t^{-1}|| = 1 \), where \(||Q_t^{-1}|| \) denotes the operator bound of \(Q_t^{-1} \) on \(H_t(t \in T) \) (see [1; p. 472, Corollary 6.10]). We claim that \(\{||Q_i||\} \) is bounded above. On the contrary, we assume that there exists a sequence \(\{Q_n\} \subset \{Q_i\} \) such that \(||Q_n^{1/2}|| \geq 5n \), where \(Q_n^{1/2} \) denotes the square root of \(Q_n \) \((n = 1, 2, \ldots) \). Since \(||Q_n^{-1}|| = 1 \), we can choose \(u_n \in H_n \) such that \(||u_n|| = 1 \) and \(||Q_n u_n|| \leq 2 \). Since \(||Q_n^{1/2}|| \geq 5n \), we can choose \(v_n \in H_n \) such that \(||v_n|| = 1 \), \((u_n, v_n) = 0 \) and \(||Q_n^{1/2}v_n|| \geq 5n \). Let \(a_n = ||Q_n^{1/2}v_n||^{-1} \) and \(h_n = a_n v_n + u_n \). Then

\[
(h_n, Q_n h_n) - (u_n, Q_n u_n) = a_n^2 (v_n, Q_n v_n) + a_n (Q_n u_n, v_n) + a_n^2 (v_n, Q_n v_n)
\geq 1 - 2a_n ||Q_n u_n||
\geq 1 - 4a_n.
\]

Since \(a_n \leq 1/5n \), we have

\[
(h_n, Q_n h_n) - (u_n, Q_n u_n) \geq 1 - \frac{4}{5n} \geq \frac{1}{5}.
\]

Therefore

\[
\frac{1}{5} \leq (h_n, Q_n h_n) - (u_n, Q_n u_n) = a_n (v_n, Q_n h_n) + a_n (u_n, Q_n v_n)
\leq a_n |(v_n, Q_n h_n)| + 2a_n.
\]
Hence we get

\[(\#) \quad |(v_n, Q_n h_n)| \geq \frac{1}{5a_n} - 2 \geq n - 2.\]

Now let

\[f_n = \frac{h_n \otimes Q_n h_n}{(h_n, Q_n h_n)}.\]

By the definition of Q_n, $f_n \in E_p$. Since $\|h_n\| \geq \|u_n\| = 1$ and since

\[
(h_n, Q_n h_n) = a_n^2(v_n, Q_n v_n) + a_n(Q_n u_n, v_n) + a_n(v_n, Q_n u_n) + (u_n, Q_n u_n) < 1 + 1 + 1 + 2 = 5,
\]

it follows from $(\#)$ that

\[\|f_n(v_n)\| = \frac{|(v_n, Q_n h_n)| \|h_n\|}{(h_n, Q_n h_n)} > \frac{n - 2}{5}.\]

Since $\|v_n\| = 1$, $\|f_n\| > (n - 2)/5$, contradicting the boundedness of E_p. Therefore $\{|Q_n|\}$ and $\{|Q_n^{-1}|\}$ are bounded. By using the argument in [1; p. 479], it is easy to show that p is uniformly continuous. This completes the proof of the theorem.

Finally we give a characterization of the boundedness of E_p.

Let R be a closed right ideal of A and let P_R be the projection on R along R^p, i.e., $P_R(x + y) = x$ for all $x \in R$, $y \in R^p$. Since $R^p = \{x \in A: P_R(x) = 0\}$, P_R is continuous. Now let $\{J_\lambda: \lambda \in \Lambda\}$ be the set of all minimal right ideals of A. Since A is dual, each J_λ is automatically closed. For every $\lambda \in \Lambda$, let P_λ be the projection on J_λ along $p(J_\lambda)$.

Theorem 4. Let A be a B^*-algebra with a complementor p. Then the following statements are equivalent:

(i) The set E_p of all p-projections in A is a bounded subset of A.

(ii) $\{|P_\lambda|: \lambda \in \Lambda\}$ is bounded, where $|P_\lambda|$ denotes the operator bounded of P_λ.

(iii) There exists a constant k such that

\[k \|x_1 + x_2\| \geq \|x_i\| \quad (i = 1, 2),\]

for all $x_1 \in J_\lambda, x_2 \in p(J_\lambda)$ ($\lambda \in \Lambda$).

Proof. (i) \Rightarrow (ii). Suppose $\sup \{\|f\|: f \in E_p\} \leq c$, where c is a constant. Let J be a minimal right ideal of A. Then there exists an $f \in E_p$ such that $J = fA$ and $J^p = (1 - f)A$. Let $x \in A$. Since

\[\|P_\lambda(x)\| = \|fx\| \leq c \|x\|,
\]

...
This proves (ii).

(ii) \Rightarrow (iii). Suppose that $\sup \{\|P\| : \lambda \in A\} \leq k - 1$, where k is a constant. Then, for all $x_i \in J_i$, $x_\lambda \in p(J_i)$ ($\lambda \in A$), we have

$$\|x_i\| \leq (k - 1) \|x_i + x_\lambda\| \leq k \|x_i + x_\lambda\|.$$

It now follows from $\|x_\lambda\| - \|x_i\| \leq \|x_i + x_\lambda\|$ that $\|x_\lambda\| \leq k \|x_i + x_\lambda\|$.

(iii) \Rightarrow (i). Suppose (iii) holds. Let $f \in E$ and $x \in A$. Since $x = (1 - f)x + fx$, by (iii), $k \|x\| \geq \|fx\|$. As a B^*-algebra, A has an approximate identity $\{e_\lambda\}$. Since $\|e_\lambda\| \leq 1$, $\|fe_\lambda\| \leq k \|e_\lambda\| \leq k$. It now follows from $\|fe_\lambda\| \rightarrow \|f\|$ that $\|f\| \leq k$. This completes the proof of the theorem.

It is Professor B. J. Tomiuk who aroused my interest in this topic. I wish to express my hearty thanks to him. I also wish to thank the referee for discovering an error in my previous demonstration of Theorem 3.

REFERENCES

Received September 5, 1969.

UNIVERSITY OF OTTAWA
OTTAWA, CANADA
Mir Maswood Ali, *On some extremal simplexes* ... 1
Silvio Aurora, *On normed rings with monotone multiplication* 15
Silvio Aurora, *Normed fields which extend normed rings of integers* 21
John Kelly Beem, *Indefinite Minkowski spaces* .. 29
T. F. Bridgland, *Trajectory integrals of set valued functions* 43
Robert Jay Buck, *A generalized Hausdorff dimension for functions and sets* .. 69
Vlastimil B. Dlab, *A characterization of perfect rings* 79
Edward Richard Fadell, *Some examples in fixed point theory* 89
Michael Benton Freeman, *Tangential Cauchy-Riemann equations and uniform approximation* ... 101
Barry J. Gardner, *Torsion classes and pure subgroups* 109
Vinod B. Goyal, *Bounds for the solution of a certain class of nonlinear partial differential equations* .. 117
Fu Cheng Hsiang, *On C_1 summability factors of Fourier series at a given point* .. 139
Lawrence Stanislaus Husch, Jr., *Homotopy groups of PL-embedding spaces* .. 149
Daniel Ralph Lewis, *Integration with respect to vector measures* 157
Marion-Josephine Lim, *L_2 subspaces of Grassmann product spaces* 167
Stephen J. Pierce, *Orthogonal groups of positive definite multilinear functionals* .. 183
W. J. Pugh and S. M. Shah, *On the growth of entire functions of bounded index* .. 191
Ralph Tyrrell Rockafellar, *On the maximal monotonicity of subdifferential mappings* .. 209
R. Shantaram, *Convergence of a sequence of transformations of distribution functions. II* .. 217
Julianne Souchek, *Rings of analytic functions* .. 233
Ted Joe Suffridge, *The principle of subordination applied to functions of several variables* .. 241
Wei-lung Ting, *On secondary characteristic classes in cobordism theory* .. 249
Pak-Ken Wong, *Continuous complementors on B^*-algebras* 255
Miyuki Yamada, *On a regular semigroup in which the idempotents form a band* .. 261