ON EMBEDDINGS OF 1-DIMENSIONAL COMPACTA IN A HYPERPLANE IN E^4

John Logan Bryant and De Witt Sumners
ON EMBEDDINGS OF 1-DIMENSIONAL COMPACTA IN A HYPERPLANE IN E^4

J. L. BRYANT AND D. W. SUMNERS

In this note a proof of the following theorem is given.

THEOREM 1. Suppose that X is a 1-dimensional compactum in a 3-dimensional hyperplane E^3 in euclidean 4-space E^4, that $\varepsilon > 0$, and that $f: X \to E^3$ is an embedding such that $d(x, f(x)) < \varepsilon$ for each $x \in X$. Then there exists an ε-push h of (E^4, X) such that $h|X = f$.

The proof of Theorem 1 is based on a technique exploited by the first author in [3]. This method requires that one be able to push X off of the 2-skeleton of an arbitrary triangulation of E^3 using a small push of E^4. This could be done very easily if it were possible to push X off of the 1-skeleton of a given triangulation of E^3 via a small push of E^3. Unfortunately, this cannot be accomplished unless X has some additional property (such as local contractibility) as demonstrated by the examples of Bothe [2] and McMillan and Row [9]. However, we are able to overcome this difficulty by using a property of twisted spun knots obtained by Zeeman [10].

In the following theorem let B^3 denote the unit ball in E^4, B^3 the intersection of B^3 with the 3-plane $x_4 = 0$, and D^2 the intersection of B^3 with the 2-plane $x_3 = x_2 = 0$.

THEOREM 2. Let X be a 1-dimensional compactum in B^3 such that $X \cap \text{Bd } D^2 = \emptyset$. Then there exists an isotopy $h_t: B^4 \to B^4$ ($t \in [0, 1]$) such that

1. $h_0 = \text{identity}$,
2. $h_t|\text{Bd } B^4 = \text{identity for each } t \in [0, 1]$, and
3. $h_t(X) \cap D^2 = \emptyset$.

Proof. Let $I = D^2 \cap B^3$. Since X does not separate B^3, there exists a polygonal arc J in $B^3 - X$ joining one endpoint of I to the other. We may assume, by applying an appropriate isotopy of B^4, that J_+, the intersection of J with the half-space $x_3 \geq 0$ is contained in I. Let F be a 3-cell in B^3 such that $F \cap J = J_+$ and $F \cap X = \emptyset$, and let J_- be the intersection of J with the half-space $x_3 \leq 0$. Now spin the arc J_- about the plane $x_3 = x_4 = 0$, twisting once, so that at time $t = \pi$, J_- lies in F. (See Zeeman [10] for the details of this construction.) Observe that the boundary of the 2-cell C traced out by J_- is the same as $\text{Bd } D^2$.

555
It follows from [10, Corollary 2] that the pair \((B^4, C)\) is equivalent to the pair \((B^4, D^2)\) by an isotopy that keeps \(\text{Bd} B^4\) fixed. Such an isotopy, of course, will push \(X\) off of \(D^2\).

Theorem 3. Let \(X\) be a 1-dimensional compactum in a 3-plane \(E^3\) in \(E^4\). Then for each 2-complex \(K\) in \(E^4\) and each \(\varepsilon > 0\), there exists an \(\varepsilon\)-push \(h\) of \((E^4, X)\) such that \(h(X) \cap K = \emptyset\).

Proof. Given a 2-complex \(K\) and \(\varepsilon > 0\), we may assume first of all that none of the vertices of \(K\) lies in \(E^3\). Also, we may move the 1-simplexes of \(K\) slightly so that they do not meet \(X\).

Let \(\sigma\) be a 2-simplex of \(K\) such that \(\sigma \cap X \neq \emptyset\). By moving \(X\) an arbitrarily small amount, keeping it in \(E^3\), we can ensure that each component of \(\sigma \cap X\) not only lies in \(\text{Int} \sigma\), but has diameter less than \(\varepsilon\). Hence, we can get \(\sigma \cap X\) into a finite number of mutually exclusive line segments \(I_1, \cdots, I_n\) in \(\text{Int} \sigma \cap E^3\), each of which having diameter less than \(\varepsilon\). Let \(B_1, \cdots, B_n\) be a collection of mutually exclusive 4-cells in \(E^4\), each of diameter less than \(\varepsilon\), such that each triple \((B_j, B_j \cap E^3, B_j \cap \sigma)\) is equivalent to the triple \((B^4, B^3, D^2)\) (as defined above) and such that \(B_j \cap \sigma \cap E^3 = I_j\). Now apply Theorem 2 to each of the \(B_j (j = 1, \cdots, n)\).

Lemma. Suppose that \(X \subset E^3 \subset E^4\) and \(f: X \rightarrow E^3\) are as in the statement of Theorem 1 with \(d(x, f(x)) < \varepsilon\) for each \(x \in X\). Then for each \(\delta > 0\) there exists an \(\varepsilon\)-push \(h\) of \((E^4, X)\) such that \(d(h(x)), f(x)) < \delta\) for each \(x \in X\).

Proof. Apply the proof of Lemma 2 of [3] with \(p = 2\) and \(q = 1\).

The proof of Theorem 1 is now obtained by applying the technique employed in the proof of Theorem 4.4 of [7]. The only additional observation that should be made is that if \(X\) is a compactum in \(E^4\) satisfying the conclusion of Theorem 3 and if \(g\) is a homeomorphism of \(E^4\), then \(g(X)\) also satisfies the conclusion of Theorem 3 with respect to 2-complexes in the piecewise linear structure on \(E^4\) induced by \(g\).

Corollary. Let \(X\) be a 1-dimensional compactum in a 3-hyperplane in \(E^4\). Then for each \(\varepsilon > 0\) there exists a neighborhood of \(X\) in \(E^4\) that \(\varepsilon\)-collapses to a 1-dimensional polyhedron.

This follows from the fact that every 1-dimensional compactum can be embedded in \(E^3\) so as to have this property in \(E^3\).

Bothe [2] and McMillan and Row [9] have examples which show that not every embedding of the Menger universal curve in \(E^3\) has
small neighborhoods with 1-spines.

Remark 1. Notice that Theorem 1 is a consequence of a special case of a theorem of Bing and Kister [1] if X is either a 1-dimensional polyhedron or a 0-dimensional compactum. If X is a 2-dimensional polyhedron, then Theorem 1 is false in general as pointed out by Gillman [6]. It would be interesting to know for what 2-dimensional compacta Theorem 1 holds. For example, this theorem is true if X is a compact 2-manifold [5].

Remark 2. One of the important properties of a compactum X in a hyperplane in E^n is that $E^n - X$ is 1-ALG (see [8]). If $n - \dim X \geq 3$, this is equivalent to saying that $E^n - X$ is 1-ULC. In [3] and [4] it is shown that any two such embeddings of X into E^n (regardless of whether they lie in a hyperplane) are equivalent, provided $n \geq 5$ and $2 \dim X + 2 \leq n$. Although there is no hope of improving this theorem by lowering the codimension of the embedding (at least for arbitrary compacta), Theorem 1 lends credence to the conjecture that this result holds when $n = 4$.

References

Received November 5, 1969. This research was supported in part by NSF grant GP-11943.

Florida State University
PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. SAMELSON
Stanford University
Stanford, California 94305

J. DUGUNDJI
Department of Mathematics
University of Southern California
Los Angeles, California 90007

RICHARD PIERCE
University of Washington
Seattle, Washington 98105

RICHARD ARENS
University of California
Los Angeles, California 90024

J. DUGUNDJI
Department of Mathematics
University of Southern California
Los Angeles, California 90007

RICHARD PIERCE
University of Washington
Seattle, Washington 98105

RICHARD ARENS
University of California
Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH B. H. NEUMANN F. WOLE K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON
OSAKA UNIVERSITY
UNIVERSITY OF SOUTHERN CALIFORNIA
STANFORD UNIVERSITY
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON
* * *
AMERICAN MATHEMATICAL SOCIETY
CHEVRON RESEARCH CORPORATION
TRW SYSTEMS
NAVAL WEAPONS CENTER

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. The editorial "we" must not be used in the synopsis, and items of the bibliography should not be cited there unless absolutely necessary, in which case they must be identified by author and Journal, rather than by item number. Manuscripts, in duplicate if possible, may be sent to any one of the four editors. Please classify according to the scheme of Math. Rev. 36, 1539-1546. All other communications to the editors should be addressed to the managing editor, Richard Arens, University of California, Los Angeles, California, 90024.

50 reprints are provided free for each article; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published monthly. Effective with Volume 16 the price per volume (3 numbers) is $8.00; single issues, $3.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $4.00 per volume; single issues $1.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 7-17, Fujimi 2-chome, Chiyoda-ku, Tokyo, Japan.
Charles A. Akemann, *Approximate units and maximal abelian C*-subalgebras* .. 543
Gail Atneosen, *Wild points of cellular arcs in 2-complexes in E³ and cellular hulls* .. 551
John Logan Bryant and De Witt Sumners, *On embeddings of 1-dimensional compacta in a hyperplane in E⁴* 555
H. P. Dikshit, *On a class of Nörlund means and Fourier series* .. 559
Nancy Dykes, *Generalizations of realcompact spaces* .. 571
Hector O. Fattorini, *Extension and behavior at infinity of solutions of certain linear operational differential equations* 583
Neal David Glassman, *Cohomology of nonassociative algebras* .. 617
Neal Hart, *Ulms theorem for Abelian groups modulo bounded groups* 635
Don Barker Hinton, *Continuous spectra of second-order differential operators* .. 641
Donald Gordon James, *On Witt's theorem for unimodular quadratic forms. II* .. 645
Melvin F. Janowitz, *Principal multiplicative lattices* .. 653
James Edgar Keesling, *On the equivalence of normality and compactness in hyperspaces* .. 657
Adalbert Kerber, *Zu einer Arbeit von J. L. Berggren über ambivalente Gruppen* .. 669
Keizō Kikuchi, *Various m-representative domains in several complex variables* .. 677
Jack W. Macki and James Stephen Muldowney, *The asymptotic behaviour of solutions to linear systems of ordinary differential equations* .. 693
Andy R. Magid, *Locally Galois algebras* .. 707
T. S. Ravisankar, *On differentiably simple algebras* .. 725
Joseph Gail Stampfli, *The norm of a derivation* .. 737
Francis C.Y. Tang, *On uniqueness of central decompositions of groups* .. 749
Robert Charles Thompson, *Some matrix factorization theorems. I* .. 763
Robert Charles Thompson, *Some matrix factorization theorems. II* .. 811