Pacific Journal of

Mathematics

SOME MATRIX FACTORIZATION THEOREMS. 1




PACIFIC JOURNAL OF MATHEMATICS
Vol. 33, No. 3, 1970

SOME MATRIX FACTORIZATION THEOREMS

RoBERT C. THOMPSON

The object of this paper is to make an exhaustive study
of the matrix equation
(1) C = ABA'B!
when A, B, and C are normal matrices, We shall specialize
these matrices in various ways by requiring that C, A, or B
lie in one or more of the well-known subclasses of the class
of normal matrices (Hermitian, unitary, real skew symmetric,
etc.). We shall also demand from time to time that C com-
mute with A, or B, or both,

In §2 we present some notation. In §3, we prove a number
of gimple lemmas that will be frequently used. In §4 we discuss (1)
when C is normal and A and B are Hermitian. In §5, we discuss
(1) when C is real and normal and A and B are real and symmetric.
In §6 we present one theorem that is used several times in §7,
where we discuss (1) when C is normal, A is Hermitian, and B is
unitary. In §8 we complete a discussion of (1) when A is Hermitian
and B unitary Hermitian that is partly presented in 8§84, 5, and 7.
In §§4-7 cases are discussed in which C commutes with A or with
B, but not with both. In §9 we analyse the situation when C com-
mutes with both A and B.

Commutators of normal matrices have been investigated by a
number of authors: Fan [1], Frobenius [2], Goto [3], Marcus and
Thompson [5], Taussky [7], Toyama [9], Zassenhaus [10]. The
results obtained in this paper will partly overlap results obtained in
[5] but will, in the main, complement the results of [5]. Our prin-
cipal tools are two elegant tricks due to Ky Fan, both of which
appear in his paper [1].

As a consequence of our study of commutators of normal matrices,
we are able, through use of the polar factorization theorem, to
obtain factorization theorems for nonnormal matrices. It is interesting
that we can achieve sharper results for real matrices than for
nonreal matrices.

All matrices appearing in this paper, except for the zero matrix,
are assumed to be nonsingular.

2. Notation and terminology. The words symmetric, positive
definite symmetric, negative definite symmetric, skew symmetric,
orthogonal, will imply that the matrix in question possessing the
indicated property is a matrix of real numbers. We shall make use
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764 ROBERT C. THOMPSON

of skew symmetric matrices over the complex number field as well.
These will be called complex skew symmetric matrices. The letters
N, H, S, K, U, 7 (perhaps with subscripts attached) will denote a
matrix which is, respectively, normal, Hermitian, symmetric, skew
symmetric, unitary, orthogonal. We let I, I, I,, etc., denote identity
matrices with an unspecified number of rows that will follow from
context. If the subscript attached to I is to indicate the number of
rows in I, this will be expressly stated.
The matrices F(p) and G(p) are, by definition,

cosp sin g)} [sin @ cos gp}
, .

Flg) = [ G(p) = [cow Cing

~8ing coso
The transpose of A is denoted by A7, the complex conjugate by
A, and A* = A7. We let

A+ --- —;—An:diag(Au ""A”):i‘.Ai

denote the direct sum of matrices A4,, ---, 4A,. We set

0 A4 0 0---0
0 0 A4, 0---0

if £ >1, and [A], = A,. Here A, .---, A, are square matrices and 0
denotes a matrix of zeros of an appropriate number of dimensions.
The determinant of A is det A. If square A has n rows, we say A

is m-square or degree A = n.
If complex number N has polar form N\ = re*, we call ¢* the

angular part of \.

3. Some lemmas. The results contained in some of the lemmas
below are special cases of known results.

LEMmA 3.1. (i) Let A= H.H, be a product of two Hermitian
matrices. Then, whenever N\ is a mnonreal eigenvalue of A, with
multiplicity m, it follows that : is also am eigenvalue of A, with
multiplicity m.

(ii) If in (i) H, is positive definite then all eigenvalues of A
are real.

(iiiy If in (1) both H, and H, are positive definite then all
etgenvalues of A are positive.
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Proof. (i) From A = HH, follows A* = H,H,. Since H,H,
has the same eigenvalues (including multiplicities) as H,H,, the result
follows.

(ii) Let H, = XX*. Then X'AX = X*H,X is Hermitian, hence
all eigenvalues are real.

(iii) If H, is positive definite so also is X*H,X. The proof now
follows as in (ii).

LEMMA 3.2. Let A be real and nonsingular. Then, if A = SK
with S real symmetric and K real skew symmetrie, it follows that
the eigenvalues of A partition into sets of the following types:

2) a, —a with a real
(2) o, —a with a pure tmaginary ,
(3) o, —o, &, —&, with a neither real nor pure tmaginary .

Proof. If A = SK then A” = —KS. Thus A and —A have the
same eigenvalues. Hence, if a is a real eigenvalue of A with
multiplicity m then —a is also an eigenvalue with multiplicity m.
This also holds if « is a pure imaginary eigenvalue. If a is neither
real nor pure imaginary then —a« # &, a # @, hence «, —a, @ all
appear with multiplicity m, and thus —a& also appears with multi-
plicity m.

LEMMA 3.3. (i) F(O)F(p) = F(0 + o);
(ii) F(p)GO) = G(p + 0);
(iii) G(p)G(0) = F(p — 0);
(iv) GO)F(p) = GO — ).

Proof. Direct computation.

LEMMA 3.4. Let X and Y be real nonsingular matrices, both
square and of the same size. Let

o X
-0,
LY 0
Let the eigenvalues of XY be classified as follows: % 73 -+, 1%
(posttive reals); —si, —si -+, —s% (negative reals);
t129 {?y t;, E;a *t t?: E?‘

(all nonreal). Then the eigenvalues of M are:
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Ty — Ty 22y Yoy — Vo 7:31’ —7:81, ct Y 'Z:Sﬁy —/Lsﬁ ’

4) - _ _ _
tv tly _tn "tu ccy t;‘y try _tn '—tr .

Proof. Note that

SOilIOOXIO—1S0“‘_ 0 I
0 S/lo x|y o]0 X| [0 S| [SXYS* o]
For a suitable S we may assume SXYS—' is triangular with diagonal

elements 73, ---, 9%, —8%, «--, —8% &%, %, -+, 3, 2. Suppose X and Y
are n-square. We make the same permutation of the rows and of

the columns of
0 I
M, = .
sxvs o)

This is a similarity transformation. We take the rows (and columns)
in the order 1,%+1,2,%+2,3,n+3, -+, m,2n. The effect of
this is to convert M, into a block triangular form in which the main

block diagonal is
o 17 . ro 17 . . [ 0 1}
* e 0 * -5 0 + + —s% 0

0 17 .
Lﬂ% o}r'”
S0 17 .10 17 . S0 17 .70 1
+L% o}{t“% 0}““”*[& 0}{&% 0]

The eigenvalues of these 2-square matrices are easy to compute,
completing the proof.

LEMMA 3.5. Let A be a nonsingular real or complex mn-square
matrix. Let the eigenvalues of AA* be N2, -+, N2 with

M>0, 0000, >0.
Let v be a nonzero number. Then the matrix
0 ~4
o)
is similar to a diagonal matric and its eigenvalues are

(5) YNy =Ny e YN, =N,
Proof. This proof is similar to the proof of Lemma 3.4.

LEMMA 3.6. Let R =diag (R, R,, --+, R,), T = diag (T, -+, T})-.
Suppose R; and T; do mot have any common eigenvalue, whenever
1% 7. Then if RX = XT, it follows that X = diag (X, ---, Xp).
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Proof. Partition X = (X;;). Then R X, = X;;T;. Since R; and
T; do not have any common eigenvalue, it is known that this relation

The following result is due to Hua [4]. We given a short proof.

LEMMA 3.7. Let Z be a complex skew symmetric matric. Then
a unitary maitriz U exists such that

0;

UTZU = 3 [
7=1 —‘O'L O

]—i—O, 0:>0 for 1<t1=r.

Proof. Since ZZ = — Z*Z, the matrix ZZ is negative semi-definite.
Let —po! (with o, > 0) be an eigenvalue of ZZ and let v, be an
associated unit eigenvector:

ZZv, = — o, , viv, =1.
Set v, = —ple_ﬁl. Then

— o, = 1 Zv, = (W Zv) = 0

because Z is skew; also
v, = vVIZZ0, = —v'ZZv, = — (0T ZZv,)

= —(v{(—p)v,) = 0} .
Hence v, and v, are orthonormal unit vectors. We may therefore use
v, and v, as the first two columns of a unitary U,. Let v, v, ---
be the remaining columns of U,. Then for 7 > 2 we have v/ Zv, =
—pow!v, =0 and 0 Zv, = —vIZZv, = —vI(ZZv) = —vI(—p})v, = 0.
Hence U?ZU, is block triangular, and because U7 ZU, is skew, we get

UlTZU1 = Z1 + Zz

where Z,, Z, are skew and Z, is 2 x 2. Also v"Zv, = —p "W ZZv, =
— o7 (Z2v) = — o7l (— )P, = p,. Hence

0
ZI:[ pl]
_(0I 0

We may now carry on by inducting on the degree of Z.

4. The Commutator of two Hermitian matrices.

THEOREM 4.1. Let N be normal. Then

(6) N = HHH H;*
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with H, and H, Hermitian if and only if N is unitarily similar
to a direct sum of the following five types (7), (8), (9), (10), (11) of
matrices:

(7) diag (r, ), r>0;
(8) diag (—r, —r™), r>0;
(9) diag (r.e*, r'e, r,e=*, r;yte=), r, >0, r,>0, ¢ real;
10) diag (e, e7*%) , @ real ;
11) the identity matriz .

THEOREM 4.2. Let N be normal.

(i) If N is a commutator (6) of two Hermitian matrices such
that

(12) NH, = HN

then N s unitarily similar to a direct sum of types (7), (8), and (11).

(ii) If N 1is wunitarily similar to a direct sum of types (7),
8), (11) then N can be expressed as a commutator (6) of two
Hermitian matrices, such that (12) holds, and such that H, is also
unttary.

Proofs of Theorems 4.1 and 4.2. From (6) one obtains (compare
Fan [1])

13) N*=' = (H,H,)"N(H.H) .

Thus, if v is an eigenvalue of N with a certain multiplicity, so also
is 4!, with the same multiplicity. Note that v = ¥ if and only if
|v] =1. After a simultaneous unitary similarity of N, H,, H,, we
may take N diagonal, so let

.1, 0 . v, 0
14 N = v
@) [ 0 Vrllj i +[ 0 7—%2]

+ oy F - F ool

Here we choose our notation so that v, 7% <+ Vi V5l Oty ***y @,
are the distinet eigenvalues of N, with

|7l =L eeey 7|l =1, | @iy | =1, ooo, oo, | = 1.
Then, writing (13) as

(15) (HH)N* = N(H,H,) ,
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we obtain

0 A7 [0 A . .
(16) H.H, = B 0 + e+ B 0 + A F - HA .
1 k

Taking the * of each side of (16), we get

0 B . o Byl . ) )
17 Hle:liA* 0 }_{....._*_[A* Ok:!+A;<+1+..-+A:‘.
1 k

The equation N(H,H,) = H.H, now yields B = v,A,, +-+, Bf = 7,4,

@y Apsy = Ay v, A, = A*. Thus 4,,, -+, A, are each normal.
If we make a simultaneous unitary similarity of N, H,, H, using a
U of the form U =diag ([, L, -++, I}, I, Upsy, -++, U,), we can leave

A, B, -+, A, B, unchanged and diagonalize A4,,, ---, A,. Having
accomplished this, we now change notation, and let

(v 0 ] 7Y P
e e
(18) L 0 i1, 0 ¥,
+ diag (@4, -+, @,) ,
HH - V‘Al] Foee [O , 7’°A"J
(19) | A; 0 A} 0

'i‘ dlag (5k+1s R Es) .

Here w,.,, -++, ®, now denote the not necessarily distinct eigenvalues
of N on the unit circle. We find

(20) ;= &/%; k<j=s.

Because of Lemma 3.5, the eigenvalues of (19) are Dpositive
multiples of the numbers

2 1/2 1/2 2 2 2
1/9 "’971/y — 1/y tt —"rYi/, ".)’\/}c/) "'y'Y}cI:

1/2 2
_7k/y ] —,7}9/! §k+u *t 53 .

(21)

Lemma 3.1 (i) now asserts that the angular parts of numbers (21)
must be real or must appear in complex conjugate pairs.

We now change notation once more, and rewrite the eigenvalues
of N as v, Vi <+ oy Vay Vi's Wyayy = +y O,, Where v, V7% ««v, ¥ Vi+ are
the eigenvalues of N, not necessarily distinct, not on the unit circle,
and w,,, --+, ®, are the eigenvalues of N, not necessarily distinct,
on the unit circle. Thus we now know that the angular parts of
numbers 7% —7i? <o, Vi =V &4y -+, & are real or appear in
complex conjugate pairs. Moreover, (20) holds.

Let
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vy = e, 157

A
vl

be the polar factorizations of the v; and the w;. Then (20) yields
& = peetit, Ek<j=s,

where p > 0 and ¢ = +1. Thus we get that the numbers

(22) e, — gt v girlt gtk g ikl L. gifsl?

are real or appear in complex conjugate pairs. The argument now
splits into several cases.

Case 1. g1 = gie1l? |

Then e is real, hence v, = 7, and diag (v, 77" = diag (v, 7).
This yields type (7). Moreover, —e't* is its own conjugate; hence
the numbers remaining in (22) after deleting Z¢*“1® are real or come
in conjugate pairs.

Case 2. et = —gir1l? |

Then ¢t = —1, hence v, = —r,, and diag (v, 77') = diag (—7, —7rY).
This yields type (8). Moreover, the conjugate of —ei1? ig eis1/%;
hence the remaining numbers (22) are real or appear in conjugate
pairs.

Case 3. g1t = givelt |
Hence, ez = ¢~*“1.  Thus
diag (v, 77 Yo Y2 Y) = diag (re'c1, rte, e, pylem )

This yields type (9). And here the conjugate of —ei1? ig —e's2f?
hence the numbers remaining in (22) after deleting +e'1/% 2" are
real or come in conjugate pairs.

Case 4. g1t = —gical? |

Hence again ¢ = ¢~*1, This case again yields type (9). The con-
jugate of —e™1? is ¢*2*, so that the remaining numbers (22) are real
or come in conjugate pairs.

Case 5. The conjugate of e'*1* is not any of the numbers
ieiﬁlz, v, +eicr?,

Then, with suitable notation,
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e = g ekt gminl — g | glopial? |
It then easily follows that
diag (vy, ¥y Wy4yy ©41,) = diag (re'1, r7'e’, e7i01, e7i1) |

which falls into the form (9) with », = 1. Once again, after deleting
+eil? g, etrril? g etk from (22), the remaining numbers in (22)
must be real or come in conjugate pairs.

Case 6. i @O = g, giftknil? |

Then ¢if++t = 1, hence w,;, = 1. This yields (11).

Case 7. Ep @ R = g, | @ifhtal? |

Then e~¥*i+1 = g*x+2, Then w,,, = w,,,. Thus we obtain type (10).

This completes the proof of half of Theorem 4.1. Before com-
pleting the proof of Theorem 4.1, we start the proof of Theorem
4.2. We prove that if (12) holds then N is Hermitian. Following
the part of the proof of Theorem 4.1 just given, we obtain (14) and
{17), where in (17) we have B} =1v,A, -+, Bf = v, 4,, and we can
take A4;., --+, 4, diagonal. Condition (12) now implies that H, parti-
tions in the form

(23) H1 = diag(Tu Wu Tzv Wzy A} Tka ka Tk+1’ Tk+2y M) Ts) .

Since H, is nonsingular and Hermitian, each diagonal block in (23) is
nonsingular and Hermitian. Then for H,H, to have the form (17),
we must have

0 P [0 P : .
(24) H, = 0 R P 0 + Py eee + P,
%

Pf
with
(25) TP, = v,A;,, W,Pf = A}, 1215k,
and
(26) T:P, = A, k<i<s.

Thus A, = P,T;, for k < 1 < s, is a product of two Hermitian matrices
P, and T;. To relieve the notation let us fix our attention on A, =
P,..T.... Wetook A,,, diagonal, so let A,,, = diag (§,, &, ---). Then

(27) Wy = 51/5_1 - 52/52 =

Since A4,., is a product of two Hermitian matrices, its eigenvalues
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are real or occur in conjugate pairs. If & is real then (27) gives
w, = 1. If £ is not real, let & be the conjugate of &; & = &. Then
(27) yields w,,, = @®,,,, hence w,., is real.

Thus ®y.y, @y -+ are all real (and in fact +-1). Next, from
(25) we obtain (using the fact that the W, are Hermitian),

(28) PT.P, = v, W,, 115k,
Equation (28) yields
(29) v; (an eigenvalue of W,) = an eigenvalue of T .

Since W, and T; are nonsingular and Hermitian, we get from (29)
that v, is a quotient of two reals, hence real.

Thus, we now know that all eigenvalues of N are real. There-
fore N is Hermitian. We already know from the established part
of Theorem 4.1 that N is unitarily similar to a direct sum of
the five types (7), (8), (9), (10), (11). In type (9), ¢* = +1, thus
type (9) can be reclassified into type (7) or type (8). Similarly type
(10) can be reclassified into types (7) or (8). This completes the
proof of half of Theorem 4.2.

To establish the converse parts of Theorems 4.1 and 4.2, we let
N be, in turn, each of the types (7), (8), (9), (10), (11).

In type (7) we have N = diag (v, ). Set H, = diag (r, 1) and

fo 11

(30) H =, ol

[

Then (6) and (12) hold, and moreover H, is also unitary.

In type (8) we have N = diag (—#, —r~"). Set H, = diag (—», 1)
and define H by (30). Then again (6) and (12) hold, and again H,
is algo unitary.

In type (11) N =1. Set H,= H,=1. Then (6) and (12) hold,
and, once more, H, is also unitary.

The proof of Theorem 4.2 is now complete.

In type (9) we have N = diag (., v, e, r7'e™). Set

r 0 0 %l 0
0 0 0 e
Hl - . " y
pilfe=i 0 0 0
0 0 0
(31) - "
0 0 0 22
0 0 1 0
H, =
0 1 0 0
| i 0 0 0
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0 i | 0 et
HH, = [ e :' + [ e : J .
Ty 0 7y 0

Taking the * of each side of this expression for H H,! we ‘compute
H,H,. Then it is easy to verify that N(H.H,) = H H,.

In type (10) with N = diag (¢%¢, ¢*¢), note that N is unitarily
similar to F(p). Set S, = G(4,), S, = G(6,). Then S, and S, are both
orthogonal symmetric. Moreover, using Lemma 3.3, we find that
F(9)S.S, = S,S, if 0, — 0, = ¢/2.

The proof of Theorem 4.1 is now complete.

Then

THEOREM 4.3. Let N be normal.

(i) If N is a commutator (6) of two Hermitian matrices with
H, positive definite then N 1is positive definite Hermitian with the
eigenvalues v of N for which v # 1 occurring in reciprocal pairs
v, v (That is, N is unttarily similar to a direct sum of types
(7) and (11).)

(ii) If positive definite Hermitian N has its eigenvalues v for
which v # 1 occurring in reciprocal pairs v, v~* then N 1is a com-
mutator (6) of two Hermitian matrices with H, positive definite
and commutative with N and H, unitary Hermitian.

Proof. Suppose that (6) holds with H, positive definite. We
follow the proof of Theorem 4.1 until we reach the point where

0 A, 0 A
Hlez[* K ].{.....ﬁ.[s‘ T ’“J
(32) A} 0 A} 0

‘i‘AZ:—H‘i‘ °cc ‘;‘A;k,

with A4,.,, +-+, A, diagonal. By Lemma 3.1, the eigenvalues of H, H,
are real. Thus A,., ---, A, are each real and diagonal. Then using
(20), we get that each w;, = 1. By Lemma 3.5, the eigenvalues of

0 74,
A 0

are positive multiples of +~i®. Since the eigenvalues of H H, are
to be real, we must have v, >0, .-+, v, > 0. Hence each eigenvalue
of N is positive, therefore N is positive definite. In this case type
(8) must be absent in N, type (9) can be reclassified under type (7),
and type (10) under type (11). Thus the condition of Theorem 4.3 is
necessary. For the converse one need only note that if N = diag (», %)
with # > 0, then with H, = diag (r, 1) and H, given by (30), we have
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(6) and (12) and here H, is positive definite and H, is unitary Hermitian,
as required.

The following Theorem 4.4 is a special case of Theorem 1 of [5].

THEOREM 4.4. Let N be mnormal, let H, be positive definite
Hermitian, let H, be Hermitian such thot

(33) NH, = H,N ,
and suppose that (6) holds. Then N = I.

Proof. We follow the proof of Theorem 4.1 until (14) and (32)
are obtained, with A,.,, ---, A, diagonal. Then (33) yields

34) H_{Clo , G 0 Lo L C
=1 D, + -+ 0 D, + Cper + + G

Then for H H, to be given by (32), we must have

e o | T o [T Mt M

But

35 0 MJ
©5) [M:‘ 0

is a direct summand of the positive definite matrix H,, hence is
positive definite, a contradiction since (35) has zero trace. Thus in
N no v, can appear and so the eigenvalues of N must lie on the
unit ecircle. Since A}, = M, .C..,, A, is a product of two Hermitian
matrices with one factor definite. Thus the eigenvalues of A,., are
real. Owing to (20), this implies that each w;, = 1. Hence N = I.

THEOREM 4.5. Let H, and H, be positive definite. If N, given
by (6) is normal, then N = I.

Proof. We obtain as in the proof of Theorem 4.1 that (32)
holds. By Lemma 3.1, H,H, has positive eigenvalues. Since

0 74,
Ar 0
is a direct summand of H,H, (hence has positive eigenvalues) and

has trace zero, it follows that all eigenvalues of N are on the unit
circle. Then each ¢&; is positive and so by (20) each w; is 1.
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In the next few theorems, we give some more special results
that follow from Theorems 4.1 to 4.5 or from the proofs of these
theorems.

THEOREM 4.6. Let U be unitary.
(1) If U is a commutator of two Hermitian matrices,

(36) U= HHH'H;",

then U has real characteristic polynomial and det U = 1.

(ii) If U has real characteristic polynomial and det U =1,
then U is a commutator (36) with both H, and H, unitary Hermitian.

(iii) If U is a commutator (36) of two Hermitian matrices
such that UH, = H,U then U s Hermitian and det U =1. Con-
versely, if U is Hermitian and det U = 1, then U is a commutator
(36) of two umnitary Hermitian matrices H,) H, with HU = UH, and
H,U = UH,.

(iv) If (36) holds with H, definite then U = I.

Proof. (i) Suppose (36) holds. Then by Theorem 4.1 U is
unitarily similar to a direct sum of types (7)-(11). Because U is
unitary, in types (7), (8), (9) we have r = r, = r, = 1. Thus the
nonreal eigenvalues of N occur in conjugate pairs and —1 occurs an
even number of times. This proves (i).

(ii) The conditions imply that the nonreal eigenvalues occur
in conjugate pairs and —1 occurs an even number of times. Thus N
is unitarily similar to a direct sum of types (10) and (11). The
proof of Theorem 4.1 showed how to express each type (10), (11) as
a commutator of two unitary Hermitian matrices.

(iii) If (36) holds with UH, = H,U, then Theorem 4.2 shows U
is Hermitian and det U = 1. Conversely, it suffices to consider U =
diag (—1, —1). This U = F(x) is known from the proof of Theorem
4.1 to be a commutator of two unitary Hermitian matrices, both of
which must commute with diag (—1, —1).

(iv) By Theorem 4.3, U is positive definite. Hence U = I.

THEOREM 4.7. Let H be Hermitian. Then H is a commutator,
(37 H = H H,HH;*

of two Hermitian mairices if and only if the eigenvalues v of H
other than onme come im reciprocal pairs v,v'. (That ts, H 1s
unitarily similar to a direct sum of types (7) and (11).) If this
condition 1s satisfied then H, may always be chosen to commute with
H and H, to be both Hermitian and wnitary.
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REMARK. Theorem 4.7 is contained in [1].

Proof. If (87) holds, then H is unitarily similar to a direct
sum of types (7), (8), (9), (10), (11). As H is Hermitian, in types
(9) and (10) we must have e’ = +1. Thus, in fact, H is unitarily
similar to a direct sum of types (7), (8), (11). For the converse
observe that in the proof of Theorems 4.1 and 4.2, types (7), (8) and
(11) were each expressed as a commutator H H,H;'H;' commuting
with H, and with H, unitary and Hermitian.

THEOREM 4.8. Let 6 be a mnonreal number on the unit circle:
|6| =1. Let H be Hermitian. If

(38) 0H = HH,HH;!

is ¢ commutator of two Hermitian matrices then 6 = =1 and H is
unitorily similar to a direct sum of copies of the following two
types:

(39) diag (1, —1) ,
(40) diag (r,, 17, — 1y —7377) 7, >0,7,>0.

Conversely, if H is unitarily similar to a direct sum of copies of
(39) or (40), then

(41) +H = HH,H'H;*

is a commutator of two Hermitian wmatrices. In (41) H and H,
never commute and H, is mever definite. Similar results hold
for —iH.

Proof. If 6H is a commutator of two Hermitian matrices then,
as AH has no real eigenvalues, #H must be unitarily similar to a
direct sum of types (9) and (10). If either type appears then for
two eigenvalues v, and v, of H we have v, = pe’, 6v, = ve~*, with
¢, v real. Thus 0/0 is real, hence # = +4. Thus in either event
6§ = +1. Thus type (10) takes the form diag (¢, —%), and type (9)
the form < diag (v, 174 — 7y —73%) with », >0 and 7, > 0. The
converse follows from Theorem 4.1. The additional assertions follow
from Theorems 4.2 and 4.3.

THEOREM 4.9. Let H be positive definite.

(i) Let 0 be real or monreal, with |6|=1. If 6H 1is a com-
mutator (38) of two Hermitian matrices then 60 = +1.

(ii) —H 15 a commutator of two Hermitian matrices,
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(42) —H = H1H2H1—1H2_1 )

if and only if all eigenvalues v of H (including 1) appear in
reciprocal pairs v, v (that is, H is umnitarily similar to a direct
sum of type (7). If this condition s satisfied them in (42) H, may
always be chosen to commute with H and H, may always be chosen
to be unitary and Hermitian. It is mever possible to choose H,
definite.

Proof. (i) Suppose (38) holds. By Theorem 4.8, § = +4 or
6 = +1. If 6 = 47 then Theorem 4.8 shows that H is not definite.
Hence 0 = +1.

(ii) If (42) holds, Theorem 4.7 shows that all eigenvalues v of
H appear in reciprocal pairs. Conversely, in the proof of Theorem
4.1 it was shown how to express diag (—», —r') = H.H,H'H;* such
that the commutator commutes with H, and H, is unitary Hermitian.

For 2-square matrices, the conclusion of Theorem 4.3 is wvalid
under a weaker hypothesis.

THEOREM 4.10. Let N be a normal 2-square matrixz such that
(43) N = HLHL™

where H s positive definite. (No assumptions are made about L
other than that it is nonsingular.) Then N s positive definite.

Proof. We may assume N = diag (A, v7!). Let

[hu hl;l
_H_1 = 1 .
hlZ h‘ZZ,,

From H-'N = LH'L™ we get by taking traces,
(44) Ny + Ny, = by + Dy, .

Let @ = hy(hy + hy)™y 1 — & = hy(hy, + hyy)™, and let X = re™ be the
polar factorization of . Then 0 < a <1, and (44) yields

(45) racosp +r (1l —a)cosp =1,
(46) rasing —r'(1 —a)sinp =0.

From (45) follows cos ¢ > 0. If sinp + 0, (46) gives a = »~'(r + »~")~".
Then from (45) we get

cosp = (r+ r)/2.

Since » +r' =2, and cosp <1, we get cosp =1. Thus ¢ =0,
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contradicting sin ¢ = 0. Hence sin ¢ = 0, and therefore » > 0.
We now introduce a trick of Professor Fan. Let

N = dlag (7\'11 )"zr tt ey >\’n)
with det N = 1. Set N, = diag (g, ftoy *++, tt.) and

N, = diag (v, 5y «++, ¥,)

where
Ui = Il[M if 7 is odd ,
i=1
]_l -1 . . .
Wi = ( xi> if 7 is even ;
(47) ;:l
v, = 1IN if 7 is even,

v.:(fﬂ&)_l ifjisodd; 1<j<n.

Then N = N,N,. We have p,; = p;-, for all j <n/2 and p, =1 for
odd n. We have v,;,, = v;; for all j<(n —1)/2, v,=1, and v, =1
if » is even. Thus N has its eigenvalues p in reciprocal pairs p, g
together with possibly ¢ =1 as an eigenvalue. Furthermore N, also
has its eigenvalues v in reciprocal pairs v, v—' together with v =1
as an eigenvalue. We shall refer to this factorization of N as Fan’s
factorization.

THEOREM 4.11. Let U be unitary with det U =1. Then
(48) U= (HHH H;)(HHH;"H")

s a product of two commutators of Hermitian matrices. In fact
we may have H,, H,  H,, H, all wnitary Hermitian.

Proof. By Fan’s factorization, U = U,U, where U; is unitary
with its eigenvalues in reciprocal pairs; 7 = 1, 2. By Theorem 4.6,
U, and U, each may be written as a commutator of Hermitian
unitary matrices.

THEOREM 4.12 (Fan). Let H be Hermitian with det H =1. Then
(49) H = (HH,HH;")(H,HH;"H)

is a product of two commutators of Hermitian matrices, with H,
and H; commutative with H and H, and H, unitary Hermitian. If
H is positive definite we may, in addition, choose H, and H, to be
definite.
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Proof. The proof is the same as the proof of Theorem 4.11,
except that one appeals to Theorem 4.7.

THEOREM 4.12. Let A be any matric with det A = 1. Then
(50) A= (HHH'H; ') HHH;"H;")HHH;"'H;")(H,H,H;"H;")

s a product of four commutators of Hermitian matrices. In (50),
H, and H, may be taken positive definite, and H,, H, H, H, H; H,
may all be taken to be unitary Hermitian.

Proof. Let A= UH be the polar factorization of A. Since
H?*= A*A, we get det H=1. Then det U =1 also. Now use
Theorems 4.11 and 4.12.

For 2-square matrices, the number of commutators required in
(50) may be reduced from four to two; in (48) and (49) from two to
one.

THEOREM 4.14. (i) Any wunitary 2-square U with det U =1
18 a commutator (36) of Hermitian unitary matrices.

(ii) Any Herwitian 2-square H with det H = 1 is a commutator
(87) of Hermitian matrices. In (37), H, may be chosen Hermitian
unitary, and H, may be chosen to commute with H and also may
be chosen to be definite if H 1s positive definite.

(iii) Amn 2-square A with det A = 1 is a product

(51) A = (HHHH;")(HHH;" H)

of two commutators of Hermitian wmatrices, with H, definite and
H,, H, H, unitary Hermitian.

Proof. (1), (ii). If Uor H is 2-square and det U =1 or det H =
1, then the eigenvalues of U or H must be reciprocal pairs.

(iii) As in Theorem 4.13, write A = UH and use (i) and (ii) of
this theorem.

5. The real analogues of the theorems of §4. For certain
of the theorems of §4, the analogues over the real number field are
essentially the same. For others, however, this is not so. More-
over, factorization theorems involving real skew symmetric matrices
do not always immediately follow from the real symmetric or Hermitian
cases by inserting a factor 7. In §5 we therefore will also discuss
commutators involving real symmetric or skew symmetric matrices.

THEOREM 5.1. Let N be a real mormal matriz. If N is a
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commutator of two real symmetric matrices,
(52) N = SISZSi—lS;l ’

then the eigenvalues v of N, excluding v =1, occur in reciprocal
pairs v, v'. Conversely, if this condition 1is satisfied, N can be
expressed as a commutator (52) of two real symmetric matrices, with
S, both symmetric and orthogonal.

Proof. Suppose (52) holds. Then
Nt = (SZSI)_lN(stl) .

Thus, if v is an eigenvalue of N with a certain multiplicity, so also
is v~* with the same multiplicity. Now <~ = ' if and only if v =
+1. Thus the eigenvalues v of N for which v % +1 appear in
reciprocal pairs. Since det N = 1, the eigenvalue v = —1 must appear
an even number of times, hence also appears in reciprocal pairs.
Thus the condition of the theorem is necessary.

Suppose now that the condition of Theorem 5.1 is satisfied. Then
N is orthogonally similar to a direct sum of blocks of type (7), (8),
(11), (53), or (54), where (53) and (54) are given by

(53) rF(p) + r'F(p) , r >0, ¢ real,
(54) F(p), @ real .

In the proof of Theorem 4.1 and 4.2, it is demonstrated that if N is
given by (7), (8), or (11), then N is a commutator (52) of two real
symmetric matrices with S, symmetric and orthogonal, and S, com-
mutative with N. It was also shown that if N = F(p), then N is
a commutator of two real symmetric orthogonal matrices. So let N
be given by (53).

Let 6 and ¥ be any angles. Set S, = diag (+G(20 + ¢ — &), G(¥))

and
S, — [ 0 G(ﬂ):’ .
GO 0

Then using Lemma 3.3 one easily checks that NS,S, = S,S.. More-
over S, is symmetric and S, symmetric orthogonal as required. This
completes the proof.

THEOREM 5.2. The conclusions of Theorem 4.2 remain valid if
all matrices in Theorem 4.2 are required to have real entries.

THEOREM 5.3. The conclustons of Theorem 4.3 remain valid if
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all matrices in Theorem 4.3 are required to have real entries.

The real analogues of Theorem 4.4 and 4.5 are special cases of
these theorems. We next consider the real counterpart of Theorem 4.6.

THEOREM 5.4. The conclustons of Theorem 4.6 remain valid if
all matrices in Theorem 4.6 are required to have real entries. In
particular, a proper orthogonal & may always be expressed as

(55) o = 8,8,87S;!

where S, and S, are symmetric orthogonal.

Proof. Let ¢ be proper orthogonal. Then ” is orthogonally
similar to a direct sum of 2-square blocks of the type F(p) and
(perhaps) an identity matrix. In the proof of Theorem 4.1, F(p)
was expressed as a commutator of two symmetric orthogonal matrices.

If we take N to be symmetric in Theorems 5.1, 5.2, and 5.3 we
obtain necessary and sufficient conditions for a symmetric matrix to
be a commutator of symmetric matrices, subject to various side
condition. In Theorem 5.5 we establish the real analogue of Theorem
4.12.

THEOREM 5.5. Let A be symmetric with det S = 1. Then
S = (8,8.8718:)(S.8,851S:)

is a product of two commutators of symmetric matrices, with S, and S,
symmetric orthogonal, and S, S, commutative with S. If S 1is
positive definite, we may in addition require that S, and S; be
definite.

Proof. Use Fan’s factorization to express S as a product of two
symmetric matrices, each of which has its eigenvalues v (other than
v = 1) in inverse pairs v, v'. Then use the proofs of Theorem 4.1
or 5.1.

THEOREM 5.6. Let A be real with det A = 1. Then
A= (SISZSflsz_l)(S3S4S{1S4_I)(S5S6S5_IS;1)

18 a product of three commutators of real symmetric matrices, with
S, S, S, Ss symmetric orthogonal, and S, S; definite. If A 1is
2-square, two commutators suffice,

A = (8.8.57'S:)(S,S.S57'S1)
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with S, S;, S, symmetric orthogonal and S, definite.

Proof. Write A = 2”8, by the polar factorization theorem. Then
apply Theorem 5.4 to 7 and Theorem 5.5 to S.

In the next theorems we investigate commutators of the form
SKS—'K™.

THEOREM 5.7. Let N be real normal. If N is a commutator of
a real symmetric S and a real skew symmetric K,

(56) N = SKS—'K™,

then N 1s orthogonally simila» to a direct sum of blocks of types
(7), 8), and (53). Conversely, if N 1is orthogonally similar to «
direct swum of blocks (7), (8), and (53), then N can be expressed as a
commutator (56) with K both skew symmetric and orthogonal.

Proof. In this proof, a subscript on a matrix will always indicate
the degree of the matrix. We introduce some additional notation:

(57) Qo) = 2l, + 1, ,
(58) Don(p) = F(p) + -+ + F(op) ,
(59) Vulr, @) = T@Tm(@) + 'r_]@wn(@) .

In (58) there are m direct summands F(p).

Suppose that (56) holds. From Theorem 4.1 we can conclude a
good deal about the structure of N. The major hurdle to be over-
come is to show that if a not diagonal block of type F(p) occurs in
N, it does so with even multiplicity. We have

(60) N7 = (KS)'N(KS) .

Thus the eigenvalues of N appear in reciprocal pairs. Thus, after a
simultaneous orthogonal similarity of N, K, S, we may assume that

N = I+ I+Z-2m(1)+2 Qo (—82)

(61)

+ 2 @21»@((/72) ‘f‘ Z wm,(Ru '9)
In (61) we have separated the various types of blocks according to
the character of their eigenvalues, as follows: I, has eigenvalue -+1;
—I, has eigenvalue —1; each »,>1 and »,=r; if i+7, 1<4,
J=wu; each s; >1 and s; #s; if 4+ 5, 1 <14, j < v; each @,,(p,) has
nonreal eigenvalues on the unit circle and @, (@;), @.,,(p;) do not
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have a common eigenvalue for ¢ =75, 1 <4, j< w; each ¥, (R, 6,
has nonreal eigenvalues not on the unit circle and 7, (R, 6,), ¥.,(R;, 6;)
do not have a common eigenvalue for 7% 75, 1 <4, j <t Thus in
(61) distinct direct summands do not have a common eigenvalue.
From (61) follows

—I+ I,s+2 sz("’_l)-l-z Qu(—s7)

62
62) T3 Oul) + 3 TR )

From (60), we get (KS)N~'7 = N(KS), and then (61) and (62) force
a partitioning on KS, as follows:

. . L2 0 Cm . v 0 D . . w
S =4+ B+ 3 [r 01J+Z' Lr OM}FZ.E‘“"'
63 = m; =1 k; =1
(63) L [ 0 an]
+ i=1 %‘li 0 ’

where we also have
(64) Ezpi@zpi(Qi) = ¢2pi(@i)E2pi ’ 1 é 1 é w .

Taking the transpose of each side of (63) yields

0 It
SK = —A%L + —Bj} i
+ +2[ cr. 0}
0 — 47 w
(65) +z[ - 0] + 3 B,
‘ 0 -7
+5 e

The equation NKS = SK now yields a number of equations, of which
we single out the following:

(66) A, = —AT,
(67) B; = By,
(68) G, (p) By, = —EL,, 1<isw.

Because of (66), the eigenvalues of A, occur in pure imaginary
pairs =71, r real. By Lemma 3.4, each of the blocks

[ 0 —F,T,%} [ 0 —Aﬂ 0o - zﬂ
-cr, o0 ] |-Dpi, o] |-Fi 0

has its eigenvalues in sets of the types: +7 (r real); =+7i (r real);
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Ny Ny —A, —N, (A neither real nor pure imaginary). By Lemma 3.2
the eigenvalues of SK partition into sets of these three types. Hence
the eigenvalues of

(69) -Bj + 3\ — i,

must also partition into sets of these three types.

Because of (67), the eigenvalues of —Bj are real.

We wish now to discuss the eigenvalues of E,. To relieve the
notation let

E, =E,,, Dop(@) = Py (@)) i fixed .
Because of (64) and (68), we have
(70) E.,D.0(p) = 0yp(P)E,,
(71) D.(P)E;, = —E2Tp .

We may make a simultaneous unitary similarity of E,, and @,,(p) so
that @,,(p) is converted to eI, 4+ e¢~*I,. Because of (70), E,, becomes
E, + E]. Owing to (71), we have

(72) ¢0E, = —E)*,
(73) B! = —E'* .

Because of (72) and (73), E/, and E” are normal. Unitary simi-
larities of (72) and (73) render E’ and E diagonal. Using (72) and
(73) again, we find

E;, = diag (e]piie—¢", -, e 0167 ,
Ey = diag (¢)'p/'ie™"?, - - -, &) o)ie*") ,

where each ¢ is +1 and each p > 0. Restoring subscripts, we have
that E,, is unitarily similar to E) + E7, where

(74) E?”j = diag (¢},0},i67%4", -, E;Pjp;‘ﬁjie_ipjlz) ,

Y pt05[2
ey .

(75) By, = diag (s/i0ie™e3", -+ -, ;.00

We ask: can it happen that Ezpj has a real eigenvalue? If so, for
some choice of the + signs,

+ie*ilf = +1,
hence

evi= —1.
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This is not so owing to the classification of eigenvalues made in (61).
We ask: can it happen that E,,. has a pure imaginary eigenvalue?

If so

it = i,

hence
e¥i=1.

Again, this is not so because of the choices made in (61). We ask:
if » is an eigenvalue of E,,, can any of N, —X, X, —X be an eigen-
value of E,,, for s # j? If so

oot e i
+ie*ilt = fgeriesl?

hence

ei“’j = eii“’s .

This means that @,,(p;) and @, () have a common eigenvalue,
which is not so.

Now we know that the eigenvalues of (69) partition into sets of
the three types: =7 (r real); =77 (r real); A, X, —\, —X (A not
real or pure imaginary). But —Bf can have only real eigenvalues
and the EY, can have only eigenvalues not on the real or imaginary
axes. Thus each of the direct sums in (69) must have its eigenvalues
clagsify into sets of the three types, with only the type == (r real)
possible for —B%, and only the type A, —A, A, —Xx (A not real or
pure imaginary) possible for each E‘Zp]. Thus degree B; is even and
degree E,,, = 0 (mod 4). Hence each p; is even.

Thus we know in (61) that B is even and each p; is even.
Since degree N is even, it follows that « is even also.

Now, in (61), the direct summands I, and 2,,.(r), 1 =<1 < u,
can be classified under type (7) (possibly » =1 in type (7)). The
direct summands —1I, and 2, (—s;), 1 <% < v, can be classified under
type (8) (possibly » =1 in type (8)). Because p; in even, the direct
summand @,, (p;) can be classified as p,/2 copies of the type (53) (with
r=11in (53)); 1<% =<w. And the direct summand ¥, (R; o, can
also be classified as a direct sum of ¢; copies of type (63); 1 <1 < ¢.
We have thus established that the condition of the theorem is
necessary.

To establish the converse, it suffices to assume that N is (7), or
(8), or (63). If N = diag (r, '), set S = diag (, 1) and

0 1
(76) K:[_l o]‘
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Then (56) holds, N and S are commutative, and K is orthogonal and
skew symmetric. If N = diag (—», —r'), set S = diag (—r, 1), define
K by (76). Then again (56) holds, S is symmetric and commutative
with N, and K is orthogonal and skew. If N is given by (53) set
S = diag (G(v), r'G(p + 26 — +)), and put

K= [ 0 G(ﬁ):[ .
—-G@) 0

Using Lemma 3.3 one easily computes that for any choice of the
angles 4 and 6, we have NKS = SK. This S is symmetric (and
also orthogonal if #» = 1) and this K is skew orthogonal. The proof
is complete.

THEOREM 5.8. Let N be real and normal. If N is a commutator
(56) of a symmetric S and o skew symmetric K with

(T7) NS = SN

then N is symmetric with all eigenvalues (tncluding 1) occurring
as reciprocal pairs v, v'. Conversely, this condition 1is satisfied
then N can be expressed as a commutator (56) such that (77) holds
and such that K is orthogonal and skew.

Proof. Suppose that (56) and (77) hold. If we write N =
S(ZK)S~'(¢tK)™* then we may deduce from Theorem 4.2 that N is a
direct sum of types (7) and (8). The converse was established in
the proof of Theorem 5.7.

THEOREM 5.9. Let N be real and normal. Then N is a com~
mutator (56) of a symmetric S and a skew symmetric K such that

(78) NK = KN

if and only if N s orthogonally similar to a direct sum of the
following three types (79), (80), (81):

(79) diag (1, 1) ,
(80) diag (-1, —1),
(81) diag (v, r, %, ™), r+01, —1.

If this condition 1is satisfied, S may always be taken orthogonal
symmetric.

Proof. Suppose (56) and (78) hold. Then we have N =
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S¢tK)S-(#K)™ and N(iK) = (tK)N, so that by Theorem 4.2 N is
symmetric. Thus by Theorem 5.7 we may assume

N="I+ =1 + 27 8w (r) + 27 Qu(=50)

where the r; are distinct, each »; > 1, the s; are distinct, and each
s; > 1. Then NK = KN yields

e
« Ptalo Q. &#Lo T
Since K is skew each Q,, and each T, is skew and nonsingular,
hence has even degree. Thus each m; and each k; is even. Thus
the conditions of the theorem are necessary.

For the converse it suffices to consider two cases: N =
diag (—1, —1) and N = diag (x, x, 7%, #~!) with 2 positive or negative.
Now

o o1 1[0 1 0101—101]1
(82) 1ag(_’")_[1 0][-1 01[1 OJ [—1 0

and diag (z, z, 27, 27') = SKS'K~' where

00 1 0 (0100
00 1 10 0 0
S = ,K:
00 0 Looo.o;
01 0 0 00—z 0

This completes the proof.

THEOREM 5.10. Let N be real and normal. If N is a com-
mutator (56) of a definite S and a skew K them N 1s positive
definite with its eigenvalues (including 1) occurring in pairs v, v~'.
Conversely, is N satisfies these conditions then N s a commutator
(56) of a definite S commutative with N and a skew orthogonal K.

Proof. Suppose (56) holds. Then from N = S(iK)S'(¢K)™* one
deduces from Theorem 4.3 that N is positive definite with the eigen-
values v of N for which v % 1 occurring in pairs v, v'. Since
degree N is even, the multiplicity of the eigenvalue v =1 is even,
hence this eigenvalue also occurs in reciprocal pairs. For the con-
verse it suffices to observe that

7‘0'"1_10 0 1771 0 1*[ 0 17
[o ,,._IJ—[O r*M—l OJ [o r—i} 1 0}‘
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THEOREM 5.11. Let N be real and mnormal. Then if N is a
commutator (56) of a definite S and a skew K such that N and K
commute, then N = I.

Proof. This follows from Theorem 4.4 or Theorem 1 of [5].

THEOREM 5.12. Let 7 be proper orthogonal. Then if & 1is a
commutator of a symmetric S and a skew K,

(83) ¢ =SKST'K—,

it follows that each eigenvalue of & has even multiplicity. If S
commutes with & or if K commutes with & them & 1is also
symmetric. If S 1s definite then 7 = 1. Conversely, if each
etgenvalue of ¢ has even multiplicity, ¢ 1is a commutator (83)
with S symmetric orthogonal and K shew orthogonal, and if & is
symmetric we may also make both S and K commutative with .

Proof. Suppose (83) holds. Then by Theorem 5.7 £ is orthogo-
nally similar to a direct sum of blocks of type (7), (8), (563). Since
¢ is orthogonal, in blocks (7), (8), (63) we have r = 1. This shows
that each eigenvalue of #~ has even multiplicity. The second result
in the theorem follows from Theorems 5.8 and 5.9. The third result
follows from Theorem 5.10. For the converse note that if each
eigenvalue of # has even multiplicity then <7 is orthogonally similar
to a direct sum of blocks of the type diag(1,1), diag (-1, —1),
F(p) 4+ F(p). In the proof of Theorem 5.7 it was shown how to
express each of these three matrices in the form (83) with both S
and K orthogonal. Moreover, if ¢ is symmetric then £ is orthogo-
nally similar to a direct sum of the types diag (1, 1) and diag (—1, —1),
and one need only observe (82),

THEOREM 5.13. Let K be real skew. Then K is a commutator
(84) K = SKS—'K

of a symmetric S and a skew K if and only if K is orthogonally
similar to a direct sum of skew matrices of the type

0 »] . 0 =t
(85) [—7’ 0}_{—[—7"1 0 :]

Here S is mever definite and never commutative with K, and K is
never commutative with K. We may, however, make K orthogonal
skew.
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Proof. These results follow from Theorems 5.7, 5.8, 5.9, and
5.10.

REMARK. Since any skew orthogonal K with degree K =10
(mod 4) is orthogonally similar to a direct sum of copies of

0 1;} ) 0 IJ
1 0] 21 ol
one can apply Theorems 5.12 or 5.13 to K and so build up elaborate

iterated commutators of symmetric orthogonal and skew orthogonal
matrices.

THEOREM 5.14. Let S be real symmetric with detS =1 and
degree S = 0 (mod 2). Then

S = (S.K.ST K ) (S, K,ST K )

18 a product of two commutators with S, and S, symmetric and K,
and K, skew orthogonal. If S is positive definite we may also make
S, and S, definite.

Proof. Use Fan’s factorization to write S as a product of two
symmetric matrices, each of which has its eigenvalues in reciprocal
pairs. Apply Theorems 5.7 and 5.10 to the two factors.

We now present a sequence of lemmas which will prepare the
way for the proofs of the next theorems.

LEMMA 5.1. Any 2-square real A with positive determinant can
be written as

(86) A = 8,8.8:S,

where S, Sy Si;, S, are real symmetric matrices, each with positive
determinant.

REMARK. It is known that any real (square) matrix is a product
of two real symmetric matrices. However, it will appear below that
the two factors cannot always be chosen to have positive determinant.

Proof. From (86) follows
RAR-* = (RS, R")(R~S,R~)RS,R")(R"S,R™) .

Thus it suffices to establish the lemma for some similarity transform
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(over the reals) of A. If A is scalar, A = al, then take S, = al,
S,=8;=8,=1. If A is not scalar it is nonderogatory, hence we

may suppose
01
A= [ :I R a>0.
—a 20

First let o = 0. Put x = p(2a¢)~*2. Put X = diag (z, #™*). Then Y =
AX has characteristic polynomial A\* — 202\ + @, for which the
roots are a'*(2'* 4+ 1). Call these roots 4, and 8,, Both 4, and 4,
are positive, and 0, # 0,. Moreover, diag (d,, 0,) is similar to Y.
Hence Y = Q diag (9, 0,)Q*. Therefore

Y = {Qdiag (9, 6:)Q"HQ™Q}

is a product of two symmetric matrices, each of which has positive
determinant. The A = Y X~ is a product of four symmetric matrices,
each with positive determinant.

Now let o = 0. Note that

L2 0 -1 -5 -2 -10
a'l? = a'? .
0 27 1 4 -2t 0
Here diag (2a'?, 2~'a'®) is a product of two symmetric matrices, each
with positive determinant. And

o[

has characteristic polynomial A\* — 3\ 4+ 1, hence is similar to a
diagonal matrix B, with positive diagonal entries, say B = RB,R™ =
(RB,R")(R~R~"). Thus B is a product of two symmetric matrices
with positive determinant. Finally,

-2 =10
all?
2- 2
has characteristic polynomial A\? + a, hence is similar to
0 1}
—a 0]
This completes the proof of the lemma.

LEMMA 5.2. Let & be proper orthogonal. Then & = S,S,S:S,
where each S; is real symmetric and has its eigenvalues in reciprocal
pairs; © =1, 2, 3, 4.
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Proof. It suffices to establish this factorization when & = F(p).
By Lemma 5.1, F(p) = S!S;SiSi: when each S} is real symmetric with
det S} >0, ¢ =1,2,3,4. Since det F(p) =1,

(det S7)(det S;)(det Si)(det S)) = 1.

Let S; = (det S)~*S,, 1< i < 4. Then < = S,S.,S,S,, each S; is real
symmetric and has determinant one, hence its eigenvalues occur in
reciprocal pairs; 1 <1 < 4.

LEMMA 5.3. Let 2x2 real A satisfy det A =1. Then A can
be factored as in (86) when each S; is real symmetric and det S; =
1, 1=1=4.

Proof. Apply Lemma 5.1 to A and insert scalar factors as in
the proof of Lemma 5.2.

LeEMMA 5.4. Let S, S,, S; be real symmetric with positive deter-
minant. Then

01
87 =
@) |1 o|-sss.

18 1mpossible.

Proof. Suppose (87) holds. Let

a b
St = .
5
Then from (87) we get

b ¢
(88) [_ B J =8.S,.

a

The left member of (88) has zero trace. On the right side of (88),
S, and S, each are definite (since each has positive determinant). By
inserting two factors —1, we may take S, positive definite. Then
S.S. has the same eigenvalues as S!2S,S!?. Thus, by the law of
inertia, both eigenvalues of S,S, are positive, or both are negative.
Hence tr S.S; = 0 is impossible.

THEOREM 5.15. Let A be real and det A = 1.
(i) If A s 2-square then A is a product of four commutators

A =TI (S.KS7K)
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where each S; is real symmetric and each K; is real skew orthogonal.
(ii) If A s 2n-square with n>1, A 1s a product of six
commutators

(89) A = 11 (SK.SrK:)

where each S; 1s real symmetric and each K; is real skew orthogonal.
(iii) It is impossible that

r o1 3
(90) |1 0} = I (SKSTKT)

i=

where each S; is real symmetric and each K; is real skew.

Proof. (i) By Lemma 5.3, A = S,S,S,S, where each S; is real
symmetric with detS; = 1. By Theorem 5.7 each S; is a commutator
of a real symmetric matrix with a real skew orthogonal matrix.

(ii) Let A = &S be the polar factorization of A. Then det &~ =
det S = 1. By Theorem 5.14,

S = (S.K.STK ) (S.KS: K )

where S, and S, are real symmetric and K, and K, are real skew
orthogonal. By Lemma 5.2, & = S;S.S;S; where Si, S;, S}, S; are
each symmetric with eigenvalues occurring in reciprocal pairs. By
Theorem 5.7 we have

S,::S,LKIS@_IK;A, 3£i§6,

with each S; real symmetric and each K, real skew orthogonal.
(iii) First note that for 2 x 2 matrices, if S is symmetric and
K is skew, then SKS—'K—' is symmetric. Thus, if (90) were true,

the matrix
[ 01
-1 0

would be a product of three symmetric matrices, each with positive
determinant. This contradicts Lemma 5.4.

This completes our discussion of commutators of the form SKS—K-.
The next natural question is to discuss commutators of the form
K, K,K'K;'. This discussion is contained in Part II of this paper.

6. The commutator of a normal and a unitary matrix. In
this section we give the following theorem, first proved by Fan.
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THEOREM 6.1. A normal matric N with det N =1 1is a com-
mutator
N = NJUN'U

where U 1is unitary and N, is normal and commutative with N.
If N is Hermitian, positive definite Hermitiam, or unitary, we
may, in addition, choose N, to be Hermitian, positive definite
Hermitian, or wunitary, respectively. If N is real symmetric or
symmetric positive definite we may choose U to be real orthogonal
and N, to be symmetric or symmetric definite, respectively, and still
commutative with N.

Proof. Let N = diag (A, Ay +++, \,). Then put
Nx_l = diag (1’ Niy ANgy = Sy AAp o >\'n——1) .

Put U=][,1, ---,1],. Then Ni'= UN;*U-. Hence N = N,UN'U™,
and N, commutes with N. The other assertions of the theorem
follow easily.

7. The commutator of a Hermitian matrix and a unitary
matrix.

THEOREM 7.1. Let N be normal. Then N is a commutator of
a Hermitian H and a unitary U,
91) N =HUHU
if and only if:

(i) The characteristic polynomial of N is real. Let

Ay Xu sy Mgy xt

be the monreal eigenvalues of N, and let N,y -+, N\, be the real
etgenvalues.

(ii) Nomnzero real numbers hi, hyy <+« Iy Byryy <+ =, hy, exist such
that the numbers

(92) [M|hv _17\'1”@1: [7\,2|h2, —[Mlhz, ct |M|hu “lktlhg y
7\'t+1ht+1! 7Vt+2ht+2y M} Nkhk

are the same as the numbers

(93) hyy —hyy fooy —hyy -+, ktr —hy, h’t+19 kH—zv %y hk ’

except for order.
If N s real and conditions (i) and (ii) hold, we may take H to

be real symmetric and U to be real orthogonal.
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Proof. Suppose (91) holds. Then
(94) N* = H'NH .

Thus if X is a nonreal eigenvalue of N with a certain multiplicity,
X is also an eigenvalue of N, with the same multiplicity. Thus
after a unitary similarity of (91), we may assume

¢ %
(95) N = ; (v:l; + 7:I) "]‘i;H:lpiIi ,

where the 7v,, 7; are nonreal and distinct, 1 < ¢ < ¢, and the p; are
real and distinct, ¢t < ¢ < k. Then using (95), HN* = NH yields

¢ 0 M. k
96 H=3" ‘14 *H,.
(96) gf [Mj‘ 0 J +i:t2+'x ‘
Thus
i 0 YiM &
97 N_IH = . . ;lH,; .
o1 Siloar o) F e

Since N*H = UHU-', N'H and H have the same eigenvalues. Let
hi, k%, -+ be the eigenvalues of MM}, 1 <1< ¢t, and let Ay, Ay - o+
be the eigenvalues of H;, t < 7 < k. Using Lemma 3.5 we find that
the eigenvalues of N—*H are

I 71 I_lhm - ! e {_1]’511: |71 |~1h121 - [ 71 ‘—1h12, ]
I Vi i_lhm - ] 7Vt l—lhw | Ve I~lht2’ - I Vi }_lhzzy MR
(0;+11hz+1,1y ‘02__+11ht+1,2; M} p;lhku {ok—lhkzy ctty

and the eigenvalues of H are

huy _hm hw —hm °t %y hm —‘hm hm _hm ctcy
ht+1,1! ht—H,za R} hkn hkz; ctt .

After taking inverses and changing notation, we obtain that the
second condition of the theorem is necessary.

Conversely, the conditions of the theorem imply that nonzero
real numbers h,, ks <+, h,, -+, h, exist such that the numbers

(98) =+ I >‘41 [—%1’ il Kz f—lhza %y i‘| Nt |~lht’ A‘;—;lkH-l) hf-#zhwzy M) 7%_%1;
are a rearrangement of the numbers
(99) ihu ."'_‘hzy *t ey iht’ hz+1y ht+za A} h’k .

Let »; = r;exp(—ip,), 1 <5 <t. After a unitary similarity we may
assume
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t
N = ,gf. TzF(%) + dlag (>"t+1’ ‘Y )"k) .
Let

H =

M-

0 hn . ..
h 0 + diag (hgssy =+ ¢y Ba) ©

The eigenvalues of H are the numbers (99). We find that
N~'H = i 17 hG(— ;) + diag (Wihhery, 00 NRy)

The eigenvalues of N—'H are the numbers (98). Since N~'H and H
are two real symmetric matrices with the same eigenvalues, an
orthogonal ~ exists such that N'H = ~#Hs'. Hence N =
HoH-' 2, as required.

THEOREM 7.2. Suppose normal N s a commutator (91) of a
Hermition H and a unitary U, such that

(100) NH = HN .

Then N 1s Hermitian and det N = 1. The converse assertion 1is
contained in Theorem 6.1.

Proof. From (94) and (100) follows N* = N.

THEOREM 7.3. (i) Let N be mormal. If N is a commutator
91) of a Hermitian H and a unitary U such that

(101) NU = UN,

then N 1is wunitary, N has real characteristic polynomial, and
det N = 1. Conwversely, if N s unitary with real characteristic
polynomial and det N =1, then N is a commutator (91) with H
Hermition unitary and U wunitary ond commutative with N.

(ii) Let & be proper orthogonal. Then & is a commuiator
& =SSP of a symmetric orthogonal S and a proper orthogo-
nal ¢, with 7, commutative with .

REMARK. For unitary matrices, Theorem 7.3 improves Theorem
7.1.

Proof. Suppose (91) and (101) hold. Then, as in the proof of
Theorem 7.1 we obtain (95) and (96). Because of (101),

U= 3 diag (U, U) + 3 U, .

4=t+1



796 ROBERT C. THOMPSON

Then NUH = HU yields

i=1 1'ff;ﬂfl"‘ 0 i=t
(102) 4 N
_u[ 0 MO D
= ;kU'L 0 z;htl v

Comparing the two sides of (102), we obtain
|7 "M UM; = M UM, 1s:=t,

hence, by taking determinants, |v;,]=1; 1 <1=<%{ We also get
o;UH;, = HU;, hence by taking determinants, we find p;, = *1.
This proves that N is unitary. By Theorem 7.1 we already know
that N has real characteristic polynomial.

To establish the converse we notice that if N is unitary with
real characteristic polynomial and det N =1, then N is unitarily
similar to a direct sum of copies of F(p) and an identity matrix.
We therefore need only notice that by Lemma 3.3

F(p) = GO)F(—p/2)G(0)" F(—9/2)™

for any choice of ¢, and F(p) and F(—@/2) commute. Here G(9) is,
of course, symmetric orthogonal.

THEOREM 7.4. Let N be mormal. If N is a commutator (91)
of a definite H and a wunitary U then N is positive definite
Hermition and det N = 1. The converse assertion 1is contained in
Theorem 6.1.

Proof. Since N = H(UHU™) is a product of the two positive
definite Hermitian matrices H and UHU*, it follows from Lemma
3.1 (iii) that N has all eigenvalues positive. Therefore N is positive
definite Hermitian.

THEOREM 7.5. Let normal N be a commutator (91) of a definite
H and a wnitary U such that (101) holds. Then N = I.

Proof. By Theorem 7.4 N is positive definite. By Theorem 7.3
N is unitary. Hence N = I. Theorem 7.5 is a special case of
Theorem 1 of [4].

THEOREM 7.6. Let K be real skew with det K = 1. Then K is
a commutator,

(103) K=8o05"c"
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with S real symmetric and ¢ orthogonal. Moreover S is never
definite and never commutative with K. £ can be chosen to be com-
mutative with K if and only if K is also orthogonal.

Proof. Let X1, +v4, -+, 71 be the eigenvalues of K, with
Py ¥y +++, r, e€ach positive. Then det K =1 implies 77, --- 7, = 1.
Let 2, =1, hy =7, hy = 71y =+, h, = r,7, -+ 7,_,. Then the numbers
+rh, Erh, -+, £r.h, are a rearrangement of the numbers =52,
+hy «++, £h,. Apply Theorems 7.1-7.5.

THEOREM 7.7. Let 6 be a monreal number with |6|= 1. Let
H be Hermitian. If

(104) 0H = HUH'U

is a commutator of Hermitian H, and unitary U then 6 = +1 and
tH is wunitarily similar to a real skew symmetric K for which
det K = 1.

Proof. Suppose (104) holds. Then, by Theorem 7.1, for certain
eigenvalues A\, and A, of H, we have O\, = re's, On, = re—*. Then
O\, + N\y) = 2rcos . This implies @ is real unless it happens that
A, = —\, and @ = £7x/2. Then it must be true that § = +<. More-
over it follows that if ), is an eigenvalue of H with a certain
multiplicity, —X, is also an eigenvalue with the same multiplicity.
Thus, after a change of notation, ¢H is unitarily similar to

diag (r2, =1, 7oty — 7yt -0, 7., —1"/5) ,
which in turn is unitarily similar to

¢ 0 r;
K:z[ J

=t =7, 0

THEOREM 7.8. Let U be unitary with det U =1. Then
(105) U= (HUHU')HUH;'U;")

s a product of two commutators, with H, and H, Hermitian
unitary and U, and U, wnitary. If U is 2-square, one commutator
suffices tn (105).

Proof. By Fan’s factorization U = VW where the eigenvalues
of V and W ocecur in reciprocal pairs. Apply Theorem 7.3 to V and
W. If U is 2-square the eigenvalues of U must appear in reciprocal
pairs.
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THEOREM 7.9. Let A be complex with det A =1. Then
(106) A = (H,UHUMNH,UH; U ) HUH; Us™)

where H, is positive definite Hermitian, H, and H, are Hermitian
wnitary, and U, U, U, are unitary. If A 1s 2-square, (106) may
be improved to

(107) A = (HUH UM HUH;U;?)

where H,, U, H,, U, are as just stated. If A is real, (106) may be
improved to

(108) A= (S1ﬁ1Sflﬁ1—1)(Szﬁzs§-1ﬁz—l) ’

where S, 1s positive definite symmetric, S, 18 orthogonal symmetric,
and &, and &, are orthogonal.

Proof. Let A= HU be the polar factorization of A. Apply
Theorem 6.1 to H and Theorem 7.8 to U. If A is real, write
A =S¢ and apply Theorem 6.1 to S and Theorem 7.3 to 2.

We next investigate commutators of the form K~ K2~

THEOREM 7.10. Let N be real and mormal. Then N is «
commutator,

(109) N = KoK*o™

of a skew K and an orthogonal & if and only if:
(i) FEach eigenvalue of N has even multiplicity. Let

(110) 7\41, )\41: Xn Xn er >‘/2’ Xzy Xzy ] >\’u! )\"u! Xw Xu
be the nonreal eigenvalues of N, and let
(111) >\'u+1! 7\’u+l? 7\Ju+zy ‘\’u+2! M) )“ky >"k

be the real eigenvalues of N.
(ii) Positive real numbers hy, by »+«, Ry hyssy Pugey oy By, €xist
such that the numbers

|>"1|h1’l>‘ulh1y 17\42|h2,|>‘421h21 tt Ixulhml)"u]huy

(112)
| >"u+1 [ hu+1! [ )\’u+2 [ hu+2? Ty ] )\’k ! hk

are the same as the numbers
(113) hu kn hzy hz; ct Yy huy h’uy hu+17 hu+27 * hk y

except for order.
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Proof. Suppose that (109) holds. After an orthogonal similarity
of N, K, ¢, we may assume that

(114) N = 3 riu () + 3 Rl + 3 —RI,.
Here in (114), and throughout this proof, a subscript on a matrix
denotes the degree of the matrix. In (114) the R; and 7; are posi-
tive, distinet direct summands do not have any common eigenvalue,
and each 9,,(®;) has no real eigenvalue.

From (109) we obtain

(115) KN' = NK .
From (114) and (115) we obtain a partitioning of K, as follows:
(116) K= dla‘g (K2m13 K2m21 M) szuy Ka,,H_ly M) Kaw) .

In (116) each direct summand is a nonsingular skew matrix; hence in
particular «,,, -+, &, are each even. Thus each R; and each —E;
has even multiplicity.

We now fix our attention on K,,. From (115) K, satisfies

K2m1@2m1(_901) = ¢2m1(¢1)K2m1 .

To relieve the notation, let us drop the subscript 1, and write

(117) K2m¢2m(-¢) - @Zm(qj)KZm .

Partition K,,, = (M,,)i<pvem into 2 x 2 submatrices M,,. Fix momen-
tarily ¢ and v, and let
a b
M#y N [ j' )
¢ d

Then (117) yields M, F(—q¢) = F(p)M,,, hence b sinp = ¢singp and
—asing = dsing. Since sing = 0 (because @,,(p) does not have
real eigenvalues), we obtain that 6 = ¢ and d = —a. Restoring g
and v, we thus have

a b
M L = Py y , 1 < , < .
g [b#v —a#x] =# y=m

Let V be the 2-square unitary matrix

y=guft
i —i

Note that V*F(p)V = diag (¢, %), and that
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0 =z,
V*M/wV: — ’ 1§#,U§m,
Zw O

where z,, = a,, — ib,,. Let V,, be the direct sum of m copies of V.
Then we have

0 =z,
(118) V;mKZm VZm = — ’
zﬂv O IS, vs=m
(119) V;m@mn(@) V2m = dlag (ei9°’ e—i%’, eitpr e—i?y Tty 6’59” e-—'i‘.f') .

Let W,, be the 2m-square permutation matrix such that for any
2m-square matrix M, the rows of WL MW,, are the rows of M in
the order

(120) 1,3,5 «--,2m —1,2,4,6, --+, 2m ,

and the columns of WL MW,, are the columns of M in the order
(120). Then

(121) Wi Vi Kon Vo Wop = [0 Z’”]
2m ¥V 2mE32m ¥ 2m 2m T Zm 0 ’

where Z,, = () 1<pvsm, and
(122) Wi Vi@ @) Vo Wow = €1, + eI, .

In (121) because K,, is skew symmetric,

0 Z
Z, 0
is skew Hermitian. Hence, Z = —Z,, that is Z, is complex skew

symmetric.
Returning now to (109), (114), we let

w

U= Vin,Wan, + > L,

t=u+1

From (109), (114), (121), (122) we get

u
U*N—'U = ,Z‘ diag (ri‘e L, ri'e"tl,,)
=1
v w

+ > R, 4+ > —R'L,,

t=u+1 t=v+1

i=1 | Z, a1 t=v+

v [0 Z. v w
(123) U*KU = 3 [_ 0 t] + > K, + > K.,
my t +1
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U*N-‘KU = Zu" !: 0 _ Tt—le‘i‘”th:l
(124) = Lrre,, 0

I S ROK., 4+ 3 —RrK,,.

t=u+l t=v-+1

Since N'K = &Ko, (123) and (124) have the same eigenvalues.
We therefore proceed to evaluate the eigenvalues of a matrix of the
form

0 ~Z
7]

where Z is complex skew symmetrie, m-square, nonsingular, and
v # 0. By Lemma 3.7 a unitary T exists such that

- 0 o] . ;
TZTT:Z‘[ ) g]+o, ;>0 for1=i=<7r.

Since Z is nonsingular, m must be even, and

_ ’m/2. O [01'
TZT" = S .
=1 _(Oz 0

[T OMI 0 1[0 ﬁ/ZJ I 0 7T OT
0 T OA/ZJVZ_ 0 oﬂ/ZJ 0 T

B 0 I
a {w.%TZTTx TZT") 0] )

Then

Thus (125) has the same eigenvalues as

0 I
(126) [ . . ) q . ) . J
[v|*diag (— 0}, —0i, — 0}, — 0% +++, —Ohjpy —Onp) 0
The eigenvalues of (126) are
VYo =270yt |70 —i]vi0, 1=t=m/2.

Returning now to (123) and (124), let the eigenvalues of
I'O thJ
\Z,, 0
be

(127) 10, — 104 10 —10y 3 1=j=m/2;1<t=Zu,

and let the eigenvalues of K, be
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(128) Wiy =105 1=/ u<t=w.

In (127) and (128) we can choose the notation so that each p,; > 0.
One now finds that the eigenvalues of (123) are (127) and (128),
whereas the eigenvalues of (124) are

(129) U 04y — T 00y 177 00 — 170,55 1ST=Sm/2; 1St <u;
together with
(130) R0, —iR7'0,;; 1=<j=a/2;u<t=w;

the numbers (129) and (180) must be a rearrangement of (127) and
(128). Throughout (127)-(130) we may discard the common factor of
1. After discarding the 7, the positive numbers in (127), (128),

Our 5, 1=j=mf2, 1stsu,

(131) .
[Otjy 1§j§at/27u<t§w:
must be a rearrangement of the positive numbers in (129), (130):

7aii_l(ot;iy 'rt—lptj ’ 1 é .7 é /rnt/2 ’ 1 é t é U

(132) 1 _
t Ot » 15/ =a/2, u<t=w.

After taking inverses in (131) and (132), and making some notational
changes, we find that the conditions of the theorem must hold.

Suppose now that the conditions of the theorem are satisfied.
Let the nonreal eigenvalues of N be

7,690, 7,65, e et 1=st=ss,
and let the real eigenvalues be
R, R, s<t=k.
Then N is orthogonally similar to

(133) Sy (nF(@) + 7F(@)) + 3 disg (R, R) -

We may assume N is given by (133). The conditions of the theorem
imply the existence of positive numbers %, ---, k, such that

"‘Tlhu ”Tlhu Tglhzv ’rz_lkzy A} ,rs—lhs’ T;lhs ’
(134) 1 1 1
[ -Rs+1 |_ h/s+1) | -Rs+2 l_ h/s+2y M) ] Rk I_ hk
are a rearrangement of
(135) hv hn hzy hz; tt hsy hsy hs+1! h’s+2’ ct hk .

Put
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0 0 h 0
8 O O O h/t k 0 ht
K=3" LS .
2l 0 0 o2 [—ht o]
0 —h 0 0

Matrix K is"real and skew and has eigenvalues

iihu iihu i":hzy i?:hzy M) iihs, i%hs ’

136
(136) iy iy -y iy

We compute that

s 0 i h (%)T] & 0 R:—Iht:|
NK =3 > -
= Ln—lhtn@t) 0 * [-R;lht 0

The matrix N—'K is skew symmetric. Using Lemma 3.4, one can
compute the eigenvalues of N-'K. Then turn out to be

i?:/rl_lh/n i’l:'rl—lh'lr i'l:?";lhz, i’l:’l"z_lhz, ct Yy :i-_ir;lhs, ii”'s—lhs ’

137 . . .
*1 I Rs+1 |~1h/s+1! *1 I Rs+2 |_1hs+2) M) +1 | Rk |_1h’k .

Because (135) is a rearrangement of (134), (137) is a rearrangement
of (136). Thus N'K and K are real skew matrices with the same
eigenvalues, hence N'K = &K~ for some orthogonal <. Hence
N = Ko K*'~~*, as required. Note that if s =0 (that is, if all
eigenvalues of N are real) the construction just given produces a K
commutative with N.

THEOREM 7.11. Let N be real and mormal. Then N 1is a
commutator (109) of a skew K and an orthogonal & such that
(138) NK = KN
holds, if and only if: (i) N is symmetric; (ii) each eigenvalue of N
has even multiplicity; (iii) det N = 1.

Proof. Suppose (109) and (138) hold. Then N = (iK)Z?(«K)'e
and N commutes with ¢K, hence by Theorem 7.2 N is symmetric.
By Theorem 7.10 each eigenvalue of N has even multiplicity. Clearly

det N = 1. Conversely if X\, Ay Aoy Ny, + =+, My A\, are the eigenvalues
of N, then det N =1 implies |\, |--- [N\, ]| = 1. Put
h, =1, hz: D“l’v h3: !)‘41! I>\’2|7 ceoy by = {>\’1| [kzl te ‘x’k—ll'

Then the numbers |X\,|h, +--, |\, |h, are just a rearrangement of
hy +++, h, and the proof of Theorem 7.10 showed how to construct
skew K commutative with N such that (109) holds.
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THEOREM 7.12, Let N be real and mnormal. Then N is a
commutator (109) of a skew K and an orthogonal & such that

(139) No = oN

if and only if: (1) N 1is proper orthogonal, (i1) each eigenvalue of
N has even multiplicity. If these conditions hold, we may in fact
make K skew orthogonal.

Proof. Suppose (109) and (139) hold. Then from
N = K)o (K)o

and Theorem 7.3 we deduce that N is proper orthogonal. From
Theorem 7.10 we deduce that each eigenvalue of N has even multi-
plicity. For the converse we need only consider two cases: N =
F(p) + F(p)", and N = diag (—1, —1). In the first possibility let

0 01 0
0 0 01 .

K = 1 00 o0l < =diag (1, 1, Fi(p)) .
0-1 00

Then N7 = <N and (109) holds. Moreover K is orthogonal and -
is orthogonal. For the second case observe

140) -1 0] 0 171 O 0 171 07

( 0~1_—10J0—1 -1 0] [0 —1] °
THEOREM 7.13. Suppose N is real normal but that N has no

real eigenvalues. Then N is a commutator (109) of a skew K and

an orthogonal 7 if and only if each eigenvalue of N has even

multiplicity and det N = 1. It cannot happen that K commutes

with N and & can commute with N if and only if N 4s also
orthogonal.

Proof. That the conditions are necessary follows from Theorem
7.10. Conversely, let A, Ay, Xy Xy, o+, Mgy My Mgy A, be the eigenvalues
of N. Then |\ |---|)\,] =1. Put

hlzlykzzfxll: "'7]7/k:!>“1!"'%’\‘k—1"

Then the conditions of Theorem 7.10 are satisfied.

Theorem 7.13, of course, applies when N is skew symmetric.
When the eigenvalues of N are all real, Theorem 7.11 provides a
strengthened form of Theorem 7.10.
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THEOREM 7.14. Let o7 be proper orthogonal and mn-square with
n =0 (mod4). Then
o = (K. KO\ K,o K &)
is a product of two commutators, with K, and K, skew orthogonal,

and &, and 7, orthogonal.

Proof. As n =0 (mod4), < is orthogonally similar to a direct
sum of 4-square blocks of the form F(p,) + F(p,). Now

diag (F(,), F(p,))
= diag (1, —1, 1, —1) diag (G(7/2 — @,), G(7/2 — P))

Here diag (1, —1, 1, —1) satisfies the conditions of Theorem 7.12,
hence is a commutator of a skew orthogonal matrix with an orthogonal
matrix. Moreover diag (G(7/2 — ¢,), G(7/2 — ¢,)) also is orthogonal
with eigenvalues +1 (twice) and —1 (twice), hence is orthogonally
similar to diag (1, —1, 1, —1). This completes the proof.

THEOREM 7.15. Let S be positive definite symmetric and n-square,
with » = 0 (mod4), and det S = 1. Then

S = 1:[ (K;:K:7' o7

18 a product of four commutator, with each K, skew and each 7
orthogonal.

Proof. First use Fan’s factorization to express S as a product
S = S,S, where the eigenvalues of S, and of S, occur in reciprocal
pairs. Now note that diag (A, A\, Ay \') = PQ, where

P = diag (M7 NN NENTTE NEATTER)
and
Q = diag (WA, NTENTTE NN NN

Thus S, and S, are each a product of two symmetric matrices to
each of which Theorem 7.11 may be applied. This yields the result.

THEOREM 7.16. Let real A be m-square with n = 0 (mod 4) and
det A =1. Then

=Y

A= K.o Ko

(3

where K, K, are skew orthogonal, K, K, K., K; are skew, and
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1y vy g are orthogonal.

Proof. Let A = ~S. Use the two previous theorems.

One can show, at least for » = 2, that no counterpart of Theorem
7.16 can hold when n = 2 (mod 4). For if K is any 2-square skew,
and ¢~ is any 2-square orthogonal, then a direct computation reveals
and KoK = +1. Thus any product [[,K; 7. Ki'crit = +1.

8. On the commutator of a Hermitian matrix with a unitary
Hermitian matrix. In §4, certain normal matrices were seen to be
the commutator of a Hermitian and a unitary Hermitian matrix.
We ask: When can this happen?

THEOREM 8.1. Let N be normal. Then N is a commutator (91)
with H Hermitian and U unitary Hermitian if and only if N is
unitarily similar to a direct sum of types (7), (8), (10), (11) and
the following special form of type (9):

(141) diag (re'e, r—e*e, re', r—'e~¢) , r>0, @ real .

Proof. Suppose (91) holds with H Hermitian and U wunitary
Hermitian. By Theorem 4.1 N is unitarily similar to a direct sum
of types (7)-(11). From the forms of types (7)-(11) and the fact
(Theorem 7.1) that the eigenvalues of N come in conjugate pairs, it
is clear that the totality of diagonal elements of type (9) is composed
of conjugate pairs. Without loss of generality we may assume no
e in type (9) is real, since otherwise type (9) may be reclassified
under types (7) or (8). If, in (9), we have r,=r, or 7, = r{* then
type (9) is already in the form (141). Then the totality of the
remalining blocks of type (9) must have their diagonal elements in
conjugate pairs. If », = r, r, == r;*, then in addition to (9) we must
have a block

(142) diag (r,6%, r7e, re=%, rile=™) .
We may recombine the blocks (9) and (142) as

(143) diag (r.e%, r7e®, re=*, rre=®)
(144) diag (rse’¢, r57€', 1,67, rile™) .

The block (143) has the form (141); and now the remaining blocks of
type (9) not yet considered together with (144) retain the property
that their diagonal elements come in conjugate pairs. By repetition
of this argument, we see that the condition of the theorem is
necessary.
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For the converse, we need only refer to the last part of the
proof of Theorem 4.1, noticing that H, defined in (31) is symmetric
orthogonal when r, = 7,.

The results corresponding to Theorem 8.1 when N is real, when
N commutes with H or with U, and when H is definite, are all
contained in the theorem of §§4, 5, 7 and so no further discussion
is needed here.

9. The commutator of two normal matrices when it is
normal and commutes with both factors. Recently several papers
have appeared studying the system of matrix equations

(145) C = ABA™'B™, CA = AC, CB = BC.

It turns out to be easy to show that C has roots of unity as eigen-
values, and it is possible, though more difficult, to obtain the necessary
and sufficient conditions that the elementary divisors of C must
satisfy in order for C to be representable in the form (145). Here
we shall study (145) when C, A, and B are normal. We shall obtain
a result analogous to one obtained by I. Sinha [6, 8]. In this §9,
I, is to denote the a-square identity matrix.

THEOREM 9.1. Let N, A, B be normal matrices such that
(146) N = ABA'B, NA = AN, NB = BN .

Then N s unitary and ajfter a simultaneous unitary similarity of
N, A, B we have

(147) N=3rl,,
(148) A=Y [H, H, -, H, UH], ,
(149) B = Y diag (L, 7.1, %L, -+, 7L, .

Here v; is a primitive ki* root of wunity for some k; dividing n,
and o; = n;/k;. Furthermore, H, is a o;-square positive definite
Hermitian matrie and U, is a o;-square unitary matric commuta-
tive with H; 1 <1 =r. Conversely, if N, A, B are as just de-
scribed, then N, A, B are each normal and (146) holds.

Proof. We may begin with N diagonal, as in (147), where
Yo Yo +++, ¥, are the distinet eigenvalues of N. Then NA = AN and
NB = BN force A and B to decompose into direct sums conformally
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with the direct sum decomposition (147) of N. To simplify the nota-
tion we may now consider

(150) vI, = ABA-'B.

Taking determinants, v" = 1. Thus v is a root of unity, say a
primitive k"™ root of unity, so that k divides n. Making a unitary
similarity of (150) we can get B diagonal. From vB = ABA™' it
follows that if 8 is an eigenvalue of B with a certain multiplicity,
7B is also an eigenvalue of B, with the same multiplicity. So we
can let B= B, 4 --- 4+ B, where B; =g, diag(l,, 7L, -+, 7*'L,)
for some o;, with B8f = B% if © % j. Then YBA = AB forces A to
partitionas A = A, + --- + A, with A, = [4;, A+, Ay 1 =1 s,
Again to simplify notation we consider each direct summand indi-
vidually, so let us examine

’YIak = 14B14_-1.B—'1 y
with

B = diag (8L, 781, « -+, v*7'BL,) ,
A= [A1y A29 ] Ak]k .

Let A, = U,H; be the polar factorization of A;,, 1 <7<k Let
W=Ww,+.-- 4+ W, where W, =1,, W,=U,, W,=UU, ---, W, =
U---U,_,. Then WBW* =B and WAW*=[H,, Hy, --+, H,_,, UH,],
for certain positive definite H,, ---, H, and unitary U. So change
notation and let A =[H, ---, H,_,, UH,],.. Then AA* = A*A yields
H:=H}!= ... =H} and UH}U* = H;_,. As the H, are positive
definite these equations imply H, = H,= -.- = H, = H (say) and
UHU*=H. Thus A=|[H, H, ---, H, UH],, as claimed, with U unitary
and commutative with H. The converse is direct.

THEOREM 9.2. The mecessary and sufficient condition that a
normal matric N be representable as a commutator (146) of mormal
matrices are: (i) N ts unitary; (ii) each eigenvalue v of N is a root
of umity satisfying

(multiplicity of v) = 0 (mod (order of 7)) .

If these conditions are satisfied we may take both A and B unitary,
and also both real tf N 1is real.

Proof. It is clear from the formulas (147), (148), (149) how to
choose A and B unitary if N is unitary (take H; to be the identity.)
Suppose N is real. Then N is orthogonally similar to a direct sum
of blocks of the form @,.(p) and diag (—1, —1) where angle ¢ has
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the form ¢ = 2nj/k. Set B = F(0) 4 F(p) + F(2p)+ -+« + F((k — 1)p),
and put A = [I,, I, ---, I,],, where I, is the 2-square identity. Then
?,.(p)BA = AB and @,(p) commutes with both A and B. Moreover

v dieo1 _p [0 T[T 070 1] 0}—1
(151) lag(—’_)_[l OHO —1M1 0} [o —1)

This completes the proof.

THEOREM 9.3. Suppose normal matrices N, A, B satisfy (146).
If one of A or B is Hermitian then N is Hermitian unitary, and
det N = 1. Conversely, if N is Hermitian unitary then (146) holds
where A and B can both be chosen to be Hermitian unitary and
also real if N is real.

Proof. If (146) holds with A Hermitian then one easily sees
that each k; < 2. Thus N is Hermitian, and clearly det N = 1. For
the converse one need only note (151).

THEOREM 9.4. If A or B 1s positive definite in (146) then
N=1

THEOREM 9.5. Suppose N, A, B are real and normal, and (146)
holds with A skew. Then N 1is symmetric, proper orthogonal, and
degree N 1is even. Conversely, if N 1is symmetric and proper
orthogonal with even degree then

N = KSK—'S—, NK = KN, NS = SN

with K skew orthogonal and S symmetric orthogonal.

Proof. For the first assertion use Theorem 9.3 and N =
(tK)S(iK)'S~'. For the converse note (140).
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