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MESOCOMPACTNESS AND RELATED PROPERTIES

V. J. MANCUSO

This paper is concerned with some of those generalizations
of paracompactness which can arise by broadening the concept
of local finiteness, e.g., metacompactness, in contrast to those
which come about by varying the power of an open cover,
e.g., countable paracompactness. Quite recently, several gene-
ralizations of the first type have been studied. These include
mesocompactness and sequential mesocompactness, strong and
weak cover compactness, and Property Q.

In §1, the notion of metacompactness (=pointwise para-
compactness) is used to establish a hierarchy among these con-
cepts, and in regular r-spaces, some of these notions are shown
to be equivalent to paracompactness. In §2, it is shown that
mesocompactness is an invariant, in both directions, of perfect
maps and that unlike paracompact spaces, there exists a meso-
compact T'; space which is not normal, and a mesocompact T

space which is not regular.

Throughout this paper, a space will mean a Hausdorf space. A
convergent sequence in a space will mean the sequence and its limit,
and we will use C1(A4) to denote the closure of A.

1. Related properties. We will begin with some pertinent de-
finitions.

DErFINITION 1.1. A family & of sets in a space X is called
compact-finite (convergent sequence finite) if every compact set (con-
vergent sequence) in X meets at most finitely many members of &,
A space X is called mesocompact (sequentially mesocompact) if every
open cover of X has a compact-finite (convergent sequence finite) open
refinement (see [3]). We will use the abbreviation cs-finite for con-
vergent sequence finite.

DEFINITION 1.2. A cover " of a space X is called strong cover
compact if whenever {V;; 1€ N} is a countably infinite subcollection of
distinct elements of 7p, and g¢;e V; for each ¢, with p, = p, and
q; + q; for 7 == 7 and the point set {p;; 1€ N} has a limit point in X,
then the point set {¢;; 7€ N} has a limit point in X.

DEFINITION 1.3. ‘A space X is strong cover compact if every open
cover of X has a strong cover compact open refinement. We will use
the abbreviation sce for strong cover compact.
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If “countably” is replaced by “uncountably” in Definition 1.2, we
obtain the notion of a weak cover compact cover. Then if every open
cover of X has a weak cover compact open refinement, we say that
X is weak cover compact, denoted by wce (see [4]).

DEFINITION 1.4. A cover < of a space X is said to have Pro-
perty Q if whenever {V;; 1€ N} is a countably infinite subcollection of
distinct elements of 27 with p, and q;€ V; for each ¢ and {p;;1e€ N}
converges to p in X, then {q;; € N} converges to p in X.

DEerINITION 1.5. A space X has Property Q if every open cover
of X has an open refinement with Property @ (see [16]).

REMARK 1.6. It is immediate that paracompact implies meso-
compact implies sequentially mesocompact implies metacompact. More-
over, since a locally finite cover vacuously satisfies sce, wece and
Property @, a paracompact space is sce, wee and has Property Q.

We will often refer to a minimality property of point-finite covers
[5, p. 160]: If .o~ is a point-finite open cover of a space X, then
there exists an irreducible sub-cover, i.e., a sub-cover that, when any
single set is removed, is no longer a cover of X. This property was
especially utilized in [4].

ProrosiTiON 1.7. A space X has Property Q if and only if X
18 sequentially mesocompact.

Proof. Since a cs-finite cover vacuously satisfies Property @, we
need only establish the necessity. Let 2/ be an open cover of X and
let 2” be an open refinement with Property Q. Now some subcollec-
tion 2”7 of 77 is point-finite and covers X [4, Th. 1]. Let ™ be
an irreducible sub-cover of ¢”. We claim & is cs-finite. For sup-
pose {p;1€ N} U {p} is a convergent sequence in X which meets in-
finitely many members of <7, say {V;;ie N}. Since " is point-
finite, there exist subsequences {p; ;n e N} of {p;; i€ N} and {V; ;ie N}
of {V;; i€ N} such that p; € V; for each n. If we let V, be a mem-
ber of 27" containing p, we can use the minimality of < to pick
a sequence {g; ;€ N} such that ¢; € V; — V, for each n. Clearly,
{q:,; me€ N} does not converge to p and yet {p; ;ne N} does. This is
a contradiction and the proof is complete.

COROLLARY 1.8. A developable space is metrizable if and only
if 1t has Property Q.
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Proof. In a developable space, metrizability is equivalent to sequ-
ential mesocompactness [3, Th. 4.2], which is equivalent to Property
@ by Proposition 1.7.

REMARK 1.9. Corollary 1.8 is obtained in [4, Corollary 5] by
different means.

Both parts of the following proposition have similar proofs, each
using the essential features of the proof of Theorem 8 or Theorem 13

in [4].
NotaTiON. If 57 is a collection of sets, 57* = U{h; h e 57}.

ProposiTION 1.10. (a) If X s regular wee and metacompact, X
1s mesocompact. (b) If X is scc and metacompact, X 1is mesocompact.

Proof. To prove (a), we may assume X has an open cover &
which has no countable sub-cover, or else X is Lindelof and hence
paracompact. We can obtain an open refinement < of & which is
wee, point-finite and irreducible. We claim <77 is compact-finite.
Suppose there exists a compact subset K of X which meets infinitely
many members of 277 say {V,; i€ N}. Then pick a distinct sequence
{p;; 1€ N) such that p,e KN V; for each 7. Since K is compact, the
point set {p;; 7€ N} has a limit point in X.

Let {V;; B e B} be an uncountable subcollection of V — {V;; i€ N},
which exists since 277 refines &¥. Since <~ is minimal, for each i ¢
Nand Be B, let g;e V¥ — V, and q;€ #™* — V,. Then the subcollec-
tion {V;; e N} U {V;; B¢ B} and the point sets {p;; 1€ N} U {gs; B ¢€ B}
and {q;; 1€ N} U {q;; B € B} contradict the wee property of 77; and so
2" is compact-finite.

To prove (b), we let 2 be an open cover of X. Without the
regularity of X, Theorem 8 in [4] can still be used to obtain an open
refinement ° of %/ which is sce, point-finite and irreducible. A
slight modification of the above indirect argument gives that %7 is
compact-finite.

ProrosiTION 1.11. If X has Property Q, X 1is metacompact.
Proof. This is Corollary 1 in [4].

By Remark 1.6, Propositions 1.7, 1.10(a) and 1.11 we have the
following:

THEOREM 1.12. For any space X, the following implications
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hold: (a) implies (b) implies (c) implies (d) is equivalent to (e) im-
plies (f), where

(a) X 1is paracompact

(b) X s scc and metacompact

(¢) X 1is mesocompact

(d) X s sequentially mesocompact

(e) X has Property Q

) X is metacompact.

REMARK 1.13. In view of a result of Michael [11, Th. 2] (a)-(f)
are equivalent in collectionwise normal spaces. Examples 1.15 and
1.16 below show that (a) implies (b) and (e) implies (f) cannot be
reversed. As yet, the author has no examples showing that (b) implies
(e) or (¢) implies (d) cannot be reversed.

The following theorem is fundamental and will be used in some
of the examples.

THEOREM 1.14. (a) A locally compact space is paracompact if
and only if it is mesocompact. (b) A first countable space is para-
compact if and only if it is sequentially mesocompact.

Proof. See Theorems 3.7 and 3.10 in [3].

In our examples, 2 will denote the first uncountable ordinal, and
unless otherwise specified, a given set of ordinals will carry the usual
order topology and will be called an ordinal space.

ExampLE 1.15. A normal mesocompact space which is not collec-
tionwise normal. Michael’s subspace [12, Example 2] of Bing’s space
F [2, Example G]. For the proof that this space has the desired
properties see [3, Example 5.1]. A slight modification of this space
[4, Th. 18] yields a scc space with Property @ (hence metacompact
by Proposition 1.11) which is not collectionwise normal.

ExAMPLE 1.16. A metacompact Moore space which is not sequ-
entially mesocompact. R. W. Heath [7, Example 1] gives a meta-
compact Moore space which is not screenable and so not metrizable.
Such a space could not be sequentially mesocompact by [3, Th. 4.2]
or our Corollary 1.8.

ExAMPLE 1.17. A normal space which is not mesocompact. The
ordinal space X = {x; x < 2} is in fact a collectionwise normal locally
compact space which is not paracompact. This space can’t be meso-
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compact by Theorem 1.14(a). Moreover, X is first countable and so
can’t be sequentially mesocompact by Theorem 1.14(b).

DEFINITION 1.18. A space X is called an r-space [13, p. 985] if
each £ € X has a sequence of neighborhoods {U;;7e N} such that if
x; € U; for each 1, {x; e N} is contained in a compact subset of X.

REMARK 1.19. Clearly, locally compact spaces and first countable
spaces are r-spaces.

ProprosiTION 1.20. (a) If X 1is a mesocompact r-space, X is para-
compact. (b) If X is a scc r-space, X is wee.

Proof. To prove (a), it suffices to show that a compactfinite
family .# in X is locally finite. Suppose there exists a point p in
X every neighborhood of which meets infinitely many members of &.
Let {U;; ie N} be a sequence of neighborhoods of » guaranteed by the
definition of an r-space. We can then find an infinite subcollection
{F;;ie N} of # and a sequence of points {p;; 2€ N} such that p, e
U,NF; for each 7. Now {p; 7€ N} is contained in some compact
subset of X, which contradicts the compact-finiteness of .

To prove (b), we modify the proof of Theorem 3 in [4]. Let z
be an open cover of X and <" a scc open refinement of Z. If V is
not wee, there exists an uncountable subcollection {V,; @ e A} of dis-
tinect members of <" and uncountable point sets {p.; e A} and q,;
«a € A} such that p,, ¢.€ V., p. # ps and p, # q, for a = S. The point
set {p.; ae A} has a limit point in X but {q.; a € A} does not. Since
X is an r-space, let {U;; 1€ N} be a sequence of neighborhoods of p.
Then there exists an infinite subset {p;; 1€ N} of {p,; « € A} such that
p; = p; for 1= 35 and p,e U; N V,. Now {p;; 1€ N} is contained in a
compact subset of X and so has a limit point in X. Let ¢, be the
member of {q,; @ € A} corresponding to p;. Since ¥~ is sce, {¢;; t€ N}
has a limit point in X, contradicting the fact that {q,; @ € A} does not.

REMARK 1.21. (1) By slightly modifying the proof of (a) in Pro-
position 1.20, we can show that a cs-finite family in a sequentially
compact space is compact-finite, and so sequential mesocompactness
reduces to mesocompactness in sequentially compact spaces. Proposi-
tion 1.20(b) slightly generalizes Theorems 3 and 11 in [4] (see Remark
1.19).

(2) A space X is called a k'-space if whenever x e Cl(A), there
exists a compact subset K of X such that x e CL(K N A) (see [1]).
The k'-spaces include the locally compact spaces and the Frechet
spaces. Our interest in k’-spaces arises from the fact that a regular
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k’-space is paracompact if and only if it is mesocompact [3, Corollary
3.6].

This result, however, does not include Proposition 1.20(a) (see also
Example 2.15), since E. Michael has kindly furnished us with an ex-
ample of an r-space which is not a k’-space:

ExaMpPLE 1.22. A separable metric space X and a compact space
Y such that X x Y is not a k’-space. Let X be an uncountable
subset of the reals all of whose compact subsets are countable. Let
Z = X'U {#,} where X’ is a discrete space of the same cardinality as
X, and whose neighborhoods of z, in Z are the sets with countable
complement in Z. Let Y = 8Z. To show that X x Y is not a k'-
space, pick an x,€ X such that no neighborhood of =z, in X is cou-
ntable and let 2: X — Z be a one-to-one correspondence with h(x,) = z,.
Finally, let A = {(z, h(z))e X x Y;2 # x,}). Then it can be shown
that (x, z,) € C1(4) but (x,, z,) € CL(K N A) for any compact K X x Y.
Now X x Y is an r-space since it is not difficult to show that the
product of an r-space and a locally compact space is an r-space.

By Remark 1.6, Propositions 1.10(a) and 1.20 we have:

THEOREM 1.23. Let X be a regular vr-space. Then the follow-
ing statements are equivalent:

(a) X s paracompact

(b) X is scc and metacompact

(¢) X is wece and metacompact

(d) X s mesocompact.

REMARK 1.24. In [8, Th. 3] it was announced that in a g-space'
the concepts of paracompactness, Q* and Q% are equivalent. Since
an r-space is a ¢-space, we may add (e) X is a Qf-space and (f) X
18 a QF-space to Theorem 1.23.

t X is called a g¢-space if every € X has a sequence of neighborhoods {U:; i€ N}
such that if x:€ Ui for each 7 and the set {xi; 1€ N} is infinite, then the set x;; i€
N} has a limit point in X.

2 A cover Z of X has property QF if no indexed point set {ps; a€ A}, pa€ U,
has a limit point where % = {Us; a€ A}* A cover % = {Us; a€ A} has property QF
provided for any subcollection {Uex; a€ A*}, with A* C A, if there is an indexed point
set {pa; a€ A*}, pa € Ue, having a limit point then there exists a compact set B such
that if {qa;a€ A*}, qa € Us, is any indexed point set then {qa; a€ A*} has a limit point
PpEB. A space X is called a QF(Q")-space if every open cover of X has an open re-
finement with property QF(Q7).
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2. Invariance of mesocompactness. In this section, we esta-
blish some permanence properties which mesocompact spaces share with
paracompact spaces.

Throughout this section, a map will mean a continuous surjection.

DEFINITION 2.1. A closed mapf: X— Y is called perfect (or
proper) if f~'(y) is compact in X for each ye¢ Y. A set A in X is
saturated if A = f~f(A).

EXAMPLE 2.2. A quotient space of a mesocompact space need
not be mesocompact. The ordinal space X = {x;x £ 2} is locally
compact and locally metrizable and so is the continuous open image of
a locally compact metric space [14, Th. 3]. However, we have seen
in Example 1.17 that X isn’t even sequentially mesocompact.

REMARK 2.3. It is well known that paracompactness is an in-
variant of a closed map [11]. Less well known, perhaps, is that
metacompactness also has this property [15]. We do not know if
mesocompactness (or sequential mesocompactness) is an invariant of a
closed map. However, for perfect maps we have:

THEOREM 2.4. Let f: X — Y be a perfect map. Then X is me-
socompact (sequentially mesocompact) if and only if Y is mesocom-
pact (sequentially mesocompact).

Proof. Let X be mesocompact and ¥~ = {V,; ac A} an open
cover of Y. Then {f~(V,);xc A} has a precise’ compact-finite open
refinement 7 = {U,; a € A}.

For each ye Y, let G, be a finite union of members of 2 cover-
ing the compact set f~'(y). Since f~'(y) is saturated and f is a closed
map, we can find a saturated neighborhood H, of f~'(y) in X such
that H,C G,. For each ye Y, let V. (y) be a member of &~ contain-
ing y. Since H, is saturated and f is closed, f(H,) is open in Y for
each y and so 7 = {f(H,) N V.(¥); y € Y} is an open cover of ¥ which
clearly refines . Moreover, %¢"' is compact-finite, for if K is com-
pact in Y, f~4(K) is compact in X [6, Th. 1] and so meets at most
finitely many members of % and hence at most finitely many H,.
Clearly then, K can meet at most finitely many members of <™.

Conversely, let Y be mesocompact and 2 = {U,; « € A} be an open
cover of X. For each ye Y, let G, be a finite union of members of
7/ containing the compact set f~(y). Since f is closed, there exists

3 A refinement " = {V; B€B} of % = {Ua«; a€ A} is called precise if B=A
and Vo c Ua for each a. If a cover has a compact-finite open refinement, it has a
precise compact-finite open refinement (see the proof of Theorem 1.4 in [5, p. 162]).
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a neighborhood W, of y in Y such that f~(W,) CG, for each y. Let
{V,;ye Y} be a precise compact-finite open refinement of {W,;y€ Y}.
Then %' = {f(V,)nU,; U,CG,,ye Y} is a compact-finite open re-

finement of Z.
Replacing compact-finite by cs-finite in the above argument, gives

the proof in the sequential mesocompact case, and the theorem is
proved.

Since projections parallel to compact factors are perfect maps,
the following corollary is immediate.

COROLLARY 2.5. If X s mesocompact (sequentially mesocompact)
and Y is compact, then X x Y 1is mesocompact (sequentially meso-

compact).

EXAMPLE 2.6. The product of paracompact spaces need not be
sequentially mesocompact. Let X be the reals with the upper limit
topology [5, p. 66]. Then X is a first countable paracompact space
such that X x X is not normal. Clearly, X x X can’t be sequenti-
ally mesocompact by Theorem 1.14(b).

ExampLE 2.7. The product of a compact space and a locally
compact space need not be mesocompact. Consider the ordinal spaces
X={;2<02and Y={y;y £ Q). Then X x Y is locally compact
and not normal and so can’t be mesocompact by Theorem 1.14(a) or
Theorem 1.23.

COROLLARY 2.8. Let X be mesocompact and Y locally compact
and mesocompact. Then X x Y is mesocompact.

Proof. By hypothesis, Y has a compact-finite (in fact a star
finite) open cover 7" = {V,;ae A} such that C1(V,) is compact for
each e A. Let Z be an open cover of X x Y. Then for each a e
A, X x C1(V,) is mesocompact by Corollary 2.5 and so we can find a
(relatively) open cover Z/, of X x C1(V,) which refines % and is
compact-finite in X x C1(V,) (and hence in X x Y). Let

Ve ={XxV)NU; Ue 7.}
and let 77" = { %7, ac A}. Since {X x V,;ac A} is also compact-

finite, 27~ is a compact-finite open cover of X x Y which refines 7.

* A map f: XY is called compact if f~1(K) is compact in X whenever K is com-
pact in Y.
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REMARK 2.9. Examples 2.6 and 2.7 show that neither hypothesis
for Y in Corollary 2.8 can be dropped.

For compact maps?, we have the following result.

ProposITION 2.10. Let f: X — Y be a compact map and Y a k-
space (see Remark 1.21(2)). The X 1is mesocompact if and only if
Y is mesocompact.

Proof. In view of Theorem 2.4, we need only show that f is a
closed map. Suppose f(A) is not closed in Y for some closed A in X.
Then there exists a yeCl(f(4)) — f(A). There exists a compact
subset K of Y such that y e CL(K N f(A)). Then f(K)N A is com-
pact in X since A is closed and f is a compact map. Applying f, we
have that K N f(4) is compact. But then there exist disjoint open
sets containing y and K N f(A) respectively, a contradiction since y €
CL(K n f(4)).

The following proposition will be used in Example 2.15.

ProrosiTION 2.11. If 1 X — Y s a closed map and no countably
wmfinite subset of X has a limit point in X, then no countably in-
Jfinite subset of Y has a limit point in Y.

Proof. Suppose {y;;¢€ N} is a countably infinite subset of ¥ with
limit point y. Pick an x;& f~'(y;) for each i€ N. The proposition
will be proved if we can show that {x;; 7€ N} has a limit point in
fY(y). If not, each ze f~'(y) has a neighborhood G, which misges
{w;7e N} — {#}. Then f(y)<G = U{G.,;xe f(¥)} and so, since f
is closed, there exists a neighborhood V of % in Y such that f~(V)
CG. There exists a ;€ V such that y, %y, and so x;¢eG and
2;¢ f~(y). This is a contradiction which completes the proof.

REMARK 2.12. A standard type argument shows that a closed
subspace of a mesocompact space is mesocompact. In view of Proposi-
tion 1.7, this also holds for sequentially mesocompact spaces [4, Th.
25]. Arbitrary subspaces of even compact spaces may not be sequ-
entially mesocompact as the subspace X’ = {x; 2 < 2} of the ordinal
space X = {x; ¢ < 2} shows (see Example 1.17).

REMARK 2.13. In [10] we asked whether a mesocompact space
need be normal or regular. The final two examples answer this ques-
tion in the negative.
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ExAmMPLE 2.14. A mesocompact regular space which is not normal.
Briggs [4, Th. 16] gives a sce and metacompact (hence mesocompact
by Proposition 1.10(b)) regular space which is not normal. Let X =
{x; x < 2}, with the discrete topology except at 2 where it has the
order topology. Let Q' denote the first ordinal such that if Y = {y;
y < 2}, the cardinality of Y is greater than that of X. Let Y have
the discrete topology except at £ where it has the order topology.
Let Z =X x Y — {(2, 2)} with the product topology. We record here
that Z is scc since no countable subset of Z has a limit point.

ExAMPLE 2.15. A mesocompact space which is not regular. Let
Z be as in Example 2.14. Since Z is not normal, there are disjoint
closed subsets A and B of Z such that each neighborhood of A meets
each neighborhood of B. Indentify say A to a point, and denote the
resulting quotient space by Z/A. Then Z/A is Hausdorff but not re-
gular [9, p. 132G]. The quotient map f: Z— Z/A is closed, and so
by Remark 2.3 and Proposition 2.11, Z/A is metacompact and scc.
Again by Proposition 1.10(b), Z/A is mesocompact.

Finally, the author would like to thank Professor R. C. Briggs,
III for making his dissertation available to him, and for some very
helpful exchanges.
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