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Dispersive operators were introduced by R. S, Phillips for
characterization of infinitesimal generators of nonnegative
contraction semigroups in Banach lattices. Later other defini-
tions of dispersiveness were given by M. Hasegawa and K.
Sato. H. Kunita, for the purpose of application to Markov
processes, introduced the notion of complete 7y-dispersiveness
which characterizes the infinitesimal generators of e-majoration
preserving nonnegative semigroups 7 with norm =< ¢, In
this paper we will give a unified treatment of these results,
Further, we will clarify the relation between dispersiveness
and dissipativeness in some cases, We consider also charac-
terization of infinitesimal generators of nonnegative semi-
groups without norm conditions,

Let B be a Banach lattice. That 1s, B is a vector lattice and a
real Banach space at the same time and | /| < |g| implies || 1| < |l g ]l
We use the notations f* =V 0, f~= —(fA0,and | f| =fV (=S
Following Kunita [8], let B be a vector lattice which is an extension
of B, and let ¢ be an element of B. We say that an operator 7T is
e-magjoration preserving if f < e implies Tf < e. Let G be the set
of infinitesimal generators of strongly continuous semigroups of linear
operators in B. For real numbers M = 1 and v, let G(M, ) be the set
of A e G such that the generated semigroup T, satisfies || T,|| < Me",
G° be the set of AcG such that T, is e-majoration preserving, and
further, let G°(M, v) = G(M, v) N G°. For linear operators, 0-majora-
tion preserving is the same as nonnegativity and G° is denoted by G*.
We assume that e satisfies

(0.1) feB implies fAeecDB;
0.2) f A ae converges weakly to f A 0 as &« — 0+ for each feB;
0.3) e=0.,

Note that f A aee® for @ > 0 by (0.1). We call a real-valued func-
tional +.(f, 9) on B x B e-gauge functional, if the following are
satisfied:

If g<e and a > 0 then v (f, a(f A e — g)) =0 and
v .(f,alg—fANe)=0;
(0.5) Vs g+ 0) =gl + ¥.f, h);
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0.6) Y, af — o+ 9) =all(f — )| + ¥.(f, g) for all a.

Note that (f —e)* =f — f Aee®B for f€B. Let v be a real number.
We call an operator A (4, 7)-dispersive if

0.7 Pf, Af) =7II(f —e)*|l whenever (f —e)*=0.

For any e-gauge functional +,, we will prove the following:
THEOREM 1.1. If AeG°(1, 7), then A is (v, ¥)-dispersive.

THEOREM 1.2. If A s a densely defined (v, v)-dispersive
operator with Rla — A) = B for some a > v, then Aec G, ).

These theorems include the results by Phillips [10], Hasegawa
[5], and Sato [11] on characterization of the operators in G*(1, 0)
and Kunita’s result [8] on G°(1, v) N G+, except that Kunita does not
assume (0.2). (See Remark 1.3 concerning this point.)

In §1, we will prove the above theorems. In §2, existence and
further properties of e-gauge functionals will be discussed. In parti-
cular, we introduce new functionals ¢, and @, and prove that they
are the maximum and the minimum e-gauge functionals. More examples
of e-gauge functionals are found in § 3. They include various funec-
tionals used in definition of dispersive operators by Phillips, Hase-
gawa, and Sato, and of completely v-dispersive operators by Kunita.
In §4, we will give remarks related with the closability of (v, 7)-
dispersive operators. Some results on the relation between disper-
siveness and dissipativeness will be given in §5. In §6 we will
discuss a necessary condition for an operator to belong to G* and
prove that this is also sufficient in some special cases.

The author thanks Hiroshi Kunita for informing him of his work
that was to appear in [8].

1. Characterization of G*(1, 7).

THEOREM 1.1. Suppose that e satisfies (0.1)—(0.3) and let 4, be an
e-gauge functional. Then, any operator in G(1, v) is (¥., 7)-dispersive.

Proof. Let T, be the semigroup generated by A e G*(1, v) and let
feDA). We have

Vol TS = ) =7 | T —e)F[| =7 || (f — &) |
+ VoS5 7 — ) TS — €)F
+ T(f Ne)—FNe]
= Yl A — e TS — o)F
+ Tf Ne)y—F Nel



ON DISPERSIVE OPERATORS IN BANACH LATTICES 431
by (0.5), (0.6), and || T,|| < e "". The last member is not greater
than

[t7Q — e™)T(f — &) —7(f — e)7 ||
+ 7 (f = Tl + vl fs T [TASf N e) — F N el)

by (0.5) and (0.6). Noting that the last term is not positive by
(0.4) since T.(f N e) < e, and that the first term tends to zero as
t— 0+, we get

Vilfs AF) = lm o, (TS = ) S 7IE = o]
Notice that any e-gauge functional +,(f, g) is continuous in g, because
(0.5) implies
(1.1) [0 .(fy9) —v.(fy B[ = lg — Rl
The proof of Theorem 1.1 is complete.

REMARK 1.1. Above we have proved more than (+,, 7)-disper-
siveness: ¥.,(f, Af) =7 || (f — e)*|| for all feD4).

Let us prepare lemmas for the proof of Theorem 1.2. For
elementary properties of vector lattices, we refer to Birkhoff [1] or
Yosida [12].

LEMMA 1.1. If e is an element of B satisfying (0.1) and +, is
an e-gauge functional, then

1.2y vy zal(f—oll—l@f—-e—9l, az0.

Proof. We may assume a > 0. We have, by (0.5) and (0.6),
vy 9) =all(f —e)f ||+ ¥.(f, g —alf —e) —a(f —e))
zal[(f—etll —|[@f —e — gl
+ A (fy (g —alf —e)t —a(f —e)).

The last term is +,(f, a[(a”'g — f + e)* — e + f A e]) and hence, is
nonnegative by (0.4).

LEMMA 1.2. Suppose e satisfies (0.1) — (0.3). If A 1is linear
and (v, Y)-dispersive in some e-gauge functional +r,, then

(1.3) @=NIf -l =ll@f —e— AN foraz0,
(1.4) @—-Nrll = ll(af — Af)* | for all a,
(1.5) @—-nlfil=2|laf—Afll for all a.
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Proof. (1.8) is a direct consequence of (0.7) and (1.2). Hence
we have, for « = 0 and ¢ > 0,

@—=IN(f —ee)t || = |[(a(f —ee) — Af)* || = |[(@f — AN*I,
making use of (0.3). Since (0.2) implies llm 1nf N(f —ee) |l =l Il
we have (1.4) for « = 0. For every f and g 1n B, let

o(fy9) = hm e (I(f + el = 11D
= llm(ll(af + ot = llaf*l) .

The limit exists and is finite, since || (f + eg)*|| is a convex function
of e. We have o(f,g9) <|/g*|l since (f + eg)"* < f* + eg*, e > 0.
Also, we have o(f,af + g9) = a|| f*|| + @(f, g) for all a, which is
easily checked. (1.4) for large a implies o(f, —Af) = —7I|f*Il.
Thus we get

Haf — Af)* |l =z o(f, af — Af)
=allftll+o(f, —Af) =2 (@—=") [ F]

for all a. (1.5) follows from (1.4) by
max {[| /¥, [/~ =A==+ 1A

LEMMA 1.3. Let A be linear and suppose that there exist real
numbers M > 0 and v such that

(1.6) @—=fll=Mllaf — Af|l for feDA), a>~.

If a — A) =B for some «a >, then the same is true for every
a>.

Proof. Let a,>~v and R(a, — A) = B. Then (a, — A)™" exists
on B. Given « and ¢, define an operator P by

Pu = (a, — A)7g + (@, — ®)u) , ueDB.

If w is a fixed point for P, then wu satisfles (@« — A)u = g. But, P
has a fixed point whenever |a — a,| < (@, — ¥)/M, since we have

| Pu — Pl = || (@, — A7, — @)(u — v) ||
= M(a, — 7, — affju —v]|.
Hence, R(e — A) = B is proved for all a > . This proof is due to

Komura [7] and can be applied to nonlinear case.

LEMMA 1.4. Let A be linear. If R(a — A) is a sublattice for a >y
and (1.4) holds, for feD(A), then



ON DISPERSIVE OPERATORS IN BANACH LATTICES 433
1.7) @—=nfil=llaf—Af] Jor all a.

Proof. We may assume a > v. We get

@—nlrllsli@ - AN

together with (1.4). Hence a — A is one-to-one and G, = (& — A)™*
is nonnegative. Since

|Gag | S 1Gagt | + |Goug™ | = Gog™ + Gog™ = Gl g |,
(1.7) follows from (1.4).

LEMMA 1.5. Let e be an element satisfying (0.1). If AcG and
if aG, = ala — A is e-majoration preserving for all large a, then
AecGe.

Proof. In general, if 7,9, f,=<e, and f,—f strongly, then
faoANe—f Ae strongly and f<e. Let ge® and g=<e Then,
(@G)"g < e and e**%«g < ¢'*e. Hence T,g = lim,_., e '“¢'*%g < e.

Now we can prove the following

THEOREM 1.2. Let e satisfy (0.1)-(0.3) and let . be an e-gauge
functional. If A is a densely defined (¥, v)-dispersive linear opera-
tor with Rla — A) =B for some a > v, then Aec G, 7).

Proof. By Lemmas 1.2 and 1.3, we have R(a — A) =B for all
« > v. Hence we have (1.7) for all « > v by Lemma 1.4. It follows
from the Hille-Yosida theorem that A € G(1, v). For any « > max {v, 0},
let us prove that aG, = a(a — A)™ is e-majoration preserving. If
aG.g =u and g <e, then (@ —7)|[(w—e)*||=all(g —e) | =0 by
(1.8), and hence w <e. Thus AeG‘(l,v) by Lemma 1.5 and the
proof is complete.

REMARK 1.2. If e satisfies (0.1)-(0.3), every e-majoration pre-
serving linear operator in B is nonnegative. As a consequence, we
have G°c G*. In fact, let f < 0. For every ¢ >0 we have f < ae
by (0.3), and hence T7f < ae. For any nonnegative o e B* we have
lim, ., (Tf N ae) = p(Tf A 0) <0 by (0.2), and hence o(Tf) <0.
This means Tf < 0.

REMARK 1.3. If e satisfies only (0.1), Theorem 1.1 holds true
without any change, and the following theorem replaces Theorem
1.2: Let A be a densely defined linear operator with Ra — A) =B
for some a>v. If A is (i, 7)-dispersive and (J, 7)-dispersive
i some e-gauge functional +, and 0-gauge functional r,, then
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AeG,v)NnG*. The proof is carried out in the same way. This
includes Kunita’s result in [8], who assumes also (0.3) and v = 0 and
uses the functional o (see § 3) for gauge functional.

ExampLE 1.1. If 8 =B, then any nonnegative e satisfies (0.1)-

(0.3). In case ¢ =0, the above theorems characterize the operators
in G*(1, 0).

2. Functional @,. In this section, only the condition (0.1) is

assumed for e. We denote by B the linear subspace of B spanned
by B and e. Let us define

e N9 =Ime(f —et e | =1 = o)
’ =lim (| (@(f — ) + )" || = lla(f — &)* )
(2.2) PULr 9) = =S5 —9) .

LemmA 2.1. The limit in (2.1) exists and 1is finite for each
fe®B and geB.

Proof. Note that ||(f — ¢ + eg)*|| is a convex function of ¢ in
a neighborhood of 0.

Main results in this section are the following two theorems.

THEOREM 2.1. o@.(f, g) and @,(f, 9) are e-gauge functionals of f
and g€ B.

THEOREM 2.2. If +, is an e-gauge functional, then
(2.3) PUSy 9) = vl fy 9) = p.f, 9) f,9€®B.

For the proof, we prepare some properties of ¢,.

LEMMA 2.2, Let fe®B, g, he®B, and keB. Then,

(2.4) Pf,0) =03

(2.5) Plfs b — ae) = || (k — ae)* ||, az0;
(2.6) pfra(f —e)+ g =al[(f —o*ll + pf,9), «a real;
2.7 P(fr 9 + B) = pfs 9) + pf5 1) ;

(2.8) g = h implies p,(f, 9) = p.f, h) ;

(2.9) e (fr a(f — &~ + k) = p.f, k) , @ real .
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Proof. (2.4)-(2.7) are proved easily from the definition and the
property (g + h)* < g* + h*. (2.8) is evident since ¢g < % implies
(f —e+eg)™ = (f — e+ ehy. In order to prove (2.9), we may assume
a>0. Let ]l =f— e Suppose, for a moment,

(2.10) (I + eal~ + ek)* < (I + e(l — ea)~'k)* \/ (I + ek)*

for sufficiently small ¢ > 0. Since we have

1+ e — ey k)t V (L + ek)t || — || (¢ + ek)* ||
< |1+ e — eayk)* — (I + ek)* || < ||e(l — ea)~'k — ek ]
= a(l — ea)7 k]|,

it follows from (2.10) that
e (10 + eal™ + ek)* || — |[17]]) = ([T + ek)* || — |1+ ]])
+ ea(l — ea)| k1] .

This implies o (f,@l- + k) < ¢,(f, k). On the other hand, the reverse

inequality is a consequence of (2.8) by « > 0. In order to prove

{2.10), it suffices to show

211) (d+BE+R) 20 +Q =8V I+htfor0<p<l,
Lhe®B.

Let v = 81 — B)~'. Since

YRV (=1 —h) vV 0+ Bl
—(h+ 1 =BV (=h— 1+ BV (BH)=0,

we have
C+A=-8"rVvVI+hVvo-(A+pBl+h)
=0h)V(=l—h)VO0-—pB=0.
This proves (2.11).

Proof of Theorem 2.1. Let us check (0.4)-(0.6) for p,. If g < e
and a > 0, then

@e(fa C((f N e — g)) z @e(f’ a(f Ne— 6))
= @(f, —a(f —e)) =0

by (2.4), (2.8), and (2.9). The second inequality in (0.4) is proved
similarly. (0.5) is a consequence of (2.5) and (2.7). (0.6) is obtained
from (2.6) and (2.9). Hence ¢, is an e-gauge functional. ¢) is also
an e-gauge functional by the next lemma.
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LemMMmA 2.8. If +, is an e-gauge functional and if ) 1s
defined by

(2.12) vfy 9) = =¥y —9)

then ., is also an e-gauge functional.

Proof is trivial.

Proof of Theorem 2.2. The first inequality in (2.3) is obtained
from Lemma 1.1. This implies the second inequality by virtue of
Lemma 2.3.

REMARK 2.1. Theorems 2.1 and 2.2 imply the following assertion:
Even 1f ., is not an e-gauge functional, Theorems 1.1 and 1.2
remain true provided that +, satisfies (2.3). In particular, (2.3)
holds if -, satisfies (0.4), (0.6), and

(0.5) Ve(fs 9+ h) = gl + ¥f, h) ~forg=0.

REMARK 2.2. One remarkable feature of ¢, is this: An operator
A is (@), v)-dispersive if and only if (1.8) holds for every fe D(A)
and large a. As a consequence, if A is closable and (v, 7)-dispersive:
in some «+, satisfying (2.3), then the closure A is (¢!, v)-dispersive.

REMARK 2.3. We list some more properties of ¢,: Let fe®B,
ge®B, and keB.

(2.13) Pfs k + ae) = —|[(k + ae)” ||, az=0;
(2.14) P, ag) = ap,(f, 9) az=0;
(2.15) Pacf5 9) = @S, 9) » a>0;
(2.16) P fr9) =0 = o.f, 9) if(f—er=0;
(2.17) T k) = o fy k) = oo f, k) = o (fH k),

where we define
(2.18) z(f, k) = 15)11 e (| f + k|l = 171D, o(fy k) = —7(f, —k) .

(2.13)-(2.16) are proved directly from the definition. For the proof
of (2.17), notice that (f + ek)* < (f* + eb)y* < |fT + ek|. (2.4)-(2.9)
and (2.13)-(2.17) combined with Theorem 2.2 lead to many properties.
of e-gauge functionals.

Simple examples of B, ¢, and @, are given in the following.
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These are proved in the same way as [11, § 6].

EXAMPLE 2.1. Let B =3 = C(X), the space of continuous func-
tions on a compact space X. Then,

PS5 9) = ,.rf_e~<313.’ff_e)+[.g(x) if (f—e*=0,
= max gt (@) if f—e=<0 and (f — e)(x) = 0 for some 2,
z:(f—e)(z)=0
=0 if (f —e)(x) <0 for all = .

As another example, let X be a locally compact space which is not
compact, B be the space C(X) of continuous functions on X vanishing

at infinity, and B be the vector lattice of all continuous functions
on X. Then, any nonnegative ¢ in B satisfies (0.1) — (0.3), and o,
has the same expression as above.

ExAmMPLE 2.2. Let (X,<#,m) be a measure space, B = L, (X, <Z,m),
1< p< o, and B be the set of all <#-measurable functions, where
two functions are identified if they coincide m-almost everywhere.

Then, any nonnegative ¢ in B satisfies (0.1)-(0.3). Let f,ge®B. We
have

PS5 9) = Sx(f — e)* (@) "g@)m(d2)/|| (f — e)* "7 if (f—e)t +0,
= [S ) g*(x)i"m(oloc)]p—1 if(f—e*=0
{z:f(x)=e(z)}

for 1 < p < <o; and

wfr9) = | g(@ym(dz) + | g (@)m(de)

{z:f(x)>elx)} {z:f(x)=e(2)}

for p = 1.

3. More examples of e-gauge functionals.

ExAMPLE 3.1. Suppose that a real-valued functional +(f, g)
defined for fe®B, f =0, and g € B satisfies the following:

If g=0and f A |h| =0, then ¥(f, g — h) =0 and

3.1

@1 v(fih—9)=0;

(3.2) v(f, 9+ h) =gl +v(f R ;

(3.3) v(fsaf + g) = al[fll + ¥(f 9), « real .

Let ¢ be an element of B satisfying (0.1) and define +, by
3.4) V(fy 9) = v ((f — €)% 9), fr9e®B.
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Then, +, is an e-gauge functional. In fact, apply (3.1) with f, g,
and & replaced by (f—e)", a(f Ae—g)", and a(g — f A e)*, re-
spectively, in order to get (0.4). (0.5) follows from (3.2), and (0.6)
from (3.8).

REMARK 3.1. If 4 satisfies (3.1)-(3.3), then <+ defined by
W(fy 9) = —¥(f, —g) satisfies (3.1)-(3.3), too.

ExampPLE 3.2. Let [g, f] be a functional which satisfies
l@g + Bh, f1 = alg, f1 + Bk, f1,

3.5

(5-5) o F1 = NalliFl LA =N FIE,
(3.6) U7l = 177 1t s

3.7) g, £] =0 if f=0and g=0.

Let ¢ and ¢’ be defined by
(3.8) ofyg)= inf =(f,(g+h)V(=BS), o'(f,9) = —o(f, —g)

|hIAf=0,820

for f,ge®B, f=0. Then, any one of the following choices of
satisfies (3.1)-(3.3):

(3.9) v(0, 9) = 0, v(f, 9) = lg, FIIIfI] for f+0,
(3.10) v(fy 9) =27 (f, 9) — o(fs —9))
(3.11) v(fs 9) = a(f, 9),

(3.12) v(f,9) =0d(f, 9.

[g, f] is a semi-inner-product used by Phillips [10]. (3.10) is introduced
by Hasegawa [5]. ¢ and ¢’ are introduced by Sato [11]. The proof
for (3.9) is obvious. For the proof of (3.2) and (3.3) with + defined
by (3.10), use properties of = in [5, Proposition 2]. (3.1) is proved
from the fact that £ =0, g =0, and fF A [2|=0imply |f—g+ h| =
|f+ ¢~ h|. For (3.11), use [11, Proposition 3.1]. For (3.12), use
Remark 3.1. Our Theorems 1.1 and 1.2 thus include the characteri-
zation of G*(1, 0) by [10], [5], and [11]. Note that characterization
of G*(1,~) is easily obtained from that of G*(1,0), cf. [4]. But
there is no favorable relation between G°(1, v) and G*(1, 0) in general.

REMARK 3.2. Given f=0 and ¢ in B, +(f, g) is the same for
all - satisfying (3.1)-(3.3) if ||f + egl|| is differentiable at ¢ = 0.
This is a consequence of Example 3.1 and (2.17) combined with
Theorem 2.2. Such is the case if B is a Hilbert space, where it is

easy to see that o(f, 9) = '(f, 9) = (f, 9)/l| FI| for f = 0.
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REMARK 3.3. We can characterize ¢ by Phillips’ semi-inner-pro-
duct. Let fe®B, f=0, and f# 0. Let &, be the set of linear
functionals @ € B* such that ||| <1, o(f) = || f|l, ¢ = 0, and p(g) =
0if fAlg|=0. Then we have

(3.13) o(f, 9) = rgg}fc P(9) » a'(f,9) = {giwr; o(g) -

Hence,

(3.14)  o(f, 9) = max|g, flIIfIl, o'(f, ¢) = minlg, YIS,

where maximum and minimum are taken over all [g, f] satisfying
(3.5)-(3.7). For the proof, we have only to show the first equation
in (3.13), the second being a consequence of the first. If pe @, we
have e(|[f + eg |l — |[fI) = e7(@(f + €9) — o(f)) = #(9) and, hence,
7(f, 9) = @(g). Thus

(f, (9 + BV (=Bf) = o(lg + h) V (—Bf) = p(g + k) = (9)

if |[h|Af=0and 8=0. Hence o(f, 9) = o(g). On the other hand,
let us show the existence of ¢ € @, such that o(g) = o(f, g) for given
g. We will freely use the properties of ¢ in [11, Proposition 3.1].
Let M,,, be the set of k& such that k = a(f + ¢g) + h for some « and
h such that |h| A f=0. Let k)= aoc(f,f+ g) for such k. (k)
is uniquely defined and satisfies o(k) < o(f, k):

p(k) = o(f, a(f + 9)) = o(f, k) if =0
pk)y = —o(f, —a(f +9) = o(f,a(f+9) =0(f, k) ifa<0.

It can be proved that IN,, is a closed subspace. Therefore, noting
that o(f, ) is subadditive in I and satisfies o(f, al) = ao(f, 1), a« = 0,
we can extend @ to a linear functional on B satisfying o(l) = o(f, 1)
for all e¢®B by Hahn-Banach theorem. We have [|@]|| <1 because
p)=a(f, D=l and —@()=o(f, =D =T ]1].
Since o(f) + @l9) = o(f, [+ 9) = [[fIl + o(f, 9, @(f) = fll, and
o(9) = o(f, 9), we have o(f) = || f]l and ¢(g9) = o(f, 9). If 1 =0, then
—opl) £ 0(f, =) £0. Thus @ belongs to @, and the proof is
complete.

REMARK 3.4. For any real or complex Banach space 9B, the
corresponding theorems for G(1, v) are simpler than those for G*(1, 7),
and are mostly known. Let + be a real functional such that

(3.15) 7o =vfH 9 =(f9).

Call an operator A (v, v)-dissipative if (f, Af) < v||f|l. Then,
Theorems 1.1 and 1.2 remain valid if we replace (4., 7)-dispersiveness
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and G*(1, v) by (v, 7)-dissipativeness and G(1, v). For the proof, we
need only note that this is true for + =7 or 7’ by [5, 11, 4]. A
sufficient condition for (3.15) is that + satisfies

(3.16) —llgll =+ 9 =llgll,
(3.17) v(fraf +9) =allfll + ¥ 9, o real .

An operator A is (7, v)-dissipative if and only if (@ — )| f]] <
l|af — Af|| for all fe D(A) and large real a. Letting @, be the set
of peB* such that ||@|| =1 and o(f) = ||f]|, we have

7(f, 9) = max Zp(g) , (S, 9) = fanhf‘ FBp(g), for f+0.
vedr €@

Hence z(f,9) and 7'(f, g) are the maximum and the minimum, re-
spectively, of [g, f1/l|f]] over all semi-inner-products, that is, func-
tionals satisfying (3.5). This is a consequence of [3, Th. V.9.5].
Conditions for <'(f, 9) = z(f, 9), f# 0, are studied by R. C. James
[6]. He proves, among others, that 7'(f, g) = 7(f, g) for all f=0
and ¢ if B* is strictly convex.

4. Closability and related properties. The following theorem
covers all the previous closability results for dissipative and disper-
sive operators [9, Lemma 3.3; 5, Proposition 7; 11, Th. 3].

THEOREM 4.1 Let A be a densely defined linear operator in a
real or complex Banach space. If there exist real numbers M, 7,
and «, such that

(4.1) (@—=Ifll = Mllaf — Af|l for a>a,, feDA),
then A is closable and (4.1) holds with A replaced by A.

Proof. We may assume M =1 and «a,= 0. It suffices to show
that f, — 0 and Af, — ¢ # 0 produce a contradiction. We may assume
lgll =1. Pick an element he ®D(4) such that |[[h —g]| < BM).
We have ||| > 1 — (BM)™* = 2/3. Let

Payn = 1 Qfw + h|| = M||laf, + b — g —a*Ah|] for a>a«,.
‘We have

lim inf ,,,
= lim ([[af, + Ry —Ml|lafll = M|k —gl| — Ma™"|[AR]|

> 37— Ma™ || Ah ||
on the one hand, and
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<l|laf. + k|l — M||af, + h — A(f, + a”*h) || + M || Af. — gl

hence lim sup, .. Po,.» < va~'||h]|| on the other. This is a contradic-
tion when « is large. It is obvious that A satisfies (4.1).

@a:’/b

REMARK 4.1. Let e satisfy (0.1)-(0.3) and +, be an e-gauge
functional. Let A be a linear densely defined (v, 7)-dispersive
operator. Then, A is closable and A is (¢, 7)-dispersive. If R(a — A)
is dense for some a > 7y, A belongs to G*(1,v). In fact, A is closable
by Lemma 1.2 and Theorem 4.1, and A is (¢!, v)-dispersive by Remark
2.2. If R(@ — A) is dense, we have R(a — A) =B by using (1.5),
and hence A€ G°(1,v) by Theorem 1.2. In order that R(a — A) be
dense for « > v, it suffices that o — A* is one-to-one, and hence,
(@4, ¥')-dispersiveness or (z’, v')-dissipativeness of A* for some °’
suffices.

5. Relation between dispersiveness and dissipativeness. If A
is bounded with D(A) = B, or, more generally, if A belongs to G,
then (o}, 7)-dispersiveness of A implies its (7, v)-dissipativeness
(Theorem 1.2 and Remark 3.4). The same is true if R(a — A) is a
sublattice for every large a (Lemma 1.4). But we do not know
whether this is true in general. Here we restrict our attention to
the case where the following condition is satisfied:

G.1) I fli=lg"ll and || f~|| = [lg7 |, then |[f]| = llg]l-
This is essentially the condition considered by F. Bohnenblust [2].

LEMMA 5.1. Assume (5.1). If ||f||< /g7 and ||f~ 1| < g |l,
then | fIt = llgll-

Proof. We have || f*||=al/g"|| and [[f~|[= B [lg” || for some
0a=<land 0<B8=<1. Let h =agt — Bg-. Then, At = ag* and
h~ = Bg~, and hence || || = || f|| by the condition (5.1). On the other
hand, we have [|%|| < |lg|| since |2| = ag” + Bg~ < g* + g~ = |g]|.

THEOREM 5.1. Assume that B satisfies the condition (5.1). Then,

5.2) sup S AS) < su P fs Af)
s2nre || f] T ortenseqa || T

1 All familiar Banach lattices (C, Lp,1 = p < o, ete.) satisfy this condition. As
an example of a Banach lattice which does mot satisfy the condition, consider the
direct sum of Ly, and Lp,, p1 % p2 with || /i@ fell = || f1ll + || /2]l and define fiDfe <
91D gz if and only if f1 < g1 and f2 < gs.
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for every linear operator A. That 1s, limear (@, v)-dispersiveness
implies (7', v)-dissipativeness.

Proof. Suppose the right-hand side in (5.2) is finite and denote
it by v. Then we have (1.4) and (@ — V)| Ff I < |l (@f — AfF)~|l.
Hence, (@ — ) ||f|l £ |laf — Af|| by Lemma 5.1. It follows that
T(f, Af) £ 7| f]| for all feD(A).

6. Infinitesimal generators of nonnegative semigroups. Charac-
terization of the operators in G* is an interesting open problem.
Here we present some results concerning this problem.

THEOREM 6.1. Suppose that A belongs to G*. Then,
(6.1) o(g, —AN) =0 if feDA), f=0, 9=0, and o(g, f) =0.

Proof. Using the properties of ¢ in [11, Proposition 3.1], we have
o(g, t7(f — T.f) = a(g, t7f) + o(9, —t7'T.f) = o(g, —t7'T.f) =0
and hence o(9, —Af) =0.

THEOREM 6.2. Let A be a bounded linear operator with D(A) =
B and suppose that

6.2) 0(9, Af) =0 2f feDA), f=0, 9g=0, and a(g, f) =0.
Then, AcG*.

Note that (6.2) is weaker than (6.1), since d(g, Af) = —o(g, —Af).

Proof. For each f we have o(f+, Af~) = 0 and hence

—o(f*, —Af) = o(f*, Af*) — o(f™, Af7)
so(fH Ay s Al = Al

Therefore, A G*(1, || A])).

THEOREM 6.3. If B is the space C(X) of continuous functions
on a compact space, then any operator in G which satisfies the con-~
dition (6.2) belongs to G+.

Proof. The resolvent G, = (@ — A)~* exists for large «, say,
a >v. It suffices to prove G,f =0 for f=0. We may assume
f(x) >0 on X, since general nonnegative f is approximated by f + e.
Suppose that G..f(x) < 0 for some «, > and x,€ X. Let a;, be the
supremum of « such that G,.f(z) <0 for some zecX. «, is finite
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because aG.f —f as a— c~ and inf,.; f(x) > 0. Choose B, and ¥,
such that B, increases to @, and G, f(y.) < 0. Taking a subsequence
if necessary, we can find a point =z, such that G. f(y.) — G..f().
Since G.f is strongly continuous with respect to « by the resolvent
equation, G, f(v,) tends to G, f(x,). Hence G, f(x,) <0. Since G, f =
0 by the definition of «,, we have G, f(x) = 0. Let

9@) = || Go, f || — Go S ()

Using an explicit form of ¢ [11, 6.1], we have o(g, G, f) = 0, and
hence, by the condition (6.2), 0 < o(g, AG, f) = max AG, f(x), where
the maximum is taken over the set of x such that g(x) =|g
Thus we can find a point w, such that G, f(x,) = 0 and AG, f(z,) = 0.
Hence f(x,) = a.G, f(x,) — AG, f(x;) =0, which is absurd. The proof
of Theorem 6.3 is complete.

Added in proof. The results [8] have appeared in the following
paper: H. Kunita, Sub-Markov semi-groups in Banach lattices, Pro-
ceedings of the International Conference on Functional Analysis and
Related Topies, University of Tokyo Press, Tokyo, 1970, 332-343.
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