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SOME MATRIX FACTORIZATION THEOREMS, II

ROBERT C. THOMPSON

In the first part of this paper a thorough analysis was
made of the matrix equation C = ABA-'B-! when C, A4, B are
normal matrices, Not included, however, was the discussion
of this equation when A and B are real skew-symmetric ma-
trices. In the present paper we complete the investigation by
giving this discussion,

Throughout this paper we adopt the notation and terminology of
part I. We also continue the convention that all matrices appearing
in this paper, except the zero matrix, are to be nonsingular. We
always let K,, K, denote real skew symmetric matrices.

LEMMA 1. Let M be a matrix with linear elementary divisors,
and let M = K,K, be a product of two real skew-symmetric matrices
K, K,. Then each eigenvalue of M has even multiplicity.

Proof. This is a special case of a result of H. Freudenthal [1].
Using the idea of [1], we give a short proof of the lemma. From
M = KK, we get \] — M = (\K;* — K,)K,. For any (real or complex)
eigenvalue N of M, the matrix MK;* — K, is (real or complex) skew
symmetric and therefore has even rank. Because K, is nonsingular,
it follows that AI — M has even rank for each \. Since degree M is
even and M has linear elementary divisors, it follows that the mul-
tiplicity of A as an eigenvalue of M is even.

We are now ready to state our main result.

THEOREM 1. Let N be real and normal. Then N is a commutator
(1) N = K. KKK

of two real skew-symmetric matrices K, K, if and only if N 1is
orthogonally similar to a direct sum of the following five types of
real normal matrices:

(2) diag (7, % 7y 177 , r, > 0,7, > 0;
(3) diag (—r, —r7", —7ry —177), r, > 0,7, > 0;
(4) F(p) + F(o) ;

(5) R.F(p) + R'F(p) + R.F(p) + R;'F(p) , R, >0, R,>0;
(6) diag (1, 1) .
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We remind the reader that

cosp sing
—sing cosq

F(p) = [

THEOREM 2. If real normal N is a commutator (1) with
(7) NK, = K.N

then N 1is symmetric and orthogonally similar to a direct sum of
the types (6), (8), (9):

(8) diag (v, r, =, r7), r>0;
(9) diag (—7r, —7r, —r7', —r7), r>0.

Conversely, if symmetric N is orthogonally similar to a direct sum
of types (6), (8), (9) then N 1is a commutator (1) of two skew matrices
such that (7) holds, and such that K, is also orthogonal. We may,
wn addition, choose K, orthogonal tf N s also orthogonal.

THEOREM 3. If real normal N is a commutator (1) of two skew
matrices K,, K, such that

10) NK, = KN, NK, = K,N
then N Symmetric is orthogonal and satisfies the condition
(multiplicity of eigemvalue —1) = 0 (mod 4) .

(That ts, N s orthogonally similar to a direct sum of the types (6)
and (11):

(11) diag (-1, -1, —1, —1).

Conversely, if N satisfies these conditions then N can be represented
as a commutator (1) satisfying (10) such that K, and K, are both
skew orthogonal.

Proof of Theorem 1. We use the notation in the proof of Theorem
5.7 of [2]. As in that proof, we agree that subscripts attached to a
matrix indicate the degree of the matrix. The only exceptions to
this rule are K, and K,. From (1) we get N7 = (K,K,)"'N(K,K,).
Hence the eigenvalues of N occur in reciprocal pairs. Thus after an
orthogonal similarity of (1) we may assume N is given by (61) of [2]
and that the agreement about the eigenvalues of the direct summands
of N explained below (61) of (2) is in force. Then we derive [2, (62)],
and hence from (K,K,)N'" = N(K,K,) we get
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KK =A,+B 430 Ol ]” Dk’]
2£d1 — a + B + = [,m- 0 + ~ Ak. 0
(12) 2 %

w

+>V K, 4 : [0 qui:l
a T ™ 1 %‘1«; 0/’

where we also have

M“

-,
Il

(13) @ZP,;(QDi)EZpi = EZpiqupi(Qi) ’ 1=i=w,
(14) qui@wi(ei) = @2qi(0i)F2qi ’ 1 g 7/ é t )
(15) F20;020(0:) = Doy (0:) F g, » 1=i=st

Taking the transpose of each side of (12) yields an expression for
K,K,, which when substituted into N(K,K,) = K,K, produces the fol-
lowing formulas:

— T — T — e " / —_ T
Azx - Am '—B/i - Bﬁy sz - 7iCZniy Jki - *Si-Dkiy

(16)
@Zpi(Qi)Ezpi = Ez’[z;i’ Ri@fzqi(ai)qui = %a? .

From these formulas (16) we get by Lemmas 3.4 and 3.5 of [2]
that the following direct summand of K K, is similar to a diagonal
matrix and has real eigenvalues:

2 0 'iCm-
an AH;'[ ! ]

Ch, 0
Similarly the following direct summand of K K, is also similar to a
diagonal matrix and its eigenvalues are all pure imaginaries:

v 0 —‘Sle
18 Bl + 3> .
e w;[% y

Now by (13) and the fifth of equations (16), we find as in the
descussion between equations (70) and (75) of [2] that E,,; is similar
to a diagonal matrix and that the eigenvalues of E,, ; are of the form

51'”0]'_16—%'/2’ Tty ejrpjp;”e—iwlz ’

eg'lp;!]eiwﬁ, ] eg'lpjpg',pjewj/z ’
where each ¢ is 1 and each o > 0. Since the eigenvalues of E,,
appear in conjugate pairs and e’ is not real, we may arrange the
notation so that the eigenvalues of E,,; are
ejllojle_wj/zy R Ejpjlojpje_%./z ’
Silpjlewj/27 ) sjpjlojl'jei‘pjlz ’

19)

where each ¢ is +1 and each p > 0. Thus the direct summand E7,;
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of K.K, contributes the eigenvalues (19) to K,K,. The eigenvalues
(19) are not real and not pure imaginary.

Now we examine the eigenvalues and elementary divisors of the
direct summand

(20) [0 Rid)wj(ej)quj:I ,

F 0

2qj

in K, K,. The matrix (20) is similar to

(21) [ 0 I] .
Ra‘Fququj(pij(ej) 0

Because of (14), when we make the unitary similarity that converts
@,,,(0;) to €’il,; 4 eI, we convert Fy,, to Fq, 4 F,;'. Thus (21) is
similar to

0 I
¢iF,:F), 0 J ,
0 e‘”fF;;*F;;.

J

which in turn is similar to

0 I 0 I
(22) [ $0.: T , :{ + 30T " } °
R,-e"‘ JFq;.quj 0 .Rje v Jqu*qu 0

As in Lemmas 3.4 and 3.5 of [2], we find that the direct summands
in (22) are each similar to diagonal matrices and that the eigenvalues
of (20) have the form

..“':.gg,'1ewjlzy cee, ig;qjewjlz ,

(23) +q" —10/2 +q" —iﬂjlz
Tg;e y * %%y ——gjqje y

where each g > 0. Since ¢"i/? is not real or pure imaginary, and since
the eigenvalues of (20) appear in conjugate pairs, we can arrange the
notation in (23) so that the eigenvalues of (20) are
(24) igjle”{’f, " £y :

:L'gjle—wﬂz! % i‘.g:iqjeuwjlz ’
where each g > 0.

We can now classify the eigenvalues of K K, into three types: (i)
the real eigenvalues, arising from the direct summand (17); (ii) the
pure imaginary eigenvalues, arising from the direct summand (18);
(iii) the not real, not pure imaginary eigenvalues (19) and (24), which
arise, respectively from the direct summands E7,; and
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O %q:
Fn, 0 |’

Since each direct summand of K, K, is similar to a diagonal matrix,
so is K, K,. By Lemma 1, we see that each distinct eigenvalue of
K, K, must have even multiplicity.

Let us first consider the real eigenvalues of K, K,. We study (17).
Let £+ be the number of positive eigenvalues of the symmetric matrix
A, and # Dbe the number of negative eigenvalues of A,. Then by
Lemma 3.5 of [2], the number of positive eigenvalues of (17) is

(25) £+ > m;,
=1
and the number of negative eigenvalues is

(26) 5 4 g m, .

Each of (25), (26) has to be an even integer. If 3.“ m, is even, then
both #* and #~ are even and hence a = £+ + £~ is even. In this event
the direct summands of all the 2,, (r;), 1 = 7 < u, of N can be brought
together in pairs and so classified into (3%, m;)/2 replicas of type (2),
and as « is even, the direct summand I, classifies into «/2 copies of
type (6). If >\*,m, is odd, then both #* and %~ are odd, hence « is
even again. By classifying the direct summand I, into (a — 2)/2 copies
of type (6), and reclassifying one copy of I, as 2,(1), we can now
group together the direct summands of the 2y, (7;) In pairs and so
obtain (1 + >, m,;)/2 sets of type (2). Thus the real eigenvalues of
K K, give rise to types (2), (6).

Now let us consider the pure imaginary eigenvalues of K K,. We
study (18). The eigenvalues of (18) are pure imaginaries of total
number

B+_izlzk¢..

Since the eigenvalues must appear in conjugate pairs, we may count
only the eigenvalue of each pair in the upper half plane, and hence
conclude that (18) has

@7 B2 + 2 e,

eigenvalues in the upper half plane, each of which must therefore
have even multiplicity. (Note that 8 is even since B, is a nonsingular
skew matrix.) Let us reclassify the direct summand —I, of N as
the direct sum of B/2 copies of 2,(—1). Then N has an even number
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of blocks of the type 2,(—7), » > 0; hence we may group these blocks
into pairs of type (3). Thus the type (3) blocks in N arise from the
pure imaginary eigenvalues of K, K,.

We now study the eigenvalues of K,K, not on the real or imagin-
ary axes. These are given by (19), where 1 < j < w, and (24), where
1 <j <t Each eigenvalue in the union of these sets must appear
with even multiplicity. To simplify the discussion, we now change
notation somewhat. We now assume the not real, not pure imaginary,
eigenvalues of N on the unit circle arise from blocks @, (p,) = F(p;),
1 <4 < w, and that the eigenvalues of N not on the real or imaginary
axes nor the unit circle arise from blocks ¥ (R;, 0,), 1 <1 < t. Now,
of course @,(p;) and @,(p;) may have a common eigenvalue if 7 # 7,
but if this happens we arrange matters such that ¢, = ¢,. Also
U (R; 0;) and ¥(R;, §;) may have a common eigenvalue if ¢ j, but
if this happens then the four eigenvalues of ¥ (R,, ;) coincide in some
order with the four eigenvalues of ¥,(R;, 6,). Then in place of (19)
we get the pair of eigenvalues

(28) &0l &;0,6%il%, g ==1,0;>0,

as the eigenvalues of K K, associated with the direct summand @,(p;)
of N, 1 <7< w, and we get the set of four eigenvalues,

(29) igjewjlz, igje—wjlz , g; > 0 ,

as the set of eigenvalues of K, K, associated with the direct summand
U(R;,0;) of N, 1 <j <t Then in the union of the sets (28), (29),
each eigenvalue appears with even multiplicity.

Note that if the two sets

iglewllzy —_l___gle—i(?l/z ;

g, e

have a common eigenvalue, then all four of the eigenvalues in one of
these sets appear in the other set. This situation gives rise in N to
the pairing of the blocks ¥ (R, 6,), ¥ (R,, 6,) and so leads to the block

RF(0,) 4+ RE'F(9) + R.F(9.) + R;'F(0.) ,

of type (5) as a direct summand of N. (A change of notation brings
0, to equal 6,.) Deleting such pairings from the sets (29), we obtain
a new smaller collection of sets (26), (29) of eigenvalues such that
each eigenvalue appears with even multiplicity in the union of these
sets and such that no common eigenvalue appears in two of the sets
(29).

Now the eigenvalue equal to
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&,0,6°1

may appear in some other set (28). (We don’t have ¢,0,e"1* = ¢,0,674/2.)
So assume that ¢,0,61”* is one of

62‘026—'5‘4’2/2’ 52(0267:492/2 .

Then p, = p,. We can’t have ¢e“* = g,e~*2/* gince then F(p,), F(p,)
have a common eigenvalue and @, # @,. So €0, = ¢,0,6%/*, hence
e = ¢*2, so that ¢, = ¢,. Thus we get a direct summand F(p,) + F(p,)
in N, and moreover after deleting

&.0.67 ", 60,607

€,0,672%, £,0,6'71%

from the union of sets (28), the eigenvalues remaining in the sets
(28), (29) each appear with even multiplicity.

Thus we may reduce ourselves to the situation where different
sets (28) do not have a common eigenvalue, and different sets (29)
do not have a common eigenvalue. In this circumstance we must
have for a certain choice of the + sign and perhaps after a nota-
tional change (including possibly the change of 6, to —6,),

(30) 60,6 = +g,6*
Then
(31) Elple_—iwl/z = g,

and so Fg,6"* must also appear in one of the sets (28), say

(32) F 0.6 = g0, ,

(It may be necessary to replace ¢, with —g¢, to achieve (32).) Then
(33) Fg.e7 " = g7

In this case the four eigenvalues of the set (29) with 7 = 1 find their
partners in the sets 7 =1,7 =2 of (28). After deleting from (28)
the pairs with j =1,2 and deleting from (29) the set with 7 =1,
the eigenvalues in the remaining sets (28), (29) must still have even
multiplicity.

The equations (30), (32) imply g, = o, = 0,, and €1 = ¢# = ¢
and so 6, = ¢, = @,. Thus, before we changed the signs of 4,, 6,, we
had 6, = +¢, = +¢,. Without loss of generality we may make a
diagonal similarity of N to achieve 6, = ¢, = ¢,. We now group
together the following direct summands of N:
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(39) R.F(0,) + R'F(6,) + F(p) + F(p) -

This block (34) can be classified under the type (5) with R, = 1.

Thus we have demonstrated that N is orthogonally similar to a
direct sum of types (2)-(6).

For the converse we express each of the types (2)-(6) in turn as
a commutator of two skew symmetric matrices.

Let N = diag (», %, 7, 77). Put

0 00—yl 0

0 0 0 -1
(35) K, = )
riffpt Q0 0 0
0 1 0 0
0 0 0 1
0 0 riltpst2
36 K, =
( ) 2 O _,',,i/zq,.;x/z 0 0
-1 0 0 0
Then

KK 0 »7] . 0 riltry?
o Y L PO

Taking the transpose we obtain K,K, and then we easily see that
NK,K, = K. K,.
Now let N = diag (—», —r, —r, —7;%). Let

0 0 1-;/2/,.12/2 0

; X o 0 0 -1
@7 T e 9 0
0 1 0 0

and let K, be given by (36). Then N = K. K,K'K;".
Now let N = diag (1,1). Put

01
k-k-| | |
-1 0

Then N = K K,K'K;".
Next let N = F(p) + F(p). Let 6, 6, be any two angles with
0, — 0, = p/2. Put

[ 0 G [0 G
K‘_[—Gwo OJ’KZ"[—GW 0]
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(The matrix G(0) is described in [2].) Using Lemma 3.3 of [2], we
see that N = K. K,K;'K;*. Clearly K,, K, are skew orthogonal.

Finally let N = R F(p) + R'F(p) 4 R.F(p) + R;'F(¢). Letd,,0, a,,
a, be any four angles such that ¢ =6, + 6, — a, — a,. Put

S 0 (RER)"GOH) 0
- 0 0 0 6o
@ K=l rrycey o 0 0
L 0 —G(0,) 0 0
S 0 0 (RJR)"G()
- 0 0 G 0
(39) K, = 0 —G(a,) 0 0
_G@)BJR)" 0 0 0

Using Lemma 3.3 of [2],

Kle _ [ 0 _(R1RZ)II2F(01 - az):l

—(R,/R)"F (0, — @) 0

. [ 0 _RZF(01 - al)
TL_FE, - a) J '

By taking transposes one finds K,K,. It is then a simple matter to
verify that NK,K, = K,K,.
The proof of Theorem 1 is now complete.

Proof of Theorem 2. From (1) and (7) we see that N is a com-
mutator of the Hermitian matrices 1K, 1K,, commuting with K,.
By [2, Th. 4.2] it follows that N is symmetric. The formula (61) of [2]
therefore simplifies to

(40) N=I+ -1+ Z{ QZmi(ri) + ;::1, szi(_si) )

where r; > 1, s; > 1, and distinct direct summands in (40) do not have
a common eigenvalue. Then, as in the proof of Theorem 1, we obtain

« [0 C,. v 0 D,
41 KK, = A, 4+ Bs + >7 ST .
(41) + ﬂ+i‘§[Fmi O:]+i§f[dki OJ
From NK, = K,N we see that K, has the the form
«w [ W,. 0 v [X,. 0
42 K=U,+ Vs+ > L. Sy LU I
“2) s WM]JF;[O X}

The direct summands in (42) must each be skew. Thus «, B, m,, k;



820 ROBERT C. THOMPSON

all must be even. Then each 2,,(r;) is the direct sum of m,/2 copies
of type (8) and each 2, (—s;) is the direct sum of k;/2 copies of type
(9). Furthermore I, is the direct sum of «/2 copies of (6). If we
can prove that 8 = 0 (mod 4) then we can classify —I, as the direct
sum of B/4 copies of type (9).

From the forms (41) of K,K, and (42) of K,, it follows that a
direct summand Y, of K, exists such that B, = Y,V;. We also have
(see (16)) B, = —B]; hence B, is a real skew matrix which is the
product of two other real skew matrices. By Lemma 1 we know that
each eigenvalue of B, has even multiplicity. Thus the eigenvalues
of B, come in sets of four of the form i, i, —ri, —7i, with » > 0.
This implies 8 = 0 (mod 4).

The conditions of Theorem 2 are therefore necessary. To prove
sufficiency, we examine types (8), (9), (6) in turn.

Let N = rI, + r~'I,. Set

0 17 . 0
(43) Kl{_l O}r[_w 0]
0 I,
(44) K, = [—Iz O:| .

Plainly K, is skew orthogonal. It is easy to see that N = K. K,K;'K;*
and NK, = K,N. This works whether r is positive or negative. Now
let N = I,, Here we may take

K_K_[ 0 1}
S I B N

and again K, is skew orthogonal. The proof of Theorem 2 is complete.

Proof of Theorem 3. By [2, Th. 9.1], N is unitary; hence in
types (8) and (9) we have » = 1; and so we obtain types (6) and (11).
Conversely, if N is given by (11), then let K, be given by (43), with
r = —1 in (43), and let K, be given by (44). Then (1) and (10) are
satisfied.

THEOREM 4. Let N be positive definite symmetric and n-square.
Then N is a commutator (1) of two skew symmetric matrices K,, K,
if and only if:

(i) for m =0 (mod 4), N s orthogonally similar to a direct
sum of blocks of the type diag (r, ), r > 0;

(ii) for n =2 (mod 4), N s orthogonally similar to

diag (1,1) + N, ,
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where N, satisfies the condition (t).

THEOREM 5. Proper orthogonal & is a commutator
o = KK,K'K;*

of two skew symmetric matrices if and only if:

(1) each eigenvalue v of 7 for which v # —1 has even multi-
plicity;

(ii) the eigenvalue v = —1 of < has multiplicity =0 (mod 4).
If these comditions are satisfied, we may choose both K, and K, to
be skew orthogonal.

Proofs. These results follow by observing what happens to types
(2)-(6) when N is positive definite or orthogonal. The proof of Theorem
1 showed how to choose K,, K, to be skew orthogonal if N is orthogonal.

THEOREM 6. Letn = 0 (mod 4). Let S be positive definite sym-
metric and n-square and let det S = 1. Then

S = (K. KKK (KKK K )

1s a product of two commutators of skew symmetric matrices.

Proof. By Fan’s factorization applied to S, we write S = S.S,
where S, and S, satisfy the conditions of Theorem 4.

THEOREM 6. Let m =0 (mod 4). Let ° be proper orthogonal
and n-square. Then

o = (KKK K ) (K KKK
18 @ product of two commutators of skew orthogonal matrices K,, K,,
K, K..

Proof. Any proper orthogonal »~ is orthogonally similar to a
direct sum of blocks of type F(p,) + F(p.,). But
Fip) + Flp) = (F(e) + Fa))(F(e) + F(—a)

where a, = (p, + 9,)/2, a, = (p, — @,)/2. Each of

Fla) + F(a), F(a,) + F(—a,)

satisfies the conditions of Theorem 5.

THEOREM 7. Let m =0 (mod 4). Let A be any real n-square
matric with det A =1. Then
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A = (K.KKK;) (KK K KO ) (KKK K ) (KKK KT

1s a product of four commutators of real skew symmetric matrices,
with K, K, K,, K; all skew orthogonal.

Proof. Use the polar factorization theorem, as in [2], in com-
bination with Theorems 5 and 6.

THEOREM 8. Real normal N is a commutator (1) with K, skew
and K, skew orthogonal, if and only if N 1is orthogonally similar
to a direct sum of types

diag (v, 7, v, ™), >0,
diag (—», —r~%, —r, —r™), r>0,
diag 1, 1),
F(p) + F(o) ,

RF(p) + R~'F(p) + RF(p) + R™'F(p) , R>0.

Proof. Sufficiency follows from sufficiency part of the proof of
Theorem 1. Necessity follows by using the condition (i) of Theorem
7.10 of [2] and reclassifying the types (2)-(6) of Theorem 1 above.

The author wishes to thank Mr. David Riley for his assistance
in the preparation of this paper.
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