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Let X be a topological space and 2% the space of all closed
subsets of X with the finite topology. Assuming the con-
tinuum hypothesis it is shown that 2% is normal if and only
if X is compact. It is not known if the continuum hypothesis
is a necessary assumption, but it is shown that for X a k-space,
2% normal implies X compact., A theorem about the com-
pactification of the n-th symmetric product of a space X is
first proved which then plays an important part in the proof
of the above results.

Throughout this paper we will assume that X is any completely
regular T, space. By 2% we will mean the space of all closed subsets
of X with the finite topology [13, Definition 1.7, p. 153] except that
we include the empty set as an isolated point as in [12]. The finite
topology is also known as the exponential or Vietoris topology. Let
Z(X) be the subspace of 2% consisting of all nonempty subsets of X
with # points or less. This space is known as the mn-th symmetric
product of X.

In this paper the normality of 2% is studied. If X is compact,
it is known that 2% is compact Hausdorff {13, Th. 4.2, p. 161] and
thus normal. The main result of this paper is that if we assume the
continuum hypothesis (CH), then 2% is normal if and only if X is
compact. The first result in this direction was obtained by Ivanova
[9] who proved that if X is a well ordered space with the order to-
pology, then 2* normal implies X compact. In [10] it is shown that
2:* is normal if and only if X is compact. These results were obtained
without the use of CH.

The paper is divided into three sections. In the first section our
main result is that &,(8X) = B.Z,(X) if and only if .Z,(X) is pseudo-
compact. This result is related to the work of Glicksberg in [7] and
the proof makes use of his work. In the second section of the paper
we investigate the normality of 2¥ without the aid of CH using the
results of the first section. One significant result in this section is
that if 2% is normal with X noncompact, then X is normal and count-
ably compact, but X" is not pseudocompact for some n. As a
corollary one obtains that if X is first countable or loeally compact,
then 2% normal implies that X is compact. Also 2¥ x BN is normal

only when X is compact.
In the last section of the paper it is shown that if CH is assumed,
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then if 27 is normal, then X is compact. This result is related to a result
of N. Noble [15] who has shown that if every power X* of X is normal,
then X is compact. Noble’s result does not require CH, however.

PRELIMINARIES. As remarked in the introduction we assume that
X is completely regular and 7T,. We denote the Stone-Cech com-
pactification of X by BX. One can imbed the space .#,(X) into
the space 7,(8X) by the map «F)=F for all Fe &,(X). This
imbedding can be easily seen to be onto a dense subset of #,(8X).
Since #,(BX) is compact, we thus have a compactification of .&,(X)
by #.(8X). By BF,(X) = #,(BX) we mean that this compactifica-
tion is equivalent to the Stone-Cech compactification of . (X).

General background in hyperspaces is conveniently given in [12]
and [13]. Use is also made of techniques and results in [10]. Let
us recall at this point two results to be used subsequently in the
paper. If K is a closed subset of X, then 2¥ as a topological space
has the same topology as 2% has as a subspace of 2¥. If X = K, UK,
with K, and K, disjoint closed sets, then 2¥ is equivalent to 2%1 x 2%:
by [12, Corollary 5(a), p. 166].

We consider the cardinals as a subset of the ordinals in the
natural way. Infinite cardinals will be denoted by ®, where «a is an
ordinal and where @, is the cardinality of the integers, , the first
uncountable ordinal, etc. By CH is meant 2“ = w,. This assumption
is made only in the last section of the paper.

1. On the compactification of .#,(X). In this section we est-
ablish the result 8. 7,(X) = #,(BX) if and only if #,(X) is pseudo-
compact. We first show that .#,(X) is pseudocompact if and only if
X™ ig. Our proof of this result is not the easiest possible; however,
by establishing an important proposition at this time, the proof of our
main result in this section is made easier.

PrROPOSITION 1.1. If X" is mot pseudocompact, them there is a
collection of monempty open sets in X (Ukk=1 - ,m;t=1,2, -}
such that Uin Ui = ¢ for (i, k) # (4, h) and such that if

0, =Uix -+ xUj,

then {0z, forms a discrete collection in X*.

One should compare Proposition 1.1 with that in Isbell [8, 38,

p. 139] for motivation. We will prove the following lemma before
proving 1.1.

LEMMA 1.2. Suppose that X" has a countable closed discrete
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subset B = {2}z, such that (1) x*e U, with U, open in X"; (2) for
each subsequence B’ = {x*}7_, of B and each projection w,, Clym,[B’']
is not compact; and (3) for each 1, x* = (xf, ---, xL) with xi = &% for
J # k. Then there is a subsequence B’ = {z'5}7_, of B and a collection
of open sets in X, (Vitk=1,.-+,n;5=1,2, ---} such that (a) Vi N
Vi=¢ for (J, k) # (1, h); (b) 25e Vi X oo X Vi; and (c) Vi x ---
x Vic U,

Proof. Let B = {x'}, satisfy the hypotheses of the lemma. Let
O! be an open set containing «! such that there is an infinite number
of i’s such that 7, (x")¢O! for k=1, ..., n and O' does not contain
z; for 7 =2,.--,m. Such an O! exists by (2) and (3) of the hypo-
theses of the lemma. Let B, = {x%}7, be the set of all x”’s such that
7(x)eO fork =1, +--,mnori=1. Then let O be an open set contain-
ing x} such that for an infinite subset of B,, 7 (z*) ¢ O} for k =1, «--, n;
O} does not contain @} for j = 2; and 0! N O! = ¢. Such an O} exists
by (2) and (3) of the lemma. Let B, = {¢: 7, (2)) €O} for k=1, .-+, n
and 7 =1 and 2 or ¢« = 1}. Continuing this process n times we arrive
an n infinite subsequences of B, {B, ---, B,} and open sets in X,
{0}, -+, 0L}, with 1) O;NO; =¢fort+7; 2 aye0iforj=1, -, m;
and 3) B, = {x: m,(x) ¢ O, for k=1,---,m and ¢ =1, ---, 5} U {a').
Now let {V}, --., V!} be open subsets of X with the property that
e VicVicO; and Vi x ... x VicU.

Nowlet C, = B, — {z'}and X, = X — J~,0.. Then C, C (int, X,)"
and C, together with X, satisfies the three hypotheses of the lemma.
Let z*» be the first element of C,. Then repeating the construction
described above we can get open sets in X, which we can also suppose
are open in X, {0}, «-+, O3} and {V? ..., V2, and an infinite subsequ-
ence C, of C, such that (1) si2e Vic V:c 03 for all 5; (2) VZx «-.
x Vi< Ug; and (3) C,C (inty X;)* where X, = X, — U, 0. Let ™
be the first element of C,. Continuing this process inductively we get
a subsequence B’ = {z'/}7., andopensets {Vi:k =1, --+,n;5 = 1,2, - ..}
satisfying the conclusgion of the lemma.

Proof of Proposition 1.1. By induction on n. If n = 1, the pro-
position is clearly true. Suppose 7 >1 and consider the following
cases.

Case (i). X" is not pseudocompact.
In this case we apply our induction hypothesis to get sets {U; x
- x Ui_}z, satisfying the conclusion of Proposition 1.1 for X"
Then define {Vij=1,..-,m; i=1,2, ...} such that V= U¥ for
j=1,+---,mn—1 and V} = U¥*. Then {Vi} can be easily seen to
satisfy the conclusion of Porposition 1.1.
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Case (ii). X" is pseudocompact.

In this case let B = {z%}, be a countably infinite C-imbedded
subset of X" with 2ie U; an open set in X" with {U;}, a discrete
collection in X". We claim that B satisfies the conditions of Lemma
1.2. Suppose that for some 7 and some subsequence B’ of B, Cl,x,[B’]
is compact. Then Cl,m;[B’] x X" is pseudocompact [2, E 3.9. E,
p. 151]. But B cCl,m[B’] x X" is C-imbedded in X", hence in
Clyxm,[B'] x X, a contradiction. Thus conditions (1) and (2) of 1.2
are satisfied. If welet X;; = {(x,, ---, 2,) e X" o; = x;} and 4 = U.; Xij)
then noticing that there are only a finite number of the X;;’s and
that each X;; is homeomorphic to X" we get that U;N A = ¢ ex-
cept for a finite number of 4’s or X~ would not be pseudocompact.
By eliminating that finite number of 7’s we may assume BC X" — A
and thus that B satisfies condition (3) of 1.2. Now let {Vi:k =1,
cee,m;j=1,2, ---} and B’ = {&'/}7, satisfy the conclusion of Lemma
1.2. Then O, =V} x .-+ x V; satisfies the conclusion of Proposition 1.1.

THEOREM 1.3. For all n, &,(X) is pseudocompact if and only if
X" 1s pseudocompact.

Proof. Let p: X — #,(X) be defined by
p((xn Tty xn)) = {xv ct Yy xn} .

Then p is continuous and closed. Also p|(X™ — A) is a local home-
omorphism, hence open onto .7,(X) — #,_.(X), where A is defined
as in the previous proof (see [4]). If X" is pseudocompact, then
F(X) is since pseudocompactness is preserved under continuous trans-
formation. Now suppose that X" is not pseudocompact. Let {Uj: k =
1, ..-,m;1=1,2, ...} satisfy the conclusions of Proposition 1.1. Let
O0,=Uix -+ x Ui. Then {p(0,)}, can be seen to be a discrete
collection of nonempty open sets in #,(X). Thus #,(X) is not
pseudocompact.

THEOREM 1.4. Let n = 2. Then B.7,(X) = F,(BX) if and only
if F.(X) ts pseudocompact.

Proof. Note that for n = 1, 857 (X) = & (8X) with no assump-
tions. Suppose that &, (X) is pseudocompact. Then by Theorem 1.3,
X" is also pseudocompact. Thus by [7, Th. 1, p. 371], B(X™) = (BX)".
Now let f: . #,(X)— [0, 1] be continuous and let F: X" — [0, 1] be de-
fined by F' = fop where p: X*— 7,(X) is as defined in the proof of
Theorem 1.3. Now F" has an extension F*: (8X)" — [0, 1] since 8(X") =
(BX)". Consider the map p*: (8X)" — Z,(BX) defined by

p*((xn ctty xn)) = {xu M) xn} .
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Clearly p* is an extension of p and a quotient map [4]. If we can
show that F'* is constant on the point inverses of p*, then by defining
f* by F*op* ™, f* will be well defined. Also f* will be continuous
by [1, Th. 3.2, p. 123] and an extension of f to .#,(8X). Thus

FABX) = BF(X)

by [6, Th. 6.5, p. 86]. Thus it will be sufficient to show that F™* is
constant on the point inverses of p*. To that end let {x, ---, 2.} €
F(BX) with z; = x; for 7= j. Let

D2y ++ 0y 20) = DYy =+ Ya)) = {xl’ ey wk} .

One can construct a net {x%, .-, 25} of elements 2 in X converging
to {x, +--, 2} in F,(BX) such that x? = ¢ for 7 = j for each a and
¥ —x; for all 4. Now if z; = x; let 2¢ = %, and if y;, = @; let y =
2%, for all &. Then (y%, --«, ¥3) — ¥y -+, ¥,) in X” and (27, -+ -, 25) —
(zu M zn) in X*. Thus F*((y?y M ?/Z)) '"’F*((yu MRS yn)) and

F*((, =+, 20) > F*((21 +++24)) -
Since F*((z¢, «--2%)) = F*((y%, ---, %)) for each «, this implies
F (Y -5 ¥a) = F*((2)y =+ +24)) «

Thus F'* is constant on the point inverses of p* and the first half of
the theorem is proved.

For the converse we will draw upon Proposition 1.1. Suppose
that &,(X) is not pseudocompact. Then X" is not pseudocompact.
Let {Uiik=1,.--m;9=1,2, ...} be ag in Proposition 1.1. Let

2 = UL -+, Uy N FuX) = plU; x -+ x U]

in #,(X) (see [13] for notation). Then one can show that {Z;}z, is
a discrete collection of open sets in #,(X). Let B;€ %; and f: %,(X) —
[0, 1] be defined so that f(B;) =1 and f(B) = 0 for all B¢ U, %;.
Now if #,(8X) were equivalent to 8.%,(X), there would be a con-
tinuous extension of f to some f*: #,.(8X)—[0,1]. We will show
that no extension of f to #,(8X) is continuous. Let B, be a limit
point of {Bj)z, in F,(BX). Let zr =<U, ---, U, >N F,(BX) be a
neighborhood of B, in 7,(8X). Let B; and B, be distinct with B;
and B;, in 7. Let B be defined by B = {p,, -+, p,} where p,e B; N
U; for j odd and p;eB;, N U; for j even. Then Be Z. But also
Be¢Ur, %;. Thus f*(B) = f(B) =0. Thus in every neighborhood
7z of B, in Z,(BX), f* takes on the value 0 and the value 1, a
contradiction. Thus Z,(8X) # B.F,(X).

2. Results without the aid of CH. In [9] it is shown that if
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X is a well ordered space with the order topology, then 2* normal
implies X compact. In [10] it is shown that 2:* ig normal if and only
if X is compact. In this section we use Theorem 1.4 to show that
for certain classes of spaces X, 2% is not normal. The most positive
result in this paper assumes CH and will be proved in the next section
making use of the results of this section and [10].

LEMMA 2.1. If {Fi}, is a countable collection of closed sets inm
a normal countably compact space X, then

Clﬁx[n2°=1 Fz] = ﬂ?ll ClﬂXFi .

Proof. Clearly Cl;x[N. Fi] € N, Cl;xF;. Now suppose the con-
trary and let x e Cl,F; for all ¢ with ¢ Cl, [N, F;]. Then let V
be an open set in BX containing x such that Cl,,V N Cl. [N, Fil =
¢. Let U= VN X and note that Cl;,V = Cl;,U. Clearly (C1,U) N
[N, F:] = 4. By the countable compactness of X there is an n such
that (C1,U) N (N, F;) = ¢. By the second lemma in [10], this im-
plies that (Cl,;U) N[N Cl;xFi] = 6. However, x€Cl;;U and xe
Cl,F; for 1 =1, .-+, n, a contradiction. Thus

Clﬁx[n?:l Fz] = b ClﬂXFi

as asserted.

ProrosITION.  If 2% is mormal, then X 1s mormal and countably
compact. If, in addition, X s mot compact, then there is an n such
that X™ 1s not pseudocompact.

Proof. Suppose that 2% is normal. Then X is normal and count-
ably compact [10, corollary to Th. 1]. Suppose that X is not com-
pact and that X" is pseudocompact for all n. Let xeB8X — X and
let .7, = {F: F is closed in X and Cl,,F contains z}. Let X be the
set of singletons {{x}:xe X}. Then ., and X are closed subsets of
2% and disjoint. We will show that .#, and X cannot be separated
by a continuous real valued function. Suppose that f:2* —]0, 1] is
continuous with f|X = 0. Let f, be the restriction of f to .7,(X)
for each n. By Theorem 1.3 #,(X) is pseudocompact. Thus by
Theorem 1.4, f, has an extension f} to .#,(8X) for each n. Clearly
f¥x) = 0 for all n. For each n, let U, be a neighborhood of x in BX
such that for Ae2"» N #,(B8X) we have f*(4) <2 ". Let

F,=Cl(U.NX).

Then x e Cl;,F, for each n. Thus zeCl [N, F;] by Lemma 2.1.
Thus Nz, F; = F, is an element of .&,. Let B be any finite subset
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of F,. Then if card B =k, then Bc2'» N #,(8X) for all n = k.
Thus f,.(B) = f(B) £ 2™ for all » = k. Thus f(B) = 0. This implies
that f(F,) = 0. Therefore X and .7, cannot be separated, a contradic-
tion. Thus X" must be nonpseudocompact for some #.

REMARK 2.8. It is not known if X normal and countably compact
implies X* pseudocompact for all n. All of the examples known to
the author, for example Frolik’s [3], of a completely regular space
X which is countably compact and such that X” is not pseudocompact
are obtained by choosing an appropriate dense subset A of

N* =B8N — N

and letting X = NU A. Assuming CH, all such examples are non-
normal by the result of Gillman and Fine [5] that proper dense subsets
of N* are not C*-imbedded in N*. If the normality and countable
compactness of X implies X" pseudocompact for all %, then 2* normal
implies X compact without assuming CH. However, this would be
an interesting result even if CH were required in proving it.

ProrosiTiON 2.4. If X is a countably compact k-space and Y 1is
countably compact, then X X Y 1s countably compact. Thus X" is
countably compact for all n.

Proof. Proof of the first part of the proposition can be found in
[14, Th. 1.1]. The second part follows by induction.

DEFINITION 2.5. A space is strongly countably compact if the
closure of every countable set is compact [10]. A space ig sequenti-
ally compact if each sequence has a convergent subsequence.

COROLLARY 2.6. If X has any of the following properties, then
2% normal implies X compact.

(a) X first countable,

(b) X locally compact,

(¢) X a k-space,

(d) X strongly countably compact, and

(e) X sequentially compact.

Proof. For the definition of a k-space see [1, Definition 9.2, p.
248]. By [1, 9.3, p. 248] (c) implies (a) and (b). But (¢) follows
from Proposition 2.2 and Proposition 2.4.

For (d) and (e), one can show that these properties are finitely
productive. Thus in these cases X" is pseudocompact for all » and
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Proposition 2.2 can be applied.
We conclude this section with a minor result.

LEMmA 2.7. If X is separable and countably compact, then
X X BN normal implies X compact.

Proof. Let f: BN — B8X be continuous and surjective. If X x
BN is normal, then sois X x £X sincethemapg =1 X f: X X BN —
X x BX is closed. But X x 8X is normal if and only if X is para-
compact [16, Th. 2, p. 1046]. But paracompactness and countable
compactness imply compactness [1, Corollary 3.4, p. 230]. Thus X is
compact.

THEOREM 2.8. If 2*¥ x BN is normal, then X is compact.

Proof. Let X = {{z}: 2 X}. Then X is a homeomorphic copy of
X [12, Corollary 3a, p. 166] and closed in 2% [13, Proposition 2.4.2,
p. 156]. Let K be the closure of any countable subset of X. Then
K is countably compact. Now K x BN is a closed subset of 2% x 8N,
hence normal. Thus K is compact by Lemma 2.6. Thus X is strongly
countably compact. But 2% is normal since 2* x AN is, and thus X
is compact by Corollary 2.6(d).

3. Results assuming CH. In [10, proof of Th. 4] it is shown
that if X is not compact, then there is an initial ordinal w, such that
[0, »,) can be imbedded as a closed subset of 2*. If we let the im-
bedding be f(8) = F;, then the set {F;: 8 < w,} has the property that
Q) for v > B, F, & F;; (2) if v is a limit ordinal F, = N{F:: 8 <7}
and 3) N{Fs: 8 < w,} = ¢. This result will form an important part
of what follows.

Recall that a regular open set V is one which has the property
that V =int V. If B is a dense subset of X and V is a regular
open set in X, then U = V N B is a regular open set in B.

LemmA 3.1. If A is a discrete subset of X with X separable,
then card A < 2,

Proof. For each e A let V, be a regular open set in X such
that V,NA = {x}. Let U,= V,N B where B is a countable dense
get in X. Then for « ==y, U, # U,. Thus the map g(x) = Uy is one
to one into the power set of B. Thus card 4 < 2.

ProposITION 3.2. Assume CH. Suppose that X is separable and
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countably compact but not compact. Then [0, ®,) can be imbedded in
2% as a closed subset.

Proof. We make use of the results in [10] described above to
say that [0, ®,) can be imbedded in 2* for some initial ordinal w,.
Since X is separable, so is 2*. Let A be the nonlimit points of [0, w,).
Then card A = w, and A is discrete. Thus o, < 2 by Lemma 3.1.
Assuming CH w, = o, or ®, = w,. If w, = w,, then by (8) above, X
would not be countably compact. Thus w, = w, and [0, ®,) is a closed
subset of 2%,

ProposiTiON 8.3. Assume CH. Suppose that X is separable, cou-
ntably compact, and not first countable. Then [0, @.] can be imbedded
mn 2%,

Proof. Let {V,} be a neighborhood basgis for 2 in X where X is
not first countable at x. Since X is separable we may assume that
{V.} has cardinality o, < 2%. Since X is not first countable at =,
®, > @,. Thus card {V,} = 0, and we may assume that the V,’s are
indexed by the countable ordinals. We now define closed sets {F:
B < @} having the following properties: (1) F,,, < V; for all 8; (2)
v > B implies that F, & F;; (3) if v is a limit ordinal, then

Fr:m{Fﬁ:18<7};

and (4) N{F,:: 8 < w,} = {x}. The construction is as follows: let o, = 1.
Having defined a subsequence of the countable ordinals {a,: 8 < v} let
o, = sup{a; 8 < v} if v is a limit ordinal. Otherwise let «, be the
first & such that if ' = N{V,: ) < «a; some 8 < 7}, then F — V, # 4.
Note that by the countable compactness of X and the fact that X
is not first countable at x, F == {x} and thus such an «, exists. Con-
tinue the process inductively and let {a;: 8 < w,} be the sequence so
defined. Then let F; = N{V..a <a;}. Then {F::B < w]} satisfies
(1), (2), (3), and (4) above. Let us define F, = {x}. Then we claim
that {F:: 8 < w,} is our desired set.

CramM. The map f(8) = F; is a homeomorphism of [0, w,] into
2%,

Proof of claim: Clearly f:[0, ,] — {F;} is one to one and onto.
Suppose that « is a countable limit ordinal. Then F, = N{F: B < a}
by (3) above. Let F,.elU,---,U,>. We may suppose that
LUy ---, U)nN{F={FapB=a and F,c Ui, U} by supposing
some U; = X — F,.,. Suppose that B8; —«a with Fy, & UL, U.. Then
letting G; = F;, — Ui~ U;, (Gi}, has the finite intersection property
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and empty intersection, contradicting the countable compactness of
X. Thus there is no such sequence B; converging to a and f is
continuous at @. Now consider w,. Let U be any open set in X
containing {x}. Let « be such that V,c U. Then for all 8> «,
F,c2Y. Thus f is continuous at w,. Thus f is homeomorphism onto
{Fe: B = }.

THEOREM 3.4. Assume CH. Then 2% is normal if and only if
X 1s compact.

Proof. We need only show that if 2% is normal, then X is com-
pact. Assume that 2% is normal. Let K be the closure of any
countable subset of X. Then 2% is also hormal since it is a closed
subspace of 2*. If we can show that for any separable space Z, 2
normal implies that Z is compact, then K will have to be compact.
Thus X will be strongly countably compact and compact by Corollary
2.6(d).

CrAamM. If Z is separable and 27 is normal, then Z is compact.

Proof of clatm. Suppose that Z is separable and not compact
with 2% normal. By Corollary 2.6(a) Z is not first countable. Suppose
that Z is not first countable at the point x. Let O be an open set
containing « such that Z — O is not compact. Such an O exists since
X is not compact. Let P be an open set containing z such that
PcO. Let U=Z—ClZ — P). Then U has the property that
Z — U is separable and not compact. Now let V be an open set con-
taining ¢ with Vc U. Let K, = V and K, = X — U. Then let K =
K, UK, Now K is a cloged subset of Z and 2* is a closed subspace
of 27 as remarked in the preliminaries. Also 2 is homeomorphic to
251 % 2%:*  But by Proposition 3.2 [0, @,) can be imbedded as a closed
subset of 2%2, By Proposition 3.3 we can imbed [0, w,] as a closed
subset of 251, Thus [0, ] x [0, ®,) is a closed subset of 2% and thus
of 2. But [0, w,] x [0, w,) is not normal by [16, Th. 2, p. 1046] or
[5, 8M(4), p. 129]. This implies that 27 is not normal, a contradic-
tion. Thus Z must be compact.

This proves the claim and completes the proof of Theorem 3.4.

THEOREM 3.5. Assume CH. The following are equivalent.
(a) X 1is compact,

(b) 2% 4s compact,

(e) 2% is normal,

(d) 2% is meta-Lindelof, and

(e) 2% g regular.
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Proof. The equivalence of (a), (b), and (d) is shown in [10]
without CH. The equivalence of (c) and (e) is given in [13, Th. 4.9,
p. 163]. By Theorem 3.4 (a) and (c) are equivalent.

REMARK 3.6. It is trivial to see that the assumption that X is
completely regular can be reduced to X being Hausdorff in Theorem
3.4, since 2¥ normal will then imply that X is completely regular
gince it is a subspace of 2*. It would have been a nuisance to keep
stating different hypotheses for X for each new theorem, but many
can be trivially reduced as in this case.
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