Vol. 33, No. 3, 1970

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 334: 1
Vol. 333: 1  2
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
The norm of a derivation

Joseph Gail Stampfli

Vol. 33 (1970), No. 3, 737–747
Abstract

In this paper, we determine the norm of the inner derivation QT : A TAAT acting on the Banach algebra B(H) of all bounded linear operators on Hilbert space. More precisely, we show that QT= inf{2T λI: λ complex }. If T is normal, then QTcan be specified in terms of the geometry of the spectrum of T.

Mathematical Subject Classification
Primary: 46.65
Milestones
Received: 2 September 1969
Revised: 15 December 1969
Published: 1 June 1970
Authors
Joseph Gail Stampfli