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This paper is concerned with the system of differential
equations

(1) 2 = A(t)x, tel0, o)

where A(t) is an » X n matrix of locally integrable complex-
valued functions on [0, ») and x(¢) is an n-dimensional column
vector., The class of matrices A(¢) such that (1) has a nontrivial
solution x,(t) satisfying lim;.. | 2,(t)| = 0 is denoted by 2,; the
class of matrices A(t) such that (1) has a solution x..(t) satisfy-
ing lim;w, | Zo(t)| = 4+ is denoted by Q.. If P is a projec-
tion then 2P, denotes the class of matrices A(¢) such that (1)
has a nontrivial solution x,(t) satisfying lim,. | Pxo(t)] = 0.
Sufficient conditions are given for A(t) e 2,, A(t) € 2. and A(t) €
QP,; the result, obtained include as special cases theorems of
Coppel, Hartman, and Milloux,

Throughout, || || will denote the Euclidean norm and | | will be
used for any other norm (which of course must be topologically equiv-
alent to || ||) on the vector space of complex =n-tuples. If B is an
n X n matrix, then B* denotes its Hermitian conjugate and Tr B its
trace; if ¢ is a complex number then Re ¢ is its real part.

LEMMA 1. (Compare Hartman [3], p. 501). Let {t,} be a sequ-
ence in [0, ®) converging to .

(a) Suppose 0 < lim,_ . ||2z(t,)|] < + o exists for each solution
x(t) of (1); then thereexists a nontrivial solution x,(t) such that

l,im.o [2o(te) || = 0
if and only if
limReStkTrA - e
k—oo 0

(b) Suppose 0 < lim;_.. [|@(t,) || < + oo ewists for each solution x(t)
of (1); then there exists a solution x.(t) such that

lim | u(t)[| = + oo

693



694 JACK W. MACKI AND JAMES S. MULDOWNEY

limReStkTrA=+oo.

k—oc0 0

Proof. (The proof parallels that of Hartman). (a) Since

0 < lim x*(¢,)x(t,) < + oo
k— oo

exists for each solution of (1) it is easy to see that

0 = [lim a5 (ta(t)| <+

exists for any solutions x,(t), 2,(¢). Thus if @(t) is the fundamental
matrix of (1) satisfying @(0) = E, we know that lim,_.. @*(t,)0(¢t,) = H
exists, each element of H is finite, and H is Hermitian. Also,

lim (det @(¢,))* = lkim (det @*@)(¢t,) = det H .

k—co

Hence, by the Liouville-Jacobi formula ([3], p. 46),

. glimReStkTrA< oo
0

k—oo

exists and
det H = lim exp [2 Re Slk Tr A] .
k—oo 0
Since «(t) solves (1) if and only if x(t) = @(t)c, ¢ = 2(0), we have

0 < lim || 2(¢,) > = lim ¢*@*(¢,)@(t,)ec = ¢*He .
k—oo k—oo

H is consequently nonnegative definite, so

d¢ # 0 such that ¢*Hc =0 —=—det H=0,

k—oco

i.e., if and only if lim Reg”‘ TrA = — .
(b) If it were the case that lim,_.. ||%(¢;)|] < + <o for all solutions
of (1) then part (a) above shows that lim Re Stk TrA < +oo.

k—oo

REMARK. Note that the above proof depended in an essential way
on the fact that the Euclidean norm is generated by an inner product.

THEOREM 1. (a) Suppose (1) is stable and each solution x(t) has
the property:

(2) If liminf |2()| = O then lim |a(¢)| = 0 .

Then
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. . t
A(t) € 0, — hmlnfReS Trd= —oo.
t—w 0

(b) Suppose solutions of (1) have the property:

(3) If lim sup |a(t)| = + = then lim |a(t)| = + .

Then

t—o

A(t)echxlimsupRegtTrA: foo.

Proof.

(a) Suppose that no solution satisfies lim,., |2(¢)] = 0; then by
(2) lim inf,_, |2(¢)| > 0 for each solution, and so liminf,_, |[2(t)]] > 0
for each solution. By Lemma 1, we cannot have

limReStkTrA e

k—oo
t
for any sequence {¢,} converging to w, so lim inf,_, Re S TrA > —oco.
0
Conversely, suppose lim,_, [2,(t)| = 0 for a solution z,(t). Let @(t)
be a fundamental matrix. Since all solutions are bounded, we have

0 = lim |det @(£)| = lim |det ®(0) | exp (Re S Tr A)

(b) If all solutions are bounded then we must have

t—-w

(") limsupReStTrA< + oo
0

by part (b) of Lemma 1. So the negation of (*) implies the existence
of a solution z.(¢) for which lim sup,., |®.(f)| = +c which, by (3),
implies that lim,_, |2.(t)| = + .

COROLLARY 1.1. If (1) s stable and satisfies condition (2) then

liminfReStTrA: e =>1imReS”TrA: e
0

t-w 0 t—w

Proof. lim inf Re St Tr A = — < implies the existence of a solu-

t—w 0

tion x,(t) such that lim,_, |2,(¢t)] = 0. If @(t) is a fundamental matrix
for equation (1), then clearly lim,_, |det @(¢)| = 0 and hence

limReS:TrA: e

t—oo

COROLLARY 1.2. (Hartman [3], p. 501; Coppel [2], p. 60). (a)
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Suppose that 0 < lim,_, |2(f)| < + o ewxists for each solution of (1).
Then

A(t)erc==>limReStTrA - .
(b) Suppose that 0 < lim,_, |2(t)| < + oo exists for each solution
of (1). Then

A(t) € 2. == limRe StTrA = 4oo.

t—o

COROLLARY 1.3. Suppose (1) is uniformly stable ([2] p. 51). Then

A(t)e.ro:limReStTrA: oo
0

t—w

Proof. 1t suffices to show that if (1) is uniformly stable then it
satisfies (2). Uniform stability means that, for each & > 0, there ex-
ists a d(¢) > 0 such that, if |x(¢)| < d(¢), then |x(t)| < e for all te
[te, ®). If liminf, ., |x(¢)] = 0 then, for each ¢ > 0, there exists a
t.€ (0, w) such that |x(t.)| < o(¢) and so |x(t)| < ¢ if t€ [t., ®); thus
lim,_, |2(¢)| = 0.

REMARK (i). Corollary 1.1 implies in particular that if

— oo = lim inf Re St Tr A < lim sup Re &tTrA ,
t—w 0 t—w 20
then either (1) is unstable (i.e., it has an unbounded solution) or it
is stable but does not have the property (2); thus it is neither asy-
mptotically nor uniformly stable (cf. Corollary 1.3).

REMARK (ii). Although Theorem 1 requires a somewhat stronger
condition than stability, it is clear that if (1) is stable and condition
(2) holds, it does not necessarily follow that (1) is uniformly stable.
For example, condition (2) and stability are satisfied if (1) is asymp-
totically stable, but this does not imply that (1) is uniformly stable
(cf. Coppel [2], p. 52).

REMARK (iii). Corollary 1.2 was proved by Hartman for Euclidean
norms ([4]; [3], p. 501), and part (a) of this corollary was proved by
Coppel for general norms ([2], p. 60).

REMARK (iv). —A*(t)e R, — A(t) € Q. Suppose the adjoint
equation of (1), ¥ = — A*(¢)%, has a solution %,(¢) such that
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lim [[Z(t)]| = 0 .

Then there exists a solution x.(t) of (1) such that
1 = 2 ()r(t) = [|Z(0) || [2(t) ]
and thus lim,,,||x.(t)|| = + . (cf. [1], p. T1).

Hartman ([3], p. 501) observes that the conditions of Corollary
1.2(a) ((b)) are satisfied for the Euclidean norm when the matrix
[A + A*](t) is nonpositive (nonnegative) definite for all ¢ € [0, ). Fur-
ther sufficient conditions involving the logarithmic norm, g, due to
Lozinskii [5] (cf. Coppel [2], pp. 41, 58-59) may be obtained. If B is
any » X » matrix, and |B| is the operator norm of B induced by the
vector norm | |, i.e., |B| = sup,, -, | Bx|, then

p(B) = lim (T + hB| — D/,

where I is the » X n identity matrix. If || is one of sup; |z’], 3. | 2%,
or ||x|| respectively, then the corresponding p(B) is given by (see

Coppel [2], p. 41):
sup (Re b;; + g. |6 ), sup (Reb;; + ]; ki) »

or 4 A(B + B*), where A(C) denotes the largest eigenvalue of C. As
is shown in Coppel ([2], p. 58), if «(t) is a solution of (1), then

t t
t — A)), |4 —
v exp (= | 1)), 1o exp (| (- )

are nonincreasing and nondecreasing, respectively. The hypotheses of
part (a) of Theorem 1 are satisfied if there exists a constant M, in-
dependent of both ¢ and ¢, such that

V A S Mfr 0<t,<t<w,

Jtg

(in fact, (1) is then uniformly stable), and the hypotheses of part (b)
of Theorem 1 are satisfied if there exists an N, independent of ¢, and
t, such that

t
S M—A)<Nfr0<i<t<w.
to
Furthermore, 0 < lim,_, |2(t)]| < + = exists for every solution if
t
—oc0 < lims H1(A) < + o exists; while
t—-w 0

0 < lim |a(f)| = + oo exists if
t—w
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— o < lim gtpe(—A) < + oo exists.
0

t—w

These facts can be applied, using Theorem 1 and its corollaries, to
obtain concrete conditions under which A(¢) € 2, or A(f) € Q...

Although Theorem 1 and its corollaries furnish sufficient condi-
tions for Ae 2, and AcQ., it is clear that these are not necessary
conditions. For example, in the case of a constant matrix A with
w =+, Ac, if and only if Re # < 0 for some eigenvalue z of A4;
while A€ Q.. if and only if Re ¢ = 0 for some eigenvalue £ of A and,
if Rey = 0, ¢ occurs in a nondiagonal Jordan block in the normal
form of A (cf. [1], p. 77). However, the hypotheses of Theorem 1
and its corollaries are not invariant under changes of the dependent
variable in (1); this observation allows us to broaden considerably the
class of equations for which Theorem 1 gives information.

THEOREM 2. Let I'(t) be a nonsingular n X n matriz of absolutely
continuous complex-valued functions on [0, w), and define
(4) B=I"I''4+TA'=IrAAA.

(@) If |I(t)x| < K|z|, for some constant K, for all x and all
t =0, then:

AeQ,=— BeQ,,
AeQ,=—BeQ..

(b)y If |(t)x| = klx|, for some constant k(#0), for all x and
all t =0 then:

BeQ,=— Acl,,
BeQ,—=—Acl.,.

() If klz| < |IC(®)x| £ K|z| for some constants k(+0) and K,
for all © and all t = 0, then:

BeQ, = Ac,
BeQ,=— Acl,

d) If |[(t)x| = k| Px| for some constant k(+0) and all © and
t =0, where P 1is a projection, then

BeQ,=— AcQP,.
Proof. wy(t) is a solution of

(5) y =1 ANA@y
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if and only if y(t) = I'(t)x(t) where x(t) is a solution of (1), so that,
in case (a), we have |y(t)| < K|x(t)| for corresponding solutions of (5)
and (1), and the result is obvious. The argument is similar in cases
(b), (c) and (d) and, in fact, (a) and (b) are equivalent since B=1"A A
if and only if A=7"A B.

The change of variable used above has been studied from several
points of view, but always under (at least) the assumption in part (c)
of the Theorem. This assumption implies that the class of allowable
transformations forms a group, or, equivalently, that the relation of
“kinematic similarily”—A ~ B if and only if there exists a I', satisfy-
ing the assumptions in (¢), such that B = I" A A—is an equivalence
relation. This concept was developed by Markus [6]. For a full dis-
cussion with references, see Sansone and Conti ([8], p. 457). The
conditions of Theorem 1 are invariants of kinematic similarity, but
are not invariant under the assumptions of parts (a), (b) and (d) of
Theorem 2; thus, less restrictive conditions than those in (c) are more
useful in the present context. For example, given a matrix A(¢) which
satisfies the conditions of part (a) of Corollary 1.2, then

{CrAA: | C(t)x| < K|x| for some K = K(IM}C 2, .

Notice that stability is preserved under this class of transformations,
but the property described in (2) is not.

Theorem 3 below will illustrate how Theorems 1 and 2 may be
used in practice to obtain information on the asymptotic nature of
solutions to differential equations. The following simple lemma will
be useful.

LEMMA 2. If ' is a mnonsingular matric of absolutely con-
tinuous functions on [0, w), with det I'(t) > 0, then

Tr (I"I"") = (logdet ') a.e. on [0, w) .

Proof. Observe that I" is a fundamental matrix for the differ-
ential equation o’ = I"I"~'x; the result then follows immediately from
the Liouville-Jacobi formula.

Throughout the following, the notation H > 0, =0 etc. will mean
that the matrix H is positive definite, nonnegative definite, etc.

THEOREM 3. Let H(t) be a nonsingular Hermitian matric of
absolutely continuous functions on [0, w).

(@) If
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(6) H + A*H + HA £ 0 a.e. on [0, ),

then x*Hx is monincreasing, and T*H'X% 1is nondecreasing, whenever
2(t) and %(t) are solutions of (1), and the adjoint of (1), respectively.
(b) If (6) holds and H > 0, then

(7) lim[élogdet H(t)+ReStTrA]= — o0
t—w 0
18 necessary and sufficient for the existence of a solution x,(t) such
that lim,_, xf Hxy(t) = 0. (7) is a sufficient condition for the existence
of a solution T.(t) of the adjoint of (1) such that
lim Z2H'%.(t) = + o .

Proof of (a). (6) implies (x*Hz) < 0 a.e. so x*Hx is nonincreas-
ing. Pre-multiplication of (6) by —H~' and post-multiplication by H*
shows (H'Y — AH™ — H'A* >0 a.e., which implies (Z*H'Z) =0
a.e.

Proof of (b). Let I'= H'? the unique positive definite square root
of H. Then, y(t) is a solution of (5) if and only if ¥ = I'x, where
x(t) is a solution of (1), and ||y|? = x*Hx. Therefore, by part (a),
0 < lim,_, |y(t)|| < + o exists for each solution y(¢) of (5) and, by
Corollary 1.2(a), I"'AA e Q, if and only if

lim Re S‘Tr (CAA) = —oo .
0

t—w
But the lemma implies
Tr(I"'AA) = (logdet 'Y + Tr A = i(logdet H)Y + Tr A,

and hence (7) is necessary and sufficient for the existence of a solution
2,(t) of (1) as described.

The assertion about the adjoint of (1) may be proved similarly,
using Corollary 1.2(b). It also follows from the observation that there
exists a solution %.(t) of the adjoint of (1) such that

1 = Bial(t) = BLH-P H'oy(t) < [BH Fa()] o7 Hoo6)]

where H-!/» = (Hl/z)—l — (H—l)l/z.
Consider the scalar equation

(8) (pu') +qu =0,

where p and ¢ are real-valued measurable functions such that 1/p and
g are locally integrable on [0, w).
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COROLLARY 3.1. (a) If «a, B, are absolutely continwous real-
valued fumctions on [0, w) such that, for te [0, w),

a’"Jf"g’ZéOr B’_ZFYQ§O9
D

) (¢ + Z)s ~200) ~ (v + £ ~aq) 20,
then, if w 1s a solution of (8),

E = a(pw')’ + Bu* + 2vu(pu’)
18 nonincreasing while, if af — v* = 0 on [0, w), then

1

F=__1
aB —*

18 nmondecreasing.
(b) If (9) holds, and n addition
a>0,aB8 —v*>0 for te|0, w),
then
(10) lim (@ — 7)(t) = 0

1s mecessary and sufficient for the existence of a solution, ut), of
(8) such that lim,., E(t) = 0; and is a sufficient condition for the ex-
istence of a~solution of (8), u(t), linearly independent of wu,(t), such
that lim,_, E(t) = + co.
Proof. Let x, = puw', x, = u, so that (8) is equivalent to the system
v I |
(11) = gy, v = =,
P
which is of the form (1), with Tr A = 0. The adjoint of (11) is
B = —1F, & =,
p
and the solutions of this equation are of the form %, = u, &, = —pu’,

where u is any solution of (8). The corollary is an immediate conse-
quence of Theorem 3 if we take

ol )

(9) is equivalent to (6) and (10) is equivalent to (7) in this case. That
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u, and u.. are linearly independent can be seen from the proof of
Theorem 3, since

1 = Fiat) = puau) — wli)(t) .
ExamvpLE 1. If pq is absolutely continuous and positive then

a = pql(O) exp(—S:y+>, B = exp(-—SZp_) and vy =0

satisfy (9), when p = (log pq)’, £, = (|t + o), and p_ = 3(|¢e| — 1)
Hence (8) has a solution u,(t), such that

i [0 ([ 1) ([ )] -

if and only if Swlﬂi = +co, and this is also a sufficient condition for
0

the existence of a solution u.(t) such that
t t
lim [(pu;,)“‘ exp (S p_) + uZpq(0) exp (S p+>] = + oo .
t—w 0 0
We can conclude, for example, that if
S;”#_< + oo and 5:/@, = +4 o0,

then lim,_, %,(t) = 0 for some solution of (8).

Special cases of Example (1) have been obtained by Milloux [7]
and Hartman [4], under the assumption that pq is positive and mono-
tone and lim,_, pg = + . Here we have pg positive but not necess-
arily monotone. In Example 2 we show that Corollary 8.1 may be
applicable even when pq is neither positive nor monotone, in fact we
have lim sup,_, p¢ = + < and liminf,., pg = — .

ExAMPLE 2. Let p(t) = 2¢'(1 + ¢7%), q(t) = 3 Sint, @ = + oo,
a@t) =e, Bt)=1+¢*and v(¢) =0.
Then a'(t) = —et <0, 8(t) = —e~t < 0, and
(g — aq) (1) = (be~ — he' Sint) = o = () -
Clearly (9) holds, and since lim,_. @B(t) = 0 (i.e., (10) holds) and

B(t) = 1, ap(t) = 4e',

it follows that there exists a solution wu(t) of
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(e + e Hu') + #Sint)u = 0

such that lim,_. u,(t) = lim,_., e/*uj(t) = 0.

In the preceding example the rapid smooth growth of the funec-
tion p helped to overcome the oscillatory behaviour of q. We now
give an example to show that we can have p(t) = 1, liminf,_, q(¢t) =
— oo, lim sup,_, q(t) = + o, and still be able to establish the existence
of a zero-tending solution.

ExAMPLE 3. Letp=1,¢ = (1 + a + &)/a, = + <o in (8), where
a'(t) = 0 for te(0, 1),

a’(t)= %=1,2,3,"‘,

~n,te<n,n+l3>
n
0,te<n—'r

,’n+1)

§w||—t

_ 71.2 t ,
at) = 5 + Soa .
Note that lim,.. a(t) = 0, lim inf,_.. q(t) = — oo, lim sUp;_. q(t) = + oo.
Then we can choose ¥ = 0, « as given, and 8 =1+ a in Corollary
3.1 to conclude that there exists a solution, u,(t), of #”’ + qu = 0 such
that lim,_. %,(t) = 0 and lim,_. a(t)(ui(t))* = 0.

Theorem 3 can also be applied to second order vector equations.
Let P and @ be n X » matrices of complex-valued measurable func-
tions on [0, ) such that P is nonsingular a.e., and P~ and @ are
locally integrable. Congsider the system of differential equations

(12) (Px'Y +Qx =0,

and its adjoint

(13) (P*T')Y + Q*% = 0.
COROLLARY 3.2. Let P and Q be as above.

(a) Suppose S and T are Hermitian matrices of absolutely con-
tinuous functions on [0, ®) such that

(14) oy =0, 7y =0, 057y — || TP~ — Q*S|* = 0 a.e.,

where ¢’ and Ti; are the largest eigenvalues of S’ and T’, respectively.
Then

E = ax¥P*SPx’ + x*Tx
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1s nonincreasing if x(t) is a solution of (12). Furthermore, if S
and T are nonsingular on [0, w), then

E = *S-'% + & PT'P*¥

1s nondecreasing whenever E(t) is a solution of (13).
(b) If, in addition to the assumptions in part (a), we have
S>0and T >0, then

(15) lim det ST(¢) = 0

t—w

18 a mecessary and sufficient condition for (12) to possess a solution
for which lim,., E(t) = 0. In this case, (15) is also a sufficient con-
dition for (13) to possess a solution for which lim,., E(t) = + oo.

[l
x P 0

and write (12) in the form of (1). The adjoint of (1), 2 = —A*(¢)%,
will have solutions of the form

N x
Z = )
— P

where & is a solution of (13). We now apply Theorem 3, using

S 0
H = .
0T
The only nonroutine part remaining is to show that (14) implies H' +

A*H + HA <0 a.e. on [0, w). Note first of all that S’ and 7" are
Hermitian and nonpositive. It follows from a simple computation that

Proof. We set

S Fx
1, F= TP —Q*S,
F T

H + A*H + HA = l:
and the associated (real-valued) quadratic form can be written
x*S'c + y*Fo + «*F*y + y*T'y, * and y m-vectors.
The values taken by this form are clearly bounded above by
oullz|* + Tilly P + 20 F(- 2|yl .

The remainder of the proof is now easily completed by applying
Theorem 3.
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Corollary 3.2 is an improvement of results due to Hartman ([3],
p. 502) and Coppel ([2], p. 61), one part of which can be stated as

follows:
If, in (12), we have P, Q commutative Hermitian continuously

differentiable matrices, with PQ > 0 and (PQ) = 0, then
R(t) = v*x + 2™ PQ™'2', x a solution of (12),
18 nonincreasing. Furthermore, (12) has a solution, x,(t), for which

lim,., R(t) = 0 if and only if lim,.,det PQ = -+ .

This result follows immediately from Corollary 3.2 by choosing
T =1 (the n x » identity matrix) and S = P*'PQ—'P~' = (PQ)~".
The remainder of their results follow from the full statement of
Corollary 3.2.

ExAMPLE 4. If there exists a matrix @ such that @*P~' and ®Q
are absolutely continuous, Hermitian, and positive definite, with
(@*P-'Y <0, (#Q) < 0 a.e. on [0, ®),
then the hypotheses of Corollary 3.2(a) are satisfied by
S=0*P", T=0Q.

This is easily verified by direct computation. For example, if either
(i) P*Q or (ii)) PQ* is absolutely continuous, Hermitian, and positive
definite, then we may choose, respectively,

(1) S=Iexp<—S:v+>, T=P*Qexp<—gzu+>,
or
(i) s =@ ex(=| o) 7= 1exp(~[ o),

where v is the ratio of the largest eigenvalue of (P*Q)’ to the least
eigenvalue of P*Q, and p is the ratio of the least eigenvalue of (PQ*)’
to the least eigenvalue of PQ*. These cases correspond to choosing,
respectively,

(i) @zP*exp<—§:u+>, (ii) Q):Q—lexp<~S:pH).

That @ satisfies the conditions outlined above can be verified by direct
computation; for example, in case (i)

T = (9Q) = [(P*Q)" — v, P*Q] exp (—S:V+> ,
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and the choice of v guarantees that ¢*T’¢ < 0 for any complex mu-
vector c.

A somewhat sharper, but considerably less practical, result can
be obtained in cases (i) and (ii) above by choosing v as the largest

eigenvalue of N + N*, and o as the smallest eigenvalue of R + R*,
where

N = [(P*Q)?](P*Q)~"", R = (PQ*)~“[(PQ*)"] .

A differentiation of the quadratic forms, coupled with some simple
manipulations, shows that S’ <0, 7V < 0 in each case.

Remark (added im proof). Theorem 3 and its corollaries can be
strengthened at the cost of making the hypotheses less concrete. The
conditions (6), (9) and (14) are in each case specific sufficient conditions
for property (2) to hold, in the sense that lim inf,_, V(¢) = 0 implies
lim,., V(t) = 0, where V(t) is, respectively, xx Hxz(t), E(t) as defined
below (9), and E(t) as defined below (14), in each case evaluated along
solutions to the appropriate equation. We thank Professor H. Goll-

witzer of Drexel University for his helpful comments on this and other
matters.
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