WILD POINTS OF CELLULAR ARCS IN 2-COMPLEXES IN E^3
AND CELLULAR HULLS

GAIL ATNEOSEN
WILD POINTS OF CELLULAR ARCS IN 2-COMPLEXES
IN E^3 AND CELLULAR HULLS

GAIL H. ATNEOSEN

Loveland has established that if W is the set of wild points of a cellular arc that lies on a 2-sphere in E^3, then either W is empty, W is degenerate, or W contains an arc. This note considers 2-complexes rather than 2-spheres. Making strong use of Loveland's results and others, it is proved that a cellular arc in a 2-complex in E^3 either contains an arc of wild points or has at most one wild point that has a neighborhood in the 2-complex homeomorphic to an open 2-cell. In the case of noncellular arcs in E^3, one can investigate "minimal cellular sets" containing the arc. A cellular hull of a subset A of E^3 is a cellular set containing A such that no proper cellular set also contains A. A characterization is given of those arcs in E^3 that have cellular hulls that lie in tame 2-complexes in E^3.

A 2-complex in E^3 is the homeomorphic image of a 2-dimensional finite Euclidean polyhedron. A subset X of E^3 is said to be locally tame at a point p of X if there is a neighborhood N of p in E^3 and a homeomorphism h of $\text{Cl}(N)$ ($\text{Cl} = \text{closure}$) onto a polyhedron in E^3 such that $h(\text{Cl}(N \cap X))$ is a finite Euclidean polyhedron. A point p of a subset X of E^3 is said to be a wild point of X if X is not locally tame at p. A subset G of E^3 is said to be cellular (in E^3) if there exists a sequence Q_i, Q_{i+1}, \cdots of 3-cells in E^3 such that for each positive integer i, $Q_{i+1} \subset \text{Interior} Q_i$ and $G = \bigcap_{i=1}^{\infty} Q_i$. If A and B are two arcs in E^3, then A is said to be equivalent to B if there is a homeomorphism h mapping E^3 onto E^3 such that $h(A) = B$.

Theorem 1. Let A be a cellular arc in a 2-complex in E^3. If the set of wild points of A does not contain an arc, then A has at most one wild point that has a neighborhood in the 2-complex homeomorphic to an open 2-cell.

Proof. Assume that A has two wild points p and q that have neighborhoods in the 2-complex homeomorphic to an open 2-cell and contradict the hypothesis that A is cellular. Then p lies on a subarc of A that is contained in the interior of a closed 2-cell. The argument of Theorem 5 of [3] then establishes that p lies on a subarc C of A that is contained in a 2-sphere in E^3. Since C is a cellular arc by [6], it follows from [5] that p is the only wild point of C. Thus p and q are isolated wild points of A.

551
If p and q are the endpoints of A, it follows from Theorem 10 of [8] that A is not cellular, so this case cannot occur.

Next consider the case when p is an interior point of A and q is an endpoint of A. As above, we obtain that p lies interior to a subarc C of A whose only wild point is p and that C is contained in a 2-sphere S. By [4] and [2] we may assume that S is locally polyhedral except at p. If C_1 and C_2 are subarcs of C such that $C_1 \cup C_2 = C$ and $C_1 \cap C_2 = p$, then Theorem 5 of [4] implies that C_1 and C_2 are equivalent. An application of Theorem 1 of [4] yields that if C_1 and C_2 are both locally tame at p then C is locally tame at p. Hence p is a wild point of both C_1 and C_2. Let B be a subarc of A with endpoints p and q. Then B is a cellular arc whose endpoints are isolated wild points, by [8] this case cannot occur.

By arguments as in the above two cases, it follows that the last case, in which both p and q are interior points of A, can also not occur.

For the following theorem we need to define a particular 2-complex called a 3-book. A 3-book is defined to be a subset of E^3 which is the union of three closed 2-cells which meet precisely on a single arc on the boundary of each.

Theorem 2. An arc A in E^3 has a cellular hull that lies in a tame 2-complex in E^3 if and only if A is equivalent to an arc in a tame 3-book.

Proof. If A has a cellular hull that lies in a tame 2-complex, then the set of wild points of A is a closed totally disconnected set. It follows easily from [7] that such an arc is equivalent to an arc in a tame 3-book.

Conversely, suppose that A lies in a tame 3-book B. Consider a maximal chain (ordered by inclusion) that has B as a member and also has the property that each member of the chain is a cellular set that contains A. The intersection of the members of this maximal chain then yields a cellular hull of A that lies in the tame 2-complex B.

The arc in [1] is an example of an arc that does not have a cellular hull that lies in any tame 2-complex.

References

Received October 22, 1969.

Western Washington State College
Charles A. Akemann, *Approximate units and maximal abelian C*-subalgebras* .. 543

Gail Atneosen, *Wild points of cellular arcs in 2-complexes in E^3 and cellular hulls* .. 551

John Logan Bryant and De Witt Sumners, *On embeddings of 1-dimensional compacta in a hyperplane in E^4* 555

H. P. Dikshit, *On a class of Nörlund means and Fourier series* 559

Nancy Dykes, *Generalizations of realcompact spaces* .. 571

Hector O. Fattorini, *Extension and behavior at infinity of solutions of certain linear operational differential equations* 583

Neal David Glassman, *Cohomology of nonassociative algebras* ... 617

Neal Hart, *Ulrm’s theorem for Abelian groups modulo bounded groups* 635

Don Barker Hinton, *Continuous spectra of second-order differential operators* 641

Donald Gordon James, *On Witt’s theorem for unimodular quadratic forms. II* 645

Melvin F. Janowitz, *Principal multiplicative lattices* .. 653

James Edgar Keesling, *On the equivalence of normality and compactness in hyperspaces* 657

Adalbert Kerber, *Zu einer Arbeit von J. L. Berggren über ambivalente Gruppen* 669

Keizō Kikuchi, *Various m-representative domains in several complex variables* 677

Jack W. Macki and James Stephen Muldowney, *The asymptotic behaviour of solutions to linear systems of ordinary differential equations* 693

Andy R. Magid, *Locally Galois algebras* .. 707

T. S. Ravisankar, *On differentiably simple algebras* .. 725

Joseph Gail Stampfli, *The norm of a derivation* .. 737

Francis C.Y. Tang, *On uniqueness of central decompositions of groups* 749

Robert Charles Thompson, *Some matrix factorization theorems. I* 763

Robert Charles Thompson, *Some matrix factorization theorems. II* 811