Vol. 33, No. 3, 1970

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 323: 1  2
Vol. 322: 1  2
Vol. 321: 1  2
Vol. 320: 1  2
Vol. 319: 1  2
Vol. 318: 1  2
Vol. 317: 1  2
Vol. 316: 1  2
Online Archive
Volume:
Issue:
     
The Journal
Subscriptions
Editorial Board
Officers
Contacts
 
Submission Guidelines
Submission Form
Policies for Authors
 
ISSN: 1945-5844 (e-only)
ISSN: 0030-8730 (print)
Special Issues
Author Index
To Appear
 
Other MSP Journals
The norm of a derivation

Joseph Gail Stampfli

Vol. 33 (1970), No. 3, 737–747
Abstract

In this paper, we determine the norm of the inner derivation QT : A TAAT acting on the Banach algebra B(H) of all bounded linear operators on Hilbert space. More precisely, we show that QT= inf{2T λI: λ complex }. If T is normal, then QTcan be specified in terms of the geometry of the spectrum of T.

Mathematical Subject Classification
Primary: 46.65
Milestones
Received: 2 September 1969
Revised: 15 December 1969
Published: 1 June 1970
Authors
Joseph Gail Stampfli