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THE NORM OF A DERIVATION

JOSEPH G. STAMPFLI

In this paper, we determine the norm of the inner deriv-
ation Or: A— TA — AT acting on the Banach algebra B(H)
of all bounded linear operators on Hilbert space. More precise-
ly, we show that || Q.|| = inf {2|| T — 2I||: 2 complex}, If T is
normal, then ||Q7|| can be specified in terms of the geometry
of the spectrum of T,

A derivation on a Banach algebra 2 is a linear transformation
Q:A— A which satisfies Q(ad) = aQ(db) + Q(a)b for all a, beA. If
for a fixed a, Q:b—ab — ba, then Q is called an inner derivation.
Sakai has shown that every derivation on a von Neumann algebra
[8] or on a simple C *-algebra [9] is inner. See also [3] and [4].

In [7], Rosenblum determined the spectrum of an inner derivation.
Our estimates on the norm of Q, have some applications of general
operator theory as a by product. Kadison, Lance, and Ringrose [5]
have investigated the derivation Q, acting on a general C *-algebra,
when T is self adjoint. In §2, we study Q, acting on an irreducible
C*-algebra. There appears to be little common ground in the two
approaches. In the last section we consider the operator which sends
X —AX — XB for A, B, XeB(H).

1. From now on, all operators are bounded and act on a Hilbert
space. We shall denote the complex numbers by C.

DEFINITION. The maximal numerical range of T is the set
Wo(T) = {»: (Tx,, x,) — X\ where ||z,|| =1 and || Tx.||— || T} .

When H is finite dimensional, W (T) corresponds to the numerical
range produced by the maximal vectors (vectors a such that [|z|| =1
and || Tx|| = [ T[]).

Lemma 1. If ||T|=zl|=1 and ||Tz|f= @1 —¢), then
(T*T — Dx|* < 2e.

Proof. Note that 0 < |[(T*T—I)x|F=|| T* Ta||— 2| To|+||z | <
21 — || Tx|]") = 2e.

LEMMA 2. The set W(T) is nonempty, closed, convex, and con-
tained in the closure of the numerical range.
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Proof. Everything but convexity is obvious. Therefore, let
N opee Wo(T)., Assume, without loss of generality, that || T = 1.
Assume also that ||z,|| = |ly.l| = 1, (T%,, ®,) — N and (Ty., ¥.) — /-
Consider T, = P,TP,, where P, is the projection on H of {x,, ¥.}
Let n» be a point on the line segment joining N and p. Then for
each n, it is possible, by the Toeplitz-Hausdorffi Theorem, to choose
@, B, such that (Tuw,, u,) = (T,u,, #,) — 7 and ||u,|| = 1, where u, =
a,%, + B.y.. Note that |(x,, y.)| < 0 < 1 for n sufficiently large; that
ig, the angle between x, and y, is bounded away from 0. (It is not
difficult to compute an explicit upper bound for lim sup |(x,, ¥,)| in
terms of » and z.) Thus, there exists a constant M such that |a,|<M
and |B,| < M for large n, where ||a,x, + B,¥.ll =1. By Lemma 1,
| Tw,|| = (T*Tu,, w,) = ||%,||* — 2Me, where ¢,— 0, and thus it fol-
lows that || Tw,|| —1. Since (Tu,, w,) — 7 this completes the proof
of convexity.

LEMMA 3. Let pre Wy(T). Then ||Q|| = 2(| TIF — |z )" .

Proof. Note that ||Q,||=sup{||TA—AT||: AcB(H) and ||A||=1}.
Since ¢ e W(T), there exist x, ¢ H such that ||z,|| = 1, || Tx.|l — || Tll,
and (Tw,, x,) — ¢. Set Tz, = a,x, + B,y, where (,, v,) =0 and
Ny.ll=1. Set V,2, =2, V,y,= —v, and V, =0 on {z,, y,}. Then
(v, = v,0e,ll = 2[8, =z2(]| T|| — |a.[)'" — ¢,, where ¢, — 0. Since
a, — !, this completes the proof.

THEOREM 1. ||Q,|| = 2|| T if and only if 0 W(T).

Proof. 1t follows from the previous lemma that ||Q.|| = 2|| T
if 0e W(T). Since ||Q,|| <2{|T|| for any 7T, sufficiency is proved.
We now assume |[Q,|| = 2|| T||, and hence there exist «, and A, such
that ||z,||=][A4,||=1and || TA,—A,T)»,||—2[| T||. Clearly, ||4,2,.|—1,
[| Tx,||—/| T|l, and || TA,®,||—]|| T||. Moreover, since || TA,—A,T)x,||—
2| T/, TAx, = —A,Tx, + &, where ||é,||—0. Let (Tx,, x,) — ¢t by
choosing subsequence if necessary, i.e., pte€ W(T). Observe that

(TAnxm Anxn) = _(An Txm Anmn) + €
= _(T/Um An‘Anﬂ"n) = —(Txm xn) + 6:7,

where the last step follows from Lemma 1. Thus, lim,.. (TA4,%,,
A,x,) = —p. Since both ¢ and —pe W(T), it follows that 0e W(T).

THEOREM 2. If 0e W((T), then || T|? + NP || T + NP for all
reC. Conversely, if ||T|| < || T + N|| for all xe C, then 0e W(T).
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Proof. 1If 0e W,(T), then there exist x, ¢ H, ||2,|| = 1, such that
(T + N, [P = || Tw,|* + a Re (T, ©,) + [N — || TP + [x}.  Con-
versely, let || T|| || T + M| for xe C. Assume 0¢ W,(T). By rotat-
ing 7T, we may assume that Re W(T)=>7>0. Let & = {xec H:|[z]| =1
and Re (Tx, x) < 7/2}. Let n=sup{||Tx|:2€S&}. Then n < || T].
Let p¢ = min{z/2, (|| T|| — n)/2}. Consider (T — p). If xze&, then
(T — ol < || Tall + <7+ p< || T|. Let To=(a+ibw+y
where ¢ &, ||x|] = 1, and (x, ¥) = 0. Then |[(T — p)x|]* = (@ — p)* +
O+y | = || Tw|[*+ (1 —2ap) <|| T|]* since a > >0. Thus, [|T— z||<
|| Tl|, contrary to hypothesis.

COROLLARY. (Pythagorean relation for operator). Let T be a
bounded linear operator. Then there evists a unique z,€ C, such that
N T—2P+ NPT —2) + )P for all xe C. Moreover, 0 W, (T —\)
if and only if N = z,.

Proof. Obviously, there exists a z,eC such that ||T — z,|| <
(T — z) + 7|| for all xe C. The rest of the corollary follows easily
from Theorem 2.

REMARK. Given an operator 7T, we define the center (or center
of mass) of T to be the point z, specified in the corollary, and designate
it by ¢,. Given an operator, how does one determine ¢,? In general,
there is no simple answer. However, if T is normal (or hyponormal)
then ¢, is the center of the smallest circle containing the spectrum.
(See Corollary 1 of Theorem 4.) In any event, c¢, ¢ closure W(T) as
can be seen by a variation of the proof of Theorem 2. However, ¢,
need not be contained in the convex hull of ¢(T). There are nilpotents
of order 3 which bear out this remark. A further example is provided

by the Volterra operator V(V: flx) — Sxf(t)dt for fe L0, 1]>.
THEOREM 3. Let [|S — T|| <. Then
les — ¢ = (0 + [0° + 80[|S — ¢s[]]'?)/2 .

In particular, the map T — c; is continuous in the uniform operator
topology.

Proof. We first assume that ¢; = 0. Then,

TPz e + 11T — el
= e + [IS = erl* = 20[|S — er|| + 6°
= 2ler [+ |ISIF — 20(| S + [er]) + 0°
= I TI* + @lez [ — 20]er| — 40][S]]) -
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Solving for ¢, in the last expression on the right, we find that |¢,| <
6 + [0* + 80| S|]]'®/2. To handle the case when ¢y = 0, we merely
translate both T and S by c,l.

LEmMMA 4. W(TH)NW(T + a) = @, for any acC, a # 0.

Proof. Let pe Wy(T)nWy(T + ). By an argument similar to
one in Theorem 2, we see that || T||* + [AM* + 2ReXpt < || T + )| for
rveC, and || T+ |+ N2+ 2Rexpe < || T+ @ + M2 for v e C. Let-
ting M = « in the first inequality, we obtain || T||* + |a|* + 2Re ap <
|T + «|. Letting M= —a in the second inequality, we obtain
T+ «| + |« — 2Reap < || T|[*. Combining these yields |a]* < 0,
which completes the proof.

Unlike the usual numerical range, W(T) is extremely unstable
under translation, as can be seen from Lemma 4. Indeed, under an
¢ perturbation, it may jump from a disk to a point (consider the
bilateral shift). It is this property which makes it useful for our
purposes.

The maximal range W, (T) does not satisfy the power inequality
(as does the numerical range). More explicitly, | W(T")| £ | W«(T)|*
for n =1, 2, ---. It is quite easy to construct counter examples using
finite dimensional weighted shifts.

THEOREM 4. Let Q0 be a derivation on B(H). Then, [|Q;]| =
sup{||TA — AT||: AeB(H) and ||A|l =1} = inf,.¢2|| T — N]|.

Proof. Since ||[TA — AT|| = (T —NA—-AT—N|| Z£2||T—\||
[|A]l, it follows that ||Q.| <inf,.¢2||T — \|[. On the other hand,
|| T — Nl is large for \ large, so inf||T — \|| must be taken on at
some point, say z,, But |[|T — z|| < |[(T — z,) + A|| for all A e C im-
plies that 0 € W(T — z,). Hence, ||Q/]| = [|Qur—.pll = 2| T — 2|; which
completes the proof.

REMARK. Rosenblum [7] proved that o¢(Q;) = o(T) — o(T) =
{n— )i N, e o(T)}. There seems to be no simple relation between

the norm and the spectral radius of Q,. For example, if T = lg % ,

then ¢(Q;) = {0} but ||O;|| = 1. (In fact, Q, is nilpotent of order 3,
while T is obviously nilpotent of order 2.)

DEFINITION. Let K be a compact set in the complex plane. Then
the radius of K is the radius of the smallest disk containing K.
Caution: There is no obvious relation between the radius of a set and
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its diameter.

COROLLARY 1. Let T be a mormal (hyponormal) operater. Then
Q|| = sup{||TA — AT||: AeB(H) and ||A|l =1} = 2R,, where R,
1s the radius of the spectrum of T.

Proof. Since || T — \|| = spectral radius (7 — \); clearly inf,.|| T—
A = Ry

COROLLARY 2. Let 0<A<1,0<B<1. Then ||[AB— BA| =
2/[Im AB|| < 1/2.

Let A and B be self adjoint. The last corollary bounds the norm
of the imaginary part of AB. In general, AB will not be self adjoint.
However, the spectrum of AB is real and positive (see [10]). The
obvious estimate ||Re AB|| < ||A||||B]|| can not be improved without

additional restrictions. However, one can ask for a lower bound for
Re AB.

PROPOSITION 1. Let 0 A<TI and 0<B<1. Then ReAB =
—1/8. More generally, Re AB = kk, — (K, — k) K, — k,)/8 for 0 <
kEE<A<K and 0k <B<K,.

Proof. Let Ax = ax + My, where (x, ¥) = 0 and ||z|| = ||¥]| = 1.
Let (Ay, y) = 7. Then, (N S avsince 4 = 0; and (M= (1 — a)@d — )
since I — A = 0. Combining these yields |M* < a(l — «). Let Bx =
Bx + pv where (v, v) =0. By a similar argument, [7* < 81 — B8).
Since (ABz, x) = af + 7\(v, ¥), it follows that

Re (ABz, ) = af — [aB1 — a)(1 — B)]'*

and a standard argument shows that the last term has a minimum
of —1/8 for 0 < a <1,0 < B < 1; which proves the first part of the
proposition. The rest is obvious.

It is not hard to see that these estimates are sharp. For example,
if

A:l and B =
|0

1/4 Vm'
V34  3/4

then Re (ABz, ) = —1/8 for suitable chosen =z.
2. Theorem 4 also holds for derivations on certain C *-algebras.

A C*-algebra is a concretely given algebra of operators (on a Hilbert
space H) which is uniformly closed and contains adjoints, as well as
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an identity. A C*-algebra 2 is irreducidble if the commutant of A
contains only the scalars.

THEOREM 5. Let U be an trreducible C*-algebra om H. Let
TeA(H). Then

1912 = sup (| TA — AT||: Ae ¥ and ||A|| = 1} = inf2)| T = A |l .
eC

Proof. In the proof of Theorem 3, we used the fact that B(H)
contains an operator V such that Va =2, Vy = —y and || V|| =1 for
any %, y € H where (x, y¥) = 0. This was really the only special feature
of the algebra B(H) which we needed. However, if ¥ is an irreducible
C *-algebra, then by the Kadison density theorem [2], there exists a
unitary operator UecU such that Uxr =2 and Uy = —y whenever
(z, ¥y) = 0. The rest of the proof carries over with only trivial modi-
fications which we shall omit.

COROLLARY. Let A, be an trreducible C*-algebra on the Hilbert
space H, for a in the index set K. Let A = X, PA, on H=3,PH,
where ||Al| = sup, || A.|| for AeWN. Let TeB(H), and assume QO :
WA —A.  Then, |[|Q]|=sup{||TA — AT||:AecA and ||A]|=1}=
inf{2|| T — Z||: Ze BQ)}, where B(A) is the center of 2.

Proof. Since Q,:UA—A it follows that T =2 T, where
T.cB(H,). For each a choose N, such that |[|Q;, || = 2| T — \.|l.
Then,  |[Qq|| = suD,cq || TA — AT|| = SUD,eg SUP. || Tode — ATeol| =
sup, [|Qr, || = sup. 2|| T — No|| = 2[| T — Z,|| where Z, =3, D Nolo-
Since it is obvious that ||Q,|| £ 2||T — Z||, for Ze 3(2) the proof is
complete.

Note that the corollary is not true if we relax our conditions on
A. For example, let A congist of operator valued 2 x 2 matrices on

H@ H of the form ’64 21 where Ae®(H). Let T = “} ZI. Then,

Qp: A—-A. Indeed, Q, = Q,, so clearly, ||Q,|| =0. But, inf{||T— Z||:
Z e 3(A)} = 1. Of course, the conclusion of the corollary would remain
valid if we took the infimum over the commutant of 2 in this example.

REMARK. Kadison, Lance and Ringrose have proved a variant of
Theorem 4. Given a derivation Q, on a general C*-algebra, where
A is self adjoint, and A e A they show there exists a 4’ € A, the weak
closure of 2, such that O, = Q,, and ||Q, || = 2||4"||. (Actually, they
prove more; namely that ||Q, | Q|| = 2|QA’|| where @ is any central
projection of 2~.) It is not difficult to modify their result to make it
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look more like Theorem 4. Clearly, A — A’ ¢ A’ the commutant of 2.
Thus, ||Q.]| = inf{2]|4A — B||: Be2'}. This implies our result for irre-
ducible C *-algebras (but only for A self adjoint, of course).

3. In this section, we will study an operator from B(H) to B(H)
which is not a derivation, but is related to Q, of §1. Let A, Be B(H).
Set T 4(X)=AX — XB for XeB(H). Clearly, T, is a bounded
linear operator on B(H). Before estimating its norm we will need
some additional information about W,(-).

LEMMA 5. Let Re W(A) < a. Then, given € > 0, there exists a
9 > 0 such that Re W(4A + ) < a + ¢ for [N < 0.

Proof. Assume, without loss of generality, that ||A|| = 1. Let
T =sup{/|Az]||:||]#]| =1 and Re(dx,x) = a + ¢}. It is clear that
llA+X\]| =1—|\|. However, for y ¢ H when ||y|| = 1 and Re (Ay, y) =
a + ¢, we see that [|(A + Nyl <> + 2|0 + M2 Thus, for |M] <
(1 — 79/4, it follows that Re Wy (A + \) < a + .

DEFINITION. The set valued mapping » — M(\) from the complex
plane to subsets of the complex plane is upper semi continuous at
N, if lim;_, dist [M(\), M(\)] = 0, or equivalently, the set {M(\,) + ¢}D
M(\) for \ sufficiently small. When the mapping is locally bounded;
upper semi continuity is equivalent to the map having a closed graph.

THEOREM 6. The mapping N — WA + \) ts upper semi con-
LINUOUS.

Proof. Since WA + \,) is convex for fixed \,, we may box it
with a finite number of support lines. By the previous lemma,
WA + \) will be contained in the box for A close to A,

DEFINITION. We define the normalized maximal numerical range
Wy(A) of the operator A to be the set W (A4/||A||) for A == 0. Although
this definition may seem artificial, it is the relevant concept for studying
the norm of < ;.

COROLLARY. If ||A + N||#0 for any )\, then the map »—
Wy(A + \) is upper semi continuous.

THEOREM 7. Let A, B+ 0. Then ||| = sup{|AX — XB||:
XeBH) and || X|| =1} = [|A]| + ||Bl| if and only if Ww(4)N
Wy(—B) + O&.
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Proof. The proof is very similar to that of Theorem 1, and so we
will only sketch a portion. Let Me Wy(4)N Wy(—B). There exist
S, g€ H such that ||f]| = ||g|| = 1 and (Af, f) = \||A|| + ¢ and (Bg, 9) =
—\|| B|| + ¢. Since (Af, /)/I|A]| = —(Bg, 9)/||B]|| + € it is possible to
define an operator U of norm 1 + ¢ which sends g to f and — Byg/||B||
to Af/||Al||. The rest of the proof is virtually unchanged.

Given two operators A and B, there exists a )\, such that

inf {[A = NI+ (1B = M} = [[4 = Noll + [[S = Aof -

Unfortunately, X\, is no longer unique as simple examples demonstrate.
However, the following lemma gives a criteria for deciding which \,’s
are minimal.

LEMMA 6. Assume that neither A mor B 1is a scalar multiple
of the identity. Then inf,.c{||A — N|| + [|B — M|} = |4 — ]| +
[|B — No|| if and only of Wxy(A —X) N Wy(—(B — \)) # @.

Proof. Assume Wy(A — X)N Wy(—(B — \y)) # @. Then || ;]| =
it m—ipll = |14 = No|| + ||B — Nol|.  But, since [[AX — XB|| =
N(A—MNX—-XB-N|| =||A=N||+]||B—\]|, it is clear that ||T ;|| <
inf,.c {||A — M| + || B — ||} which proves the necessity.

For the sufficiency, we may assume without loss of generality
that \, = 0. Thus, for any pre-assigned A, ¢ > 0, there exist », ye H
of unit norm, such that |[(A + Nz + [|(B + Myl = ||Al + ||B]| — e.
After some algebra, we find that Re X [(4x, x)/||Al| + (By, v)/||B|]] £
K(IN]* + ¢) where K is a constant, independent of \ and e.

Assume that Wy(A)N Wy(—B)#* @. Then, dist [ W (4), Wx(—B)]=
0 >0 and by continuity, dist [Wy(4 + \), Wx(—(B + \))] > /2, for
small ». Thus, by convexity and continuity, any choice of x, ¥ which
satisfies the above conditions, must satisfy the inequality |(Ax, x)/||A||+
(By, ¥)/||B|| = 6/4 for » small. But then we are lead to the inequality
IM6/4 < K(IM[* + ¢) for a suitable choice of arg X\ and small |\ |, which
is impossible. Thus, A, was not minimal, which completes the proof.

THEOREM 8. Let A, Be B(H). Then, ||T.,|| = sup {||AB — XB||:
XeB(H) and [|X|| = 1} = inf,c{||A — N[ + [[B — N]]}.

Proof. Clearly, ||Z,.i S inf{||]A —\|]| + ||B—A|}. If Aor B is
equal to al, the rest of the proof is trivial. (Just take AN = a and
check.) Let inf, o {||4 — N + ||B — M|} = ||A =Nl + [| B = Nq||. Then
it follows from Lemma 6 and Theorem 7 that [T ;|| = [[T4s -2l =
|A — Nl + [| B — N\||, which completes the proof.
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COROLLARY 1. Let A e B(H), where ||A]| = 1 and Wy(A) = {|z|<1}.
Then, for any BeB(H), ||Tull =1 + || B].

COROLLARY 2. Let U be an irreducible C*-algebra. Set T, x(X) =
AX — XB for A, B, XeU. Then, ||T ;|| =sup{||AX — XB||: Xe¥
and || X[ =1} = infiec {[|A — M| + [|B — M}

Proof. Simply use the Kadison density theorem, as in the proof
of Theorem 5.

We will now present another proof of Theorem 8 which bypasses
Lemma 6 and is interesting in its own right. The author would like
to thank W. Gustin, who contributed a substantial portion of the
proof including the following version of the next theorem:

THEOREM (Kakutani [6]). Let N— M(\) be a upper semti con-
tinuous set valued mapping of the n-cube into the n-cube, where M(\)
18 a closed convex set for each N. If the map leaves each point in
the boundary fixed, then its image covers the mn-cube.

Although this theorem is not stated explicitly in [6], it is easily
obtainable from the results found there.

Another proof of Theorem 8. One half the proof of Theorem 8
is trivial. For the other half, it is sufficient to show that W(4A + M)N
W(—(B + \) = @, for some reC. We again assume that neither
A nor B is equal to al. We begin by defining a map ¢ of the open
unit dise {|z] < 1} onto the complex plane. Any reasonable, argument
preserving, continuous map, such as g(re’’) = »(1 — r)~'¢”’, will do.
Let M(\) = [Wy(A + N) — Wy(—(B + \))]/2. We now define @A) = X
for [N =1 and @(\) = M(3(\)) for |A| < 1. The Wy(-)’s are closed
and convex, and thus, ®(\) is a closed, convex set for each . The
map @ is upper semi continuous for points inside the disc by the
corollary to Theorem 6.

It is easy to see that for 6 fixed, W (A + re’) — ¢ as r — .
Observe that W,(A + re”)cclosure W(A + re’). This fact makes our
map @ upper semi continuous on the boundary. By the Kakutani
fixed point theorem 0e M(\,) = [Wy(4 + N\) — W(—(B + \))]/2 for
some A,. But then Wy(4 + N) N Wi(—(B + \)) # @, which is all we
needed to prove, in light of Theorem 7.

QUESTIONS. Is Theorem 4 true for an operator T on a Banach
space? Is Theorem 5 true for an arbitrary C *-algebra (with the in-
fimum taken over the commutant)? We may generalize the definition
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of W,(T) in the following way. For T an operator on a Hilbert space,
set W,(T) = closure {(Tx, z) : ||z|| = 1 and || Tx|| = 6}. Clearly, W,(T)
is a closed subset of the closure of the usual numerical range, and
WoT) = Ne<iizn Wo(T). By a slight modification of a theorem of
Dekker [1], it is not hard to see that W,(T) is connected. It would
be interesting to know if W,(T) is convex. It is, if T is normal, or
if the underlying Hilbert space is two-dimensional.

Added in proof: It is easy to see from the Kaplansky Density
Theorem that, given an inner derivation Q, on the C*-algebra U, one
might as well consider Q, acting on ~, the weak closure of 2, if
one wishes to evaluate || Q,|l. Thus our second question has recently
been answered by P. Gajendragadkar in her thesis (Indiana University,
1970). More precisely, she shows that if 2 is a W* algebra on a
separable Hilbert space, and Q, is an inner derivation on 2 where
T c A, then

Q|| =2inf{|| T — Z||: Z in the center of 2} .

If T¢ A then there is an example due to C. A. McCarthy, which shows
that || Q|| maybe be smaller than

2inf{|| T — B]||; Be ', the commutant of 2},

where 2 is a C* or W* algebra according to choice, and 7T can even
be taken to be self adjoint. Finally, Proposition 1 appears in a paper
by G. Strang in the Monthly, Jan. 1962.

The author would like to express his appreciation to W. B. Arveson,
C. Davis, W. Gustin, G. Minty and J.P. Williams for many stimulat-
ing discussions. In particular, the latter conjectured Theorem 4 dur-
ing one of these conversations.
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