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In recent years it has become clear that the study of
C*-algebras without a unit element is more than just a mildly
interesting extension of the ‘‘typical”’ case of a C*-algebra
with unit. A number of important examples of C*-algebras
rarely have a unit, for example the group C*-algebras and
algebras of the form I n I* where I is a closed left ideal of a
C*-algebra. J. Dixmier’s book, Les C*-algebras et leurs repre-
sentations, carries through all the basic theory of C*-algebras
for the no-unit case, and his main tool is the approximate
identity which such algebras have, Many C*-algebra questions
can be answered for a C*-algebra without unit by embedding
such an algebra in a C*-algebra with unit. Some problems,
especially those which involve approximate units, are not
susceptible to this approach. This paper will study some
problems of this type.

Theorem 1,1 states that if 2 is a norm separable C*-
algebra and {fi, --- f.} is a finite set of orthogonal pure
states of Z/ (i.e., ||fi — f;ll =2 if ¢ # j), then there exists
a maximal abelian C*-subalgebra A of % such that f,| A is
pure (k=1,---,7n) and f, | A has unique pure state extension
to Z (k=1,---,n). This extends the prototype result of
Aarnes and Kadison by (a) allowing a finite number of pure
states instead of just one, (b) dropping the assumption that
1€ %/, and (c) proving uniqueness of the pure state extension.
In §2 two examples are constructed which show that the
uniqueness assertion of Theorem 1.1 cannot be extended to
the nonseparable case, and that even in the separable case
the subalgebra A must be carefully chosen to insure unique-
ness of pure state extension, Theorem 1.2 and Example 2.3
show that a very desirable majorization property of approxi-
mate units does not quite carry over from the abelian case
to the general case, (If it did, several impeortant problems,
including the Stone-Weierstrass problem would have been
solved.) Theorem 1.3 extends the author’ characterization of
approximate units of C*-algebras to approximate right units
for left ideals of C*-algebras,

1. Theorems.

THEOREM 1.1 Let Z be a morm separable C*-algebra and
{fir « -+, fu} a finite set of orthogonal pure states (i.e., ||f; — fi] =2
iWf 1%£7J) of Z. Then there exists a maximal abelian C*-subalgebra
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AC Z such that f,|A 1is pure (k =1, --+,n), and f, 1s the unique
pure state of Z which extends f,|A (k=1, --+,n).

Proof. We shall consider Z acting on H under its universal
representation (the direct sum of all the ecyclic representations due
to positive linear functionals on % [5, p. 43]). Recall [5, p. 236]
that the weak closure of % can be identified with the second dual
7** of 7¢. Let w,e H;,C H be a unit vector such that for any
a €7 we have {ax,, x> = f.(a). By [6, Corollary 7] we may choose
a positive operator beZ with [[b||<1 and bz, = (k/n)x, for
kE=1,.-.,n. Choose real-valued functions {p,};-, of a real variable
with the following properties: (1) ¢.(t)p,(t) =0 if k=7, (2) pu(k/n) =1,
3) 0 < pu(t) <1, (4) @, is continuous; where ¢t is any real number
and k,7 =1, ---, n.

Define b, = ¢,(b) by the spectral theorem. Let p, be the range
projection of b,, and let p be the orthogonal projection on the sub-
space spanned by {x, ---, x,}. Using the terminology of [3] we see
that (1 — p) and {p.,}}-, are open projections for %7, and hence for
7, the C*-algebra formed from % by adjoining the unit 1. Note
that p commutes with b and hénce with each p,. Set

I, ={aeZ: p,(1 — pla(l — p)p, = a}

for each £ =1, ---, n. Since % is norm separable, we may choose
a strictly positive element a,e I, with ||a,|| =1 by [1]. (l.e., for
any positive linear functional % on the C*-algebra I,, h(a;) =0
implies 2 = 0.) By [3, II. 7] ».,(1 — p) is open, hence 1 — p,(1 — p)
is the null projection of a, for each k =1, ---, n.

Now we define ¢, = b, — ba,b, for k=1, ---,n. Each ¢, is
self-adjoint and c¢,x; = d,;4; (Kronecker Delta). Also ¢.c; =0 if j =+ k.
Define I, = {a € Z7:(1 — p)a(l — p) = a}. Then let ', = {a € Iz c,a = ac,
for all k=1, ..., n}. Let I", be the C*-algebra generated by {c,}i-,
and I',, and let A be a maximal abelian C*-subalgebra of I", contain-
ing {e¢;}i—,. It is clear that f,| A is multiplicative, hence pure, on A4,
gince f,|I, =0 for each k=1, ---,n. We shall show that A is a
maximal abelian C*-subalgebra of Z.

Suppose ¢ € Z with ca =ac for all aec A. We may suppose ¢ =0
since {de Z: da = ad for all ac A} is a C*-algebra, hence generated
by its positive elements. For each k=1, .-, n, we define a scalar
N, as follows. If cx, =0, let », = 0. If cx, #0, let y = cx,/|| cx, .
Since cc, = ¢,c, we get ¢y (cx,) = c(exy) = exyy, SO0 ¢y = y. Thus
1 =<Lewy, ¥ = by, ¥ — {abyy, byy. Since b, =0, a, =0, [[b ]| =1,
this means b,y = ¥ and a,b,y = 0 = a,y. By the above, this means
1 — p,(1 — p))y = y, since (1 — p,(1 — p)) is the null projection of a,.
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But b,y =y implies y = p,y. Hence y = p,py. This means that
Y = MpXy, since p.p is the projection on the one dimensional subspace
spanned by z,. Since the foregoing was valid for each k=1, ---, n,
we can define d = ¢ — 3% \,c, and note that (1 — p)d(l — ») = d,
so that del,. But da = ad for all ac A, so del’,, hence de A by
maximality of A. This proves that A is a maximal abelian C*-
subalgebra of Zr.

Lastly, we shall prove the uniqueness assertion. Suppose g is a
pure state of % with g] A = f,| A. Then there exists a unit vector
ye H,c H such that <{ay, y> = g(y) for all ae Z. Thus (¢, ¥> =
ety = 1 = <by, y> — La,b,y, y>. Using the same argument as
above, we get b,y = y and a,y = 0. As before, this implies ¥ = \x,,
80 g = fi.

One is tempted to ask if the hypothesis of separability can be
dropped. Example 2.1 shows that we cannot hope for unique state
extensions in the (very) nonseparable case. However, the question
of the exigstence of the maximal abelian C*-subalgebra is still open.
For the separable case one might ask if a pure state of a maximal
abelian C*-subalgebra always has unique pure state extension to the
whole algebra. Example 2.2 shows that this is not the case.

We now turn to a quite different problem, that of majorizing an
element of a C*-algebra by an element of a subalgebra. If % is an
abelian C*-algebra and BcC % a C*-subalgebra which contains a
positive increasing approximate unit for all of %, then for every
a =0 in % there is be B with b = a. In fact, with a slightly more
refined argument one can choose b so that ||b{| = ||a|. Example 2.3
shows that this last assertion is (in general) false if the hypothesis
of commutativity is dropped. The following result shows how close
we can come to the abelian case.

THEOREM 1.2 Let A be a C*-algebra and A, a C*-subalgebra of
A which contains a positive, increasing approrimate unit {dz}q.r for
A. Then given a, =0 in A and € > 0, there evists b = 0 in A, with
b= a, and [|b] = llag]] + e

Proof. TFirst let us note that if the theorem is true for all

a,€ A with |ja,]] =1, then it is true for all ¢,c¢ A. Thus we may
assume ||la,|| =1. Given ¢ >0 we may choose «,cl such that
| @ — Qo @, || < €/2. Since {a,} is an increasing positive approximate
identity and |la,|| =1, @ = @0@a.. Set a, = a, — a.,aa.. Then

find «, €I such that [|a, — a.,0.0.,] < ¢/4. Now || (2/¢)a, || =1, so as
above
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> q2 > 2
a’az = aaz == aaz ?al a’az
Thus (¢/2), = @00, Set a, = a, — a,,0,a,,, and continue by induc-

tion to get sequences {a,)c-,cI and {a,};-,CA so that a, =
Upy — Oq Oni, for m >0 (a, as given), || a,|| < ¢/2" for n > 0, and

5
<F)aan = Go, Ay,

Thus the series >)7..a. @, .., is absolutely convergent to a,. Also
z;‘ an® “laan = Oy + Z (Zn 1)a“n ’

the right hand side also converging absolutely to an element be A,.
Clearly

<1l+e,

181 = w1+ 2 (55 o,

so we have the theorem.

In order to state the last result of this section we introduce a
definition.

DEFINITION. We say a pure state f of Z is pure on a closed
left ideal I if f is pure on the C*-algebra I N I*.

THEOREM 1.3 Let I be a closed left ideal of a C*-algebra Z.
An increasing directed met of positive operators {a,J I is an
approximate right unit for I if f(a,) — 1 for every pure state f of
Z which is pure on 1.

Proof. Let {a,} I be a positive increasing directed net in I
with f(a,) —1 for every pure state f of Z which is pure on I.
Now set I, = INI*, and note that {a,} I, By [4, 5.1] {a,} is an
approximate unit for I, since every pure state of I, has (by [7]) a
pure state extension to . Let bel. Then

110 — bag [|* = [[ (b — a.d*)(b — bay) ||
= [|b*b — b*ba, — a,b*b + ab*ba, |/, — 0

since b*bel, and {a.,} is an approximate unit for I,. Thus
[|b — ba,|l,—0.
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2. Examples. This first example will be a nonseparable C*-
algebra A which has no positive increasing approximate unit {a,}
consisting of pairwise commuting elements. That is, no maximal
abelian C*-subalgebra of A contains an approximate unit for A. By
considering A the C*-algebra obtained from A by adjoining a unit,
we get a pure state f on A with f| A = 0 (considering A c A) which
cannot be the unique pure state extension of any pure state of any
maximal abelian C*-subalgebra of A.

ExaMPLE 2.1 Let I" be an index set of cardinality 2°, where ¢
is the cardinality of the set of real numbers. Let H be a Hilbert
space with an orthonormal basis of cardinality 2*. Choose a family
{H,},.r of orthogonal subspaces of H with dim (H,) = dim (H) for all
v>I'. For each fixed vyel’, choose a family {H¢},., of subspace of
H, which are orthogonal and such that dim (H%?) = dim (H) for all
vyael'. Let H =2X@{H,:vel'}, and we shall work in B(H,), the
algebra of all bounded operators on H,. For each pair (a,v)el x I"
with « # v, choose projections p,, and ¢, on H? such that p,,q., #
QoD Define for each Bel” a projection p,e B(H,) by defining p,
on each subspace HY as follows: p;|H =0 if a8 and v +# B,
ps | H =1, if a =B =1, p; | H = p,s if @+ B, and p, | H: = q,,
if B8+ a.

Now we let A be the C*-algebra generated by {p,};.,. We note
the following facts.

(1)  D,D« # Dap; unless 7 = a.

(2) If 1,, denotes the projection on H%, then 17 € A’, the commutant
of A in B(H,), and 1%-15 = 0 unless & = 8 and 7 = p.

B) 2,00 =01if v ##a =B #".

These are immediate from the definition of the {p,}.

Now define the *homomorphism o¢,,: A— B(H,) by @.(a) = 1,a,
and let A, be the kernel of this homomorphism for each pair
(@¢,vYeI’ x I'. We note that for each velI', A= A4, +{p:\ a
scalar}. Now suppose 4, C A is a maximal abelian C*-subalgebra of
A and that A, contains an approximate identity for all of A. Then
for each velI', surely ¢,, is nonzero on A, so that A, contains a
positive element of the form p, + a, where a,€ A4,,. We shall prove
that this implies that A4, is not abelian.

For each veI', we are assuming A, contains a positive (fixed)
element of the form p, + a, with a,€ A,,. Now for each fixed ve T,
a, can be written as the sum of a series of products of the {p.}.cr
with suitable scalar coefficients. This series can be chosen so that
every term of the series lies in A4,,. We shall fix such a series for
each v, and define F, = {ael": p, appears as a factor in one of the
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terms of the series for a,}. Since each F, is countable and card
(') =2°, we may choose a collection {F,:ve K}, where K is an
uncountable subset of I" (any subset K with card (K) = ¢ will work),
and U{F,:veK} =+ I". Then for fixed Bel' ~ U {F,: ve K), p; does
not appear as a factor in any term of the series for a, for any € K.
Since (p; + a;) € 4, for some a; € A;; and K is uncountable (and the
series for a; is countable), there exists some ve K (which we now
fix) with p,a:1,; = 0 = 1,a,D;.

We now show that (p, + @,) and (p; + a;) do not commute.
We need only check that 1,:(p. + a,)(p; + ;) # 1,505 + ap)(®; + ;).
Now

Ls(or + @) (05 + as) = Ls(p,05 + Dy + a,05 + a,05) = 1,5(0,05)
= QrePrs # Drslrs = 1:5(Ps0;)
= 1,4(ps + as)(p; + a;) .

This is seen as follows. 1,,p,a;, = 0 = 1,;a,p, by the choice of v above.
Also 1,sa,a5 = 1,,a;a, = 0 because no term of the series for a, contains
p, are a factor, and each term lies in 4,,. Finally 1,;p:a, = 1,,a,p; =0
by the choice of Bel' ~ U {F,:aecK}. We have proved that A, is
not abelian, so this contradiction establishes the result that A has
no maximal abelian C*-subalgebra which contains an approximate
unit for all of A.

Now if A is the C*-algebra consisting of A with the identity
adjoined, define the pure state f on A by f(a + \1) = \, where ac 4
(every element of A can be written uniquely in the form a + \1
with ae 4). If A, is a maximal abelian C*-subalgebra of A, then
A, = A, + (A1}, where A, is a maximal abelian C*-subalgebra of A,
and A, is the kernel of f| A, If {@u}.c; C A, is a positive increasing
approximate unit for 4, the only pure state of A, vanishing on all
the a.(@el) is f| A, However, it follows immediately from [4, p.
531] and [3, Th. II. 17] that there are at least two pure states of
A vanishing on {a,} or else {a,} would be an approximate unit for all
of A—contradicting the conclusion above.

In the next example we construct a separable C*-algebra A with
unit and a maximal abelian C*-subalgebra A4, of A and two pure
states f, g of A with f=g¢ and f| A4, = g | 4,.

ExAMPLE 2.2 For each n=1,2, ... let H, be a two-dimensional
Hilbert space with fixed orthonormal basis f{e,, e,};_,. Let H =
v D H, Let C be the C*-algebra of all operators b on H such
that b(H,)c H, and lim, . ||b|H,|| =0. (C is the C*(co) direct
sum of the algebras B(H,).) Let p be a projection on H defined on
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each H, by the matrix (i i> with respect to the given basis.
Finally let A be the C*—al2ge2bra generated by C, p, and 1 (the
identity operator on H). Let A4, be the maximal abelian C*-subalgebra
of A consisting of all operators b in A with be, = \,e,, be, = \Ne, for
all n=1,2, --.. (4, is the algebra of operators in A diagonalized
by the given basis.) Now A/A N C is two-dimensional so there are
two pure states f and g on A with f=%g¢g and ker(f)>ANC,
ker (9) D AN C. Since A/A,N C is one dimensional, f| 4, = g | 4..
Our last result is an example which proves that one cannot take

e = 0 in Theorem 1.2.

o

ExaMPLE 2.3 Let H be a separable Hilbert space and {e,};-, an
orthonormal basis for H. Let A be the algebra of all compact
operators on H and A, = {a e A: each ¢, is an eigenvector of a}. That
means A, is the algebra of compact diagonal operators for the basis
{¢.}. For each n =1, 2, --- define ¢, to be the orthogonal projection
on the subspace spanned by {e, ---,¢,}. It is known that {g,} is a
positive, increasing approximate identity for A. Also A, is the
C*-algebra generated by {¢,}. Thus the theorem applies.

Now let p be the orthogonal projection on the subspace spanned
by any vector x = >\, x;¢;, where we assume z; = 0 for all 7 and
x|l = 1. To see that the ¢ condition of the theorem is necessary,
suppose there was some be A,, ||b|| =1, b = p. Thus

b, 2y = i by, e, P = {px, ) = L, 2y = i [, PP
n=1 n=1

This would mean <be,, ¢,> = 1 for all n, contradicting the compactness
of the operator b.
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