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Our main purpose is to introduce several functions which
map a bounded domain D onto m-representative domain in
several complex variables without the help of the minimum
problems or the use of determinantal expressions. We use
constructive methods to obtain m-representative functions,

S. Bergman introduced two kinds of canonical domains, minimal
domains and representative domains, by using the mapping functions
which were expressed in terms of the Bergman kernel function and its
derivatives (see [1], [2]). Further, M. Maschler introduced two types
of canonical domains named m-minimal and m-representative domains
in one variable by using minimum problems. Now, we consider a
bounded univalent domain D in C*, and a vector function w(z) = (w,
(2), wy(2), +++, w,(2)) in D. If each component w;(z) is holomorphic,
then the function w(z) defines a holomorphic mapping of the domain
D c C" onto the domain 4c C*, and if the mapping w(z) is both
holomorphic and locally one-to-one, i.e., det dw/dz = 0 (see §1 and [4],
[6]), it is pseudo-conformal.

By means of some matrix derivative formulas, the author obtains

pseudo-conformal relative invariant matrix systems' , T, (%, 2) and matrix
(v) (v)
system T,(t; 2), Sp(te; 2). Thus we shall arrive at several types of

m-representative functions of D which are constructed by the operators
oy and 0% (see §3,8§4). In general, it is not known if the m-represen-
tative functions of a bounded domain are holomorphic or even exist, but
we have a holomorphic m-representative function under the condition
K, (ty, 2) = 0 in D (see Theorem 3.2).

1. Preliminaries. Let <*(D) be a class of holomorphic functions
f(z) integrable square in the sense of Lebesque in D, namely

|1 5@ v, <

where dv, is the volume element in D, and let () = (@, (2), Pu(2), - )’
be a closed system of orthonormal functions in D. The Bergman kernel
function of the system @(2) is given by K,(Z, 2) = ¢*({)@(?), 2, t€ D
where the marks ' and * denote the transposed and transposed conjugate

1 Utilizing this matrix, Riemann curvatures were formed in our Seminar, (see Sci.
Rep. Tokyo Kyoiku D. Sec. A, No. 182, 188).
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678 K. KIKUCHI

matrices respectively. This function K, (%, 2) is characterized by the
domain D, and if D be a domain equivalent pseudo-conformally to a
bounded domain the Bergman kernel function K,(%,2) exists in D and
Ky(Z,2) >0 for any point zeD. If { = {(z) is a pseudo-conformal
mapping of a domain D onto a domain 4, then we have

1.1 Kp(2, 2) = (det dz(2)/dt) K,(T, {)(det dl(2)/dz) ,
1.2) Ty, 2) = (dr(t)/dt)* Tu(T, O)(dL(2)/dz) ,

and we have T,(t, 2) = K3 (&, 2)(Ky(t, 2)Kpp (T, 2) — Kpur(t, 2) Kp,(T, 2)).

Next, we define a pseudo-conformal equivalence class of D with
respect to a fixed point t(< D), that is, each domain 4 that belongs
to the class is the image of D by a pseudo-conformal transformation
{(z) satisfying

(1.3) &) = 0, d(t)/dz = E,, dC(t,)/dz" = -+ = d"{(t)/dz" = 0 .

An invariant function of the pseudo-conformal equivalence class satisfy-
ing (1.3) is called m-representative function of the class, and the image
domain by it is called m-representative domain of the class with center
at the origin. And we define the power of 2z as follows:

(1'4) 2= (zfr *t zé‘lzé’z e zﬁ"y ctty Z,kz), s

where (k, k,, - -+, k,) range over all the nonnegative integers such that
bk, +k+ o+ +k, =k and ,H, monomials of degree & with respect to
2y, 25y ***, 2, are arranged by a certain rule. We define the kth partial
derivative of matrix function with respect to z and z* as

o*w(t, 2)[0zF = 0%/0z" - w(t, 2)
< o* k! 0"

’

(L.5) o2 Tk kel -or k! 02M0zE -+ 0zkn
ok -
"y‘%‘)xw(t’z)y

where 9%/0z" will be arranged in the same rule as 2", and the sign x
designates the Kronecker product. If w(z) is a function of z only the
kth derivative is denoted by d*w(z)/dz*, moreover we define

Sw[ot*dz = 0Jat* X 8oz X w = (3)3t)* X (8/6z) X w
0w, J0T,92,, 0w, |0T,02, « + -, 3w, [0T,02,
0%W,/0T ,02,, 0°W,/0T,0%,, « « -, 0°W,[01,07,

-----------

0w, [0t 02, 0*w,[0t,0%,, -, 0°w,[01,0%,

(1.6)

We denote the following formulas with respect to the matrix
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derivatives which will be of use in calculation for demonstration
hereafter:

dF oz = — F-'0F|ox(E, x F-Y), F—0F/oz

(1.7)
= —0F—/3x(E, x F),

(F' is a regular k& X k matrix funection, z = (2, -+, 2,)’, and E, is an
% X n unit matrix)

(1.8) 0(F@G)[oz = 0F[oz(E, x G) + FoG[oz ,

(F, G are k x I, Il X m matrices respectively)

(1.9) 0F/oz = oF/oC(d(/dz X E,) + (dl*/dz x E,)(E, x 6F/[oC*)

(F is a k x | matrix)

(1.10) (F x G))oz = (0F/oz x G) + (F x 3G/oz)(E,, x E,),

(F, G are k x [, £ X v matrices respectively, and

€1y %y €

E, €13y ***y €53
n — ’

€iny *°*y Cip

where ¢;; are I X n» matrices in which there is only (¢, j) element equal
1, and others 0.)

2. Relative invariant matrix system. The Riemann mapping
theorem does not hold for more than one complex variable, instead
various canonical domains have been introduced. In this section, we
shall introduce a relative invariant matrix system which is connected
with the construction of m-representative functions.

We can easily calculate by virtue of the formulas (1.7), (1.8), and
(A x B)* = A* X B*, (A X B)(C x D) = AC x BD, as follows:

(B, x Tp(t, 2))0/ot*(T5'(¢, 20 Ts(t, 2)/92)

2.1) - - - - A
= BTy, 2)/ot*0z — 0 T,(E, 2)/0t* T5(E, )0 To(%, 2)/0% .

Therefore, we introduce

WJTo(E, 2) = 0 To(E, 2)/0t*02

2.2 _ _ _
&2 — Ons Tn(t, 2)[0t" T3, 2)0,,, Tp(2, 2)/02, (M = 2) ,

where E, denotes an n X m unit matrix, and ,T,(f, 2) = T,(¢, 2) =
o log K,(t, 2)/0t*oz.
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THEOREM 2.1. The square matrixz system ,,To(t,z) is a relative
imvariant with respect to any pseuwdo-conformal mapping C = {(z),
that 1is,

(2.3) nTo(t, 2) = (dz(t)/dt)*", TAT, O)(dL(2)/dz)" ,

where T = {(t), 4 = {(D), and the mth power (dl/dz)™ of dl/dz denotes
a suitably contracted matrix of n times Kronecker product.

Proof. If we suppose that the relations (2.3) is established, we
may calculate as follows by formulas (1.7) ~ (1.9) and Cauchy-Riemann
differential equation dw/oz* = 0 for the holomorphic mapping,

0n Tp/02 = (dz/dt)*™{0,, T,/0C(E, x (dC/d2)™)

(2.4) + o T.A(dC/dz)"dz(dz/dC x B )Ndl/dz x E ) ,

8, To/0t*, T30, Tp0%
= (de/dt)* 5, T joc* , Td,, T,/oC(de/dz)™+
(2.5) + d(dc/dty*™|dt*d,, T,/aC(dC/dz)™+
+ (de/dt)*™+d,, T,/oc*d(de/dz)™/dz
+ d(dz/dty*™(dt* , T,d(d/d=)"dz
&, Tp/0t*6z
= (de/dt)*+3%, T,Joc*dc(ds /dz)m+
(2.6) + d(dc/dt)*™(dt*d,, T,/dC(de/dz)™+
+ (de/dt) ™3, T,Joc*d(de/dz)™dz
+ d(dcjdty*™(de* , T,d(dC/dz)"/dz

whence we have (2.3) with m replaced by m + 1.

Now, we may derive some positive definite Hermitian form utilized
this result.

LEMMA 2.1.2 For the kernel function K,(t,z) and Ty(T,?2) of any
domain D, we have

(2.7) Tw(t, 2) = Ki(t, ) Tw(2, 2) = 1*(0)x(2)

where %(2) = 1)V 2 (p(z) X 0p(2)/0z — dp(2)[02 X @(2)).

Here, we shall obtain the relation between T,,(f, z) and the author’s
matrix ,T,(t, 2) proceeding with our calculations of the matrix deriva-
tives

2 This lemma is due to S. Kato [7].
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*T,p(T, 2)[0t*02 — 0 Typ(T, 2)/0t* Tl (2, 2)0 Ton(T, 2)/02

(2.8) — Ki(T, 9)(To(E, 2) + 2T (%, 2) x To(F, 2)) -

In fact, we can derive the following relation by the formula (1.8)
and the rule (A x B)(C x D) = AC x BD,
(2.9) oT,p/0t* = K20T,/ot* + oK,/ot* x T, ,
similarly for 97T,,/0z,

*Typlot*oz = K;0°Tp/0t* 0z + 0K:/ot* x 0T,/

2.10
(2.10) + *K3/0t*0z x Ty + 0K3/62 x 0T,/ot* .

Then (2.8) follows. If we call the matrix expression (2.8) ,T.,(t, ?),
we can verify that ,7T,,(Z, ) is positive definite.

THEOREM 2.1. The matrix function

2TD(Z! Z) + mTD({’ Z) X TD(Z)! z)y (m > 2)

1s relative invariant under any pseudo-conformal mapping C = {(z),
and positive definite for t = z.

Proof. By using x(2) in Lemma 2.1, we have

2. Tep(Z, 2) = YER)L(2) — XER)Y(R) 1D (7, 2)x* (R)).(2)

therefore we obtain for any #*-dimensional column vector u,

(En » T30 T,p /020
w*0T,p/02* Ty, u*o° Tw/az*azu>
= (@ T, 0x(2)/02u)* (1(2) Ti™, 9y (2)/02u)

(2.11)

Then we have
det (y T55'"% oy/ozw)* (x Tsp?, 0y /ozu)
= u*0*T,p/02* 02U — u*0T,p/02* Tsp'0 Toplozu = uw*, Topu = 0

Therefore, ,T, + 2- T, x T, is nonnegative definite, then ,T, + m-
T, x T, (m > 2) is positive definite.
Next, we state the following symbol,

(2.12) o Fp(t, 2) = 0°F /ot 0z — OF,/ot* F ;'0F [0z

then we have ,,T,(t, 2) = (tp)" ' Th(t, 2).

THEOREM 2.2. For any matrix function F,(t, 2) which transforms
by relation Fu(E, 2) = (dr(t)/dt)*F (T, {)(d{(2)/dz) wunder pseudo-con-
formal mapping { = (), we have
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(2.13)  (tp)"Fp(E, 2) = (dz(t)/dt)*™ (T )" F AT, {)(dC(2)/dz)™+" .

COROLLARY 2.1. If we construct the matrix functions
(2.14) Fy(t, z) = 0*log det (K5(t, 2) T»(1, 2))/0t*oz ,

we obtain the following transformation expression

(m)

"Go(t, 2) = (To)"'Fi(E, 2)

2.15
(15 = (de(t)/dty (e )™ FiE, D@/ )™ ,

where p is an arbitrary real number.

3. m-representative domains derived by operators ‘c}. First,
we define matrix functions ,T,(%, 2) (not ,Ty(%, 2)) with respect to
both z and ¢*(z, t € D) with a fixed point ¢, of D as follows.

wn To(t, 2) = 0%,y T(t, 2)/0t*0z

3.1) _ _
— 0ty Tn(2, 80)[0t* (vsy Tp) 01—y T'n(t0y 2)/02, (v = 2) ,

where o, To(f, 2) = Tu(Z, 2), o0 T» = o To(tw &), and by putting ¢ = ¢,
we have
o To(to, 2) = 3, T(T,, 2)/0t*02
— 0,—y) Tp/0t* (o) TD)—la(V—l)TD(—fm z)[oz .

where 0,,_,, Tp/0t* = [0(,_,) Tp(t, 2)/0t*],—¢,,0~,» The definite integral of
a matrix A(2) is

(3.2)

(3.3) S A(x)dz = B(z) — B(t) ,
where dB(z)/dz = A(z), then we have

(3.4) SZ @ To(To, 2)dz = 0T ,(Ey 2)[0t* — 0T p/0t*(Tp) ™ Tp(to, 2)

St St @ T'p(to, 2)d2)?

8.5 = St (00 To(t oy 2)/0t* — 05 Tp/0t*(10) Tp) "2 T, 2))d2
= 0*Tp(ty, 2)/0t** — 0*Tp/0t**(Tp)~Tp(%o, 2)

— 015 T'p/0t* (1o TD)_I(aTD(zoy R)jot* — 0T ,/ot*(Tp)™" D(Zm 7)) .
Therefore, if we introduce a matrix function as follows

(2) —

Mp(to; 2) = 0 Th(t,, 2)
(3.6) 3 . 3
= TD(tO! z) - aTD/az(Z) TEIS (2) TD(tOy z)dz )

t

0
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(2)
we have an invariant holomorphic function ¢(2; ¢,) under any pseudo-
conformal mapping { = {(z) which satisfies the conditions

(3.7 C(t) = 0, dl(t,)/dz = E, d*C(t)/dz" = 0,

and the invariant function also satisfies (3.7):
(2) z (2)
(3.8) @@onT?&MMm@M-
0

Because, in general, for any pseudo-conformal mapping { = {(z) satisfying
(1.8) we have 07+ Ty (Z,, t,)/0t*?02% = 07+ T',(0, 0)/0c*76L%, (0 < p, g < m — 1),
and we have 0?Ty(%,, 2)/0t*® = 0*T,(0, {)/oc*?dl(z)/dz only if ¢ = 0.
(See (2.4), (2.6) and [7]).

(2)
By this function (j, D and 4(= {(D)) generate the some domain
R. We call this unique domain R 2-representative domain of the
pseudo-conformal equivalence class of D with center at the origin,

(2)
and the function {3(z; t,) will be called 2-representative function. More-
over if we define a matrix
(3) _ _ (2)
M3(to; 2) = '05'05Tp(to, 2) = '0%5('0nTh(to, 2)) = Mp(ts; 2)

3.9) ® ) s _
— #Mb/o7 o T5| | o TolE 22,
0J %0

we obtain a 3-representative function (E)})(z; t,) of the pseudo-conformal
equivalence class of D which satisfies the conditions {(t,) = 0, d{(t,)/dz =
E, &¢(t,)/dz* = d*C(t,)/d=* = O:

(3.10) Chiz; t) = T;S’z‘ff’;(to; 2)dz .
to

Now, we have the following relation:

T, T. Te \7"Tyty2)
(3) —
3.11 N(ty, 2) = (B, 0,0 T T, Tmz) 0T (%o, 2)/0t* )
( ) ) Tt~2 Tﬂzz Tt*222 aZTD(EO, Z)/at*z
= Ty My(Es2)
where Tip,e = 0272T (L, t,)/0t*?027. It is proved by means of the well-
known formula

K L\
o )

3.12) (K + K"'L(N — MK-L)"MK~, — K-L(N — MK-L)™
_(4N—MK%WMK5 (N—MK%P»

(see [5]) .
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In general, if we introduce the matrix functions as follows

(m
(3.13) Wity 2) = tom—tgm=2 ... 103 Tp(F,, 2), (m = 2)
where
1O'uD_lF’(to; z) = F(to; z)
(3.14 — (@B D02 et T5| o+ | T D)

(dz)~,

for any matrix function F(¢;z2), then we have an m-representative
function of the pseudo-conformal equivalence class of D with respect
to a fixed point ¢,

(m) z (m)
(3.15) et = 73| Wit e
to
Similarly, if we construct the matrix functions

(m) _
(3.16) MY(ty; 2) = YortVor2 oo Yoo Ty(t,, 2), (i = 2) ,
by Yo% replaced ,T,(%,, 2) with ., Tp(%,, 2), i.e.,
o To(Fo, 2) = ** "V Tp(E,, 2)/0t**102"
- (Tt*v——l, Tt*v~lz, cccy Ttw—lzv—z)

TD Tz cee Tzu—z -t zv—l(t-—o, Z)

(3.17) ”
Tt* Tt*z s Tt*zv—'z Tt*zv—l(to, z)

...........
.
Tt*u—z Ttw—zz e Tt*uv—zzu—z uTi*u—zzv—l(—t_O, z)

then we have another m-representative function
(m) 2z {m) z
@18) Gt = 15| My ade = | Npeoote, e,
to to

where
Ty, oo Tonm Tt 2)
NE Uz, t)) = (F,0, «+«, 0] «ceeveeens ,
Tym— v Tpm—m— Tom—1(Es, 2)

because we can compute

TD e sz—z sz—~1 -t D(z)
Tt*m—z Tt*mﬂzzm—z Tpm~22m—1
(3.19) Tt*m—l s Tt*m—lzm-z prm—lym—1/ Tt*m—l(Z)

Me) = (8,0, ---,0)
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m—1 (m—1 2
= N@ - 0N o= T3

to

A Tl (D)™
—vgr"N(2).  (See [7]).

THEOREM 3.1. If det ,,Ty(to, &) % 0, and det ., To(fo t) X0, (2 <
v < m) at a fixed point t, of D, then we have m-representative domains
of the pseudo-conformal equivalence class of D mapped by the m-
representative (holomorphic) functions (3.15) and (3.18) respectively.

Next, by the property of Kronecker product we can calculate
formally

(T(%o, 2))*(d2)* = (To(To 2)d2)”
therefore we define
(3.20) [ o | (ol ey
0 to
= <§z To(E,, z)dz)p .
to
Then we have the following m-representative function
(m) z {m)
Bty = 15 Myt 2
3.21) = Bty — Yml B jde (T3
(| 7ot 92)", m 2 2,
o
where
(1) z _
be t) = T3 To 9z,
to

and

(m _ m—1

Mt 2) = 205" - 204 To(F, 2) = *on Mi(ts; 2)
{(m—1) m—1

= M (t; ) — 1/m) om= B3 Jozm="(T5")"
| oo ot aymaam.
to ty

Firstly, we introduce a 2-representative domain of the pseudo-
conformal equivalence class of a domain D in this case. We ecan
compute as follows by the above-mentioned formulas (1.7) ~ (1.10):

d/dz(S;TD(fo, z)dz>2 =Tx( )+« )x TYE, x1)
=Tx()+()xT,
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dz/dzz(g (%, z)dz>2 —T.x( )+ (Tx TYE,, x1)+ Tx T

+ () x T)E, x E)
=T, x( )+ TE,,+T+( )xT,,

where

()= S ToEo 2)d2, T = Ty(Es, 2), T, = 0Ty(Es, 2)/02 -
0

t

Then we have
(3.22) (@ )Yd&?),—, = THE,, + E?) .

Further, we have following results.

LEMMA 38.1. For any m row vector & = (Ti, Xy *++, X,), we have
(3.23) 2B, =,
and, in general, for arbitrary positive integers P, q

(3.24) a7 (B x B, + E9) = ottt
Thus we have
EEJdA(E,, + B = 20 )dz?

(1)
for any n column vector (3.
Therefore we have a 2-representative function

G t) = T3] W3 20

(3.25) W
1 (1) 2 _ 2
= &t — 1720 8| To@ 21de)

where

Mty 2) = 05 To(Fn 2) = To(F 2)
—1/21 aTﬁ@z(Tgl)ZSZ (To(En 2))dz .

(2) ( 2 <1
In fact, Ch(ts; t0) = 0, dCh(ts; to)/de = B, d:h(ts; t)/de* = &Cy/det —1/2!
dz%)zp/dzz(lf’,m + E* = 0, and clearly ((’.??)(z; t,) is invariant under any pseudo-
conformal mapping { = {(2) which satisfies the normalization conditions
3.7).
Similarly, we have a 3-representative function
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Chies t) = 77|
(3'26) (2) ° (2) z 3
e t) — 131al a1 (|| T, 2dz)

z (7

(]?lz?)(to; 2)dz

where
(2) (2) (2)
M(to; 2) = *05,M3(ty; 2) = M}(ty; 2)
- 1/3132&?2/5/&%(7’;1)352 S (To(Esy 2))(d2)" .
Clearly it is invariant and
(3 3 (3)
bt t) = 0, dCh(t; t)jde = E, d'Co(ty; t))det = 0 ,
BL (b 1))d2 = dCyjdz — 1/3) PO ATV THE x (B, + E?)
- (E,, x EXE x E,,) + (E,, x E) + E°
— @)zt — 1/31 (3! L2 )de) = 0 .
This result from the following calculation:
@z )Y = Tax ( )+ (T, x djdz( VE,,
+{T, x d/dz( )* + (T x d&¥dz*( YNE,, x E)NE x E,,)
+ T, x didz( ) + (T x d¥/dz( Y)NE,, x E)
+ T x dfde( )+ () x ddR( ).

In general, we have

THEOREM 3.2. If K (%, 2) # 0 in a bounded domain D, we have

(m)
an m-representative (holomorphic) function (3(z;t,) (see (3.21)) of the
pseudo-conformal equivalence class of D with respect to a point t,.

REMARK 1. %)%(z; t) = TBISZ To(to 2)dz = MyPu(ty, 2)/mp(ty, 2), (1 =
tg _
1, 1’, 2), because d(MEx(t,, 2)/m5(ty, 2))/dz = T35 Tp(t,, 2), Where

Myt 2) = (0 E)(KD X _l(KD(zm ; )
D 09 z) - ! Kt* Kt*z aI{D(—f;—o’ Z)/at* y

my(t, 2) = K,(to, 2)/K,(to, t,). (This result was obtained by Tsuboi [5]).

REMARK 2. In the case of one variable, our 2-representative func-

(2)
tions of an unit disk with respect to t, become Ci(z;%) = (1 — [ %)
(1 — tawu, (1 = 1,1/, 2), where u = (2 — t,)/(1 — t2).

(m)
REMARK 3. The funetion (%(2; t,) is expressed as follows:
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(m) (1) m (v—1) (ll‘
(3.27) b(Z; t) = Ch(z5ty) — 35 1/wld* GG [dz*(C5(2; )"

4. m-representative domain by the operator d%. As §3, we
shall start with the case m = 2. We construct the matrix function

T (ts; 2) = 05 T,(%,, 2), (see (4.6)) as follows:

(2) _
Tpo(te; 2) = Tp(to, 2)

4.1) ~ - B
— 0T p(Ty, t,)/02(* Tp(to, to)/0t*02) 0 T)h(2,, 2)/0L* .

Under any pseudo-conformal mapping which satisfies the normalization
conditions (3.7) at a point ¢, of D, we have

(2)

(2)
(4.2) Ty(to; 2) = T4(0; C)dl/dz .
Then we have an invariant function which satisfies (3.7):
(2) (2) z (2)
(4.3) 7o t) = (Tolte t)] Tolts; 21 .
0
This function is a 2-representative function of the pseudo-conformal

equivalence class of D.
In general, we define as follows:

4.4) Tt 2) = 05" v 05 Tp(Eny 2), (M = 2)
(4.5) Sty 2) = 05+ 050 To(Fsy 2)/08*, Splty; 2) = 0T(Eer 2)/08*
where

(4.6) 03F(t; 2) = Fi(ty; 2) — (0"F(ty; 2)/02").1(0"Solte; 1/02)S(ti; 2)
4.7 B v OLF(t; 2) = (- -+ (05(05F(t; 2)) ) »

for any matrix function F'(¢,; 2). Then we have

4.8) To(t 2) = T4(0; 0)dL(2)/dz ,
(4.9) St 2) = 8,(0; O)dc(2)/dz, v < m — 1),
because

(4.10) %« 0L34 T (E,, 2)/0L*"
= 0% +++ 0,0°T (0, {)/oT**(dl(2)/d?) ,

under any pseudo-conformal mapping { = {(2) which satisfies (1.3).
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On the other hand, we can calculate instantly

.11) OT(t 1)o7 = -+ = " Ty(ty; 1)/02" = 0,
(4.12) 08, (b oz = -+ = 0" 8, (ty; t) oz = 0,

because (d*(0%F (t,; z))/dz”)F,o = 0.

THEOREM 4.1. If T (t;2) ewists and det To(t; &) = 0 at a fized
point t, of D, then we have an m-representative (holomorphic) function
of the pseudo-conformal equivalence class of D:

(m) (m) z (m)
4.13) 7ol t) = (Fotte t)]] Fottes 9
0

Further, we have

THEOREM 4.2. We obtain several m-representative functions of
the pseudo-conformal equivalence class of D with respect to the fixzed
point t, of D:

@18 Oie t) = 65 Mt ) 037 Mitts 2)da, (i = 1,1),
@15) T t) = (Tt 1) ‘o3 Ty (1 e, i = 1,19,
@16) e t) = 77| o5 Myt ae

@1 et = 77 vor Mt e,

(m) (m—1) (m—1) (1)
(4.18)  pp(z; ) = &p (25 8) — 1/ml o™ ey [02™(C5(2; )™

(m—1)
where ¢, (z;t) is an arbitrary holomorphic (m — 1)-representative
function.

REMARK 1. We can obtain other m-representative functions

(m) z
Bie; t) = O3 Nty )| 857Nt
(4.19) ¢

(m)

V(e t) = | o5 N, t)dz, (= 1, 1)
0

where
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N7iw (2, t,) = (B,, 0, +-+, 0)
Tupy *++y om T pfoz™* \ ™
e U N L A
T,.n(%, t)
, (see [7]) .
0™ 2T, (7, t,)/ot*™*

REMARK 2. (;]n;(z; t) was published temporarily in Mathematical
Seminar of Tokyo University of Education [8], and the author showed

Moz t) = (L — |4, (1 — T)u where u = (z — t)/(1 — T,2), and D is
an unit disk in one variable.

We shall further proceed with our studies. First, we shall sub-
stitute the auxiliary conditions
L(t) = 0, dl(t,)/dzA = A, d*((t,)/dz*A*

= oo = d"{(t,)/dz"A™ =0,
for the normalization conditions (1.3), where A is an 7 x vy matrix
(v £ n). (The case of conditions {(t) = 0, dl(t,)/dzA = A was first
studied by Y. Michiwaki, Nagaoka Technical College.)

In the case of m = 2, we construct the following matrix function

(4.20)

(2) _ _
JTo(te; 2) = 05Th(t,, 2) = Ty(ty, 2)
— 0T (%, t,)/02ANA*0* T (T, t,)/0t*02A%) ™"
A*%TH(t,, z)/ot* ,

then we can calculate easily

(4.21)

(4.22) (Tt 2) = (de(t)/dty*  T0; (AL @)/dz)

under any pseudo-conformal mapping { = {(z) which satisfies the con-
ditions

(4.23) C(to) = 0, dl(t))/dzA = A, d*C(t,)/dz*A* =0,
because, from (2.4) and (2.6) we have

0T, (t, 2)/0zA* = (dz(t)/dt)*0T,/0l(dL(z)/dzA)?

(4.24) + (de(tydty TAdUR)dA A |
A*?&ZTD(Z, 2)[0t*0zA® = (dc(t)/dtA)**0*T,/ot*ol(dl(z)/dzA)*
wz5) 4 (de(t)/dtA) o T, /o0 (2))d2 A®

1 (dPr(t)/dE A} * o T,/0C(dE(2)/dzA):
1 (o (t))dE AN * T d¥ (2)/d22A°
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Therefore, we have an invariant (holomorphic) function which satisfies
the conditions (4.23):

(2) (2) z (2)
(4.26) (@ t) = A(A*  To(te: tO)A)—ISt A%, Ty(ty; 2)dz .
0
We shall call this function an A — 2-representative function of the

pseudo-conformal equivalence class of D with respect to t,¢ D.
Next, we shall define as follows:

(m) —
(4.27) 2 Tp(te; 2) = 077"« 0 Th(te 2) ,

)
(4.28) So(te 2) = 05" -+ AELBZTD(E, z)[ot**,
where

100 F (ty; 2) = F(to; 2)
— ("Flt; D/32°). (A (A1 Sy (t; 1)/ A

A St 2)

Then we have

(4.29) ATt 2) = (de(t)/dt)* , T0; ©)(dL(2)/dz) ,

(1) 2

(4.30)  ,Sp(ty; 2) = (dT(tO)/dt)*Z-HAS)D(O; Odl(z)/dz), v =m — 1),
because
Axeripey T t))ot 10z Av+ = A*e+oet T (0, 0)/oT* 08 A+,

under any pseudo-conformal mapping { = {(z) which satisfies (4.20).

THEOREM 4.3. We have an invariant function which satisfies
(4.20):

(4.31) ety = AA* Tt m)A)*Y ATyt 2)dz .

We call this function an A — m-representative function of the
pseudo-conformal equivalence class of D, and the image domain by
it is called an A — m-representative domain of the class with senter
at the origin.

Next, we shall substitute the auxiliary conditions

(4.32) {(t,) = 0, det dl(t,)/dz = 0, d*C(t,)/dz* = -+ = d™{(t,)/dz" =0,

for the normalization conditions (1.3).
Then, we can easily verify the following relation
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(m) _ m
d2* T (ty; 2) T (Fuy £0) Tolte; 2)d2

(4.33) (m) )
= d*TF(0; ) T(0, 0)T,(0; O)al

under any pseudo-conformal mapping { = {(2) which satisfies (4.32).
Therefore, we have

(4.34) T5(F,, ) Tolts; 2)dz = UT:5, 0)T.(0; 0)dL .

THEOREM 4.4. We have a following function which is invariant
except only unitary transformation under any pseudo-conformal map-
ping C = L(z) satisfying (4.32):

Iin’;,(to; 2)dz .

0

(4.35) oz 1) = T5(F,, t)|

z
t

We call this function an m-normal function of the pseudo-conformal
equivalence class with the conditions (4.32).

The author wishes to express here his hearty gratitude to Prof.
S. Ozaki for his kind guidance during his research.
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