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LOCALLY COMPACT SPACES AND TWO CLASSES
OF C*ALGEBRAS

JOHAN F. AARNES, EDWARD G. EFFROS AND OLE A. NIELSEN

Let X be a topological space which is second countable,
locally compact, and 7,, Fell has defined a compact Hausdorff
topology on the collection Z (X)) of closed subsets of X, X
may be identified with a subset of Z°(X), and in the first
part of this paper, the original topology on X is related to
that induced from Z°(X). The main result is a necessary
and sufficient condition for X to be almost strongly separated.
In the second part, these results are applied to the primitive
ideal space Prim (A) of a separable C*-algebra A, giving in
particular a necessary and sufficient condition for Prim (A)
to be almost separated. Further information concerning ideals
in A which are central as C*-algebras is obtained,

Most of the theorems in the paper were suggested by the results
for simplex spaces recently obtained by Effros [10], Effros and Gleit
[11], Gleit [14], and Taylor [17]. The notion of a simplex space was
introduced by Effros in [9]. If 2 is a simplex space, then max ¥,
P,), and EP,(Y) denote the closed maximal ideals in 2, the bounded
positive linear functionals on 2 of norm at most one, and its set of
extreme points, resp., the first set provided with the hull-kernel
topology and the latter two sets with the weak* topology. The
sets max U and EP,(N)-{0} are in a natural one-to-one correspondence,
but the topologies do not agree in general. Information about the
simplex space %A can be obtained by comparing these two topologies
(see [11], [14], [17]).

In trying to develop an analogous theory for a C*-algebra A,
the first problem is to decide on replacements for max 2, P,(), and
EP, (). For simplicity, assume that A is separable and has a T,
structure space. An obvious substitute for max  is the structure
space of A, Prim (4) (the primitive ideals in A, or in this case the
maximal proper closed two-sided ideals in A, with the hull-kernel
topology). To replace P(X) and EP,(N) by the corresponding sets of
linear functionals on A does not seem to lead to a fruitful theory.
Instead, P,(XA) and EP,(A)-{0} are replaced by N(A) and EN(A)-{0},
resp., where N(A) is the compact Hausdorff space of C*-semi-norms
on A, and EN(A) is the set of “extreme” points of N(A) (see [4;
§1.9.13], [8], [12]). Then Prim (4) and EN(A)-{0} are in a natural
one-to-one correspondence which is in general not a homeomorphism.
By identifying these sets, the primitive ideals in A are endowed with
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2 J. F. AARNES, E. G. EFFROS AND 0. A. NIELSEN

two topologies. Regarding Prim (4) as a subset of & (Prim (4)), the
identification of Prim (A) and EN(A)-{0} extends naturally to a homeo-
morphism of & (Prim (4)) and N(A). Thus the second topology on
Prim (4) is just its relative topology in & (Prim (A4)). It is therefore
natural to attempt to formulate those theorems about a simplex
space 2 which involve only the two topologies on max ¥ in terms of
a locally compact space X and the associated space & (X).

The paper is organized as follows. §2 contains theorems which
relate the topology of X to that of &’ (X). The applications to
C*-algebras are in § 3. Two classes of C*-algebras, called GM- and
GC-algebras, are investigated; they correspond to the GM- and GC-
simplex spaces of [11]. A C*-algebra is a GM-algebra if its structure
space is almost strongly separated, and a GC-algebra if it has a
composition series (I,) of closed two-sided ideals such that the I,.,/I,
are all central C*-algebras. These algebras were studied by Delaroche
[2], who in particular showed that the GC-algebras are just the GM-
algebras with only modular primitive ideals. A new proof of this
fact (Theorem 3.7) is included. Finally, § 4 points out how the GM-
and GC-algebras are related to some of the classes of C*-algebras in
the literature.

2. Locally compact spaces. Throughout this section X is assumed
to be a locally compact topological space satisfying the T, separation
axiom. Recall that X is T, means that if x, ye X are such that
{x}= = {y}~ (bar indicates closure), then = = y, and that X is locally
compact means that if ze X, then each neighborhood of % contains a
compact neighborhood of x. It is important to remember that although
a closed subset of a compact set must be compact, the converse need
not be true in a non-Hausdorff space. Let X, denote the closed
points in X, i.e., those # for which {x}- = {z}. If X = X,, then X
is said to be T..

The following construction is due to J. M. G. Fell [13]. Let & (X)
denote the collection of all closed subsets of X. The function \ =
At X > & (X): 2 — {x}~ is one-to-one. If C is a compact subset of
X and if & is a (possibly empty) finite collection of open subsets
of X, then Z/(C; &) will denote the collection of all those F e & (X)
such that FNC=@ and FNG+* @ for each Ge . The sets
72/(C; &) form a Dbasis for a compact Hausdorff topology on
Z(X) [13]. It is readily verified that a net (F,) in &(X) will
converge to an element F' in &°(X) if and only if (1) for each z in
F and neighborhood N of x, eventually F,N N # ¢, and (2) if P is
the complement of a compact set with F < P, then eventually F, C P.
This topology is metrizable whenever X is second countable [6;
Lemma 2] (see Corollary 2.7 for a partial converse). A simple argu-
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ment will prove

LEMMA 2.1. (1) M s open onto its image, and (2) X is Hausdorff
if and only if M X — MX) is a homeomorphism.

The first object is to find sets on which A restricts to a home-
omorphism. A set 9 Cc&(X) will be called dilated if xcF for
some F e 7 implies that Mx)e 7. In particular, if Fe%(X), the
set F+ = {Fe&(X): E CF} is compact and dilated.

LEMMA 2.2. If 9 1is a compact and dilated subset of & (X),
them N~ (77) s closed.

Proof. Suppose that x,€ X and z,¢\*(Z"). Say Fe. 7. As
7 is dilated, z,¢ F, and so there is a compact neighborhood C(F)
of x, which is disjoint from F. The sets ' (C(F); @), Fe. 7, form
an open covering for .7; hence there are sets F,, ..., F,e€.Z such
that

T cU#(CF); D).

Suppose e C = N,C(F;) and Mx)e. 7. Then Mzx) N C(F,) = @ for
Some 1, hence x¢ C(F;), a contradiction. This shows that C is a
neighborhood of x, which is disjoint from \—*(.27).

If T is a subset of X,, then MT) is dilated; hence

COROLLARY 2.3. If T ¢s a subset of X, for which \MT) is com-
pact, then N restricts to a homeomorphism of T onto M(T).

The following shows that convergence in X is closely related to
that in €°(X). The trick employed in the proof of (ii) was used by
both Gleit [14] and Taylor [17].

THEOREM 2.4. (i) Let (x,) be a met in X such that Mz, — F
Jor some Fle €(X). Then x,— x for any x € F.

(ii) Let (x,) be a sequence in X, such that \x,) — F for some
Fe&(X). Then the limit points of the set {x,:x = 1} lie in F.

Proof. (i) Say xzeF, and let G be an open set containing x.
Then since F'N G # @, eventually Mx,) N G # &, hence 2, G.

(ii) For each m the set {\(z,):n = m}U F* is both closed and
dilated, hence its inverse image F,, = {x,:n = m} U F is closed. If x
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is a limit point of {x,:n = 1}, it must lie in each of the sets F,, and
thus is an element of F.

COROLLARY 2.5. Suppose that X 1s second countable. If
@ eMX)~, then neither X, nor X can be compact.

Proof. #(X) is metrizable, hence there is a sequence (x,) in X,
with Mz,) — @. It follows from Theorem 2.4 (ii) that no subsequence
of (x,) can converge to a point in X.

COROLLARY 2.6. Suppose that MX)~ s first countable (this is
the case if X is second countable), and that T is a compact subset
of X,. If FeZ(X)and TNF = @, then M(T)-NF* = Q.

Proof. If EeN(T)~ N F*, there is a sequence (x,) in T with
Mz,) — E. Since T is compact, the set {®,: » = 1} has a limit point »
in T. Then xe¢FE from Theorem 2.4 (ii), and since EeF*, zeF.
But this is a contradiction.

COROLLARY 2.7. Suppose that X ts locally compact and T, If
MX)~ s second countable, then so is X.

Proof. Let 7, 7, --- be a basis of open sets for the topology of
MX)—; with no loss in generality, the sets .77, may be assumed to
be closed under finite unions. Suppose that an xe X and an F e & (X)
with « ¢ F' are given. It is sufficient to show that for some %, A (.7,)
contains & in its interior and is disjoint from F. Using the local
compactness of X, choose a compact neighborhood C of z disjoint
from F. Corollary 2.6 and the fact that F'* is closed give

MC)y eMX)™ - Fr = U7,

for suitable integers n,. As MC)~ is compact and as the .7, are
closed under finite unions, there is an n for which 7, N F* = @ and
MC) < 7,. This completes the proof.

The following will be useful in § 3.

COROLLARY 2.8. Suppose that X 1s second countable and that
[ & (X)—[0, ) is continuous and monotone in the sense that E,
Fe#(X) and ECF imply f(E) < f(F). Suppose further that
FOM@)) > 0 for all x in some compact subset T of X,. Then there
is an @ > 0 such that f(\Mx)) = a for all xe T. '
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Proof. If there is no such «, choose a sequence (x,) in T such
that f(M(z,)) — 0. Using first the compactness of Z°(X) and then
that of 7T, it may be assumed that \(x,) — F for some F e & (X)
and that x, — 2 for some x€ T. From Lemma 2.4 (ii), it follows that
xeF. Consequently, 0 < f(\M2)) < f(F') and f(F) = 0, a contradiction.

For simplex spaces, the following result is due to P. D. Taylor.

COROLLARY 2.9. Suppose that X s second countable and that f
18 a continuous complex-valued function on MX)~. For each xe X,
let c(x) denote the set of all those F e \X,)~ which contain x. Then
fox 18 continuous on X, if and only if f is constant on the sets
c(x), e X.

Proof. Notice that M(x) € c(x) for each x € X,. Suppose that fo:
is continuous on X,. Say xe X, and Fec(x). Then there is a sequence
(x,) in X, such that \(z,) — F. From Theorem 2.4 (i), «, — x, and

JF) = lim f(M(x,)) = fM@)) -

Conversely, suppose that f is constant on the c¢(z), 2 € X,. Let (z,)
be a sequence in X, converging to an 2z € X,. To show that

SM@,)) = F(M@))

it is sufficient (since f(A(X))) lies in the compact set f(A(X,)~)) to show
that every convergent subsequence of f(M(x,)) converges to f(\x)).
Passing to a subsequence, suppose that f(:n(z,)) — « for some complex
number «. Using the fact that & (X) is a compact metric space
and passing to a further subsequence, it may even be assumed that
Mzx,) — F for some FenX)~. Then from Theorem 2.4, (ii), x e F,
i.e., Fec(x), and therefore

JfOM@) = fF) = lim f(Mz,) = & .

If G is a nonempty open subset of X, then G is locally compact
and T, in its relative topology. Let po be the map F—F NG of
Z(X) onto Z(G), and let o, be its restriction to Ax(G). Then
Ogohy = A¢ and o, is a bijection of Mx(G) onto Ae(G). Using the fact
that G is open in X, it is easily checked that o, is continuous; how-
-ever, oy is in general not a homeomorphism.

LEMMA 2.10. Let G be a nonempty open subset of X, and suppose
that MX)"cMX)U (X — G)*. If 7 1is a subset of Nz (G) and if
04(77) is compact, then so is 7.
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Proof. As p, is continuous,
0s(T ) Clo(ITI™ = [0a(I)]~ = 0s(T7) TNl @)
and since @ ¢1,(G), 7 NX - G* = @. But
T M)y MU X -GG U X -,
so that .77~ is contained in \x(G), the domain of o,. Since
0o(T™) = P T ™) C (T

and 0, is one-to-one, .7~ must be closed in & (X).

A point ¢ in X will be said to be strongly separated in X if
for each y # wx, there are disjoint neighborhoods of x and y (i.e., ®
is closed, and separated in the sense of [3; §1]). A nonempty subset
Y of X will be called strongly separated in X provided each of its
points is strongly separated in X. Finally, X will be called almost
strongly separated if each nonempty closed subset F' of X contains
a nonempty relatively open subset G which is strongly separated in
F' (equivalently, every open subset U of X distinet from X is properly
contained in an open subset V such that V — U is strongly separated
in X— U).

PrOPOSITION 2.11. A mnonempty open subset G of X s strongly
separated in X if and only if MX)~cMX) U X — G)*.

Proof. Assume first that G is strongly separated in X. Suppose
that there is a net (x,) in X and an F ¢ MX)) U (X — G)* such that
Mx,) converges to F. Then F' must contain two distinet points, at
least one of which is in G, which is impossible by Theorem 2.4 (i).
Conversely, suppose that M(X)~ cMX)) U (X — G)*. From this inclu-
gion it is immediate that G < X,. As p;(M(X)~) is compact and contains
2e(G),

Ae(G)™ C P(MX)7) Che(@) U {D}

and therefore A(G) U {@} is compact. For any relatively closed sub-
set 7 of M(G), 9 U{®@} is compact and dilated, hence \;'(7") is
a closed subset of G in the relative topology (Lemma 2.2). This
shows that A, is continuous; since it is always open onto its image,
Ae is a homeomorphism and G is Hausdorff. To show that G is
strongly separated, suppose x€G and y ¢ G are given. Let UC G be
a compact neighborhood of x; it will suffice to show that U is closed
in X. As 2(U) is compact and as A (U) = 0,0 x(U)), Nz (U) is
compact (Lemma 2.10). A(U) is dilated since Uc X, and so U =
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A (ve(U)) is closed, by Lemma 2.2.

A topological space which is a countable union of compact sets
will be called a K,.

LemMmA 2.12. If X is second countable and if G is an open
nonempty strongly separated subset of X, then A\ (G) is K,.

Proof. Since G is Hausdorff, \:(G)~ < 1e(G) U {@} by Proposition
2.11, and 2\g(G) is locally compact. Now Z(G) is second countable,
for as G is second countable, Z°(G) is a compact metric space [6;
Lemma 2]. Therefore \(G) is K,. The equality M;(G) = 0;(\x(G)),
Lemma 2.10 and Proposition 2.11 now imply that rz(G) is K,.

LEMMA 2.13. Let E be a nonempty closed subset of X. Then
the map 0:E*+— & (E) defined by O0(F)=F for all FeE* is a
homeomorphism onto, where E* has the relative topology from & (X).

Proof. That 6 is a bijection is clear. Since E* is compact
Hausdorff, it is enough to show that 6 is continuous. But this
follows from the definition of the topologies and the fact that % is
closed.

LEMMA 2.14. If X is almost strongly separated, so is any non-
empty subset of X which is either open or closed.

Proof. See [11; §3].

THEOREM 2.15. Suppose that X is second countable, locally com-
pact, and T,. Then X is almost strongly separated if and only if

1) Xas T,

2 MX) is K, and

3) every monempty closed subset of X is second category in
itself.

Proof. Say that (1)-(3) hold. Let F' be a nonempty closed sub-
set of X. Then F is T, and second category, and \q(F') is K, by
Lemma 2.13. Replacing F by X, it is therefore sufficient to show
that if X satisfies (1) and (2) and is second category, then X contains
a nonempty open strongly separated set. Write MX) = Uro T,
where each 7, is compact. Since the 7, are dilated, the N '(.77)
are closed by Lemma 2.2. X is second category, hence for some ,
AY(7,) contains a nonempty set G which is open in X. As M (.7,)
is closed in X and is Hausdorff in the relative topology (Corollary
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2.3), G is strongly separated in X.

Conversely, suppose that X is almost strongly separated. By a
transfinite induction (see [11; Proposition 3.1]), there is an ordinal «,
and a family (G,) of open subsets of X, indexed by those ordinals «
with 0 £ @ < &, such that: (i) G,= @2, G,,=X; (i) if a2, is a
limit ordinal, then G, = U;s<. G and (iii) if o < «,, then G,C G,y
and G,,, — G, is a nonempty strongly separated subset of X — G,.
To see that (1) holds, say xe€ X. Let 8 be the least ordinal such
that xe€G;. By (ii), 8 cannot be a limit ordinal; let « + 1 = 5.
Then ¢ €G,., — G,, 8o that {x} is closed in X — G,, and therefore
in X.

The natural map 6, of (X — G,)* onto (X — G,) is a home-
omorphism, where (X — G,)* has the relative topology from & (X)
(Lemma 2.13). Since 6, carries Ag(G., — G.) onto Ny g (Gar: — Go)
and since the latter is K, by (ili) and Lemma 2.12, A (G,+; — Go)
must be K,. Now

X = Ua<a0(Ga+1 - Ga)

by the above and «, is countable (see [16; §19, II]), so (2) holds.
If F,F, ... are closed and nowhere dense subsets of X, then
FnG,F,NnG, --- are closed and nowhere dense in the relative
topology of G,. Being locally compact and Hausdorff, G, is Baire, so
the F, N G, do not cover G,. Thus X is second category. By Lemma
2.14, this is enough to show that (3) holds.

COROLLARY 2.16. If X is second countable and almost strongly
separated, then all nonempty closed and all nonempty open subsets
of X are Baire.

Proof. This follows from Lemma 2.14 and Theorem 2.15.

Suppose that X is second countable. If all nonempty -closed
subsets of X are Baire, then MX) is G; [6; Th. 7]; in view of [16;
§ 30, VI], this fact may be useful in deciding whether X satisfies
(2) of Theorem 2.15. As examples in §4 will show, (1) and (2) are
independent of one another even if all nonempty closed subsets of X
are Baire. The set of integers with the Zariski (or cofinite) topology
is second countable, locally compact, T, and satisfies conditions (1)
and (2), but not (3), of Theorem 2.15.

3. C*.Algebras. Let A be a C*-algebra. Throughout this
section and the next, an ideal in A will always mean a closed two-
sided ideal. Let Z(A) be the center of A4, and let Id(A) [resp.,
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Prim (A4), Max (A), and Mod (4)] donote the set of all ideals [primi-
tive ideals, maximal ideals, and modular ideals] in A. For ac 4 and
Icld (A), define a(l) as the canonical image of a in A/I and I* as
the set of all those ideals J in A which contain I. Prim (4) with
the hull-kernel topology (sometimes called the structure, or Jacobson,
topology) is the structure space of A. The following facts about the
structure space (see [4]) will be used frequently without explicit
mention: its closed points are the elements of Max (4); it is locally
compact and T,; it is second countable whenever A is separable; and
I— Prim (4) N I* is a one-to-one correspondence between Id (4) and
the closed subsets of Prim (A). The weakest topology on Id (4)
making each of the maps I—|a(l)]], acAd, continuous will be
called the weak* topology on Id (4). It is not hard to show that
I—Prim (A) N I* is a homeomorphism of Id(4) onto & (Prim (4))
which restricts to A on Prim (A) and carries I* onto (Prim (4) N I*)*
(where the second L is taken in the sense of §2) [12, Th. 2.2]. In
what follows, Id (4) and & (Prim (4)) will be identified. Recall that
if A is separable, Id (4) and Prim (4) with the weak* topology may
be identified with the spaces N(A) and EN(A)-{0} of §1.

In view of the above, the results of §2 may be applied to
C*-algebras. Save for one, these will not be explicitly mentioned.
For any ac A4, I—|la(l)]| is a function of the type described in
Corollary 2.8. This has the following amusing consequence: If A is
separable and if T is a structurally compact subset of Max (4), then
U{P: Pe T} is a norm-closed subset of A.

A nonzero ideal I in A will be called an M-ideal in A if
Prim (4) — I* is a strongly separated subset of the structure space
of A, and A will be called an M-algebra [resp., a GM-algebra] if the
structure space of A is Hausdorff [almost strongly separated]. Clearly
A is an M-algebra if and only if A is an M-ideal in itself. Using
[4; §3.2], it is easily verified that A is a GM-algebra if and only if
every nonzero quotient of A contains a nonzero M-ideal.

PRrROPOSITION 3.1. The following are equivalent for a mnonzero
ideal I in o C*-algebra A:

@A) I s an M-ideal

(2) Prim (A)- < Max (A) U I*, where Prim (A)~ 4s the weak*
closure of Prim (4) in Id (4)

(3) for each acl, P— || a(P)]| is continuous on Prim (4) in the
structure topology.

Proof. (1) = (2): This is Proposition 2.11.
1), (2)=(3): Suppose that an acl and an « > 0 are given.
The map p — || a(P)]| is lower semi-continuous on Prim (4) with the
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structure topology, so it is enough to show that T = {Pe Prim (4):
||a(P) || = a} is structurally closed. Now 7T is a structurally compact
subset of Prim (4) — I*, and as I is an M-ideal in A4, Prim (4) — I*
is Hausdorff in the relative structure topology. The map ¢ which
sends P into PN I is a homeomorphism of Prim (4) — I'* onto Prim (I)
for the structure topologies, hence the structure space of I is Hausdorff.
From Lemma 2.1, this means that the structure and weak* topologies
coincide on Prim (I). Then o(T) is a weak* compact subset of Prim (1),
and T is a weak* compact subset of Prim (4) (Lemma 2.10). Since
T is contained in Max (A4), it is dilated and therefore structurally
closed by Lemma 2.2.

3)=(1): Say PePrim(A4) — I* and @ <Prim(4) are distinct.
If Qel*, choose an ael with ||a(P)|| =2. Then {RePrim (A4):
lla(R)|| > 1} and {RePrim (4): ||a(R)|| < 1} are disjoint structurally
open sets containing P and @, resp. Now suppose that Q¢ I‘. For
RePrim(4) — I* and ael, RN IePrim (I) and

(BN )|} = max {|[|a(E) || , [[a(D) |} = [a(E) ]| .

This equality together with the homeomorphism ¢ of the previous
paragraph implies that the structure and weak* topologies on Prim (1)
coincide, and therefore that Prim (A) — I* is Hausdorff in the relative
structure topology. As Prim (4) — I* is a structurally open subset
of Prim (A4), there are disjoint structure neighborhoods of P and Q.

THEOREM 3.2. If A s a separable C*-algebra, then Prim (A) vs

a G5 in the weak* topology, and A is a GM-algebra if and only if
(1) Max (A) = Prim (4), v.e., the structure space of A s T, and
(2) Prim (A4) s K, in the weak™ topology.

Proof. This is an immediate consequence of Theorem 2.15, [6;
Th. 7], and the fact that all nonempty closed subsets of the structure
space are Baire [4; Corollaire 3.4.13].

Section 4 contains examples which show that neither (1) nor (2)
is a consequence of the other, even for separable C*-algebras. This
completes the analogy between GM-simplex spaces and GM-C*-algebras.
In studying the second class of C*-algebras, the following two lemmas

will be useful.

LEMMA 3.3. For any ideal I in a C*-algebra A, Z(I) = INZ(A).

Proof. See [1; Lemma 6].

LEMMA 3.4. The following are equivalent for a C*-algebra A:
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(i) Z(A) & P for each PePrim(A) and the structure space of
A is Hausdorff, and

(ii) P—PNZA) 1is a one-to-one map from Prim(4) into
Prim (Z(A)).

If these conditions are satisfied, then the map tn (ii) is a homeo-
morphism of Prim (A) onto Prim (Z(A)) for the structure topologies.

Proof. For the equivalence of (i) and (ii), see [1; Proposition 3]
or [18; Corollary 3.1.2]. The last statement is contained in [15; Th.
9.1].

A C*-algebra satisfying one of the equivalent conditions of the
last lemma is called central; for other equivalent definitions, see [1;
Proposition 3].

Several results from [7; §4] will now be recalled. Consider an
ac Z(A) and a primitive ideal P in A. Choose an irreducible repre-
sentation 7 of A with kernel P. As w(a) is in the center of w(A),
it must be a multiple a of the identity operator on the space of =.
Then 7(a)w(b) = ax(b), i.e., ab — abe P, for all be A. This last con-
dition determines « uniquely, and shows that it depends only on P
(and not on 7). Set f,(P) = a. The function f, is clearly bounded
on Prim (4). It is easy to show that ¢(a) = f.(P) for any ¢ e 6-'(P),
where 6 is the natural mapping of P(A), the pure states on A4, onto
Prim (4). Because 6 is an open map,

f(U) = {PePrim (4): fo(P) € U}
= 0({p e P(4): f.(6(p)) € U})
= 0({p € P(4): p(a) € U})

is structurally open for any open set U of complex numbers. This
shows that f, is structurally continuous. If A is central, then
PePrim (A) implies PN Z(A) € Max (Z(A)) = Prim (Z(4)), and regard-
ing ae Z(A) as a function on Max (Z(4)), fo(P) = a(P N Z(A)). Since
Z(A) = Cy(Max Z(A)), we may identify the functions f, with C,(Prim (4)).

A C*-algebra A will be said to have local tdentities if given
P, e Prim (A), there is an a € A such that a(P) is an identity in A/P
for all P in some structure neighbourhood of P,. A nonzero ideal I
in A will be called a C-ideal in A if I is a central C*-algebra. A
will be called a C-algebra if it is a C-ideal in itself (i.e., is central),
and a GC-algebra if every nonzero quotient of A contains a nonzero
C-ideal.

PROPOSITION 3.5. A mnonzero ideal I m A ts a C-ideal if and
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only if it is an M-ideal with local identities.

Proof. Suppose that I is a C-ideal. Let P and Q be distinct
primitive ideals in A with P¢I*. If Q¢ I, then since I is central,
PnZ(I) and QN Z(I) are distinct maximal ideals in Z(I) hence
there isan ae€Z(I) c Z(A) with f,(P)# 0 and f,(Q) =0. If Qel,
let @ be any element of Z(I) with a(P) = 0. Then f, will provide
digjoint neighborhoods for P and @, and A is an M-ideal.

Thus it suffices to show that a C*-algebra A is a C-algebra if
and only if it is an M-algebra with local identities. If A is a
C-algebra, Z(A) may be identified with C,(Prim (4)), hence it is trivial
that A has local identities. Conversely, suppose that A is an M-algebra
with local identities. Say P,ePrim (4), and choose an a €A such
that a(P) is an identity in A/P for all P in some neighborhood T of
P,. Consider a continuous bounded complex-valued function f on
Prim (A) with f(P,) = 1 and whose support is contained in 7. From
the Dauns-Hofmann theorem (see [7; §7]), there is a be A such that
b(P) = f(P)a(P) for all PePrim(A). Then (be — cb)(P) =0 if cc A
and P e Prim (4), so that be Z(A4). Since b¢ P,, A must be a C-algebra.

LEMMA 3.6. For a monzero C-ideal I in A,

Q) P—|la(P)]| ts structurally continuous on Prim (A) — I* for
each ac A, and

(2) Prim (4)~ < [Max (4) N Mod (A)] U I*.

Proof. To prove (1), fix ae A, and suppose P, e Prim (4) — I* is
given. It is sufficient to show that P—||a(P)|| is structurally con-
tinuous on some structure neighborhood of P,. From the structure
homeomorphism of Prim (4) — I* onto Prim (I) and the fact that I
has local identities, there is a structure neighborhood T of P, con-
tained in Prim (4) — I* and a beI such that b(PN I) is an identity
in I/(PN I) for each Pe T. As I is an M-ideal in A, each Pe T is
a structurally closed point in Prim (4), and so is a maximal ideal.
Therefore P+ I=A and there is a *-isomorphism of A/P onto
I/(In P) which carries ¢(P) into ¢(I N P), cel [4; Corollaire 1.8.4].
Hence b(P) is an identity in A/P for each Pe T, and since abe I,
Proposition 3.1 implies that P— || (ab)(P) || = ||a(P)]|| is structurally
continuous on T. Turning to (2), suppose PePrim(4)-, P¢lI.
Since I is an M-ideal in A, Proposition 3.1 gives Pe Max (4). As [
is central, there is an aeZ(I) c Z(A) with a¢ P. Since a(P) is a
nonzero central element of A/P, P must be modular.

In the case of simplex spaces, the analogues of (1) and (2) of the
previous lemma are each equivalent to I being a C-ideal. This is not
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the case for C*-algebras. In fact, there is an example of a noncentral
C*-algebra A which satisfies (1) and (2) with I replaced by A, viz,
the algebra of all functions a from {1, 2, ---} into the two-by-two
matrices with complex entries such that lim,..a;;(n) exists and is
equal to zero unless 7 =7 =1 (this example was also used by
Delaroche in [2; § 6]).

The following result is due to Delaroche [2, Proposition, 14].

THEOREM 3.7. A separable C*-algebra A is a GC-algebra if and
only if

1) A is a GM-algebra, and

(2) every primitive ideal in A is modular.

Proof. Suppose that A is a GC-algebra. Then by Proposition 3.5,
A is a GM-algebra. If Pec Prim (4), then since P is a maximal ideal in
A (Theorem 3.2), A/P must be central. But then A/P is primitive
and has a nontrivial center, implying that P is modular.

Conversely, suppose that (1) and (2) hold, and let I+ A be an
ideal in A. From Lemma 2.14, A/l is a GM-algebra. Since any
primitive ideal in A/I is of the form P/I for some Pe Prim (4)N I+
[4; Proposition 2.11.5 (i)], and since (4/I)/(P/I) = A/P for such P,
every primitive ideal in A/I is modular. So to show that A is a
GC-algebra, it is only necessary to show that A possesses a nonzero
C-ideal. Let I be a nonzero M-ideal in A. The structure space of
I, being homeomorphic to Prim (4) — I* with the relative structure
topology [4; Proposition 3.2.1], is Hausdorff. Since any P e Prim(4)—1I*
is a maximal ideal in 4, P+ I= A and I/(PNI)= (P + I)/P = A/P
[4; Corollaire 1.8.4]. So any primitive ideal in I, being of the form
PN1I for some PePrim(4) — I, must be modular. This and [4;
Proposition 1.8.5] show that it is sufficient to establish the following:
If A is a separable C*-algebra all of whose primitive ideals are
modular and whose structure space is Hausdorff, then A has a non-
zero C-ideal.

For such a C*-algebra A, the structure and weak* topologies
coincide on Prim (4) (Lemma 2.1). Let 1, be the identity in A/P,
PePrim (4). Let (u,) be an approximate identity in A indexed on
the positive integers, and set

T, = {PePrim (A): [[u.(P) — 1o || = 1/2},

n=1,2 +--. Since u,(P)—1, as n— co for each P, Prim(4) =
Uz, T,. Let A’ be the C*-algebra obtained by adjoining an identity
1 to A. Then Prim(4’) = Prim(A4)U {4} and A* = {4}. Fix a
P’ ePrim(4’) — A+, and set P=P' N A. Then a(P)—a(P’), acA,
is an isomorphism of A/P onto (A + P’)/P’. Choose a b€ A such that
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b(P) = 1. Then b(P’) must be an identity in (4 + P’)/P’. The
latter is an ideal in A’/P’, and from Lemma 3.3, b(P’) is a central
idempotent in A’/P’. Since A’/P’ is primitive, b(P’) = 1(P’). Con-
sequently,

Il (o = DEP) | = || (0 — B)P) || = || (s — O)(P) |
= [ ua(P) — 1ol -

Therefore
T,={P'NA: P ePrim(4) and |l(u, — 1)(P)| <1/2},

and 7, is a closed subset of Prim (4). Since the structure space of
A is Baire [4; Corollaire 3.4.13], some T, contains a nonempty open
set T. Because %, =0 and |Ju,|| <1, Spu,(P)c[1/2, 1] for each
Pe T. Choosing a continuous real-valued function f on [0, 1] with
f0O)=0and f=1 on [1/2, 1] and setting a = f(u,), a(P) = 1, for
each Pe T [4; Proposition 1.5.3]. Let I be the ideal in A with
Prim(A) —I* = T. Say PeT. Since Prim (4) is locally compact
and Hausdorff, there is a continuous bounded function g on Prim (A4)
such that g(P) = 1 and ¢ vanishes off 7. From the Dauns-Hofmann
theorem (see [7; §7]), there is a be A with b(Q) = g(Q)a(Q) for all
@ €Prim (4). Then 5(Q) = 0 if I<c @ ePrim(A4) and (bc — ¢b)(Q) =0
if ceA and QePrim(4), which imply (by [4; Th. 2.9.7 (ii)] that
be Z(I). Therefore I satisfies condition (i) of Lemma 3.4, and so is
a C-ideal in A. This completes the proof of Theorem 3.7.

It is not known whether the conclusion of Theorem 3.7 is true
for nonseparable C*-algebras.

4. Concluding remarks. Let A be a C*-algebra. Recall that
A is a CCR-algebra (“liminaire”) if the image of A by any irreducible
representation is contained in the algebra of compact operators on
the representing Hilbert space. A nonzero ideal I in A is a CCR-
ideal in A if it is a CCR-algebra, and A is a GCR-algebra (“post-
liminaire”) if every nonzero quotient of A contains a nonzero CCR-
ideal.

The spectrum of A is the set A of all equivalence classes of
irreducible representations of A provided with the inverse image
topology by the natural map 7= — Ker 7w of A onto the structure space
of A. Dixmier [4; §4.5] has shown that the closure J(A) of the
finite linear combinations of those ae A* for which 7 — Trz(a) is
finite and continuous on A is an ideal in A. A nonzero ideal I in A
will be called a CTC-ideal in A if Ic J(A), and A will be called a
CTC-algebra [resp., GTC-algebra] if A is a CTC-ideal in itself [every
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nonzero quotient of A contains a nonzero C7TC-ideal]. These algebras
have been studied in the literature, where they are sometimes
called “C*-algébre a trace continue” [“C*-algébrea a trace continue
géneralisée”]. Recall that a CTC-algebra has Hausdorff structure
space and that a GTC-algebra is CCR ([4; §4]).

A CCR-algebra A with a Hausdorff structure space will be said
to satisfy the Fell condition if the canonical field of C*-algebras
defined by A satisfies the Fell condition of Dixmier [4; §10.5]. This
amounts to saying that given P,€Prim (4), there is an ae A such
that a(P) is a one-dimensional projection in A/P for all P in some
structure neighborhood of P,. The following are some of the relations
between the various classes of C*-algebras:

(1) if A is separable, then it is both GM and GCR if and only
if it is GTC ([5; Proposition 4.2]),

(2) if A is separable, then it is both GC and GCR if and only
if it is GTC and all its irreducible representations are finite-dimen-
sional ((1) and Theorem 3.7),

(8) A is GCR and M and satisfies the Fell condition if and only
if it is CTC ([4; Propositions 4.5.3 and 10.5.8]; recall that A is CCR
if it is GCR and M),

(4) A is a central GCR-algebra and satisfies the Fell condition
if and only if it is a CTC-algebra with local identities ((3) and
Proposition 3.7), and

(5) if A is separable, then it is GM if either it is a CCR-algebra
with compact structure space or its irreducible representations are
all finite-dimensional ([3; § 1]).

Let H be a separable infinite-dimensional Hilbert space. Let B
denote the C*-algebra obtained by adjoining an identity to CC(H),
the compact operators on H. The structure space of B (see [4;
Exercise 4.7.14 (a)]) fails to be T}, and therefore is not almost strongly
separated. Yet Prim (B) is K, in the weak* topology.

In [3; §2], Dixmier has constructed a separable CCR-algebra D
whose structure space contains no nonempty strongly separated subset.
In particular, D is not GM. Nevertheless, there is an open subset
of the structure space of D which is homeomorphic to [0, 1], and D
contains an ideal C isomorphic to the C*-algebra of continuous maps
of [0, 1] into CC(H). So C is an M-algebra, yet no nonzero ideal in
C is an M-ideal in D. Since D is a CCR-algebra, Prim (D) is T, in
the structure topology, so that Prim (D) cannot be K, in the weak*
topology (Theorem 38.2). These two examples are the ones promised
after Theorems 2.15 and 3.2.

Finally, one further point of contact between C*-algebras and
simplex spaces will be mentioned. Fell has shown that a C*-algebra



16 J. F. AARNES, E. G. EFFROS AND O. A. NIELSEN

A can be described (to within isomorphism) as the set of all functions
on Prim (A)~ satisfying certain conditions, the value of such a function
at an IePrim (A)~ being an element of A/I [12]. Moreover, the
Dauns-Hofmann theorem (see [7; § 7]) may be deduced from this re-
presentation theorem [Fell, unpublished]. There is an analogous
representation theorem for simplex spaces, due to Effros [10; Corollary
2.5]. The analogue of the Dauns-Hofmann theorem for simplex spaces
can be deduced from this representation theorem (however, this is
not the manner in which it is proven in the literature; cf. [10;
Th. 2.1]).

We are indebted to Alan Gleit for a correction in the proof of
Corollary 2.7. The third-named author worked on this paper during
his visit to the University of Pennsylvania; he would like to thank
Professor R. V. Kadison and the University for their hospitality
during his visit.
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ON A CLASS OF TOPOLOGICAL ALGEBRAS

A. C. CocHrAN, R. KEOWN AND C. R. WILLIAMS

This note introduces a class of topological algebras, called
A-convex, which generalize the notion of locally m-convex
algebras, They include a number of function space algebras
which are not locally m-convex, Certain of these algebras
admit a modified Gel’fand type representation in a space of
vector-valued functions without invoking commutativity re-
quirements, One seemingly obtains a new way of representing
locally m-convex algebras, A-convex algebras are locally m-
convex under the assumption of completeness of certain factor
algebras in a suitable topology.

The definition of an A-convex algebra is given in §2 together
with some basic results. We define a condition, P-complete, such
that every P-complete, A-convex algebra is locally m-convex. A class
of important functions algebras whose seminorms are defined by cert-
ain types of weight functions is defined in § 3, see W. H. Summers [9].
Many of these are not locally m-convex, but are A-convex algebras.
The definition and basic properties of an algebra of vector-valued
functions where the index set is a completely regular Hausdorff space
and the functions take values in (various) Banach algebras are given
in §4. Finally, the result is obtained in §5 that each A-convex
algebra is an inverse limit of A-normed (normed linear space with
separately continuous multiplication) algebras. It is also shown that
certain A-convex algebras can be represented as a subalgebra of an
algebra of vector-valued functions. A sufficient condition for the re-
presentation to be valid is that A be barrelled. It is shown by means
of an example that barrelled is not necessary for this representation
to be valid.

Some of our results are analogous to various others given by P.
D. Morris and D. E. Wulbert [7], G. R. Allan [1, 2], and R. M. Brooks
[4, 5].

2. Basic definitions and results on multiplication. This para-
graph is concerned with the introduction of some basic definitions and
results on multiplications in a locally convex topological vector space.
Let A be a locally convex topological vector space over the complex
numbers K with a topology T determined either by a family N of
absolutely convex neighborhoods of the origin or by a family P of

17
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seminorms on the space. Assume that a multiplication is defined for
A with respect to which it is an algebra.

We wish to extend some of the additive concepts of locally con-
vex topological vector spaces in the direction of multiplication.

DEFINITION. 2.1 A subset U of A is said to be left (multipli-
catively) absorbing if aU is absorbed by U for every a in A. It is
said to be right (multiplicatively) absorbing if Ua is absorbed by U
for every a in A. It is said to be (multiplicatively) absorbing (m-
absorbing) if it is both left and right absorbing.

Let p and ¢ denote elements of the family P of seminorms of the
algebra A.

DEFINITION 2.2. The seminorm p is said to absorb the seminorm
q if there exists a positive real number M such that q(x) < Mp(x) for
every « in A. The seminorms p and ¢ are said to be conjugate if
they are mutually absorbing. Let [p] denote the class of all ¢ which
are conjugate to p.

DEFINITION 2.3. The left-translate ,p (right-translate p,) of any
element p of P by the element a of A is the mapping from the algebra
A into the real numbers R defined by ,p(x) = p(ax)[p.(x) = p(za)] for
x in A.

DEFINITION 2.4. A seminorm p is left absorbing if it absorbs all
of its left translates, right absorbing if it absorbs all of its right
translates, and absorbing if it is both right and left absorbing.

It is clear that the class [p] of p is left-absorbing, right absorbing,
and absorbing if and only if p enjoys these respective properties.

We use the term locally convex algebra A to designate a locally
convex topological vector space A with a multipication such that A
is an abstract algebra over the complex field K.

DEFINITION 2.5. A locally convex algebra A is an A-convex
algebra (absorbing convex algebra) if there exists a family P of ab-
sorbing seminorms defining the topology of A.

Clearly every locally m-convex algebra is an A-convex algebra.
The property of being m-absorbing is preserved with respect to taking
convex hulls, inverse images under a homomorphism and images under
a surjective homomorphism. The proof of the following theorem is
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straight-forward.

THEOREM 2.6. Any subalgebra of an A-convex algebra is A-convex.
The product of A-convex algebras is again A-convesx.

Let A be an algebra without identity and let A* be the algebra
obtained from A by adjoining the identity. If p is an absorbing
seminorm on A then the seminorm p+x defined by

p((x, V) = p(@) + M, ze 4, Ve K,

on A* is absorbing. Thus, every A-convex algebra can be topologi-
cally embedded in an A-convex algebra with identity.

LEMMA 2.7. Let p be a seminorm on the A-convex algebra A.
Then there exist positive constants M and N, depending on x, such
that

(1) pley) = p¥)=Mp(y) ,
(ii) (=) = p.(¥)=Np(y) ,

Jor any y in A. The greatest lower bound of the M for which (i)
holds is denoted by ,||x|| while the greatestlower bound of the N for
which (i) holds is denoted by ||z ||,.

The lemma follows directly from the definitions and implies that
multiplication is continuous in the right (left) factor for a fixed left
(right) factor.

The kernel R(p) of a seminorm p on the A-convex algebra A is
the set {xecA:px) =0}. It follows immediately from Lemma (2.7)
that R(p) is a closed, two-sided ideal of A. Thus one can define the
factor algebra A\R(p) on which p induces a norm. Let P be a family
of seminorms defining the topology on an A-convex algebra A such
that A\R(p) is complete in the norm induced by » for each peR.
Then A is said to be P-complete.

THEOREM 2.8. Let A be an A-convex algebra which is P-complete
in some family P of absorbing seminorms defining the topology of A.
Then there exists a representation O(p) of A by o Banach algebra B
for each seminorm p of A.

Proof. Denote by R, rather than R(p), the kernel of the semi-
norm p of A. It follows from the definition that the factor algebra
A\R is complete in the norm induced by p. The coset z + R of A\R
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is denoted by «' for simplicity. The seminorm p induces a norm p"
on A\R which is defined for &’ in A\R by

p'(@") = inf{p(y): yea}.
Since p is subadditive, p'(x’) = p(y) for any yea’. We note that

p'(@'y") = p'((xy)) = p(xy)
=zl o) = | 2@) .

Thus multiplication is continuous in the right factor with respect to
a fixed left factor in the norm p'. Similarly it is continuous in the
left factor with respect to a fixed right factor. It follows from a
well-known theorem of Gel’fand that there exists a norm | | on A\R
equivalent to p’ with respect to which A\R is a Banach algebra. The
natural map O(p) of A into A\R is the required representation.

COROLLARY 2.9. Let A be a P-complete A-convex algebra. Then
A s locally m-conver.

Examples 3. The first example gives a complete A-convex
algebra which is not locally m-convex. Let C,(R) denote the algebra
of bounded continuous complex-valued functions on the real numbers
R (pointwise operations). Denote the set of strictly positive real-valued
continuous functions on R which vanish at infinity by C;(R). The
family of seminorms {p,: ¢ € Cf(R)} determine a locally convex linear
topology B on C,(R) where

P,(f) = sup {[f(x)¢(») |: x e R}, f e Cy(R) .
The space (C,(R), B) is A-convex since
Py(fg) = M(f) Py(9), 9 € C,(R) ,

where M(f) is the maximum of | f|. Completeness follows from Theorem
3.6 of [9]. It is easy to verify that each p, fails to be submultipli-
cative.

Suppose that (C,(R), B) is locally m-convex and let @ be a set of
submultiplicative seminorms which define 8. We may assume that
max (q, *+*, ¢,) €Q and Mg, €Q whenever ¢, ++q,€Q and N =1,
Thus, for ¢ c Cf(R), there exists ¢ e @ and + € Cf(R) such that

(%) V) < Vig) < V(9) ,

where V(y) = {f: py(f) =1}. Since V(y) & V(¢), ¢ =< ¥ (pointwise).
Let 6 e R with 0 < 8 < min (1, M(+¥)). Then for some x € R it follows
that ¥ (x) = 0 = ¢(x), and 6" < ¢(x) where n is a positive integer.
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Consider the function f defined by

u__'—_];., r—15y x;
¥ (Y)
)=y zytetl o oy <oty
¥ (y)
0 , otherwise,

Then f is well-defined since e Cf(R) and fe Cy(R). But pu(f) =1
and p,(f*) = f™x)(x) = 6—"¢(x) > 1 which contradicts () since ¢ is
submultiplicative. Hence (C,(R), 8) is not locally m-convex.

This example is a special case of a weighted space (see W. H.
Summers [9, 10]). By slight modifications of the arguments given
here, other examples can be constructed using algebras of weighted
functions. The representation of the last section is wvalid for this
example.

" A second example is obtained from the algebra C [0, 1] of all
continuous complex valued functions on the closed interval [0, 1]. A
norm p is defined on this algebra by

p(f) = sup {| f(®)$(z) |: x € [0, 1]},
& 02 <1\2;

h —_—
where é (%) l—2 12<z<1.

Then (C [0, 1], p) is a normed linear space which is A-convex but not
locally m-convex. This space is not complete and the topological
completion is not an algebra.

Noncommutative examples may be obtained in the same manner
as the first example where the range of the function space is a non-
commutative space such as all bounded operators on a separable Hilbert
space in the operator norm.

We now give a representation of an A-convex algebra in an
algebra of vector-valued functions. The next section is concerned
with the definition and basic properties of such an algebra.

4., Algebras of vector-valued functions. Suppose that T is a
completely regular Hausdorff space such that to each point ¢ of T
there corresponds a complex Banach algebra B(f). Let F denote the
set of all vector-valued functions f from T to {J {B(t): ¢ € T} such that
f (@) e B(t) for each te T and such that the function /f/ defined by
[F1@®) = || f(®)]] is continuous on T (||f(t)|]| denoting the norm in B(t)).
We consider any subset H of F' which forms an algebra over K with
the usual pointwise definition of sum, product and scalar multiplica-
tion. Consider as a subbasis of neighborhoods of the origin in H the
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sets N(C, O), where C is a compact subset of T and O an open subset
of the real numbers R, defined by

N(C,0) ={f:feH, |f/[(k)eO for all keC}.

This system of neighborhoods determines a topology which by definition
makes addition continuous and continuity of scalar multiplication is
clear. This gives a topology on H such that H is a locally convex
topological algebra. We consider H with this topology in the remain-
ing section.

The following two theorems and their corollaries generalize results
which are well known if T is compact and Hausdorff (and hence the
elements of F' are bounded functions). They also extend a result of
Morris and Wulbert [7] given in a similar setting where only com-
mutative algebras are considered.

THEOREM 4.1. Let H be a locally convex algebra as defined above.
Suppose that
(i) H,={f(t):fe H} = B() for all te T, and
(i) The product hf belongs to the closed ideal generated by f for
every choice of fe H and continuous real-valued function h
on T.
Then every closed (right, left, two-sided) ideal of F' is given by a set
of the form {fe H:f(t)el, for all te T} where I, is a closed (right,
left, two-sided) ideal in B(t) for each t € T. Conversely, every collection
{I: te U} (right, left, two-sided) ideals where I, is an ideal in B(t)
determines a closed (right, left, two-sided) ideal in H.

The proof is a direct generalization of one given by Naimark [8,
§ 26, Subsection 2] of a similar theorem.

The following are now immediate :

COROLLARY 4.2. FEwvery maximal closed (left, right, two-sided)
ideal wn H consists of {fe H:f(t)e],} where I, is a maximal closed
ideal of B(t).

COROLLARY 4.3. If B(t) is simple for each t € T, then every closed
two-sided ideal in H consists of all fe H which vanish on some closed
subset of T.

COROLLARY 4.4. If B(t) is simple for each te T then there is a
one-to-one correspondence between the closed subsets of U and closed
ideals of H via G — I; = {fe H: f(G) = 0}.
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COROLLARY 4.5. If B(t) is stmple for each te T there is a one-
to-one correspondence between maximal closed ideals in H and points
of T.

Let R(T) denote the algebra of all bounded real-valued functions
which are continuous on 7.

THEOREM 4.6. Let T be a completely regular Hausdorff space
such that

(i) H, = B(t) for all te T,

(ii) For each we B(t), wewB(t);

(ii) H is closed with respect to multiplication by elements in

R(T).

Then for any g € H and ac R(T), ag is an element of the closed ideal
generated by g.

The proof is omitted.

5. Representations of A-convex algebras. An A-normed algebra
is an A-convex algebra having a single absorbing norm defining the
topology. The following theorem gives a generalization of a theorem
of Michael [Proposition 2.7, 6].

THEOREM 5.1. A locally convex algebra is A-convex if and only
if it is isomorphic to a subalgebra of a product of A-normed algebras.

The proof of this theorem is standard in view of the properties
of A-convex algebras given in § 2. The spaces A\R(p) used in Theorem
(2.8) are used to make up the product space into which A4 is embedded.
Thus, an A-convex algebra is an inverse limit of A-normed algebras.

This theorem gives an alternate proof of Theorem (2.8). For if
each factor algebra is complete in norm then each factor algebra is
a Banach algebra and hence locally m-convex. Then A4 is a subalgebra
of a locally m-convex algebra. It follows that A must be locally
m-convex.

The second example of § 3 shows that every A-normed algebra
cannot be completed as an algebra. Note that if each factor algebra
A\R(p) can be completed then A is locally m-convex. This result fol-
lows from Theorem (5.1).

Suppose that A is an A-convex algebra with P a defining collection
of seminorms. Let o, denote the canonical quotient map of A to A\R
(p) (=A4,) given in §2. If each 4, has a completion we may
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consider A, as a subalgebra of its completion. For any finite subset
{%, -+, ,} of A and ¢>0 the sets

Vp {96'1, ey Ty 5} = {qu: Illo.p(xi)H - Haq(xz)H I < &, 1 é ) é n}

give a base for a neighborhood system at pe P. Then P with this
topology, .7 (P), is a completely regular Hausdorff space. In fact,
the sets

W@, -+ 5 88 = {(0,0); |l 0:(@)l] — [[oelf| <& 1 <1< n}

give a base of a uniformity inducing .77 (P). For each p e P we corre-
spond the A-convex algebra A, and consider an algebra H of vector-
valued functions from P to the A, as described in § 4. We show that
if A is barrelled then A may be represented as a subalgebra of H.
By proposition 4.3 of [6], a barrelled A-convex algebra is locally m-
convex. However, the space (C,(R), 5), which is not barrelled, can be
represented by our procedure. Also, this representation, which replaces
a directed index set with a topological space, is seemingly different
from the usual projective limit type representation for locally m-con-
vex spaces [6].

Congider the Gel’ fand map G: A — H where G(x)(p) = o,(x). It is
easy to verify that [G(x)] is continuous on P for each z in A. Since
P is Hausdorff, G is one-to-one and it is clearly linear.

THEOREM 5.2. If A s barrelled then G is continuous.

Proof. It suffices to show that G is continuous at 0. A basic
neighborhood of G(0) = 0 is of the form N(C, S.) where C is compact
inPand S, ={r:|r| <e}. The set, M = N[p~'[—¢/2, ¢2]: pecC]isa
barrel in A [use the compactness of C to see that M is absorbing]
and hence a neighborhood of 0. But G(M) < N(C, S.) so that G is

continuous.
THEOREM b5.3. The map, G, is continuous.

Proof. Letxec A4, Gy) = x. Then a basic neighborhood of « is
of the form

V=x+ Npi{(—¢ce)}e>0,peP,1<4=<mn]. But the set C
={p, ++-, .} is compact and D = x + N(C, S,) is a neighborhood of
G(z) such that G*(D) = V. Hence G is continuous.

The last two theorems give the following modified Gel’ fand type
theorem.
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THEOREM 5.4. A barrelled A-convex algebra A can be represented
as a subalgebra of an algebra of vector-valued functions as defined in

§ 4.

For the space (C,(R), 8), the map G of Theorem (5.2) in contin-
uous. Since each p is actually a norm, each quotient space is (setwise)
Cy(R). In the topology defined on P, if a set M is compact then
there exists ¢ e Cy(R) such that ¢ < ¢ for each pyeM. Then for
V = p,7(—¢, €) it follows that G(V) & N(M, S.) and the result follows.
For function spaces of this nature, if each compact set is dominated
by a single seminorm then G is continuous and the representation is
valid for the space.

If an A-convex algebra has an involution, *, one can define the
concept of a subset being *-absorbing in a similar fashion to our pre-
vious definitions. The adjoint, p*, of a seminorm p, is defined by p*
(x) = p(z*) and an A*-convex algebra can be defined to be an A-con-
vex algebra which is defined by a family of absorbing seminorms,
each of which absorbs its adjoint. Then Theorem (2.8) can be proven
with the representation being in a symmetric algebra. Similarly, the
representation of this section ecarries over to A*-algebras with no
difficulty, with the obvious restatements.
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INTEGRAL DOMAINS THAT ARE NOT
EMBEDDABLE IN DIVISION RINGS

JOHN DAUNS

A class of totally ordered rings V is constructed having
the property 1 < ac V=1/ac V, but such that V cannot be
embedded in any division ring.

1. Inverses in semigroup power series rings. This note has only one
objective—to construct the above class of counterexamples (see [6]).

NoratioN 1.1. Throughout I" will be a totally ordered cancell-
ative semigroup with identity e¢; R will denote any totally ordered
division ring. If a:I’= R is any function, then the support of «
is the set suppa ={sel|a(s) =0}, The set V= V(I, R) of all
functions a such that suppa satisfies the a.c.c. (ascending chain
condition) form a totally ordered abelian group. If I" is cancellative,
then under the usual power series multiplication (see [3]), V is a
totally ordered ring.

1.2. Any 1 <aeV with a(s) =0 for s > ¢ may be written as
a = a(e)(1 — \), where 1 < a(e) and N = S{\(a)ala <e}. It will be
shown that

A=N"'=14+r+ N+ e =1+ 2,37 Ma()Ma(2)) - - - Ma(n)) ,

where the finite sum 3’ is over all integers and over all distinct #-
tuples of I'* satisfying s = a(l)a(2) --- a(n) with each a(i) < e; the
sum X is over all s < ¢. To prove that 1/a e V it suffices to establish
conditions (a) and (b) below.

(a) For each sel', there are only a finite number of » with
A(s) = 0;

(b) supp(l — A)* satisfies the a.c.c.

Assuming (a) and (b), the main theorem follows at once. By
adjoining an identity as in [8; p. 158] to the semigroup in [2] a
semigroup that actually satisfies the hypothesis in (ii) below can be
constructed.

MAIN THEOREM 1.38. If I" is a totally ordered cancellative semi-
group with identity e and R any totally ordered division ring, then
the power series ring V = V(I', R) has the following properties:

(i) 1<aeVand a(s) =0 for s >e—=1/acV.

(ii) If in addition I' cannot be embedded in a group, them V
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cannot be embedded in a division ring.

An already known result ([8; p. 135]) follows immediately from
1.3 ().

COROLLARY 1.4. If in addition I" is a group, then V(I', R) is a
division ring.

2. Proof of the main theorem. Assume 1.2 (a) or (b) fails.
Then a lengthy but elementary argument shows there exists a doubly
indexed matrix {a(%, j) esuppr |1 £ 1< ;1 < 7 < n(?)} such that the
products u(¢) = a(i, Da(z, 2) « -+ a(i, n(7)) of the rows form an infinite
properly ascending chain. Eventually a contradiction will be derived
from this. Without loss of generality assume I" < e.

DEFINITION 2.1. For any totally ordered semigroup I” with identity
¢ and any element ael” with a < e, define a semigroup by

I'(@) = {gel'|3 an integer m > 0, ¢™ < a} .

LemMA 2.2. With I' as above, for any a(l), «--, a(m) el with
each a(j) < e, set v = a(l)a(2) «-- a(m) and define

a* = min {a(l), - -+, a(m)} .

Then I'(w) = I'(a*).

2.3. Consider a fixed subset L &1 all of whose elements satisfy
L < e and where L satisfies the a.c.c., e.g., L = supp) < e. Consider
an array of elements A = ||a(z, J)|| with {a(i, /) |1 <1< 0,1 5
n(1)} £ L, where repetitions in the a(z,j) are allowed. Assume all
n(1) = 2. Define u(i) = u(4, A) by

u(t) = u(t, A) = a(i, Da(, 2) - -« a(t, n(z)) .

Let 27 be the set of all such A = ||a(%, 5)|| for which %(1) < u(2) <
eee < U(7) < --- i8 strictly ascending at each 7. With each member
A = ||a(i, 7)]| € 2%, we next associate three objects

{a@)*|1 =7 < oo}, m = m(4), and G = G(4) .

Define a(?)* = min {a(t, ) |1 < j < n(?)}. Note that u(l) < u(2) < +--
implies that I'(a(1)*) & I'(a(2)*) S I'(a(9)*) S ---. Thus since L satisfies
the a.c.c., there is a unique smallest integer m = m(A4) such that the
semigroups G = I'(a(m)*) = I'(a(m + 1)*) = ... are all equal. The
following schematic diagram of all these quantities may be helpful.
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M) =rm1) w(l)=al,Da(l,2) - a(l)*---a(l, n(l))

r(a(2)) = r(u?llz)) w(2)=a(2, Da(2, 2) -+ a(2)* +-- a(2, n(2))

I'(a(m)*) =TI (%[(]gn)) w(m) = a(m, a(m, 2) - -+ a(m)* - - - a(m, n(m))
G = r(uélm +1).

2.4. Among the elements of 5%, let .+~ < .5 be all those 4 =
lla(i, 5)|| such that this associated & = G(A) is as big as possible and
call this particular G = M. If 5 = @, also .+~ % @. Define @ =
max {a (m)*| Ae 2", m = m(A)}. Pick and element B = ||b(4, 7)|| € A~
Then by our choice of M, (@) = M. Thus M = G(B) = ['(b(z)*) =
'@, j)) = I'(u(3) = I'(@) for 1 = m(B) = m. Finally, with each element
B of ¢ we associate an integer » = »(B). Since @ e I"'(u(m)), there is a
unique smallest integer 7 = 7(B) = 1 such that @ < w(m) < a—.

2.5. By omitting some of the rows of B and renumbering the
remaining ones, it may be assumed as a conseguence of the a.c.c.
without loss of generality that m = 1, and also that b(1)* = b(2)* = ---
is not ascending. Each u(7) is of one of the following three forms:

(1) w(?) = q()b()* ,
(2) w(®) = b(i)*w() ,
(3) u(?) = q(i)b(@)*w() ,

where the ¢(7), w(i) are certain products of the b(s, 7). If there are
an infinite number of w(?) of the forms (1) or (2), then since

u(i + 1) = q(t + Db + 1)* > u(i) = g(®)b(@)*, b(E + 1)* < b(4)*
=q(t +1) > q@@);

it follows (after omitting some rows and renumbering) that there is
a properly infinite ascending chain:

Case 1. q(1) < q2) < --+;
Case 2. w(l) < w(2) < +--.

If neither Case 1 nor Case 2 applies, then

u(@ + 1) = q(@ + )b + L)*w(@ + 1) > q(9)b(z)*w(7)
and b(¢ + 1)* < b(9)*

implies that one of the inequalities q(z + 1) > q(?) or w(i + 1) > w(7)
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must necessarily hold. It is asserted that there is a subsequence

Case 3. either (a): q(i(1)) < q(@(2)) < ++-
or (b): w(i(l)) < w((2)) < «--.

For if not, then the a.c.c. must hold in both the sets {¢(¢)} and
{w(?)}. Then by omitting some rows and renumbering the remaining
ones it may be assumed that we have an element B in .4 with
qg(l) =z q¢2) = --- and w(l) = w(@) = --.. However, then

gb(L)*w(l) = ¢(2)b(2)* w(2) = +--

gives a contradiction.

2.6. We may assume g(1) < ¢@) < -+ or w(l) <w(2)-.-. are
properly ascending, depending on which of the Cases 1, 2, 3(a) or 3(b)
is applicable. Set ¢ = #(B), so that @' < u(m) = u(l) = u(s).

2.7. It is next shown that either q(7) = @' or w(z) = @ holds
for all <. Suppose that the following holds.

Case 1. q(1)b(1)* < q(2)b(2)* < »++;
q(1) < q(2) SGERRE
bL)*=  b2* = ---.

Then @' < (1) = w(?) = ¢(@)b(1)*, and & = b(3)* implies that
= q(1) = q(0) .

(For if @' > q(1), then & = b(¢)* implies that @’ > q(2)b(3)*.) (If t =
1, then @’ = e.) Similarly, in Case 2 also a"* < w(l) < w(2).
Only Case 3(b) will be proved, since 3(a) is entirely parallel.

Case 3(b). q)b(L)*w(l) < g(2)b2)*w(2) < +++;
w(l) < W) < voe;
b(1)* = b2)* > ...,

Then again @' < u(1) < u(i) = q(1)b(?)*w(i) and @ = b(¢)* = q(7)b(¢)*
imply that @t < w(l) < w(t). (Otherwise, if @' > w(i), then @ >
q(0)b(2)*w(t).)

The basic idea motivating the proof is that for Be._#; a new
Ce 4" can be constructed with »(C) < »(B) — 1.
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2.8. Thus either ¢(1) < ¢(2) < --- and all q(¢t) = a**; or w(l) <
w(2) < --- and all w(?) = a*'. Assume the latter. Let

C = lle(i, 5)ll e &

be defined by taking as its ¢-th row all the b(¢, j) appearing in w(z).
(In view of w(l) < w(2) < ---, there does not exist an infinite number
of rows of C containing only one element. By omitting a finite number
of rows it may be assumed that all rows of C contain two or more
elements of L.) Define ¢(3)* = inf{c(¢, j) | = 1}. Since b(?))* < c())* = @,
it follows that

M= TGSl <T@ = M.

Consequently, G(C) = M and Ce._#. Since w(l) = a", r(C) =t — 1.
By repetition of this process, we may reduce the r to one so that
finally @ = @ < w(@l) < w(2) ---. Since all ¢(¢, j) € L satisfy c(1,5) Z e
and since w(i) is a product of these, it follows that @ = ¢(9)* = w(3).
Thus @ = w(l) = w(2) = --- gives a contradiction. Thus 2% = @ and
the main theorem has been proved.
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ON THE NUMBER OF NONPIERCING POINTS
IN CERTAIN CRUMPLED CUBES

ROBERT J. DAVERMAN

Let K denote the closure of the interior of a 2-sphere S
topologically embedded in Euclidean 3-space E®, If K — S is
an open 3-cell, McMillan has proved that K has at most one
nonpiercing point. In this paper we use a more general con-
dition restricting the complications of K — S to describe the
number of nonpiercing points, The condition is this: for some
fixed integer » K — S is the monotone union of cubes with n
holes. Under this hypothesis we find that K has at most =
nonpiercing points (Theorem 5), In addition, the complications
of K — S are induced just by these nonpiercing points. Gener-
ally, at least two such points are required, for otherwise n = 0
(Theorem 3),

A space K as described above is called a crumpled cube. The
boundary of K, denoted Bd K, is defined by Bd K = S, and the in-
terior of K, denoted Int K, is defined by Int K = K — Bd K. We also
use the symbol Bd in another sense: if M is a manifold with boundary,
then Bd M denotes the boundary of M. This should not produce any
confusion.

Let K be a crumpled cube and p a point in Bd K. Then p is a
piercing point of K if there exists an embedding f of K in the 3-
sphere S® such that f(Bd K) can be pierced with a tame arc at f(p).

Let U be an open subset of S®. The limiting genus of U, denoted
LG(U), is the least nonnegative integer n such that there exists a
sequence H,, H,, ... of compact 3-manifolds with boundary satisfying
1) U= UH, 2 H,cIntH,,,,and 3)genus BdH; =n (1 =1,2, ---).
If no such integer exists, LG (U) is said to be infinite. Throughout
this paper the manifolds H; described above can be obtained with con-
nected boundary, in which case H; is called a cube with n holes.

Applications of the finite limiting genus condition are investigated
in [6] and [14]. For any crumpled cube K such that LG(Int K) is
finite and Bd K is locally peripherally collared from Int K, it is shown
that Bd K is locally tame (from Int K) except at a finite set of points.
Under the hypothesis of this paper, Bd K may be wild at every point;
nevertheless, with a collapsing (in the sense of Whitehead [15]) argu-
ment comparable to [13, Th. 1], the problem of counting the nonpiere-
ing points of K is reduced to one in which the results of [6] and [14]
apply.

A subset X of the boundary of a ecrumpled cube K is said to be
semi-cellular in K if for each open set U containing X there exists
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an open set V such that Xc Vc U and loops in V — X are null
homotopic in U — X. In the last section of this paper semi-cellular
sets are discussed in order to characterize those sewings of two
crumpled cubes which yield S° in case the limiting genus of one of
the crumpled cubes is finite.

A simple closed curve J is essential in an annulus A if J lies
in A and bounds no disk in A.

If X is a set in a topological space, then Cl X denotes the closure
of X.

2. A cellularity criterion.

LEMMA 1. Let H be a sphere with n handles. Then there exists
an integer k(n) such that if J,, ««+, Jpm are mutually exclusive simple
closed curves in H, no one of which bounds a disk in H, then some
pair {J,, J.} bounds an annulus in H.

Proof. The number k(n) = 2 is known to work if # = 1. Other-
wise, the proof proceeds by induction, using k(n) = 3n — 2 when-
ever n= 2.

THEOREM 2. Let C be a crumpled cube such that LG(IntC) =
n < co. Then there exists a finite set Q of points in Bd C such that
Sfor each open set U D BdA C, each point of BAC — Q has a neighbor-
hood V such that any loop in V — Bd C is null-homotopic in U —
Bd C.

Proof. Assume m > 0. Using Lemma 1 we associate with a
sphere with » handles an integer k(n). Let k = max {3, k(n)}. Sup-
DPOSE D1y Doy **+, Do are points in Bd C and U is an open set containing
Bd C. It suffices to show that one of these points has a neighborhood
V such that each loop in ¥V — Bd C is nullhomotopic in U — Bd C.

Step 1. Preliminary constructions. There exists a collection of

mutually exclusive disks D,, ---, D,, on Bd C with p;eInt D; (2 = 1,

«+, 2k). Furthermore, Bd C contains another collection of mutually
exclusive disks F,, ---, F/, such that for ¢ =1, ---, k

D, ,UD,cIntE,.

We consider C to be embedded in S°® so that the closure of S®* — C
is a 3-cell [8, 10]. We select a point b of Int C and construct arcs
B, ---, By, such that (1) distinct arcs B; and B; intersect only at the
point b, (2) the endpoints of B; are b and p;, and (3) B; is locally
tame mod p; (i=1, ---, 2k).
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By Theorem 1 of [3] there exist pairwise disjoint annuli
D;.:’DZ*""y zﬁnEiksE;:"”E;ck

in S® such that

(4) BdDyf>BdD,; and Bd Ef DBd E,,

(5) DfNnBdCcD,

(5") ErnBdCcCE; — (D,_, UD,y),

(6) (U@®BdDf —BdD,)U(U@BdEF — Bd E;) cIntC,

(7) Di(E¥) is locally polyhedral mod Bd D, (Bd E;), and

(8) (UD})U(UEY)N(UB) = .

If a surface approximating Bd C is to intersect the D}’s and E}’s
properly, we must force it to lie very close to BdC. To do this,
first we thicken certain subsets of Bd C, thereby obtaining mutually
exclusive open sets W,, W,, ---, W,, such that

B,

BdC

FIGURE 1
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(9) W.nCcU— ((UBd Dy) U (UBd EY)),

(10) W, BdC — ((UDy) U (U E)),

1) wW,oIntD;, (1=1, ---, 2k),

(12) Wzkﬂ’:)]:nt E; — (Dzi—~1 U DZ@) (7/ =1, .., k)r

13y (UW)nB,=wW,NnB; t=1, .-+, 2k).
In addition, we require that Bd D, NCl W, % @ only if s =2k + ¢
ors=1 and BAE;NCIlW, = @ only if s=0 or s =2k + 7. Then
we construct a neighborhood ¥ of BAC — U W, such that YNCc U
and any arc in IntC N (Y U (U W,;)) from a point of W, to a point of
W; intersects all the annuli in between. For example, if A is an
arc from W, to W,, then A intersects both E} and D}.

By hypothesis Int C contains a cube with % holes M such that
C— (YU (UW,)cInt M. Without loss of generality, we assume that
Bd M is polyhedral and in general position with respect to

(UInt E%) U (UInt D) .

Step 2. A special disk im Bd M. Let G denote the collection of
those components of Bd M N (U E¥) U (U Dj)) which are essential simple
closed curves in any annulus EF or Df. Each annulus E}(D}) contains
a curve in the collection G, because Bd M separates the components.
of Bd E#(Bd D}).

In the next paragraphs we show that at least one of the curves
in G bounds a disk in Bd M. Suppose the contrary. From Lemma 1
we find that Bd M contains an annulus A such that Bd4 = J, U J,,
where J, and J, are essential curves on E} and E¥, respectively, and
7 # 8. This reduces to the case in which each component of
Int AN (UEF) bounds a disk in UE}. Assume r # 1 # s.

Case A. No component of AN (UK?Y) separates the components
of Bd A. Let L be a simple closed curve in S*® — (E} U E7) such that
LNC = B,UB,,. It follows from the constructions of Step 1 that
each point of L N A is separated (in 4) from J, by a component of
Int AN (EF U E}); thus, by trading certain disks in Int A for disks
in Ef¥ UE¥ we see that J, and J, are homotopic in S® — L. But
this is impossible, since J, links L and J, does not.

Case B. Some component of AN (UE}) separates the components
of Bd A. By considering all components of A N (U E¥) U (UD})), we:
find that A contains an annulus A’ such that no curve in

Int A’ N ((UEY) U (D}))

is essential in A’ and J, cBd A’. Let J’ denote the other component.
of Bd 4/, and without loss of generality assume that J' N D). = @.
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Let L' be a simple closed curve in S* — ((UE}) U (UDj)) such that
L'nNC = B,U B,,. Each point of L' N A’ is separated in A’ from either
J. or J' by Int A'((UE%) U (UDj})), and each curve of this intersection
bounds disks in both 4’ and (UE}) U (UDj?). Hence, by the usual
disk trading, we see that J,. is homotopic to J’ in S®* — L’. Again
this leads to a contradiction, for .J, links L’; on the other hand, J’
either is contained in Dj_, or is an inessential curve in some E7¥, which
implies that J’ does not link L/.

Neither of the two cases can occur. Consequently, some simple
closed curve J in the collection G bounds a disk in Bd M.

Step 8. A meighborhood V of one of the points p;. Correspond-
ing to one of the points, say p,, there exists a disk D cBd M such
that Bd D is an essential curve in D}, but each component of Int
D N (U Djf) bounds a disk in UD}. Repeating this process, it follows
that for one of the p;’s, say p, again, and for each open set U’ con-
taining Bd C, there exists a polyhedral disk £ in U’ N Int C such that
Bd E is an essential simple closed curve on D but each component
of (Int £ N (UDj})) bounds a disk in UD}.

To find the desired open set in C, let V' be a spherical neighbor-
hood of p, such that VVNCc W, and define V= V"NC. For any
loop L in V — Bd C, another linking argument shows that L is separated
from Bd C (in V) by some disk £ U as described above. Since L
is contractible in V7, it follows from [5, Lemma 1] that L is con-
tractible in U — Bd C. This completes the proof.

THEOREM 3. Suppose C is a crumpled cube such that LG(Int C) <
oo and C contains at most one nonpiercing point. Then Int C is an
open 3-cell.

Proof. Assume C is embedded in S® so that the closure of S* — C
is a 3-cell K [8, 10]. Equivalently, we show that K is a cellular
subset of S°.

Let @ denote the finite set of points of Bd C given by Theorem
2, p the nonpiercing point of C (the argument when C has no non-
piercing point is essentially the same), and U an open set containing
K. There exists an open set V containing K such that loops in
V — K are null-homotopic in U — (Int K U p). Let f be a map of a
disk 4 into U — (Int KU p) such that f(Bd4)cV — K. It follows
from [12, Th. 2] and techniques of [2, Th. 4.2] that f can be adjusted
slightly at points of Int4 so that f(4) N BdC is 0-dimensional and
S NQ = @. Finally, there exists a finite number of mutually ex-
clusive simple closed curves S, ---S, in 4 whose union separates
Bd 4 from f=(f(4)) N BdC) and such that f|S; is null homotopic in
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U—-—K @#=1,.--,k). This implies that f|Bd 4 extends to a map
of 4 into U — K. According to McMillan’s Cellularity Criterion [11,
Th. 1], K is a cellular subset of S°

3. Topological collapsing. The following result generalizes
Theorem 1 of [13]. The argument below necessarily differs from
McMillan’s, since we have no mapping criterion to determine the finite
limiting genus condition.

THEOREM 4. Suppose K is a finite connected simplicial complex,
L a subcomplex of K such that K collapses to L, and h a homeomor-
phism of K into S° such that LG(S® — h(K)) = n. Then

LG(S® — m(L)) = n .

Proof. It is sufficient to show that the result holds if L is
obtained from K by a single elementary collapse. Suppose that ¢ is
a principal simplex of K, 7 is a proper face of ¢ such that = is a
proper face of no other simplex in K, and

L=K-—1Intc —Intz.

We consider the case when ¢ is a 3-simplex, because the applications
of Theorem 4 in this paper can be viewed as involving collapses of
this type only; for the remaining cases a similar argument applies.

Let U be an open subset of S* containing A(L). There exists a
neighborhood U* of h(L) in U such that some component Z of h(c) — U*
contains h(c) — U. Using [4, Th. 4] we find a tame disk D in
U* — h(L) such that Bd DN w(K) = @ and exactly one of the com-
ponents of D N k(o) separates Z from h(L N o) in k(o).

There exists a neighborhood W of h(K) such that WNBd D = @
and W can be deformed to A(K) in S*-Bd D by a homotopy keeping
h(K) pointwise fixed. For each point « in U N h(K) define an open
set N, as

N, = {yeS|o@, v) <o, Bd U UBd W)}
and for each point % in h(6) — U define N, as

N, = {ye 8o, v) < o(x, DUBd W)} .
Then let V = U.csx) No-

Claim. DN V separates Z from h(L) in V, and U contains the
component Y of V — D that contains h(L).

Suppose there exists an arc & in V — D from a point of Z to a
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point of A(L). Then a is homotopic in S®* — Bd D (with endpoints
fixed) to a path «’ in A(K), and &’ is homotopic in A(K) (with end-
points fixed) to a path a* such that a* N D consists of a finite set
of points at which a* pierces D. But then the number of such points
must be even, contradicting the separation properties of D in A(K).

To establish the other part of the claim, suppose there exists a
point ¥ in Y — U. Then ye N, for some & in k(o) — U. Let A be
the straight line segment from ¥y to x in N,, and let B denote an arc
from y to A(L) in Y. Since A U B does not intersect D, deforming
AUB to a path in h(K) leads to a contradiction as before. This
completes the proof of the claim.

By hypothesis S° — h(K) contains a polyhedral cube with # holes
H such that Int HoS* — V. We adjust H slightly so that B H N D
consists of a finite number of simple closed curves. Note that D U
(Bd HN U) separates (L) from k(o) — U (in S®*). Thus, the unicoher-
ence of S°® — D implies that some component F' of Bd H — D, where
F c U, separates h(L) from h(o) — U in S* — D.

We observe that Cl F' is a disk with & (¢ < ») handles and (possi-
bly) some holes. By attaching disks to Bd F' near D, we see that F
is contained in a sphere with % handles S, in C1(S® — A(L)) and that
S, bounds a cube with % holes M satisfying

S—UcCcMcS*—h).
This implies that LG(S* — k(L)) < n.

4. The number of nonpiercing points.

THEOREM 5. If C is a crumpled cube such that LG(IntC) =n
1 = n < ), then C has at most n nonpiercing points.

Proof. Suppose to the contrary that C contains at least n + 1
nonpiercing points p,, ***, Pnt:. AS before we assume C is embedded
in S® so that the closure of S® of S* — C is a 3-cell H [8, 10]. Let
h denote a homeomorphism of a 3-simplex 4 onto H.

Some triangulation K of 4 collapses to a subcomplex L such
that A(L) is a 38-cell locally tame except at p,, .-, p;.,; thus, each
point p; is a nonpiercing point of CL(S® — h(L)). Theorem 4 gives
that LG(S® — h(L)) <n. This leads to a contradiction, however, for
either [6, Th. 2] or [14, Th. 1] implies that C1(S* — k(L)) has at most
7 nonpiercing points.

COROLLARY. If C is a crumpled cube such that LG(IntC) <1,
then Int C is an open 3-cell.
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The techniques used to prove Theorem 5 can be reapplied to obtain
the following result.

THEOREM 6. If H is a cube with k handles in S® and
LG(S* —H)y=nl =n< ),

then Bd H is pierced by a tame arc at all but (at most) n — k of its
poInts.

To describe the number of nonpiercing points precisely requires
some additional definitions. Let A be an are in S® locally tame modulo
an endpoint p. The local enveloping genus of A at », denoted LEG
(4, p), is the smallest nonnegative integer » (if there is no such in-
teger », LEG(A4, p) = o) such that there exist arbitrarily small neigh-
borhoods of p, each of which is bounded by a surface of genus r (a
sphere with » handles) that intersects 4 at exactly one point. Chapter
4 of [14] gives illustrations of arcs A,, each locally tame mod an
endpoint p,, such that LEG(4,, p,) =1 (n =1, 2, +-+, ),

Let B={(x,y,2)eE’la*+ y*+ 2 <1}. Let f be a homeomor-
phism of B onto a 3-cell C in S and p a point of Bd C. The local
enveloping genus of C at p, denoted LEG(C, p), is defined by

LEG(C, p) = LEG(f(®), p) ,
where « is the line segment in B from the origin to f~(p).
THEOREM 7. If C s a 3-cell in S® such that LG(S* — C) =n

2=n< ) and p, +++, P, are the nonpiercing points of S* — Int C,
then

n = 3\ LEG(C, p) -
Proof. As in the proof of Theorem 5, let % be a homeomorphism
of a 3-simplex £ onto C. Some triangulation of 4 collapses to a
subcomplex L such that k(L) is a 3-cell locally tame modulo Up;. It

follows from the definition of local enveloping genus that the subcom-
plex L can be chosen to satisfy

LEG(C, p) = LEG(M(L), p) G=1, k).
Since LG(S® — k(L)) < n, Theorem 6 of [14] implies
n = ¥ LEG(h(L), p;)) = £ LEG(C, p,) .

Let U be an open set containing C. To establish the inequality
in the other direction, we shall find pairwise disjoint disks with handles
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G, -+, G, in U — Up; subject to the following conditions: the number
of handles on G; is bounded by LEG(C, p;), Bd G; bounds an annulus
A; in G; such that G} = Cl(G; — 4,) is contained in U — C, Int A, N Bd C
is contained both in a null sequence of pairwise disjoint disks in
Bd C — Up; and in a null sequence of such disks in Int 4;, and UBd G;
bounds a disk with (¢ — 1) holes in BdC — Up;. Furthermore, G,
can be obtained arbitrarily close to p;. Thus, in the next two par-
agraphs we describe how to find one such surface G, near p,.

In Bd C there exists a Sierpinski curve X locally tame mod p, and
containing p, in its inaccessible part. By removing a null sequence
of nice 3-cells from C we obtain a 3-cell C* such that C*NBdC = X
and C* is locally tame mod p,. It follows from the definition of local
enveloping genus that arbitrarily close to p, is a surface H such that
HnNC* is a disk D, with DN BdC* = Bd D, and p, lies interior to
the small disk on Bd C* bounded by Bd D. Adjust H near Bd C* so
that Bd D lies in the inaccessible part of X. Without moving any point
of D adjust H further so that the nondegenerate components of
(H— D)NBdC comprise a null sequence of simple closed curves
and that (H — D)N C* = © [4, Th. 4]. Hence,

H-DnX=09.

Now consider the component K of H — C whose closure contains
Bd D. Associate with each simple closed curve S; of (Bd K — Bd D)
a disk F'; in C — C* such that

(1) F;NnBdC=BdF; =S8,

(3) lim;..diam F; = 0.
Define G, = (UF;) UCL K. Then G, is a disk with handles, and the
number of handles is bounded by LEG(C, p,). Note that Bd G, = Bd D.
Since components of (G, — Bd G,) U C are either arcs or points, we can
readily obtain an annulus 4, in G, such that Bd 4, contains Bd G, and
Int A, contains (G, — BdG)) N C, and now the remaining requirements
on G, must be satisfied.

Applying Theorem 2 and techniques from the proof of Theorem
3, we find a map f of a disk with (¥ — 1) holes E into U — C such
that

AE)NG; = f(BAdE)NG; =BdG; G=1, -,k

and f has no singularities near Bd E. According to [9, Lemma 1]
there exists a homeomorphism f’ of E into U — C such that

FEYNG = f'BAE)NG:=BdG;, (@E=1,-:--k).
Thus, if S denotes f'(F)U (UG, S is a sphere with handles, and
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the number of handles is bounded by ¥ LEG(C, p;). Moreover, S can
be obtained so as to separate S® — U from C. Finally, since U is an
arbitrary open set, we have that

n < 3, LEG(C, p)) .
5. Semi-cellular subsets.

THEOREM 8. Suppose C is a crumpled cube such that
2<LGIntC) < o,

and X is a nonseparating subcontinuum of Bd C containing only
piercing points of C. Then X is semi-cellular in C.

Proof. Let p, +-+, p, denote the nonpiercing points of C, and D
a disk in Bd C — Up; whose interior contains X. If C is embedded
in S® so that CI(S® — C) is a 3-cell K, then K collapses to a 3-cell K’
which is locally tame mod (D U p,), with p, a nonpiercing point of
St — Int K’ = C'. According to Theorem 4, LG(IntC’) < . Since
each point of D is a piercing point of C’, it follows from Theorem 3
that Int C’ is an open 3-cell. Then X is semi-cellular in C’ [7, Lemma
2.7]; clearly X must also be semi-cellular in C.

Theorem 8 can be applied to characterize those sewings of two
crumpled cubes which yield S? when one of the crumpled cubes has
finite limiting genus. With minor changes, such as in the references
to the number of nonpiercing points, we can use the proof of [7, Th.
5.7] to prove Theorem 9.

THEOREM 9. Suppose C, and C, are crumpled cubes, h s a
homeomorphism of Bd C, to Bd C,, and LG(Int C,) < . Then C,U,C,=
S? if and only if each wmonpiercing point of C, is identified by h
with a piercing point of C..
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CHARACTERIZATION OF SEPARABLE IDEALS
B. L. ELKINS

A k-algebra A is called separable if the exact sequence
of left A° = Ag,A’modules; 0 — J — A° 2, A — 0 splits, where
&la @ b°) = a-b; a two-sided ideal ¥ of A is separable in case
the k-algebra A/ is separable,

In this note, we present two characterizations of separable
ideals, In particular, one finds that a monic polynomial
f € k[x] generates a separable ideal if, and only if, f=g,.-- g,
where the g; are monic polynomials which generate pairwise
comaximal indecomposable ideals in k[x], and f'(a) is a unit
in kla] = k[z)/f-k[x] (¢ = x + f-K[z]).

Throughout this paper, we assume that all rings have units and
all ring morphisms preserve units, further, all modules will be assumed
unitary. We will denote the center of the ring A by Z(A4). Each
k-algebra A induces an exact sequence of left A° = A ®), A’-modules:

(1) 0—sJ— A -2 A—0
where g¢(a @ b°) = a-b.

DEFINITION 2 [1]. A will be called a separable k-algebra if the
sequence (1) splits. More generally, a two-sided ideal ¥ in the
k-algebra A will be called a separable ideal if the quotient algebra
A/ (k— A— A/) is separable. Denote by Sep,(4) the set of all
such ideals in A; of particular interest is the subset Sep; (4) of all
separable ideals 2 for which A/ is a projective k-module.

PRrOPOSITION 3 [6]. Let A be a k-algebra.

@) AeSep, (A ANASWA =W eSep, (A) (A s any two-sided
ideal of A).

(b) If QA)r, c Sep, (A) s a family of pairwise comaximal
sdeals, then M, A, e Sep; (4).

The following result found in [1] provides a criterion for answer-
ing the question, is Sep, (4) = @ or Sep, (4) # @.

PROPOSITION 4. Let A be a k-algebra, and let K be a commutative
k-algebra. If ¢(0:J) Q. K generates Z(A) Q. K as an ideal, then
AR, K is a separable K-algebra.

COROLLARY 5. (a) If a < k is an tdeal such that

45
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a-Z(4) + ¢(0: J) = Z(A) ,

then aA € Sep, (4).
(b) If Z(A) =k, and either $(0: J) is not nil or ¢(0: J) £ Rad (k),
then Sep, (A) = @, where Rad (k) is the Jacobson radical of k.

1. Representation of separable ideals.

THEOREM 1.1. Let A be a k-algebra and 2AeSep,(A). If the
k-module A/N if of finite type, then for each maximal tdeals m < k,
there is a family (M,)i-, < Sep, (A) of maximal two-sided ideals such
that

(1.2) A+ (m-A) =M, - NM,.

Proof. For each maximal ideal m < k, the k/m-algebra k/m & A/AN
is separable and of finite type as a k/m-module, it follows from [2]
Proposition 3.2 that k/m Q@ A/UA = (4/A)/m(A/A) = A/(m-A + ) =
B, @ --- P B,, where each B; is a simple k/m-algebra with Z(B,)
being a separable field extension of k/m; in particular, each B; is a
separable k-algebra. Denoting by M; the kernel of the mapping
A— A/(mA + A) — B;, we find that the family (M;);_, has the desired
properties.

Remark 1.3. If, in (1.1), we assume e Sep; (4), it follows
from (1.1) of [9], that we can drop the assumption that A/ is a
k-module of finite type.

We obtain immediately from the local criteria for separability
(I2], p. 100) the following theorem.

THEOREM 1.4. Let A be a k-algebra with two-sided ideal A such
that the k-module A/ is of finite type. Suppose either that k is
Noetherian or that A/ is a projective k-module.

If, for each maximal ideal m <k, A + m-A has a representa-
tion (1.2) with separable maximal ideals, then A e Sep, (4).

COROLLARY 1.5. Let k be a field.

(@) A is a separable maximal ideal of A if, and only if, A/A
18 a simple k-algebra whose center is a separable field extension of k.

(b) UeSep, (4) if, and only if, WA is the intersection of a finite
Sfamily of separable maximal ideals of A.

REMARKS 1.6. (1.5) generalizes a result of [6] where a different
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definition of A e Sep, (4) is given. (1.5) also leads to the following
fact. For a field %, fek[x] generates a separable ideal if, and only
if, f'(a) is a unit in k[e] = k[z]/f-k[z], ¢ =« + fk[z], and f is the
product of distinct polynomials of k[x].

DEFINITION 1.7. [5]. A monic polynomial fe k[x] is separable if
the ideal fk[x] is separable.

ProrosiTiON 1.8. If fek[x] is separable, then f'(a) is a unit
wm klal: = k[z]/f - k[x].

Proof. Assume, first, that k is local with maximal ideal m.
Denote by f the reduction of f modulo m, then

klz1/(m, f) = kjm @ klal = kjm[z]/fk/mle] = k/m[a)

is a separable k/m-algebra, hence f is a separable polynomial. Whence,
by (1.6), f =g, --- g, in k/m[x], where each g, is irreducible and f(a@)
is a unit in k/m[a].

Now suppose f’(a) is a nonunit in k[a]; by [7], p. 29, Lemma 4,
each maximal ideal of k[a] has the form (g.(a), m), where g;e k[z]
has reduction §; modulo m. Thus, f'(a) € (g:(a), m) for some ¢ ¢€[1, s],
and this implies f'(x) € (g;(x), m). But then

J'(@) e ker (k[o] — kl[o]/fkle] — k[e]/(m, fk[e]) — k[=]/(g:k[x], m)) ,

so that f’(a) could not be a unit in k/m[@]. This contradiction
establishes our claim that f’(¢) is a unit when k£ is local.

In general, observe that f’(a) is a unit in kf[a] if, and only if
fr(a,) is a unit in k,[a,] =k, Q. kla] for each maximal ideal m < k,
and then apply the foregoing result.

PRrOPOSITION 1.9. Let fekl[x] be a monic polynomial satisfying
the conditions.

(i) f(a) is a wnit in kla] = k[z]/fk[z];

(ii) fx)y=f,+++f, in Eklx], where the monic polynomials f;
generate indecomposable ideals which are pairwise comasimal.

Then f 1is separable.

Proof. Let m < k be a maximal ideal of %, and denote by f the
reduction of f modulo m, then f/(@) is a unit in k/m[a] = k/m K, k[a].
Since f=f, -+ f, in k/m[x], we see that f/ =0 in k/m[x] entails
= flg + fio' e fik/m[x]. But this implies f'(@) in a nonunit in
k/m[a]: = k/m[x]/fk/m[x], since fik/m[z] < k/m[x]. Thus, each of the
f: separable polynomials in %/m[z] which generate pairwise comaximal
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by (ii). An application of [5] (2.3) shows that f is a separable
polynomial in k[x].

COROLLARY 1.10. Suppose k has no proper idempotents and
fek[x] is monic. A mecessary and sufficient condition that f be
separable s that conditrons (1) and (ii) of (1.9) holds.

Proof. We need only verify that when j is separable, f=/f, --- f,
where each of the ideals f;k[x] is indecomposable and they are pairwise
comaximal. But k[x]/f-k[x] has only a finite number of idempotents,
since it is a free k-module of rank equal deg (f); hence k[x]/f-k[x] =
B, ... wB,, where each B, is connected and separable as well as
projective as a k-module. Then, by [5] (2.9), B; = k[x]/f:k[~] and we
see that f = f, -+ f, as usual.

2. Another representation of separable ideals.

DEFINITION 2.1. Let A be a Fk-algebra. The two-sided ideal
A < A will be called decomposable if A = A, N A,, where A, and A,
are proper two-sided comaximal ideals of A; otherwise A will be
called indecomposable. A will be called decomposable or indecomposable
according to whether or not 0 is.

THEOREM 2.2. Let k be a commutative ring without proper
idempotents. Assume U e Sep; (A). Then there is a unique family
(M-, of pairwise comaximal indecomposable separable ideals of A
such that

(2-3) %:Mln".mMs'

Proof. Since the projective k-module A/2 has finite rank, we
can write A/ ~ Bw -- - 7B,, where the B; are indecomposable separable
k-algebras. Putting M; = ker [A — A/A — B;] we obtain the desired
family.

IfA=N,N--+ NN, where the N; are as the M,;, then A4/ =
AMz .-+ tA/M, = A/N;z --- TA/N, implies that

=€+ o0 te=fi+ 0+ fo € fi

being orthogonal central idempotents. Since all the factors are in-
decomposable, for each ¢ there is a unique j such that f; = fie;;
hence ¢t < S, and by symmetry, s < ¢, so s =¢t. The indecomposability
also implies (after reordering) that e; = f;, so that

M, = ker [A— (A/)e]] = ker [A— (40f] = N, ,
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completing the proof.

REMARK 2.4. (2.2) generalizes a result obtained in [5], see p. 471,
(2.10).
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A COMPARISON OF TWO NATURALLY ARISING
UNIFORMITIES ON A CLASS OF
PSEUDO-PM SPACES

Z. FIEDOROWICZ

In this paper, we shall consider an important class of
probabilistic pseudometric spaces, the so-called pseudometrically
generated spaces, i.e., spaces with a collection of pseudometrics
on which a probability measure has been defined. Specifically,
we shall examine the relationship between the uniformity
introduced on the space probabilistically by means of the so-
called ¢, 2 uniform neighborhoods and the uniformity obtained
by considering all the uniform neighborhoods generated by
each of the pseudometrics as a subbase,

A probabilistic metric (PM) space is a pair (S, &) where S is a
set, & is a mapping from S X S into 4, the set of all one-dimensional
left continuous distribution functions, whose value & (p, q¢) at any
(p, ¢y €8S x S is usually denoted by F,,, satisfying

(I) F pp — H

) F,, = H implies p =¢q

Iy F,0) =0

(IV) F pg = F ap

(V) Fm(x) = qu(y) =1 implies Fm-(x + y) =1,
where H is the distribution function defined by

0,250

Hx) =
@) 1, 2>0.

A Menger space is a triple (S, #, T) where (S, ) is a PM
space, T is a mapping (called a ¢-norm) from the unit square [0, 1] X
[0, 1] into [0, 1] which is nondecreasing in each place, symmetrie, as-
sociative, satisfies boundary condition

T, 1) = a,
and with the additional property
(Vm)F, (@ + y) = T(F (@), For(v)) -

A probabilistic pseudometric (pseudo-PM) space is a pair (S, &)
satisfying (I), (IIT), IV), and (V). Similarly, a pseudo-Menger space
is a triple (S, &, T) satisfying (I), (III), (IV), and (Vm).

For further information on the basic properties of PM spaces,
the reader is referred to Schweizer and Sklar [3].
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DEFINITION 1. A metrically generated (MG) space is a PM space
(S, &) together with a probability space (=, &, ¢) such that & is
a set of metrics on S and such that for any (», ¢)eS x S and any
x>0

(1) {de=z:dp, g9 <alez
and
(2) Fo(e) = plde 2:d(p, q) < o} .

A pseudometrically generated (pseudo-MG) space is a pseudo-PM space
(S, &) together with a probability space (=2, &7, p) of pseudometrics
on S such that conditions (1) and (2) hold.

In the sequel, we will use the notation (S, & =, &, () to denote
MG and pseudo-MG spaces.

In his paper [5], R. Stevens showed that any MG space is a
Menger space under the ¢-norm T, where
T.(a,b) = max{a +b— 1, 0}.
His proof may be easily generalized to show that any pseudo-MG space

is a pseudo-Menger space under T,.

DEFINITION 2. Let S be a set and let & be a collection of
pseudometrics on S. Then the gage uniformity of <& on S (denoted
by %.) is the uniformity generated by the following subbase

{® @) eSS x S:d(p, @) < ¥}icz,a0 -

It is shown in Kelley [1] that any uniformity on a set may be
regarded as the gage uniformity of some collection of pseudometrics
on that set.

THEOREM 1. Let (S, &, T) be a pseudo-Menger space with the
property that sup,., T(x, x) = 1. Then the sets

U, M) ={(p, 9 €S X S:Fyple) >1 — A}
form a base for a pseudometrizable uniformity on S.
The above theorem was proven by Schweizer, Sklar, and Thorp

[4]. Since pseudo-MG spaces are pseudo-Menger spaces under T,, a
continuous ¢-norm, it follows that the sets
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U, V) = {0, ) €S x S:F(e) >1 -1}
={p, @:plde z:d(p, q) <e} >1—)\}

form a base for a uniformity on the pseudo-M@G space (S, & ; &, Z, t).
This uniformity will be referred to as the & uniformity and will be
denoted by Z/.-.

Given a pseudo-MG space (S, & ; &, <7, p), it follows from the
above that we can put two uniformities on S, namely the gage uni-
formity %/, and the & uniformity %/.-. A natural question that
arises is whether there is any relationship between the two uniformities.
We shall first examine this question for pseudo-MG spaces generated
by a countable family of pseudometrics.

THEOREM 2. If (S, & ; 2, <, ) is a pseudo-MG space and &
18 countable, then Z/. = %/ ..

Proof. We shall first show that <Z = 2~.

First of all, since for any (p, ¢)eS X S and any ¢ > 0
{de=z:d(p, q) < e} e &Z ,

it follows that its complement {d:d(p, ¢) = ¢} is also p-measurable.
Similarly

(d: dp, q) < &) :Q{d: d(p, Q)<e+%&—}e@‘.

Hence, we have for any (p, ¢)eS x S and any ¢ > 0
{d:d(p, @) = ¢} ={d:d(p, @) S e} N{d: d(p, q) = e} e 7 .
Now pick any d,€ <7 and well order & — {d,} as
{di, &y +--}.
Now since d, # dj, there is a pair (p: q.) €S x S for which
do(Der i) # Ai(Das Q) -

Hence it follows that

(@) = A {d: AP 0) = do(pss )} € 7 .

Since any subset of &7 is a countable union of unit sets {d}, it follows
that <& = 27.
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To show that 7. < %, it suffices to show that any base element
U(e, ) of Z7, contains a base element

V :dg{(p, 9):d(p, 9) < &4},

of %, where A is a finite subset of < and each ¢; > 0. Well order
= as

{dv d2’ "‘} .

Clearly
HD) =S pid = 1.
Pick n large enough so that

H(Uy) = Sp@d >1- .

=1

Let V be defined by
V=@ 9: dulp, 9 < ¢} .
Clearly, if (p,, 9,) € V, then
U dd S(d: doo 0) <
and
1= n < (U da}) S 1l dpn 0) < & = i) 4

so that (p, q,) € U(s, ). In other words,

VU N,
which is what we wished to prove.

THEOREM 3. Let (S, & ; 2, &, ) be a pseudo-MG space with
the property that = is countable, and ¢ is monzero on all nonempty
measurable subsets of 2. Then Zo = XU

Proof. In view of the preceding theorem, it is sufficient to show
Yo% -. In the proof of the preceding theorem we have already
shown that all subsets of & are pg-measurable. It follows that
r({dy}) > 0 for any d,e 2. Now, for any ¢ > 0,

p{d: d(p, q) < &t > 1 — p{d,} implies dy(p, ¢) < €.
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It follows that
Ue, t{do})) E{(, @) : do(, @) < €}«

Taking finite intersections, we have that any base element of %,
contains a base element of /.- and the desired result is an immediate
consequence of this.

THEOREM 4. Let (S, & ; =2, &, ) be a pseudo-MG space such
that = 1is countable. Let @' < <7 be defined by

' ={dez: p{d} > 0}.
Then Z s = Zo

Proof. Let (2', &', 1) be the probability space naturally induced
by (=, &, p). By the previous theorem, the &’ uniformity of (S,
g2, B, 1), %+, is equivalent to %... Since & — ' is a
countable union of sets of p-measure 0,

Fpo@) = p{de 2" d(p, ) < o} = p{de 2:d(p, q) < 3} = Fj(w) ,

so that Z = % = Hoe

Thus, we have essentially solved our problem for spaces generated
by a countable family of pseudometrics. It is reasonable to ask whe-
ther any of these results can be extended to arbitrary pseudo-MG
spaces. The following example shows that this is not the case.

ExAMPLE 1. Let S be the set of all real-valued measurable func-
tions on the unit interval [0, 1]. For any ¢e [0, 1] define a pseudome-
tric d, on S by

d(f, f*) = [F@#) = f*@®)]

for any f, f*in S. Let & ={d:te]0,1]}, and let ¢ be the pro-
bability measure on < induced by the Lebesgue measure on [0, 1].
Let &#: 8 x S— 4 be defined by

FA @) = plde: d(f, ) <@} .

Hence (S, ¥ ; 2, &, ) is a pseudo-MG space. (The pseudometrics
d, may be interpreted as giving the distance between two particles
at time ¢)

It is easy to show that %/ and %. are not even comparable.
For two particles may be close to one another at any finite number
of instants but still be far away from each other the rest of the time.
Conversely, given our finite number of instants we can find two
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particles which are far apart at these instants but arbitrarily close
to each other at all other times.

However, the question still remains, whether any of our results
on countably generated pseudo-MG spaces can be generalized to the un-
countable case when sufficiently strong restrictions are placed upon the
generating family of pseudometrics. A natural restriction that comes
to mind is the requirement that all the pseudometrics be comparable.

DEFINITION 3. Two pseudometrics d, and d, on a set S are said
to be comparable if one of the following relations holds

(i) dip, @) = du(p, g) for all (p, 9y €S x S; or

(i) dy(p, @) = d\(p, q) for all p,qeS x S.

DEFINITION 4. A linearly ordered set (S, <) is said to be countably
bounded if there exists a countable subset A =S such that for every
element se S, there exists an element @ € A such that s < a.

The real numbers with the usual ordering are countably bounded
where as the collection of ordinals less than the first uncountable is
not countably bounded.

THEOREM 5. Let (S, & ; =, <&, 1) be a pseudo-MG space, such
that any two pseudometrics of & are comparable. If < is countably
bounded under the induced linear ordering, then Z/ .- <= Z ..

Proof. If < has an upper bound, this result may be proven
very easily. If & does not have an upper bound, then neither does
A, the countable bounding set, and we can construct from A a strictly
increasing sequence {d,}r-, such that for every d e &, there exists a
k such that d < d,.

Let (p, ¢,) be a point of S x S such that d,(p., ¢.) < dpsi(Dey T0)-
Let A, be defined by

Ay = {de Z:dpw @) < dpri(Drs )} -

It is obvious that {4,}7., forms an increasing sequence of y-measurable
sets. It is also obvious that lim,.. 4, = &, whence lim,_.. #(4,) =
#(=2) = 1. Thus for any N > 0 there exists a N such that x(4,) >
1 — Ax. Hence for any de Ay

dy+(p, @) < ¢ implies d(p, @) < ¢
and
d:d(p, @) < e} = ((Ay) >1 =\,
so that
{(p, 9): dyi(py @) < e} S U(e, N)
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which proves that - S Z ..

Theorem 5 might seem to indicate that perhaps Z/. & % holds
for all pseudo-MG spaces with comparable pseudometrics. But even
this is false as the following example shows.

ExAMPLE 2. Let 2 denote the set of all ordinal numbers less
than the first ordinal having the power of the continuum. Let ¢
denote a one-to-one correspondence from the closed unit interval I =
[0, 1] onto 2. Now define a function f,:I— I for every yel as
follows:

1, if p(2) = o(y)

hHla) = {w/4, if o) > p(y) .

Also define for every y eI a function d,: I x I— R by

d( )_{0, if , = 2,
A ) Z @) + Flw)s i 2 £ @

Define a measure £ on the Boolean o-algebra <& of 27 (where
2 = {d,: y € I}) consisting of all subsets of & which have a cardinal
numbers less than that of the continuum and of the complements of
these sets by

0, if card (4) < €

”(A)z{l, if card (& — A) <G .

One may easily verify that p satisfies all the conditions for a pro-
bability measure.

It may also be easily verified that d, is a metric on I for every
y € I and that ¢(y,) < @(y,) implies that d, (v, x,) =< d,,(x, @,) for every
@y, 2)el x L.

To show I, &7, and p determine an MG-space, it suffices to show
that for (w,, 2,) €I x I and any &, > 0, the set

{d, e 2:d,(@, 7)) < &}

is p-measurable. If z, = 2, or ¢, > 2, this is obviously true. If ¢ =<
2, let o = p~'{max {p(@), p(z)}}. Then

A={d,e:d, (@, 2) <& =21E{d, e Z:p(y) < p')} = B,
since if p(@’) < @(y) held, then () < ¢o(y) and »(z,) < o(y) and
)@ 2) = fi(@) + fi(z) =1+1=2.
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We have card (B) < € and so card (4) < €. Hence A4 is p-measurable
and ¢(4) = 0.

We shall now show that the proper inclusion %. &% . holds
(instead of '~ & Z-). We have '

U1, 3) = {w, wm) el x LI p{d,: dy(w,, %) < 1} > 4} = D,

where D, is the diagonal set on I x I, since, as shown in the preced-
ing paragraph, x, # x, implies

#{dil: dﬂ(xiy xz) < 1} = 0 .

To show that proper inclusion holds, assume the contrary. Then
we would have to have

N (@, 2): (@, @) < &} = D,

=1
for some {d,}i, and {e}i,, & > 0. Let
& = min {e, &, -+, &} and d,, = max {d,, -+, d, }.

Then
B = {(x,, %): dyy(, @) < &} = D; .

Since card {x: p(x) < ¢(¥,)} < €, there exist two points x, # 2, in the
open interval (0, &) such that o(x,) > o(¥) and @(z) > @(¥,). Thus

dyo(xoy 2) = f, y(xo) + £ y(zo) = (xo/ 4) + (zo/ 4) = (80/ 4) + (50/ 4) <¢,

so that (z,, 2,) € B, but (,, z,) ¢ D;, which contradicts our assumption.

Hence Theorem 5 cannot be extended to arbitrary pseudo-MG
spaces with comparable pseudometrics. However, Theorem 5 does
admit generalization in another direction. For it may be easily seen
that a pseudo-M@G space (S, & ; &, &, () with comparable pseudome-
trics such that & is countably bounded, also has the property that
the gage uniformity of < is also generated by some countable sub-
family & £ &, for instance the countable bounding set; i.e., Z., =
% .. We shall now show that in any pseudo-MG space with this
property, Z -~ S % . holds. We shall derive this result by first prov-
ing an even more general result.

THEOREM 6. Let (S, & ; @, &, 1) be a pseudo-MG space. Let
P2 be an arbitrary countable collection of pseudometrics upon S with
the property that Z- S % . Then Z S XU s

Proof. Consider the countable collection of uniform neighborhoods
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= . 1 M = e e
€ = {{(p, Q): d(p, 9) < Z} de #,n =1, 2, } .
Well-order & as
{Vn sz V3, “‘} .

We shall now show that for every uniform neighborhood U(e, \) € %/,
there exists an M such that

NV.SUEN) .
For, consider the sets A, & &7 defined as follows
A, ={iez: AV 0: do, 0 < 9} -

Obviously {4.,}5-, is an increasing sequence of sets. It is also very
easy to show that lim,,_. 4, = 2. Now extend ¢ to an outer measure
¢y on & by defining

p(A) = inf {#(B): AS B and Be &FZ}.

It may be shown (see, for instance, Munroe [2], p. 99) that yf is a
regular outer measure on . We then have

lim 15(4,) = pi(lim A,.) = p5(2) = 1.
Therefore, there exists an M such that

1 (Ay) >1 =N
Now if (p, ¢0) € N Vi
AyS{de z:d(p, q) < & .

Hence

rlde 2:d(p, @) < & = #(An) > 1 =N,

so that (p,, ¢)) € U(e, \) and N, V; <= U(e, \). This completes the proof
that .- S Z .

CorOLLARY. Let (S, 5 ; 2, Z, 1) be a pseudo-MG space. If
there exists a countable collection & of pseudometrics on S such that
U = Woy then % - =S U <.

I would like to take this opportunity to thank H. Sherwood, my
research advisor, for his invaluable suggestions in helping me to
prepare this paper.
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APPROXIMATION OF WIENER INTEGRALS OF
FUNCTIONALS CONTINUOUS IN THE
UNIFORM TOPOLOGY

H. C. FINLAYSON

The result obtained in this paper is a technique for the
approximation and estimation of error of Wiener integrals of
suitable functionals continuous in the uniform topology. For
a certain class of functionals called third degree polynomials
exact results occur at the first as well as each subsequent
stage of approximation,

Similar results for functionals continuous in the Hilbert topology
are given in [1], [4], [5], [6] and [7]. In each of these papers the
functions x(s) of Wiener space are approximated by linear combinations
of the first n indefinite integrals {B;(t)} of a certain complete set of
orthonormal functions {«;(t)}. The approximation for x(t) turns out
to be 3.2, ¢ (x)B;(t) where the ¢;(x)’s are Stieltjes integrals of x(s)
with respect to the a’s. When «(t) is replaced by this approximation
in F[x(-)] a standard Wiener integration formula can be applied. If
F is required to be continuous in the Hilbert topology, [4] and [5]
show there is (as might be expected) considerable choice in the C.O.N.
set. However the uniform topology seems more natural to use in
Wiener space and when continuity in this topology is required it may
be there is not so large a choice. The Haar functions seem a reasonable
choice to try and it is these the author has used.

Let C be the space of real functions continuous on [0, 1] and
which vanish at zero. Let {i,(s)} be the Haar functicns normalized
to be right continuous and to vanish at s = 1. The approximation
of this paper applies to F'{x] if

Flz, + «] = F[w,]
+ 5[ @) - aado Kl -, 5) + QLo

where, with ||2|| = max, [2(t)|, |Q[x, ]| = Allx||” exp B(]|a,||* + ||=|]®)
with B < 1/12 and D > 0.

Notation. Let {h,(s)} be the Haar functions on [0, 1] normalized
to be right continuous and so %,(1) = 0.
Let, for n=1,2,3, ---,

eu@) = — | #(6)dhn(e)
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B0 = | hule)ds
(1) = 3 c@Bilt)

a6 ) = 33680,
e(§) = @m)yfexp [(—& — .-+ — £)/2] .
(This is the kernel commonly used now whereas that used in [1], [4]

and [5] was 7w "2exp (—& — -+ — £).)
Finally let

lzll = sup |(1)]
for e C and let
o(s, t) = (23’2/7f)§‘. sin (k — 3)zth,(s)/(2k — 1)
k=1

(that this last series converges for (s, )]0, 1] x [0, 1] and is, for
fixed s, continuous in ¢ will be seen in Theorem 1. Also o(s, 0) =0
and so, for fixed s, o(s, t) is in C and p"(s, t) can be computed).

In connection with Radon integrals the symbol Sl will be used
0

rather than Sl(n)Sland d subscripted with # subscripted s’s will be re-
0 0
placed by d,,. Another abbreviation is given by the following equation:
| 6@ map. = " o] e06(r@, maz, - e, .

If F[x] is defined on C we define I, (F') and J,(F') by the follow-
ing equations provided the right hand sides have meaning.

LE) = |” Flva g,
() = 3| [ Flwne, ) + 06, ) = 06, )]
+ Flya(e ) = 065, +) + 06, dsdp, .

2. The principal theorem. The following theorem and corollary
are the main results of the paper.

THEOREM 6. Let F[x] be integrable on C and such that J,(F'):
n=1,238, ... exists as a finite quantity. For each x,cC let:

K28, +++y 8),1=1,2,8, be right continuous and of bounded
variation in any j(J < t) of the variables for the other © — j variables
fized. For each pair [x, x]ecC x C
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let Pla, 2] = Fla] + 3 | 2(6) ++- #(s)d K5, -+ 5) -
=1 J0

Let Flx, + x] = Plx, x] + Q[x,, x] define Q[x,, x]. Then if |Q[x, x]| <
Allx||” exp Bl||#%,|* + ||x|*], where B < 1/12, and D > 0 and if a < (0,
1/2) there follows

J.(F) — SF[x]dx‘ — o) as M —> oo .
Furthermore, if @ = 0 then

J(F) = scF[x]dx for each m .

COROLLARY. Under the conditions of the above theorem a specific
estimate of error s given by

J(F) — ch[x]de

< A(M[2=n]P[2/v' T = 12B]"
+ [2v'T = 4B][31/v/7]” exp [31*B/n]

where M is the constant given in Lemma 2 with P replaced by 3D/2.

The following theorems (except Theorem 2) and two lemmas are
the main results used in the proof of Theorem 6. These theorems
are analogous to correspondingly numbered theorems in [4]. In fact
Theorems 3 and 5 are identical to those of [4] and so proofs for them
will not be given.

THEOREM 1. (i) The o(s, t) series converges, the convergence being
uniform in (s, t) [0, 1] x [0, 1].

(ii) p(s, t) is continuous in t for each fixed s.

(iii) [|o(s, *) — p™(s, +)|| 18 measurable in s.

(iv) [lo(s, *) — ™8 I = 31/n":- 1

(V) If, for seC, Flal = K, + 3, gow(sl) e () A K5 o e+, 85) 00
which the K;'s are right continuous and of bounded variation in any
J(4 £ 1) of the variables for the other 1 — j variables fixed then

@1 [ Flolds = 3 Flots, )] + Fl—p(s, )ds -

(The reason /2 does not appear under the p’s as in Theorem 1
of [4] is the change in kernel which results in Sw(s)x(t)dw being
4 min (s, t) rather than min (s, t).)
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LEMMA 1. (Ciesielski [2]). For each x € C, the graph of x"(t) is
an inscribed polygon of the graph of x(t). The graph of x"*'(t) has
at least the same vertices as that of x2™(t) and {x"(t)} converges wuni-
formly to x(t).

Some notation, now to be given, is used in Lemma 2 below. For
fixed x € C and ae (0, ) let o,Jx] be the infimum of 2 > 0 such that
[2(@t) — x(@"”)| < h|t' — t"|* for ¢ and ¢’ in [0, 1]. (that such & exists
for almost all « € C has been shown by N. Wiener [10]).

LEMMA 2. (Yeh [8]). For every ac(0,1/2) and P > 0, the func-
tional {p.[2]}* is Wiener integrable i.e., S {paf]}fda < oo.
In fact for any N > 3 max {(1 + 2«a)/1 — 2«a), P},

[ @alelydo < 1

where
M = (ZN)NB_N{I _ 21/z+a-—1\’<1—2a)}—1g (,m 4 1)P/(2N + 1) < oo,
THEOREM 2. If F'[x] is continuous in the wuniform topology on
C and if either
(i) F[z] is bounded
or
(ii) there ewist nondecreasing G, (w) and G.(u) defined on [0, =)

such that G [max, ., x(t)] and G.[max,.,,{—x(t)}] are Wiener integrable
and such that

|F[x] = Gl[}g:%’}é x(t)] + Gz[}?{% {—=@®}]
then
(2.2) lim L(F) = S Flajde .

Particular suitable choices for G, and G, are

2.3) G,(u) = Gy(u) = Mexp {hu*} for pel0, 2) and arbitrary real
M and h.

(2.4) G,(w) = Gy(uw) = Mexp {hu?} for h < % and arbitrary real M.

THEOREM 3. If F'[x]e L,(C) then

[ Flotde = " | Flo() — a() + e, ldwdp, -

o
—oco
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THEOREM 4. For ac(0,1/2) and P = 0,
[ e = orli7de < Miz=ymel’
where M is as in Lemma 2.

THEOREM 5. For fized ve{l, 2, 3}, let H(t, ---, t;) be right con-
tinuous and of bounded variation in any j(j £ 1) of its variables for
the other 1 — j wariables fized. Then there exists N(sy, +-+, 8;) of
bounded variation and right continuous such that for all xeC,

[[lot) — 2@ -+« [ot) — @ HE, -+, )
18 of the form
S:x(s‘) cor 2(s)d o N(sy ++-, 8)
The proof of Theorem 6 and its corollary follows. Let
6, = SCF[x]dx — J.(F)
= SCF[x]dx
— "4 T ) + 06 ) — 076,

+ F[a@ ) — (s, ) + 0%, )]}dsdpe,, .

If now F is replaced by P + @ the integrals can be combined and,
because of Theorems 1, 3 and 5, the part involving P disappears.
(The detailed argument is exactly the same as that in [4, pp. 64-65]
where all symbols and theorems used there are to be replaced by the
corresponding ones of this paper. See also the note after (2.1)).
What is left is

e = | {]. Qe ), () — (- )1do
— 3| @& ), 06, ) = PG, ]
+ QLG ) =06, ) + 0%, ds)dp,

If
| Q[ ]| < All||” exp Bl||a,|[* + [|«|[*]
then
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el = A" {{ Il — @ l1P exp Blllva(e, )1 + llo — o*|lde
+ {10, ) = 0, )17 exp Blllva(@, I
+ llo(s, -) = (s, +)|[lds}d, -

Now steps almost identical to those of [4, pp. 66-67] with ||z|]
replacing S [#(s)]*ds and a* + b* = [(a + b)* + (e — b)*]/2 replaced by
0

el + [yl = lle + gl + o — | yield

Sw {chx — a"||? exp B[||v.(&, )|+ ||& — W”H"’]dw}d#”

—00

(2.5) 2/3 13
< UcHx - w“i[w”dx] ’ [Scexp GB]ix||2dx]/
and
|._exp Bllva(e, ) lFdgn| o6, ) = 06, 1P
(2.6) exp Bllo(s, ) — p*(s, +)|['ds = | exp 2B]ja'de .

S:Hp(s, ) — p%(s, +)||” exp [Bl| (s, +) — 0"(s, +) [['lds .
Finally one notes that
[[z]| = max {tren[gg]c (?), max [—2@]
so that for K€ (0, 1)
exp (K||z|[") < exp (K{max x(t)}*) + exp (K {max [—=()]})
and

S exp (K ||z |[)de < zg exp (K {max ()} de
2.7 ’ . ’
- 4SOeXp [—(1 — 2K)u/2]du/v/ ) = 21T 3K .

(for the distribution of max x(t) see [3]).

The estimate (2.7) used first with Theorem 4 and then with
Theorem 1 (iv) provides the estimates of the right sides of (2.5) and
(2.6). The estimate given in the corollary follows at once as does
also the order estimate of the theorem.

3. Proof of Theorems 1, 2 and 4. As noted in §2 after the
statement of Theorem 6, only Theorems 1, 2, and 4 remain to be
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proved. Yeh’s lemma [8] and Ciesielski’s lemma [2] provide a proof
for Theorem 4. The lemma due to Ciesielski will be used in the
proofs of Theorems 1 and 2. An outline of the proof of this lemma
will follow. First there will be noted that there is a natural double
indexing of the Haar functions:

ag’(s) ,
a(s)yn=01,2 +-+,k=1,2 +..,2",

A corresponding double indexing applies to the A’s. It will be con-
venient to speak of “the mth cycle of a’s (8’s): » = 0” by which will
be meant {a{¥: k =1, 2, ---, 2"} (or similar for 8’s). Note that «” is
not in a eycle. Now it is fairly easy to prove by induction than any
partial sum of the c¢B-series to at least the end of the (N — 1)™ cycle
gives the value of «(¢) for all ¢ of the form /2":1=1,2, ---, 27 and
that the graph of this partial sum is polygonal with vertices precisely
those points where the graph of the partial sum agrees with the graph
of z(t). The conclusions of the lemma are thus obtained.
The proof of Theorem 2 follows:

First there is noted that a functional continuous in the uniform
topology is Wiener measurable. Lemma 1 together with Lebesgue’s
bounded or dominated convergence theorem completes the proof of (i)
or (ii) respectively. That (2.3) or (2.4) provide suitable choices for
the G’s follows from the formula for the integral of a functional of
max 2(¢) which yields

S G.[max z(5)]de = g G.[max — {e()]do
= 2| oG, @) dep/ @)
= 24| e gy )

and the last integral clearly converges for the conditions given on p
and % in (2.3) and (2.4).
Next is given the proof of Theorem 1.

(i) For any fixed s there is a most one %,(s) in “the n™ cycle
of Haar Functions” (for this notion c.f. beginning of outline of proof
of the lemma) which is not zero and |h.(s)| <1/2". But the k for
that h,(s) satisfiesk =1 +1+2+4 + .. + 2" =27, A comparison
of the series, after terms of value zero have been deleted, of

5:; sin (k — 3)7thy(s)/(2k — 1)|
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with the series
Sz,

which converges, yields the conclusion of (i).
(ii) That o(s, t) is continuous in ¢ for each fixed s follows at
once from uniform convergence of a series of continuous functions.

(iili) To show that [|o(s, -) — p"(s, +)|| is measurable in s, 0"(s, t)
will first be calculated.

06, ) = =3 | o6, Wk @B

(the Stieltjes integrals exist since p(s, #) is continuous in u)

S [[£ sin & — Dran@rer — 1 |anwe
= (=273 3, | sin (6 — Drudh, @60/ — 1)

(because of uniform convergence of a series of continuous functions).
Thus o"(s, t) is measurable in s for each fixed ¢ and so of course is
©(s, t). Since p"(s, t) — o(s, t) is continuous in ¢, [|p"(s, <) — o(s, *)||
is determined by a countable number of ¢ values and so is measurable
in s.

(iv) That

lo(s, <) — (s, )| = 31/w'"
uniformly in s is seen as follows. Let k be such that

1+1+2+4-..+2’n—1(=2n)§k
S14+142+4+ 00 4 2¢=2"),

Note that » < log, k< n + 1.
Now

lo(s, 1) — (s, 1) | = (2°°/7)

py [sin (i — bymt
k 1
+ 3 [ 'sin 6 — Drudh, @B, Jruo)@i - 1] -
Since sin (¢ — %)zt € C, there follows from Lemma 1 that

3.1) [

>, [ sin (0 — Hrudh; )8, || < lIsin G — -1l = 1
i=1Jo

for all +. Now let the series (in ¢) for po(s, t) — o*(s, t) be split into
two parts, viz. a finite sum from 7 =1 to ¢« =k and the remainder
of the series from 7 = k + 1 onward. The second of these two parts
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is estimated as follows:

L)
.e

>

i=k+1

@"/m)

< 25, 1V

(because of (3.1), the comparison series mentioned in the proof of
‘Theorem 1(i), and the relation between k& and w)

=2 (1V2)"[a(l — 1/V/2)] < 32/(xk™) .

To estimate the first part it will be noted that, for any 7, the maximum
difference between the graph of sin (v — #)zt and the k™ polygonal
approximation, viz. (sin (¢ — 3)7t)*, is no greater than the maximum
slope of this sine curve multiplied by 1/2*. Thus

Hsin G — - + ﬁ S:sin (G — 3)mudh,(u)8,(- )H < (i — /2" < in/2"
and therefore
@) 3| S @iz + 3 @ 2V |

(because, for given s, the one function in the j*™ cycle of Haar func-
tions which is not zero has index no greater than 27*': the 7/2" before
the summation is due to a{” which is not in a cycle)

=(23/2/2")[1 + 22”0 1/27'] < 20/,
and addition of the estimates completes the proof.

To prove (v) there is noted that the Fubini theorem for mixed
Stieltjes and Wiener integrals will yield the required result if (2.1)
can be shown to hold for F'[x] any one of the forms K, x(s,), 2(s)x(s,)
and x(s)x(sy)x(s;). But (2.1) clearly does hold for K, (yielding K,) and

for a(s;) and x(s))x(s,)x(s;) (yielding 0). That (2.1) holds for «(s,)x(s,)
is seen from the computation

S:p(u, s)o(u, s;)du
= (23/7r2)§ sin (k — 3)7ws, sin (kK — 3)7s,/(2k — 1) = min (s, s,)
{by Mercer’s theorem for the integral equation
52(8) = | min (s, g, ()t -
[9, p. 136] or [7, p. 464]) and the proof is complete.

Finally there follows the proof of Theorem 4. Let %k be such that
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1+1+24+4+ - +274(=29<k
S14+14+2+4+ -0 4 2¢(=2")

and let ¢te[0, 1] be such that
r2r<t<(r+1)2m0=r<2"—1.
Now (see notation in Yeh’s lemma) for almost all xeC
(3.2) [2(8) — @(r/2")] £ galw]/2*".  Also
3.3) [@5(r/2") — &*@t)| < [a*(r/2") — *([r + 1]/2")]
(because the graph of «* is a chord of the graph of « on [r/2", (» + 1)/2"]
according to the Ciesielski lemma).
=|a(r/2") — «(r + 1]/2")]
(since, from the Ciesielski lemma, « and x* agree at »/2* and [» + 1]/2")
Sdalr]/2

for almost all «.
Thus

() — ") |
= [a(t) — «(r/2") + o(r/2") — a*@)|
= [@(t) — x(r/2") + «“(r/2") — < ()]
= 2¢.[x]/2

(because of the Schwarz inequality and inequalities (3.2) and (3.3)).
From the fact that n» = log, k¥ — 1 there then follows for almost all 2

lle — @] = 27"g.[x]/k

and an application of Yeh’s lemma completes the proof.
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LOCALIZATION OF THE CORONA PROBLEM

T. W. GAMELIN

The corona problem for planar open sets D and the fibers
of the maximal ideal space of H=(D) are discussed and shown
to depend only on the local behavior of D.

Let D be an open subset of the Riemann sphere C*, and let H>(D)
be the uniform algebra of bounded analytic functions on D. We will
assume always that H>=(D) contains a nonconstant function, that is,
that C*\D has positive analytic capacity. Our object is to study the
maximal ideal space _Z (D) of H=(D), and the “fibers” _#(D) of
# (D) over points ne€dD. The basis for our investigation is the
observation that the fiber _#(D) depends only on the behavior of D
near L. This localization principle is used to obtain information re-
lated to the corona problem.

The corona of D is the part of _# (D) which does not lie in the
closure of D. Our main positive results are that D has no corona
under either of the following assumptions:

(1) that the diameters of the components of C*\D (in the spherical
metric, if D is unbounded) be bounded away from zero; or

(2) that for some fixed m = 0, the complement of each com-
ponent of D has <m components.

The proofs rest on the localization principle, and on Carleson’s
solution of the corona problem for the open unit dise [2]. Each of
the above conditions includes the extension of Carleson’s theorem to
finitely connected planar domains due to Stout [9].

In the negative direction, we present an example, due to E. Bishop,
of a connected one-dimensional analytic variety W which is not dense
in the maximal space of H=(W). The construction is similar to that
of Rosay [8].

1. Two basic lemmas. The localization process depends on the
following two lemmas.

LEMMA 1.1. Let N€dD, and let U be an open neighborhood of
N If fe H(DNU), there is F e H*(D) such that F — f extends to
be analytic at N, and (F — f)(\) = 0. Moreover, F can be chosen so
that || F'||, < 33| fllpno-

Indication of proof. Suppose U = 4(n;9d) is the disc of radius
J, centered at . Let g be a smooth function supported on U, such
that g = 1 on 4(\; 6/2), and [09/0Z| < 4/6. Define f = 0 off D, and set

73
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_ 1({f©) — f) o
(Tyf)(C) = ;“CTEE—dxdy .

For a description of the properties of T,f, see II.1 or VIIL.10 of [3].
The desired function is obtained by adjusting 7,f by a constant:

_ _1{{_f) o9

LEMMA 1.2. Let N€oD, and let fe H*(D). Then there is a
bounded sequence f,c H=(D) such that f, extends to be analytic at
N, and fo(2) — f(z) uniformly on any subset of D at a positive distance
from \. Moreover, if f extends continwously to DU{\}, then the f,
converge uniformly to f on D.

Proof. This is VIII.10.8 of [3]. The proof is the same as that
of 1.1, except that one uses a sequence of g, whose supports shrink
to {\].

2. The fibers. In order to define the fibers, we prove the fol-
lowing lemma.

LEMMA 2.1. If pe _# (D), then there is a wunique point A€ D
such that o(f) = f(\) for all functions fe H=(D) which are analytic
at \.

Proof. If D is bounded, then the coordinate function z belongs
to H=(D), and the point A = @(2) is easily seen to have the desired
properties. Since D may be unbounded, we must be more circumspect.

For convenience, we rotate the sphere so that « ¢ D, and so that
@ is not “evaluation at «”. Choose he H*(D) such that h(c) =0
while @(h) = 1. Then zhec H*(D). We will show that M = ¢(zh) has
the desired properties. Note that ¢((z — \)h) = 0.

Suppose fe H=(D) extends to be analytic in a neighborhood of .
Then (f — f(\)/(z — \) € H=(D), so that o(f — f(A)) = @(h(f — f(N)) =
P((z — MWP((f — f\)/(z — N) = 0, and o(f) = f(A).

For the uniqueness, suppose that A = A belongs to D. We must
find F e H*(D) which is analytic at A and at )\, and which satisfies
F(\) # F(\'). Using 1.2, we see that there is fe H=(D) such that f
is analytic at A and at A, f(e) = 0, and f is not identically zero on
D. If z,eD is such that f(z,) # 0, then one of the three functions
£ 2f, (f — f(2)/(z — z)) e H*(D) will separate » and \’. That does it.

The fiber _#(D) of _# (D) over ne D consists of all p e _# (D)
such that o(f) = f(\) for all fe H*(D) which extend to be analytic
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in a neighborhood of A. From the definition of _#;(D), and 2.1, we
conclude that the _#;(D) form a partition of _#Z (D) into disjoint
closed subsets. If A e D, then _#(D) consists of the single homomor-
phism “evaluation at \.” If ¢, is a net in _#Z(D) converging to
@ e #,(D), and if @, lies in the fiber over \,, then the )\, converge
to .

By 1.2, the functions in H=(D) which extend analytically across
A edD are dense in the functions in H*(D) which extend continuously
to . We conclude the following.

LEMMA 2.2. If fe H*(D) extends continuously to DU{\}, then
o(f) = f(\) for oll pe #.

The next theorem shows that the fibers and fiber algebras depend
only on the behavior of D near \.

THEOREM 2.3. Let nedD, and let U be an open neighborhood of
N. The fibers _#(D) and _#(DNU) are homeomorphic. The re-
striction of H=(D) to _#(D) coincides (modulo this identification)
with the restriction of H*(DNU) to _.2Z(DNU).

Proof. Since H*(D)cH=(DNU), every homomorphism in
A (DN U) determines a homomorphism in _# (D) by restricting it to
H=(D). The restrictions of the homomorphisms in _Z;(DN U) belong
to the fiber _#(D). This determines a continuous map of _Z(DNU)
into _#;(D), which we must show is one-to-one and onto.

For this, let pe _#(D), and fe H*(DNU). Choose F as in 1.1,
and define ¢(f) = @(F'). By the definition of the fiber, $(f) is inde-
pendent of the function F, subject to the conditions of 1.1. Using
2.2 one sees that & is multiplicative on H=(DNU). Moreover, if ¢
is already the restriction of some v e _Z(DNU) to H=(D), then the
definition of & shows that & coincides with +. It follows that the
correspondence @ <« $ is a homeomorphism, as was required. On ac-
count of 1.1, again, the fiber algebras are isomorphic.

COROLLARY 2.4. With the above identification of _#(D) and
A(DNU), the adherence of D in _#;(D) coincides with the adherence
of DNU in .#4(DNU).

Proof. A net in DN U will converge to pe _#(D) in _#Z (D) if
and only if it converges to e _Z(DNU) in . Z(DNU).

As another consequence of 2.3, we have the following extension
of a result in [10].
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THEOREM 2.5. The cluster set of fe H*(D) at Ane€dD coincides
with the range (of the Gelfand transform) of f on _#i(D).

Proof. Every point in the cluster set of f at A is assumed by f
on _#(D). On the other hand, suppose that w does not belong to
the cluster set of f at ». Then there is an open neighborhood U of
A such that |f — w| = ¢ >0o0n DNU. Consequently f — w is inverti-
ble in H*(DNU), and f cannot assume the value w on _Z(DNU) =
(D).

COROLLARY 2.6. If nedD and fe H=(D), then

sup |p(f)| = lim sup | ()] -

THEOREM 2.7. The restriction A, of H=(D) to _#(D) is a closed
subalgebra of C(_#;(D)) whose maximal ideal space is _#(D).

Proof. This follows readily from the following assertion: If
hec A,;, then there is F'e H*(D) such that FF =% on _#;, and ||F|| <
66||k]]. In order to establish this assertion, choose fe H>(D) such
that f = h on _#. By 2.6, there is an open neighborhood U of A
such that |f| < 2||h|] on DN U. The desired function F' is now the
extension of fl,ny given by 1.1.

3. The corona problem. The open set D is dense in _#(D)
if and only if whenever f,, «--, f, € H*(D) satisfy |f,| + - + |ful =
d > 0 on D, then there exist g,, + -+, g, € H*(D) such that fig, + -+ +
fu9. = 1. We wish to consider open sets D with the following property,
which is (at least formally) stronger than the assertion that D be
dense in _Z (D). '

Property (*). For each integer n = 1 and each § > 0, there are
constants C(n, ) such that whenever f,, ---, f, € H*(D) satisfy |f;| <
1,1<j<mn, and > |f;| = 0 on D, then there exist g,, ---, g, € H*(D)
such that > f;9, =1 and |g;| < C(n,9),1 <7 < n.

LEMMA 3.1. An open set D has the property (*) if and only if
wherever E is a union of disjoint open sets, each ome of which s
conformally equivalent to D, then E is dense in _# (K).

Proof. Suppose D has property (*), and suppose that f, ---,
fa€c H=(E) satisfy >} |f;| =0 > 0. We can assume that |[f;|<1,1<
j = n. Using property (*), we can solve the relation > f;9; =1 on
each subset of E conformally equivalent to D. The uniform estimate
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on the g,’s guarantees that the resulting solutions belong to H=(E).
So E is dense in .#Z(E). On the other hand, if D does not have
property (*), one easily constructs f,, .-, f, € H*(¥) such that 3 | f;|=
0 > 0, while 3 f;9; = 1 has no analytic solutions g,, ---, g, which are
bounded on all of E.

Now Carleson [2] has shown that the open unit disc has the
property (*). From this, and localization, we can use a simple topol-
ogical argument, as in [5], to deduce the following.

THEOREM 3.2. If the diameters (in the spherical metric) of the
components of the complement of D are bounded away from zero,
then D 1is dense in _# (D).

Proof. By rotating the sphere, we can assume that « € D. Sup-
pose the diameters of the components oD are bounded below by & > 0.
If X € oD, then DN 4(\; ¢/2) is simply connected, that is, each component
of DN4(n;e/2) is conformally equivalent to a disc. By 3.1 and
Carleson’s theorem, DN 4(\; €/2) is dense in _Z (DN 4(\; €/2)). By 2.4,
A#(D) belongs to the closure of D in _# (D). Since this is true for
all xedoD, D is dense in _# (D).

The work of Behrens [1] shows that, under the hypotheses of
3.2, each fiber algebra A, is a logmodular algebra (on its Shilov
boundary). In particular, the Gleason parts of A, are one point parts
and analytic dises. Using a Melnikov ecriterion (cf. [4]), it can be
seen that each _#; is a peak set of H=(D), so that _#; contains every
part which it meets. Hence the Gleason parts of H=(D), under the
assumptions of 8.2, are the distinet components of D, together with
one-point parts and analytic discs.

Concerning the existence of the constants C(n, ) for multiply
connected domains, one can say the following.

THEOREM 3.3. For each choice of integers m,n =1, and each
0 > 0, there exist constants C,(n, 6) such that property (*) s walid,
with the constants C,(n, d), for all domains D which have =m
boundary components.

Proof. Proceeding by induction, we can assume that the theorem
is true, with m replaced by m — 1, so that the required constants
C,._i(n, 0) exist. We also assume that for some % and ¢, the constant
C.(n, 6) fails to exist. From this we will obtain a contradiction.

By hypothesis, there are domains D,, 1 £ k < o, which have m
boundary components, such that property (*) fails for D,, with con-
stant C(n, §) = k. We can assume that D, is a circle domain, obtained
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from the open unit disc 4 by excising m — 1 disjoint closed subdiscs,
one of which is centered at 0. Let 7, be the smallest number such
that the annulus {r, < |z| < 1} is contained in D,. There will be two
cases to consider: limsup r, < 1 and lim sup », = 1.

First, suppose that limsup r, = 1. By passing to a subsequence,
we can assume that », converges to 1 sufficiently rapidly, so that D,
is conformally equivalent to a domain E, obtained from the rectangle
{27! < Im (2) < 27%, —1 < Re () < 1} by excising m — 1 holes, so that
at least one of the excised holes meets {Re (z) < —1/2}, and at least
one meets {Re (2) > 1/2}. If E = UE,, then the proof of 3.1 shows
that E cannot be dense in _# (E). Now the open sets E, = {ze E:
Re () > —1/2} and E_ = {ze E:Re (2) < 1/2} are unions of domains,
each of which has a complement with <m — 1 components. In view
of the induction assumption, £, and E_ are dense in 2 (¥.) and _Z (E_)
respectively. If ) e E satisfies Re (\) > —1/2, then _Z(E) = _#(E.,)
while if \ € £ satisfies Re (\) < 1/2, then _Z(F) = _#(E.). In any
event, every _#;(E) is adherent to E, so that E is dense in 27 (&).
This contradiction allows us to reject the case limsupr, = 1.

Hence we can assume that there is an » < 1 such that each D,
contains the annulus {r < |x| < 1}. Let D be the disjoint union of
the sets D,, and let H=(D) be the algebra of bounded functions on
D which are analytic on each D,. Again the proof of 3.1 shows that
D cannot be dense in the maximal ideal space _Z (D) of H=(D).

Let N be the set of positive integers, and let 4 be the open unit
disc. It will be convenient to regard D as a subset of 4 x N, so that
H=(4 x N) becomes a subalgebra of H=(D). Our argument at this point
is motivated by Behrens’ discussion of _Z (4 x N) in [1]. As Behrens
notes, Carleson’s theorem shows that 4 x N is dense in _Z(4 x N).

Let pe #Z (D), and let Z be the function in H*=(D) defined by
Z(\, m) = n. We will find a net in D converging to @, and for this
we congider two cases.

First, suppose that |@(Z| > r. The restriction  of ¢ to H*(4 x N)
belongs to _#Z (4 x N), so there is a net (A, k,) in 4 X N such that
Nay ko) =P in #Z(4 X N). In other words, f(\,, k,)— @(f) for all
fe H=(D) which extend to be analytic on each slice 4 x {k}, k = 1.
In particular, n, = Z(\., k) — @(Z), so that » <|\,| <1 and (\,, k,) € D
eventually, If F e H*(D) is arbitrary, we expand F in a Laurent
series, writing F' = F, + F',, where F(\, k) is analytic on 4 x {k}, F\(\, k)
is analytic on F, = D,U{|x| =1}, and F\(co, k) = 0. Note that F,
and F, belong to H=(D), because the annuli we are splitting across
have the same widths. In fact, Fye H*(4 x N). Now F,(\, k) =
Fi(p(Z), k) + v — p(Z))H(\, k), where H(-, k) is analytic on E,. Since
the distance from the boundaries of the E, to ¢(Z) always exceeds
|@(Z)| — r, we find that He H*(D). Hence
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F=G+(Z-92)H,

where Ge H*(4 x N), and He H*(D). Now F(\, k) = G\, ko) +
N — P(Z))H(Nyy k) converges to @(G) = o(F). So (A k) — @ in
A (D), and ¢ is in the closure of D in _#Z (D).

Next, suppose that [p(Z)| < r. The E, defined above are circle
domains with <m — 1 holes. The induction assumption shows that
if E is the disjoint union of the E,, then E is dense in _#Z(¥). Hence
there is a net (\,, k.) € E,, x {k,} such that f(\., k) — o(f) for all
fe H*(D) which extend to be analytic on E. The Laurent series
argument again shows that eventually (\,, k.) € D, and (\., k.) — @ in
A (D). Again ¢ lies in the closure of D.

It follows that D is dense in _# (D), contradicting our previous
assertion. That completes the proof of the theorem.

Now for m, n =1 and 6 > 0, let C,(n, 6) denote the best possible
constant for which property (*) is valid for domains whose complements
have <m components. The C, (%, 0) increase with m. If sup,, C,.(n, )=
C(n, d) is finite for all » = 1 and 6 > 0, then every open subset D of
the complex plane has property (*), with constants C(n, 6). This can
be seen by approximating each component of D by finitely connected
domains, and using a normal families argument. If this is the case,
then D is dense in .# (D) for every planar open set D. On the other
hand, we have the following.

THEOREM 3.4. If there exist m>1 and 0 >0 such that
sup,, C,.(n, ) = oo, then there is a domain (=connected open set) D
such that D is not dense in _# (D).

Proof. Suppose that for some integer n =1 and some 6 > 0,
there is a finitely connected domain D, such that property (*) fails,
with constant C(n, 0) = k. We can assume that D, is contained in
the rectangle {—1 < Re(2) <1, 27! < Im (z) < 2%}, and that oD,
meets both vertical sides of the rectangle. As in 3.1, UD, is not
dense in _#(UD,). Hence there is a point ned(UD,) such that
A (UD,) is not contained in the closure of UD,. We can assume
that Re(\) = 0. Let E be the union of UD, and the rectangle
{—=1<Re(?) < —1/2, 0 <Im () < 1}. Then E is connected, and _Z;(F) =
#(UD,). By 2.4, FE is not dense in _# (F). That proves the theorem.

4. An example of Bishop. Here we present an example of a
one-dimensional analytic variety W which is not dense in _Z(W).
The example has been in circulation for some time, being originally
discovered by E. Bishop some years ago, but the example has never
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appeared in print.

To construct the example, let S be the shell {(z, w): 1/2 < max (||,
lw|) < 1} in €% For each integer m, let V, be the set of (z, w)eS
such that either 27z or 2"w is a Gaussian integer. The V, form an
increasing sequence of connected one-dimensional analytic subvarieties
of S, whose union is dense in S.

Suppose f is a bounded function on UV, which is analytic on
each V,. From Schwarz’s lemma it is easy to see that f is uniform-
ly continuous, so that f extends to be continuous and analytic on S.
By Hartogs’ theorem, f extends to be analytic on the unit polydise
in C2

LEMMA 4.1. There fails to exist a constant C > 0 with the fol-
lowing property: For each mn, there are f,, g,€ H=(V,) satisfying
2fn + wg, =1 and [fo] = C, |g.] = C.

Proof. Suppose there is such a constant. A normal families argu-
ment produces bounded functions f and ¢ on UV, such that zf +
wg = 1, and f and g are analytic on each V,. By the remarks preced-
ing the lemma, f and g extend analytically to the unit polydise, and the
extensions satisfy zf + wg = 1. Substituting z = w = 0, we obtain a.
contradiction, thereby establishing the lemma.

THEOREM 4.2. There is a connected one-dimensional analytic
variety W such that H=(W) separates the points of W, while W is
not dense in the maximal ideal space of H=(W).

Proof. Let W be the variety obtained from the disjoint (!) union
of the V,, n = 2, by identifying some prescribed point p, of V, to
the point of V,., with the same z and w coordinates, so that distinet
identified pairs have distinct coordinates. Then W is a connected
variety, the coordinate functions z and w remain defined on W, and
they satisfy [z| + |w| > 1/2 on W. By 4.1, there fail to exist func-
tions f, g € H=(W) satisfying zf + wg = 1, so that W is not dense in
A (W).

5. Extension to Riemann surfaces. It is easy to extend Lemmas
1.1 and 1.2, which allow one to localize the fibers and fiber algebras,
to domains on a finite bordered Riemann surface. More specifically,
we can easily handle the following situation. :

Let D be an open set on a Riemann surface S, let A eoD, and
let U be an open coordinate disc centered at . Suppose there is a.
function » meromorphic on DU U such that A(\) = 0, A~*(R(U)) = U,
and H is a one-to-one covering of U over w(U). If feH=(DNU),
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then foh='e H*((D)NA(U)). By 1.1, there is a function G € H>(h(D))
such that G — foh™ is analytic at 0 and vanishes there. Then Goh =
Fe H=(D), and F — f is analytic at A and vanishes there. So Lemma
1.1 is valid. Also, Lemma 1.2 is valid. If the fiber _#(D) is defined
as in §2, then 2.2 and the localization Theorem 2.3 are true.

Now suppose D is a domain on a finite bordered Riemann surface.
It is easy to see, using meromorphic functions, that 2.1 is valid, that
is, that _#Z (D) can be partitioned into disjoint closed “fibers” _#;(D)
over points A e D. In this case, the required function % always exists,
for any point \ edD, so that the fibers are local. In particular, if D
is a finite bordered Riemann surface, then D is dense in _# (D), and
the fibers and fiber algebras associated with points of 0D are identical
to those associated with the disc algebra H=(4). This latter theorem
has been proved in a variety of ways in the literature. For one of
the simplest proofs, see [7].

If D is an open set lying on a compact Riemann surface, such
that H>(D) contains a nonconstant analytic function, and if the fibers
_#(D) are defined as in §2, then again the _#(D), re D, form a
partition of _#Z (D) into disjoint closed subsets, and the localization
Theorem 2.3 is valid. The details of the proofs are left.

REFERENCES

1. M. Behrens, On the corona problem for a class of infinitely connected domains, Bull.
Amer. Math. Soc. 76 (1970), 387-391.

2. L. Carleson, Interpolation by bounded analytic functions and the coroma problem,
Ann. of Math. 76 (1962), 542-559.

3. T. Gamelin, Uniform algebras, Prentice-Hall, Englewood Cliffs, N. J., 1969.

4. T. Gamelin and J. Garnett, Distinguished homomorphisms and fiber algebras, Amer.
J. Math. (to appear).

5. J. Garnett, On a theorem of Mergelyan, Pacific J. Math. 26 (1968), 461-467.

6. K. Hoffman, Banach spaces of analytic functions, Prentice-Hall, Englewood Cliffs,
N. J., 1969.

7.
T4-111.

8. J.-P. Rosay, Sur wun probléme posé par W. Rudin, C. R. Acad. Sci. Paris 267
(1968), 922-925.

9. E. Stout, Two theorems concerning functions holomorphic on wmultiply connected
domains, Bull. Amer. Math. Soc. 69 (1963), 527-530.

10. L. Zalecman, Bounded analytic functions on domains of infinite commectivity,
Trans. Amer. Math. Soc. 144 (1969), 241-269.

, Bounded amalytic functions and Gleason parts, Ann. of Math. 86 (1967),

Received May 26, 1969.

UNIVERSITY OF CALIFORNIA, LOS ANGELES






PACIFIC JOURNAL OF MATHEMATICS
Vol. 34, No. 1, 1970

SPHERE TRANSITIVE STRUCTURES AND
THE TRIALITY AUTOMORPHISM

ALFRED GRAY AND PAUL GREEN

Let G be a compact connected Lie group which acts
transitively and effectively on a sphere S*—!, A manifold M
is said to have a sphere tranmsitive structure if the structure
group of the tangent bundle of M can be reduced from O(n)
to G. The study of the existence of such structures is a
generalization of the well-known problem of the existence of
almost complex structures. We completely solve the question
of existence of sphere transitive structures on spheres.

For our study of sphere transitive sfructures we need to
know some facts about the triality automorphism 2 of Spin (8),
We completely determine the cohomology homomorphism in-
duced by 1 on the cohomology of the classifying space of

Spin (8).

Berger [1] hag classified the holonomy groups of manifolds having
an affine connection with zero torsion. Either from this classification
or directly from Simons [11], it follows that the holonomy group of
an irreducible Riemannian manifold which is not a symmetric space
acts transitively on a sphere.

On the other hand we have the following elementary fact: if the
holonomy group of a Riemannian manifold M is G, then the structure
group of the tangent bundle of M can be reduced to G. Therefore
a more fundamental question than whether or not a Riemannian
manifold M has a given Lie group G as its holonomy group is the
question of the reduction of the structure group of the tangent
bundle of M to G. In this paper we consider the latter question and
give some necessary conditions and some sufficient conditions in terms
of characteristic classes. From the remarks above it suffices to con-
sider the case when G is a connected Lie group which acts transi-
tively and effectively on a sphere.

We introduce the following notions.

DEFINITIONS. Let & = (E, M, », F) be a vector bundle where M
is a CW-complex and dim F = n. Then a sphere transitive reduc-
tion is a reduction of the structure group O(n) of & to a connected
Lie subgroup G of O(n) which acts transitively and effectively on
the sphere S*'. In the special case when & is the tangent bundle
of M we call the reduction a sphere transitive structure on M.

According to [10] the connected Lie groups G which act effec-
tively and transitively on spheres are the following: SO(n), U(n),

83
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SU(n), Sp(n), Sp(n)-SO(2), Sp(n)-Sp (1), ‘Gz, Spin (7), and Spin (9).
We have

SOm)/SO(n — 1) = S, Un)/Um — 1) = SUMN)/SUn — 1) = S,
Sp (n)/Sp (n — 1) = Sp (n)-SO(2)/Sp (n — 1)-SO(2)
= 8p (»)-Sp (1)/Sp (n — 1)-Sp (1) = S,
G,/SU®) = S°, Spin (7)/G, = S7, Spin (9)/Spin (7) = S* .

In §2 we discuss the triality automorphism ) of Spin (8) and
the cohomology of the self homeomorphism of the classifying space
induced by A. The results of §2 are then used in § 3 to determine
the cohomology of the classifying space BSpin(n) (n =17, 8, 9) and
a good deal of the cohomology of BG,. Then we determine some
necessary conditions for sphere transitive reductions for the cases
G = G,, Spin(7), Spin(9). In §4 we discuss the existence of sphere
transitive structures on certain homogeneous spaces. In particular
we completely solve the problem of the existence of sphere transitive
structures on spheres.

2. The cohomology of the triality automorphism. Spin (8)
is the simply connected compact Lie group whose Lie algebra is of
type D,. Now D, is the unique simple Lie algebra with an outer
automorphism of order 3. In fact, if Aut (D,) (resp. Inn (D,)) denotes
the group of all (resp. inner) automorphisms of D,, then the factor
group Aut (D,)/Inn(D,) is isomorphic to the symmetric group on 3
letters. Let &, A € Aut(D,) be such that their images in Aut (D,)/Inn(D,)
generate this group and satisfy the relations \* =1, £* =1, £ik =A%

According to [7] it is possible to choose £ and A so that the
principle of triality holds. This means the following. Let V be the
8-dimensional algebra of Cayley numbers and denote the product of
2, yeV by vy. Then for AeD,, x, ycV we have

(Ax)y + 2(M(A)y) = (Mr)(A)(2Y) .
The Dynkin diagram of D, is

71
O

;
JON
/ N
730 Ors

where {v,, 7 7 74} is a simple system of roots of D,. Since £ and A
are outer, they give rise to symmetries of the Dynkin diagram of
D,. It may be checked that {v, v, 7, v} may be chosen so that.
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E() =71, B =", E(V) =7 E(7) = M) =75 MT2) =Y M) =
Yo M7Y) = v,. Henceforth we assume that the principal of triality
holds and that the above choice of simple roots has been made.

Since Spin (8) is simply connected, ) and £ induce outer auto-
morphisms of Spin (8); these in turn induce homeomorphisms of
B Spin (8), which we continue to denote by A and x. In order to
determine the cohomology of A and £, it will be convenient to
use some cohomology classes introduced by Thomas [12]. Let
p: BSpin (n) — BSO(n) be the map defined by the covering homo-
morphism of Spin (#) over SO(n). Denote by w, the universal Stiefel-
Whitney classes, by P, the universal Pontryagin classes, and by X
the Euler class of BSO(8). Then H*(BSO(®), Z) = Z|P, P,, P;, X] +
2-torsion and H*(BSO@), Z,) = Z,w,, --+, ws]. According to Thomas
[12] there exist cohomology classes @, e H*(BSpin, Z) (1 =1, 2,3, 4)
and wf e H*(BSpin, Z,) (¢t = 4, 6,7, 8) (where Spin denotes the stable
Spin group) such that

p*(P) =2Q, + @ p*(w) =0 (1=23,5)
p*(Ps) = Q (oz(QJ = wf, pz(Qz) = wy

p*(P4) =2Q, + Q3 pz(QS) = wg? 104(Q4) = Wi .

The cohomology classes Q,, Q,, Q. wi, wF, wF, wF give rise to the
cohomology classes in H*(B Spin (8), Z) and H *(B Spin (8), Z,) which
we denote by the same letters.

THEOREM 2.1. (i) There exist
Y e HYBSpin 8), Z) and e HB Spin (8), Z,)
such that
H*(BSpin (8), Z) = Z[Q,, @, @y Y] + 2-torsion
H*(BSpin (8), Z,) = Z,[w, w, w, wi, @] .

Furthermore Y and @ can be chosen so that p*(X) = 2Y — @, and
YY) = .

(i) The cohomology homomorphisms N* and £* are given as
Sollows:

V(R = @y, M(wf) =wi (1=4,6,7),
M(Qy) = 3Y — 20, MV (wi) = o,

MY)=Y - @Q,, M) =wE +o,

7\'*(Qa) =@+ 2Q,Y — 2Q1Q2 ’ K*(wz*) =w! (1=4,6,7, 8) ’
£ Q) =@ (1=1,23), ¥ () = wi + o,

£E5(Y)=-Y+Q,.
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Before proving this theorem we state without proof a lemma
which we shall need.

LEMMA 2.2. Let s: K— L be a p"-fold covering of a compact
connected Lie group where p 1s a prime, and denote by

s*: H*(BL, Z) —> H*(BK, Z)

the corresponding cohomology homomorphism of classifying spaces.
Let S be a subset of H*(BK, Z) such that S generates s*(H*(BL, Z))
as a group (ring) and 0,(S) generates p,(H*(BK), Z) = H*(BK, Z,)
as a group (ring). (0, denotes reduction mod p.) Then S generates
H*(BK, Z) as a group (ring).

Proof of Theorem 2.1. Using a result of Borel [2] it is not
hard to see that wj, wy, w’, and w} are generators of

H*(B Spin (8), Z,) .

Furthermore if 0,: Z— R, denotes the inclusion, where R, is the
rationals, then it is obvious that

H*(B Spin (8), R)) = R[0,(Q1), 0o(Q2), 0o(Qs), 0o(p*(X))] .

We first establish part of (ii). The automorphism &« of Spin (8}
gives rise to an outer automorphism £ of SO(8); this is the ordinary
orientation reversing automorphism of SO(8). The induced homo-
morphism £* is the identity on H*(BSO(8), Z,) and satisfies £*(P,) =
P, (i=1,2,3), £(X) = —X. Hence £*(w}) =w} (1 =4,6,7,8), and
£¥Q,) =@, ¢t =1,2,3). It is also easy to see that V*(Q) = @, and
M(wi) = wF for v =4, 6, 7.

We may write

AH(P*(0((X)) = apl(X) + boy(Q:) + coy(Q) ,
K*(po(Qz)) = dfoo(X) + etoo(Qz) -+ fpo(Q%) ,

where @, b, ¢, d, ¢, f are rational numbers. Using the facts that
VR = @, N =1, kxk =\, and the knowledge of £*, we calculate
that c=f=0, a = e = —1/2, and bd = —3/4.

To compute b, d, and )»*(po(Qg)) we must resort to some calcula-
tions with roots. Let @, @, @,, and X denote the real cohomology
classes corresponding to @, @,, @:;, and p*(X). Then we may regard
Q,, @, @, and X as polynominals on the Lie algebra of a maximal
torus of Spin (8), i.e., polynomials in the roots of Spin (8). A calcula-

tion shows in fact that (if we write v, = —7v, — 2v, — Vs — 7o)
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Q, = =2+ v+ 47,

Q. = (=77 — 2737 + M + v + vME 4+ YD),

X = &= — v 4+ Yt + YY),

Q, = —28%(VVE + VIV 4+ VR 4 VYR 4 VY Y R 4

— 2700 — 2RV — 29I — 2vMEYY) .

Thus we obtain
* 1 1
A (po(X)) - '—EIOO(X) - 'EAOO(Q2) ’

") N (0(Q)) = o) = 2@,
M (0@) = 0,(Q) + 0,(Q.X) — p/@Q.Q) -

Define Y = —»*(»*(X)) and @ = p,(Y). Then A\*(wf) = w. From
this, equations (*), and the fact that H™*(B Spin(8), Z) has only
2-torsion, we obtain the rest of (ii).

From (ii) and Borel [2] we see that ® may be taken to be the
remaining generator of H*(B Spin (8), Z,). This fact together with
(i) and Lemma 2.2 imply (i).

3. The cohomology of BSpin(7), BSpin(9), and BG,. We
first compute the cohomology of B Spin (7) and its inclusion in BSO(8).
Actually there are two natural 8-dimensional representations of Spin (7)
according to [8]. These are equivalent in O(8) but not in SO(8). Denote
these representations by j. and j_.. In the terminology of [8] j:
and j_ give rise to the two distinct 3-fold vector cross products on
Rt Let 4: Spin (7) — Spin (8) be the natural inclusion. The following
lemma [8], [13] will be necessary.

LEMMA 3.1. We have the following commutative diagrams

Spin (8) —— Spin (8) Spin (8) —— Spin (8)
| lv | |
Spin (7) 50 SO (8) Spin (7) - SO(8) .

Where it is convenient we write j. to mean either j, or j_.
Let ¢*: H*(B Spin (8)) — H *(B Spin (7)) and

Ji: H*(BSO (8)) — H*(B Spin (7))

be the induced cohomology homomorphisms of ¢+ and j. on classifying
spaces.
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THEOREM 3.2. Identify t*(w}) with w} (i = 4,6, 7), 1*(®) with
w, 1*Q,;) with Q; (¢t =1,3) and t*(Y) with Y. Then we have
(i) H*BSpin (1), Z) = Z[Q,, Qs, Y] + 2-torsion,
H*(BSpin (7), Z,) = Z,[w{, wg, wf, 0];
(ii) *(w¥) = 0 and 1*(Q,) = 27;

JHP) = —2Y + @}, JEwy) = o;
Ji(P3) = Qa - 2Q1Yy
Jji(X) = FY,

(iv) The kernel of ji on integral cohomology is the ideal
generated by 4P, — P} = 8X.

Proof. Since 4: Spin (7) — Spin (8) covers the ordinary inclusion
of SO(7) in SO(B), we have (t*p*)(X) = 0. Thus ¢*(@,) = 2Y. From
this fact, Theorem 2.1 and Lemma 2.2 we obtain (i) and (ii). Further-
more (iii) follows from (i), (ii), and Lemma 3.1; finally (iv) is an easy
calculation from (iii).

Let M be a CW-complex and let ¢ be an oriented vector bundle
over M with fiber dimension 8. Denote by f: M — BSO(8) the classify-
ing map determined by &. We shall say that & admits a nontransi-
tive Spin (7) reduction if f = poiog for some g: M — B Spin (7):

B Spin (7) —— B Spin (8)

| #

M ——— BSO®).

(Here 7 and p denote the maps induced by the maps Spin (7) — Spin (8)
and Spin (8) — SO(8) which we also designate by ¢ and p.) On the
other hand by Lemma 3.1, M admits a sphere transitive Spin (7)
reduction in the sense of this paper if and only if for some
g: M — BSpin (7) we have f = poAoiog or f = poA’oiog. Therefore
we have the following lemma.

LEMMA 3.3. Assume w,(§) = 0. Then & has a transitive Spin (7)
reduction (that is a reduction of SO(8) to j. (Spin (7)) if and only
if AFY(E) has a nontranmsitive Spin (7) reduction.

Next we determine the primary and secondary obstructions to the
existence of sphere transitive Spin (7) structures.

THEOREM 3.4. Let M be a CW-complex and let & be an oriented
vector bundle over & with fiber dimension 8. Denote by (&) and
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c*(&) the primary and secondary obstructions to the existence of a transi-
tive 7. (Spin (7)) structure. Then (&) e H* (M, Z,), ¢*&) e H M, Z),
and we have

(&) = wy(é) ,
16¢%(8) = 4P,(&) — PX &) + 8X(%).

Proof. We first note that SO(8)/Spin (7) is diffeomorphic to real
projective space P’. Hence c*¢&)e H M, n,(P") = H*M, Z,) and
(&) e HX(M, =(P")) = H¥M, Z). A transgression argument given in
[8] shows that w.(&) = c*(8).

Assume that w.(§) = 0. By Lemma 3.3, & has a sphere transitive
7+ (Spin (7)) structure if and only if A¥(&) has a nontransitive Spin (7)
structure. The first obstruction to the latter is X(\¥(¢)), as is
well-known. On the other hand by Theorem 2.1 and 3.2 we have

16X+ (\(8)) = 4Py(&) — P8 * X(%) .

Hence the theorem follows.

COROLLARY 3.5. Let & be an oriented vector bundle with fiber
dimension 8 over a CW-complex M. Assume that dimM <8 and
that Hy(M, Z) has no 2-torsion. Then & has a sphere transitive
7= (Spin (7)) structure if and only if wy,(§) = 0 and

4P(§) — Pi(§) = X(§) = 0.

Theorems 2.1 and 3.4 and Corollary 3.5 correct an error in [8].
We now turn to Spin (9). First we need a lemma.

LEMMA 3.6. We have the following commutative diagram:

Spin (8) x Spin (8) —— Spin (16)
AX 22/ l 0
/
Spin (8) ~——— Spin (9) ——— SO(16)

where 4 is the standard map of Spin (8) X Spin (8) into Spin (16), p
s the covering projection, k is the standard inclusion of Spin (8) in
Spin (9), and 1 is the sphere transitive 16-dimensional representation

of Spin (9).

Proof. Let F, denote the automorphism group of the exceptional
Jordan algebra of 3 x 3 Hermitian matrices of Cayley numbers. Let
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1 0 0 0 00 0 00
Elz(o 0 0), E2:(0 1 0], E;:(O 00
0 00 0 00 0 01

The subgroup H; of F, which leaves E; fixed is isomorphic to Spin (9)
(see [7]). On the other hand Spin (8) is isomorphic to H, N H, N H,.
Let

0 2z w
V., = matrices of the form (E 0 0},

w 0 0

0 2z 0
V, = matrices of the form (E 0 wl,

0 @ 0

0 0 =
V, = matrices of the form (0 0 w

z w 0

Then V,; is an irreducible representation space for H,. Since there
is only one irreducible 16-dimensional representation of Spin (9), each
representation of H; on V; is just [. Now the representation of
Spin(8) on V,is A x 1, on V,is A x A% and on V; is 1 x A% Hence
we get the commutative diagram

Spin (8) x Spin (8) —— Spin (16)
si-1x i,/
Y Iv
Spin (8) — Spin (9) — SO(16) .
We claim that k%, is the standard inclusion of Spin (8) in Spin (9)
while %k, and %k, are not. This may be proved by showing that
k#(H*(B Spin (9), R,) is RJ[P, P, P, X*] < H*(B Spin (8), R,) for i =

2, but not for © =1 or 3. (See the proof of the next theorem.)
This completes the proof of the lemma.

THEOREM 3.7. (i) There exist cohomology classes
Z ¢ H*(B Spin (9), Z)
and ¢ HY(B Spin (9), Z,) such that

H*(BSpin (9), Z) = Z[Q,, Q,, Qs Z] + 2-torsion
H*(BSpin (9), Z,) = Z|w,, ws, w;, Wy, 8] .
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Here If(Q) = Qi (1 = 1, 2, 3), kx(4Z) = p*(X*® — P}), ki (w}) = wi (i =
4,6, 7, 8), and ki (9) = w* + ow§.
(ii) We have (modulo elements of order 2)

*(P) = 4Q,

I*(P) = —2Q, + 6Q}

I*(Py) = 2Q; — 6Q,Q; + 4¢}

I*(P) = —34Z — 1Q; + 4Q.Q; — 6Q1Q; + Q!

I*(P;) = 28Q,Z — 2Q,Q; + 2QiQ; + 10Q,Q; — 2Q}Q;
I¥(Py) = 22Q,7Z — 237 + @ — 2Q.Q,Q; + 5Q} + QiQ}
*(P) = 2Q,Z — 10Q,Q.Z + QiQ; — 3Q,Q}
*X)=17Z.

and

(w;)) =0 for 1 =1,2,3,4,5,6,7,9, 10, 11, 13
U(wg) = wi* + w§

(wy) = wi® + wiwy

*(wy,) = w + wiws

¥ (wy) = wiwg

F(wye) = 6 .

Proof. Let & be an 8-dimensional vector bundle with w,(&) =0
and set v = M§) P A¥(E). Then the Pontryagin, Euler, and Stiefel-
classes of v may be computed by means of the Whitney sum formula
together with Theorem 2.1. On the other hand any maximal torus
(maximal 2-subgroup) of Spin (8) is also a maximal torus (maximal
2-subgroup) of Spin (9). Therefore the formulas for above mentioned
characteristic classes are the most general possible.

Set Z = 1*(X) and ¢ = l*(w,). Then we obtain (ii). Finally (i)
follows from (ii) and Lemma 2.2.

Theoretically the kernel of I* can be determined from Theorem
3.7 (ii). This yields some necessary conditions that a 16-dimensional
vector bundle have a transitive Spin (9) reduction. However, we omit
the details. In the only example we consider in § 4, namely the
Cayley plane, it is simpler to use Theorem 3.7 itself.

We conclude this section by noting a few facts about the coho-
mology of BG, and its inclusion in B Spin (7).

LEMMA 3.8. Let g be the standard imclusion of G, in SO(7),
and denote by h the lifting of g tnto Spin (7):
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Spin (7) —— Spin (8)

v/ l
/
G, 7 SO(7) .

If i denotes the standard inclusion of Spin (7) +n Spin (8), then we
have

Notoh = toh .

Proof. This follows from the fact that G, is the fixed point set
of .

THEOREM 3.9. (i) We have

H*(BGy R) = R[g*(P), g*(Py)]
= Ry[h*(Q), h*(Q)] ,

where g* and h* are induced by g and h defined in the previous
lemma and R, denotes the rationals.

(ii) In integral cohomology, the kernel of g* is the ideal generated
by 4P, — P? and the kernel of h* is the ideal generated by Y.

Proof. The proof of (i) and the fact that g*(4P, — P?) = 0 con-
sists of identifying the Pontryagin classes with polynomials in the
roots of SO(7), computing the images of these polynomials under g*,
and using the fact that there are two generators of M*(BG,, R,), one
4-dimensional, and the other 12-dimensional. We omit the details.
From Lemma 3.8, Theorem 2.1 and Theorem 3.2, we have A*(Y) = 0
and h*(@) =0. An easy calculation shows that g*(4P, — P?) = 0.
That Y and 4P, — P! generate the kernels of A* and ¢* follows
from (i).

4. Sphere transitive structures on spheres and other homo-
geneous spaces. The study of the existence of almost complex
structures on spheres is a well-known problem in algebraic topology;
it was solved by Borel and Serre [4]. Thus the results of this
section can be viewed asg a generalization of this problem. Many of
the results we present are not new. However, we give them in
order that we may write down in an organized fashion the complete
solution to the problem of the existence of sphere-transitive structures
on spheres.

We shall need two preliminary results.

LEMMA 4.1. Let G act transitively and linearly on S*™* with
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wsotropy subgroup H. Then if the tangent bundle of S* can be
reduced to G, the subgroup of elements of w,, .(H) which are in-
essential in G has order at most 2.

Proof. Consider the following commutative diagram:
-2, 6", s0en) -1 80@n + 1)

o i |
S St

Here the p; are evaluation maps, j and k& denote the inclusion of the
respective isotropy subgroups, and % denotes the representation of G
arising from the action on S*™'. Let ¢, be the boundary operator

in the homotopy sequence of the fibration H LN G -2, 8"t and
9, the boundary operator in the homotopy sequence of fibration
S0@2n) — SO2n + 1) — S*, Let ¢, € 7,(S*) denote the homotopy class
of the identity map of S*. A reduction of the structure group of the
tangent bundle of S** to G is equivalent to the existence of an element
& € Ty, (G) such that b, (@) = 0y(6:s). Then P, (@) = Doyhts (X)) = Doy 0oten) =
25, and so 31(252n—1) - al(pl*a) = 0. Hence al(ﬂzn—l(sm—l) S nzn—-z(H)
has order at most 2. By the exactness of the homotopy sequence
this subgroup is equal to ker (k: 7, _o(H) — Tpu_o(G)).

LEeMmA 4.2. We have 7,,_, (Sp (n)) = 0 and (2n — 1)! divides the
order of m,,_, (Sp (n — 1)) for n = 2.

Proof. 7. _Sp(n)) is in the stable range and is 0 by Bott
periodicity. To prove the other assertion we consider the homo-
morphism of homotopy sequences of fibrations induced by the com-
mutative diagram

Sp (n — 1) — 8p (n) —> "~

l: 1 1identity

U@n — 1) —> U(2n) —s S

where the horizontal lines are fibrations. Let 9, and J, be the boundary
maps of the homotopy sequences of the upper and lower lines,
respectively. Then ¢,0d, = d,; hence the order of Im (3,) is a multiple
of the order of Im (3,). But Zuw_. = Tuwo(U(@n — 1)) < Im d, see [5].
Hence (2n — 1)! divides the order of 7,,_.(Sp (n — 1)).

THEOREM 4.3. Let ©(S™) denote the tangent bundle of S*. The
following 1is a complete list of sphere transitive structures on
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spheres:
(i) SO(n) on (S,
(ii) U@®) on (8%,
(iii) SUB) on 7(S%,
@iv) G, om 7(§5").

Proof. We have (i) because S™ is orientable and (iv) because S’
is parallelizable. (ii) is a consequence of the fact that S° has an
almost complex structure. Actually, however, it turns out that
structure group of the tangent bundle 7(S° can be reduced to SU(3)
(see [8]) so that (iii) holds.

Next we show that there are no other sphere transitive struc-
tures. We do this case by case.

U(n): Borel and Serre proved that for = = 1, 3 t(S*) cannot
have a U(n) structure.

SU(n): Since 7(S*™) (n # 1, 3) cannot have a U(n) structure, it
cannot have an SU(n) structure because SU(n) < U(n).

Sp (n): Since 7(S*) (n = 1) cannot have a U(2n) structure and
Sp (n) < U(2n), t(S*") cannot have a Sp (n) structure.

Sp ()-SO2): We have Sp(n)-SO(2) & U(2rn). Thus the argu-
ment for Sp (n) applies in this case also.

Sp(n)-Sp(1): For » =1, Sp(n)-Sp (1) is covered by

Sp(n) x Sp(1) = Sp(n) x §*.

We have 7,(Sp (n)-Sp (1)) = 7, Sp (n) P 7,(S®?) for & > 1. By the second
part of Lemma 4.2, it follows that for n = 2, 7, (Sp (#)-Sp (1)) =
Tas(S*) and m,,_, (Sp (n — 1)-Sp (1)) is the direct sum of =,,_.(S*) with
a group of order at least (2n — 1)!. Since 7m,,_,(S®) is finite, it follows
that the necessary condition for a Sp (n)-Sp (1)-structure on S** given
by Lemma 4.1 fails, for n > 1.

Spin (7): According to Theorem 3.2 (iv) a necessary condition
that an 8-dimensional vector bundle & have a transitive Spin (7)
reduction is that 4P,(&) — PX&) F 8X(¢) = 0. The tangent bundle of
S® (or its negative) does not satisfy this condition.

Spin (9): Suppose the tangent bundle 7 = 7(S*) had a transitive
Spin (9) structure. We have P,(z) =0 (¢ =1, --., 7), X(7) = 2. Hence
by Theorem 3.7 (i), Q{(z) =0 (i=1, ---,7) and Z(zr) = 0 (at least
with rational coefficients). This contradicts the fact that we must
have X(r) = Z(z). The same argument shows that —7 cannot have
a transitive Spin (9) reduction.

We conclude with some brief remarks about the existence of
sphere transitive structures on various simply connected compact
homogeneous spaces other than spheres. Denote by P*(C) and P*(Q)
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complex and quaternionic projective spaces of real dimension 2n and
4n, respectively. Also let @, denote the space of all nonoriented
2-planes in R"*%,

THEOREM 4.4. The homogeneous spaces S¢x S?, S*x 8%, S*x S*x St
(S?), PYC), P¥C) x 8% P*C) x P¥C), P¥C) x S, P*¥C) x §* x S,
PQ) x PC), P'Q) x S, P'Q) x §* x §, @, x PQ), @, x PC),
Q, x 8%, Q, x §* x S do not possess sphere transitive Spin (7) structures.

Proof. For each case one computes (see [3]) the Pontryagin and
Euler classes and verifies that they do not satisfy P,—4P?4+8X =0.

In contrast to Theorem 4.4 we have the following result.

THEOREM 4.5. Either orientation of the spaces P*Q), Q, and
G./SO(4) possesses a sphere transitive Spin (T) structure.

Proof. According to [3] each of these spaces has integral
cohomology Z[u]/(u') where u is a 4-dimensional generator. Further-
more P, = 2u, P, = Tu?, and X = 43w’ for each of these spaces (with
the proper choice of u). Theorem (4.5) now follows from Theorem
3.4.

It would be interesting to construct explicitly a sphere transitive
Spin (7) structure (i.e., a 3-fold vector cross product) on PXQ).
Finally we have the following theorem.

THEOREM 4.6. Let C = F,/Spin (9) denote the Cayley plane with
the camnonical orientation. Then C does nmot possess a sphere transi-
tive Spin (9) structure, but —C does.

Proof. We have H*(C, Z) = Zfu]/(w') where u is an 8-dimen-
sional generator. With the proper choice of u we have by [3] that
for the Cayley plane, P, = 6u, P, = 3% P,= P, =0, and X = +3u’
It is well known that at least one orientation of C possesses a sphere
transitive Spin (9) structure. It is not hard to verify that —C
satisfies the conclusions of Theorem 3.7 while C does not. Hence
we get Theorem 4.6.
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ON GENERALIZED FORMS OF APOSYNDESIS

CHARLES L. HAGOPIAN

If a point set is both connected and closed it is called a
continuum, The structure of a nonlocally connected continuum
can be described in terms of its aposyndetic properties, In
this paper various forms of continuum aposyndesis, that is,
aposyndesis with respect to subcontinua, are considered. It is
shown that the presence of any of these forms of aposyndesis
in a compact metric continuum which is totally nonconnected
im kleinen (not connected im kleinen at any point) insures
nonsemi-local-connectedness on a dense open subset of the con-
tinuum and the set of weak cut points in each open subset of
the continuum has cardinality at least c.! A weak cut point
theorem for compact plane continua is established. An example
is given which indicates that this result does not hold in
Euclidean 3-space. Near aposyndesis, a generalization of
aposyndesis, is introduced. It is shown that the presence of
this property in a totally nonaposyndetic, separable, metric
continuum implies the existence of uncountably many weak cut
points,

DEFINITION. Let 2, ¥, and z be distinet points of a continuum
M. If every subcontinuum of M which contains « and y also contains
2, then z is said to cut M weakly between ¢ and y. A point 2z of
M is said to be a weak cut point of M if there exist two points x
and y in M such that z cuts M weakly between x and v.

DEFINITION. Let S be a subset of a continum M and let « be
a point of M — S. If M containg a continuum H and an open set U
such that xeUc Hc M — S, then M is said to be aposyndetic at
x with respect to S. Note that if M is a regular Hausdorff continuum,
M being aposyndetic at a point p with respect to every closed set in
M — {p} is equivalent to M being connected im kleinen at p. Let x
be a point of a continuum M ; if for each point y of M — {x}, M is
aposyndetic at x with respect to ¥, then M is said to be aposyndetic
at z.

Let S is a subset of a continuum M. If x is a point of M — S
and M is not aposyndetic at & with respect to S, then M is said to
be monaposyndetic at x with respect to S.

2. Continuum aposyndesis. In the introduction it is pointed

1 For a related result see [5, Th. 15]. For definitions of unfamiliar terms and
phrases see [7] and [9].
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out that connectedness im kleinen at a point of a regular Hausdorff
continuum can be thought of in terms of aposyndesis at that point
with respect to closed sets which do not contain the point. This
concept can be generalized by considering aposyndesis at a point with
respect to closed connected sets (i.e., continua) which do not contain
the point.

DEFINITION. Let M be a continuum and p and ¢ be two distinet
points in M. If, for each continuum K in M — {p} which contains g¢,
M is aposyndetic at p with respect to K, then M is said to have
property A at p with respeet to q. If, for every point x in M — {p},
M has property A at p with respect to x, then M is said to have
property A at p.

Obviously, if a regular Hausdorff continuum M is connected im
kleinen at a point p in M, then M has property A at p. An example
due to F. B. Jones indicates that the converse of this statement is
false [6, Example 3]. The compact plane continuum described by
Jones has property A at a point ¥ and is not connected im kleinen
at y. The point ¥ in this continuum is a weak cut point. The fol-
lowing theorem indicates that a compact plane continuum has these
properties (property A and nonconnectedness im Kkleinen) at a point
only if the point is a weak cut point of the continuum.

LEMMA. If a compact plane continuum M 1is mot conmected im
kleinen at a point x, then for each open set U in the plane which
contains x, there exists a pair of points {y, z} in U N M such that
M 1s nonaposyndetic at x which respect to {y, z}.*

Proof. Assume that there is an open set U containing x such
that M is aposyndetic at & with respect to every pair of points in
UnN M. Since M is not connected im kleinen at x, there exists a
circular region G such that ClG (the closure of G) is contained in U
and a sequence K, K,, K, --- of distinct components of M N Cl G such
that (1) for each positive integer ¢, K; contains the point y; of a
sequence ¥, Yy Ys *++ of points of J (the boundary of G) converging
to the point ¥ and (2) # is in the limit inferior of K, K;, K, +--.

Since M is aposyndetic at & with respect to any pair of points of
Un M, M is aposyndetic at x with respect to y. Therefore, there
exists a continuum H in M — {y} such that x is contained in Int H
(the interior of H). Each component of H N G has a limit point in
J. Hence there exists a subsequence K/, K}, K}, --- of K,, K,, K, «+-

2 This lemma is stated in [6]. The proof does not appear in the literature.
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such that for each ¢, K contains the point 2; of a sequence z,, 2,, 2;, + -
of points of J converging to the point z of J — {y}.

By assumption M is aposyndetic at & with respect to {y, z}. Hence
there is a continuum L such that xeInt LC L c M — {y,2}. Let A
and B denote disjoint subarcs of J containing ¥ and z respectively {as
nonendpoints) such that (A U B) N L = @. Since every component of
L N G has a limit point in J, there exist three positive integers, 1, 7,
and k, such that each of K}, K}, and K; intersects each of 4, B, and
J — (A U B). Since J — (A U B) has exactly two components, some
two of these three continua must intersect the same component of
J — (A U B). This leads to a contradiction of Theorem 28 of [7, p.
156].

THEOREM 1. If a compact plane continuum M has property A
at a point x and is not connected im kleinen at x, then x is a weak
cut point of M.

Proof. By the preceding lemma, there exists a pair of points
{y, 2} in M — {x} such that M is nonaposyndetic at « with respect to
{y, z}. M must be aposyndetic at & with respect to each continuum in
M — {x} since M has property A at x. Therefore no subcontinuum of
M in M — {«} contains both y and z.

ExamMPLE 1. A compact continuum M in Euclidean 3-space which
has property A at a point p, and is not connected im kleinen at p,
may fail to be cut weakly by p. To see this define A; = {(0, 0, 1/n) |
n=1t+1,1+ 2, ---}. Let C, be the join of Cl A, with the point
1,0,0). For ¢=2,3, ---, define C; to be the join of Cl 4; with the
point (1, 1/4, 0). Let M = U, C,. See Figure 1. Let p be the point
(0, 0, 0). Any subcontinuum in the complement of p intersect only
finitely many of the C;’s. It follows that M has property A at p.
Clearly M is not connected im kleinen at p and p does not cut M
weakly between any two points in M — {p}. Note that M is not semi-
locally-connected at p.

THEOREM 2. If a regular Hausdorff continuum M is semi-locally-
connected at a point p and has property A at p, then M 1is connected
im kleinen at p.°

Proof. Assume that M is not connected im kleinen at p. First
it will be shown that under this assumption p must be a weak cut

8 This has been previously observed for compact Hausdorff continua [1, Th. 4].
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0,0,1)

FIGURE 1.

point of M.

Since M is not connected im kleinen at p and is semi-locally-
connected at p, there exists an open set U in M containing p such
that M is- nonaposyndetic at p with respect to M — U, and M — U
has only a finite number of components. If p is not a weak cut point
then the components of M — U can be joined together by a finite
number of continua in M — {p}. Let L be the union of these continua.
Every continuum containing p in its interior must meet the continuum
(M — U) U L. But this contradicts the fact that M has property A
at p. Therefore p must be a weak cut point.

Since M is semi-locally-connected at p and p is a weak cut point,
p must separate M [8, Th. 6.2]. Suppose that for each component C
of M — {p} which meets M — U, the set C U {p} is a connected sub-
space of M which is aposyndetic at p» with respect to (C U {p}) — U.
Then in each of these subspaces there is a continuum which contains.
p in its interior, relative to the subspace, which does not meet M — U.
The sum of these continua and the components of M — {p} which do
not meet M — U form a continuum in M which contains p in its in-
terior and misses M — U. This contradicts the choice of U. Therefore
there is a component C in M — {p} such that the subspace C U {p} is
nonaposyndetic at p with respect to (C U {p}) — U. It follows that
the subspace C U {p} is not connected im kleinen at p. Let H be the
subspace C U {p}. Note that H is semi-locally-connected at p, since
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M is semi-locally-connected at p.

The subspace H has property A at p. To see this let @ denote
a subcontinuum of H — {p}. Because M has property A at p, and Q
is a subcontinuum of M, there exists a subcontinuum K of M — @
which contains p in its interior. Since p is a separating point, the
set H N K is a subcontinuum of H and p is in the interior of H N K
relative to H. Therefore H has property A at p.

By applying to the subspace H the argument presented in the
second paragraph of this proof, one can conclude that p must cut H
weakly and therefore separate H. But this is impossible since H
consists of the point p and a component of M — {p}. Hence M is
connected im kleinen at p.

In bicompact T, continua, property A and local connectedness are
equivalent as global properties, since if a bicompact T, continuum has
property A everywhere, then it is aposyndetic at each of its points
and therefore semi-locally-connected [5, Th. 0], and from Theorem 2
it follows that the continuum is everywhere connected im kleinen and
therefore locally connected.

It is clear that a T, continuum M has property A at a point p
with respect to a point ¢ if and only if for each open set G in M —
{9} which contains p, M is aposyndetic at p with respect to the g-
component of M — G. From this point of view one can generalize
this property as follows.

DEFINITION. Let p and ¢ be distinct points of a continuum M. If
for each open set G in M — {g} which contains p, there exists a point
7 in G such that M is aposyndetic at » with respect to the g-com-
ponent of M — G, then M is said to have property B at p with respect
to q. If for each point % in M — {p}, M has property B at p with
respect to x, then M is said to have property B at p. If M has
property B at each point of M, then M is said to have property B.

Obviously, if a continuum M contains a dense subset D such that
M has property A at each point of D, then M has property B. The
following example indicates that property B is considerably weaker than
property A.

ExAmpPLE 2. There exists a compact plane continuum M which
has property B and is totally nonaposyndetic (not aposyndetic at any
of its points) hence does not have property A at any point.

Let M, M,, --- be a sequence of closed plane point sets defined
by induction as follows. Let S be the unit disk and let M, be the
closure of the union of the (topological) disk sequence D,, D, ---
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& T,
")

FIGURE 2.

indicated in Figure 2. The boundary of S is the limiting set of D,
D,, ---. The diameter of each of D,, D, --- is greater than 3/4. Let
p and ¢ be the two separating points in M,. Note that M, is non-
aposyndetic at each point of the boundary of S with respect to one
of » and gq.

Assume M, to be defined and let D!, D;, --- be a counting of the
disks in M,. Let f; be a homeomorphism of S onto D! such that the
distance from f;(p) to fi(q) is greater than (1/4) + (1/n + 3). Let
M,., = Cl[Uz, fi(M)]. The homeomorphisms of S onto the disks of
M, are chosen in suech a way that the disks in M,,, will be of
diameter greater than (1/2) + (1/n + 3) and the set of separating points
in M,,, is 1/n + 1 dense in M,. Define M = N, M,.

M has property B. To see this let  and ¥ be two points in M
and let G be an open set in M — {y} containing . Let C be the y-
component of M — G. Since the point set consisting of homeomorphic
images of {p, q} is dense in M, there is a point s in M N G which is
a separating point in M, (for some n). There exists a disk D in M,
such that y is not in D and s separates D — {s} from M, — D in M,.
It follows that M N D is a continuum in M — C which has an interior
point in G.

It is clear that M is nonaposyndetic at each point which is on the
boundary of some defining continuum M, in S. Let « be a point of
M which is in the interior of M, for every positive integer n. There
exist a nest of disks d,, d,, -+ and two sequences of points, s, S, «--
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and ¢, t, ---, such that (1) for each positive integer =, the point «
is contained in d,; (2) d, is a maximal disk in M, ; (8) the point s,
separates d,., — {s,} from (d, — d,,.) N M,,, in M,.,; and (4) ¢, is the
other point which separates d, N M,.,. Note that for each n, M is
nonaposyndetic at s, with respect to ¢,. If x is a limit point of s,
S, -+, then there exists a point ¢ in M, distinct from x, which is a
limit point of the sequence t, ¢, ---, such that M is nonaposyndetic
at x with respect to ¢ [5, Th. 1]. If x is not a limit point of s, 85 «- -,
then there exists a point s in M, distinct from 2z, which is a limit
point of this sequence. It follows that M is nonaposyndetic at x with
respect to s. Therefore M is totally nonaposyndetic.

DEFINITION. Let p be a point of a continuum M. If there exists
a point ¢ in M — {p} such that M has property B at p with respect
to g, then M is said to have property C at p.

Obviously, if a continuum has property B at a point p, then it
has property C at p. One can see that property C is weaker than
property B by considering the Cantor Cone. This continuum has pro-
perty C at each point which is in the interior of an are, but it has
property B only at the vertex.

THEOREM 3. If a compact metric continuum M has property C
at each point of a dense Gs subset of M and 1s totally monconmected
im kleinen on a dense Gs subset of M, then M 1is totally mnonsemi-
locally-connected on a dense open subset of M.

Proof. Let U be an open set in M. If one can show that there
exists an open subset G of U such that M is not semi-locally-connected
at any point of G, then the existence of the dense open subset of M
with the desired condition with follow immediately.

The open set U contains an open set V, no component of which
contains an open set [3, Th. 2]. It follows that for each point z in
V, M is nonaposyndetic at # with respect to M — V. Define D, =
{xe V| for some y in M — S(z, 1/2) (S(z, 1/2) is the circular open set
in M with the point « as center and with radius 1/7), M has property
B at o with respect to y}. Since U, D; is a second category subset
of V, for some positive integer %, the set Cl D, contains an open set
in V. It follows that there exists an open set W in V such that W
contains a dense subset D with the condition that for each point 2 in
D, there exists a point ¥y in M — W such that M has property B at
x with respect to .

If M is totally nonsemi-locally-connected on W, then W has the
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required conditions. Assume that this is not the case. That is, there
exists a point p in W such that M is semi-locally-connected at p.
There exists an open set @ containing p in W such that M — @ has
only a finite number of components. Suppose that p is not a weak
cut point. Join together the components of M — Q with a finite
number of continua in M — {p}. Let L be the union of these continua
and let K be the continuum (M — Q) U L. The set M — K is open
and contained in Q. Since D is dense in W and M — W is contained
in K there exist a point « in D N (M — K) and a point y in K such
that M has property B at & with respect to y. But this is impossible
since M is nonaposyndetic at each point of M — K with respect to K.
Therefore p is a weak cut point in M.

Since M is semi-locally-connected at p, p is a separating point in
M and each component of M — {p} is both open and closed relative to
M — {p}. Let X be a component of M — {p} which meets M — Q.
The set S = X U {p} is a connected subspace of M. S is semi-locally-
connected at p. The point p is not a weak cut point in S for if it
were it would also separate S which is clearly impossible. S — @ has
only a finite number of components. Join there components together
with a finite number of continua in X. Let F' denote the union of
these continua with S — @. The set F' is a continuum in S — {p}
which contains S — Q. The set G = X — F is open in M. Let x be
a point in G and assume that M is semi-locally-connected at x. Each
open subset of G which contains « cuts M weakly between p and F
(i.e., each continuum in M which meets both F' and » must also meet
each open subset of G which contains xz). To see this suppose that
there exist an open set R containing z in G and there exists a continuum
Hin M — R which meets both p and F. It follows that M — @ is con-
tained in one component of M — K. But for some point s in R there
exists a point ¢ in M — W such that M has property B at s with
respect to . Therefore there exists a point » in R such that M is
aposyndetic at » with respect to the t-component of M — R. This is a
contradiction since M — @ is contained in the ¢-component of M — R
and M is nonaposyndetic at » with respect to M — Q. It follows that
x cuts M weakly between p and F. Since M is semi-locally-connected
at x, M is separated by x between p and F. S — {x} can be written
as the union of two mutually separated sets P and E such that p is
contained in P and F' is contained in E. P U {x} is a subeontinuum
of M which has a nonvoid interior and is contained in Q. This con-
tradicts the fact that no component of @ eontains an open set. There-
fore M is totally nonsemi-locally-connected on G.

THEOREM 4. If a compact metric continuum M is nonsemi-locally-
connected at each point of a G, subset which is dense in M, then the
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set of weak cut points in each open subset of M has cardinality at
least c.

Proof. Let U be an open subset of M. Define theset D = {xe
M | for each open set V containing #, there exists an open subset W
of V containing x such that M is aposyndetic at x with respect to each
point of the boundary of W}. If D is dense in U, then there exists
a dense G; subset J of U such that each point of J is a weak cut
point in M [4, Th. 4].

Suppose that D is not dense in U. There exists an open set G
in U— D. Since G is second category, there exist a point z in G
and a point » in M such that if ¥ is a point of M and M is non-
aposyndetic at x with respect to y, then y cuts M weakly between x
and r [2, Th. 4]. There exists an open set @ containing # in G such
that for each open subset R of @ there is a point y in the boundary
of R such that M is nonaposyndetic at # with respect to y. There
are ¢ open sets in @ which contain # and have mutually disjoint
boundaries. It follows that there are ¢ points in @ which cut M
weakly between = and 7.

THEOREM 5. If a compact metric continuum M has property C
at each point of a dense G; subset of M and is totally monconnected
wm kleinen on a dense G, subset of M, then each open subset of M
contains a set of weak cut points of M which has cardinality c.

Proof. M is totally nonsemi-locally-connected on a dense open
subset of M (Theorem 3). The conclusion follows from Theorem 4.

COROLLARY. If a compact metric continuum M has property B
and s totally momcomnected im kleinen on a dense G, subset of M,
then each open subset of M contains a set of weak cut points of M
which has cardinality c.

Note that if a compaet metrie continuum M is totally nonconnected
im kleinen on a dense G, subset of M and contains a dense subset D
such that M has property A at each point of D, then M contains a
dense G; set of weak cut points of M [4, Th. 4]. However, the ex-
istence of such continua is still an open question.

3. Near aposyndesis. In §2 property B is introduced as a weaker
form of continuum aposyndesis. In this section aposyndesis (aposyndesis
with respect to points) is generalized in a similar fashion.

DEFINITION. A continuum M is said to be nearly aposyndetic at
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a point p in M with respect to a point ¢ in M if each open set in M
containing p contains a point = such that M is aposyndetic at » with
respect to q. Let p be a point of M ; if for each point ¢ in M — {p},
M is nearly aposyndetic at p with respect to ¢, then M is said to be
nearly aposyndetic at p.

It is easily seen that if a continuum M has property C at a point
p and is not nearly aposyndetic at p, then p must be a weak cut
point in M. Note that the Cantor Cone has these two properties at
each point of a dense open set.

THEOREM 6. A compact metric continuum M is not nearly apo-
syndetic at a point p with respect to a point s if and only if there
exists an open set G in M containing p, such that if U is a nonvoid
open subset of G, then s cuts M weakly between some two points in U.

Proof. If M is not nearly aposyndetic at p with respect to s,
then there exists an open set G containing p such that M is nonapo-
syndetic at each point of G with respect to s. This open set G has
the desired property [2, Th. 2].

To see that the condition is sufficient, assume that M is nearly
aposyndetic at p with respect to s. Let G be an open set in M con-
taining p. There exists a point = in G such that M is aposyndetic
at « with respect to s. Therefore there is a continuum K and an open
set U such that xe U c K © M — {s}. It follows that s does not cut
M weakly between any two points of the open set G N U in G.

If a continuum M has property B, then M is nearly aposyndetic
(that is, M is nearly aposyndetic at each of its points). It follows
that the totally nonaposyndetic continuum M in Example 2 is nearly
aposyndetic. One can see from this example that near aposyndesis is
considerably weaker than aposyndesis. M in Example 2 is totally
nonsemi-locally-connected. The following example indicates that this
is not necessarily the case for totally nonaposyndetic continua which
are nearly aposyndetic.

ExAMPLE 3. There exists a compact nearly aposyndetic, totally
nonaposyndetic continuum M in E® (Euclidean 3-space) which is semi-
locally-connected on a dense open subset of M.

Let C be the Cantor set and its image on the interval [—1, 0].
For each point z of C define the set

S, ={@y,2)eEla=00orac=1and 0<y=1, or
y=0ory=1and 0 2 <1}
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Let S = U.c:S.. Define the continuum M to be the decomposition of
S obtained as follows. For each positive real number z in C, identify
the point (%, 0, 2) with the point (z, 0,0). For each negative real
number 2z in C, identify the point (—z, 1, 2) with the point (—z, 1, 0).
See Figure 3. M is semi-locally-connected at each point which is not
in the XY-plane. Note that M contains a Cantor set of weak cut
points.

FIGURE 3.

It is possible for a compact totally nonaposyndetic metric continuum
to have only one weak cut point [5, Example 1]. However, if the
continuum is also nearly aposyndetic then one is assured of the ex-
istence of more than countably many weak cut points.

THEOREM 7. If a compact metric continuum M is mearly apo-
syndetic and totally monaposyndetic, then M has uncountably many
weak cut points.

Proof. Assume that M has only countably many weak cut points.
Let s, 85, +++ be a counting of these points. Let @ denote a countable
dense subset of M. Since M is totally nonaposyndetic, M contains a
dense G, subset I such that if x is a point in I and M is nonaposyn-
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detic at & with respect to a point y, then y cuts x weakly from each
point of @ — {y} in M [2, Corollary 1]. For each positive integer <,
define

D, = {xel|s; cuts « from each point of @ — {s;}}.

oo

2,D;, =1 Since I is second category, there is a positive integer
n such that D, is somewhere dense. Let G be an open set in Cl D,
which does not contain s,. Note that G has the property described
in Theorem 6. It follows that M is not nearly aposyndetic at any
point of G with respect to s,. But this is a contradiction. Therefore
M must contain uncountably many weak cut points.
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ON SUBGROUPS OF A PSEUDO LATTICE
ORDERED GROUP

J. JAKUBIK

The purpose of this note is to investigate some problems
raised in a recent paper of Conrad and Teller concerning
o-ideals and p-subgroups in an abelian pseudo lattice ordered
group,

The concept of a pseudo lattice ordered group (“p-group”) has
been introduced by Conrad [1]. In recent papers by Teller [5] and
Conrad and Teller [2] there is developped a systematic theory of
p-groups. Let G be an abelian p-group. In §3 it is proved that if
M is a subgroup of G such that {a, b} N M = @ for any pair of
p-digjoint elements o, be G, then M contains a prime o-ideal; this
generalizes a result from [2]. In §4 we prove that the intersection
of two p-subgroups of a p-group G need not be a p-subgroup of G.
Moreover, if 4 is a partially ordered set and for each dc 4 H, ++ {0}
is a linearly ordered group, then for the mixed product G = V(4, H,)
the following conditions are equivalent: (i) for any two p-subgroups
A, B of G their intersection A N B is a p-subgroup of G as well; (ii)
G is an l-group. If A is an o-ideal of a p-group G and B is a
p-subgroup of G, then A + B is a p-subgroup of G.

2. Preliminaries. Let G be a partially ordered group. G is a
Riesz group (cf. Fuchs [3], [4]) if it is directed and if from a,,
b;e@, a; £b; (4,7 =1, 2) it follows that there exists ¢ e G satisfying
a;=¢c=b; (,,7=1,2). G is a p-group (cf. [1] and [5]) if it is
Riesz and if each geG has a representation ¢ = a — b such that
a,beG, a =0, b=0 and

(=) zeG,xZaq, 2 <b=—nrx=<a, ne <b

for any positive integer «.

Throughout the paper G denotes an abelian p-group. Elements
a,beG, a =0, b= 0 satisfying () are called p-disjoint. A subgroup
M of G is a p-subgroup, if for each m e M there are elements a, be M
such that a, b are p-disjoint in G and m = a — b. A subgroup C of
G is an o-ideal, if it is directed and if 0 < g < ceC, geG implies
geC. Let O(G) be the system of all o-ideals of G (partially ordered
by the set inclusion). An o-ideal C of G is called prime, if G/C is
a linearly ordered group. For any pair a, b of p-disjoint elements
H{a, b) denotes the subgroup of G generated by the set

109
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D==meGim=a m=Zb}.

Then H(a, b) € O(G) (cf. [2]).

Let 4 be a partially ordered set and let H, # {0} be a linearly
ordered group for each de 4. Let V = V(4, H;) be the set of all
d-vectors v = (-, ¥;, -++) where vs; e H,, for which the support S(v) =
{0 € 4] v; # 0} contains no infinite ascending chain. An element ve V,
v = 0 is defined to be positive if v, > 0 for each maximal element
d0eS®). Then ([2], Th. 5.1) V is a p-group; V is an l-group if and
only if 4 is a root system (i.e., {0€4|d =~} is a chain for each
v € 4).

3. Subgroups containing a prime o-ideal. The following asser-
tion has been proved in [2] (Proposition 4.3):

(A) For MeO(G), the following are equivalent: (1) M is prime;
(2) the o-ideals of G' that contain M form a chain; (3) if ¢ and b are
p-disjoint in G, then ae M or be M.

Further it is remarked in [2] that each subgroup M of G ful-
filling (3) is a p-subgroup and any subgroup containing a prime
o-ideal satisfies (3); then it is asked whether a subgroup M of a
p-group G satisfies (3) if and only if it contains a prime o-ideal (a
similar assertion is known to be valid for lattice ordered groups).
We shall prove that the answer is positive.

We need the following propositions (cf. [2] and [5]):

(B) Let g=a — beG where a and b be p-disjoint. Then g =
x — y, where # and y are p-disjoint, if and only if = a + m and

= b + m for some m € H(a, b).

(C) If a and b are p-disjoint, then ma and nb are p-disjoint for

any positive integer n and H(a, b) = H(na, nb) ([2], Proposition 3.1).

LEeMMA 1. Let M be a subgroup of G fulfilling (8) and let a, b
be p-disjoint elements in G. Then H(a, b) C M.

Proof. Let he H(a, b). According to (3) we may assume without
loss of generality that ae M. Suppose (by way of contradiction) that
heM. Then a -+ h¢M, hence by (B) b+ heM, and analogously
b— heM, thus 2be M. Further 2a + h ¢ M and therefore according
to (C) and (B) 2b + h € M, which implies # € M.

LEMMA 2. Let M be a subgroup of G satisfying (3) and let
X = {X,} be the system of all o-ideals of G such that X, M. Then
the system X has a largest element.

Proof. Let Y be the subgroup of G generated by the set U X;.
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Then YcM and Y is the supremum of the system {X;} in the
lattice & of all subgroups of G. Since O(G) is a complete sublattice
of & ([2], Th. 2.1), YeO(G) and thus Y e X.

Let H be the subgroup of G generated by the set U H(a, b)
where a, b runs over the system of all p-disjoint pairs of elements
in G. Since each set H(a, b) is an o-ideal ([2]), H=YV H(a, b) (¢ and
b p-disjoint in G) where V denotes the supremum in the lattice O(G).
According to Lemma 1 HcCM whenever the subgroup M of G
satisfies (3).

For any u, veG, w = v, the interval [u, v] is the set

freGu=sax=<}.

LEMMA 3. Let M be a subgroup of G satisfying (3) and let N
be the largest o-ideal of G that is contained in M. Let geG, g>0.
Then

[0, 9]cM=—=geN.

Proof. According to Lemma 2 the largest o-ideal N in M exists.
Assume that geG, g >0, [0, g]c M. The set

Z = H[—ng, ng]

is clearly an o-ideal in G. Let ze Z, hence ze[—ng, ng] for a posi-
tive integer #. This implies 0 £ y < 2ng where ¥y = 2z + ng. Since
G is a Riesz group, according to [3, p. 158, Th. 27] there are elements
G ***1 0:4€G, 0 < g; < g such that y =g, + -+ + gz. Thus g, M,
therefore ye€ M and Z< M. Now we have ZcC N and so ge N.

LEMMA 4. Let M be a subgroup of G fulfilling (8) and let N
be the largest o-ideal of G contained in M. Then G/N is a linearly
ordered group.

Proof. Assume (by way of contradiction) than G/N is not linearly
ordered. According to Lemma 1 H C N, hence by [2], Theorem 4.1
G/N is a lattice ordered group. Thus there exist elements X, Y e G/N
such that X A Y =0, X >0, Y > 0 (0 being the neutral element of
G/N). From [2] (Proposition 2.2, (ii)) it follows that there are elements
xe X, ye Y such that 2 and y are p-disjoint in G and hence ze M
or yec M. Clearly x¢ N, y¢ N and thus according to Lemma 8 there
exist elements z,, #, € G such that

O<o, =2, 0<y =y, 2.6 M, y e M.
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Then in G/N we have 0 <o, + N<2+N=X,0<y,+ N<y+N=
Y, whence

(@ +N)A@ +N)=0.

Thus by using repeateadly [2], Proposition 2.2, we can choose elements
x,€2, + N, y,€%, + N such that x, and y, are p-disjoint in G. There-
fore (without loss of generality) we may assume 2,¢ M and this
implies #, € ¢, + N =z, + NC M, a contradiction. The proof is complete.

THEOREM 1. Let M be a subgroup of a p-group G. Then
B) = (2) and the condition (3) is equivalent to (') M contains a
prime o-ideal.

Proof. According to Lemma 4 (8)=(1). By [2] @)= (3).
Assume that M is a subgroup of G fulfilling (8). Let K, K, be
o-ideals of G such that Mc K, N K,. Let N have the same meaning
as in Lemma 4. Since Nc M,

K cK,—=— K/NCK,/N.

K,/N and K,/N are o-ideals of G/N and G/N is linearly ordered, hence
K, /Nc K,/N or K,/N C K,/N; therefore (2) holds.

If M is an o-ideal of G satisfying (3), then by Theorem 1 M
contains a prime o-ideal N; according to [2] (Corollary 1 to the
Induced Homomorphism Theorem) G/M is isomorphic to (G/N)/(M/N)
and hence (G/N being linearly ordered) G/M is a linearly ordered
group and M is prime. Thus it follows from Theorem 1 that (3) = (1)
for M e O(G) (cf. (A)).

Let us remark that if M is a subgroup of G fulfilling (3) then
M need not contain any nonzero o-ideal that is a lattice; further (3)
is not implied by (2).

ExampLE 1. Let B be an infinite Boolean algebra that has no
atoms and put 4 = {beB|b =+ 0}. For each dc4 let H; = E where
E is the additive group of all integers with the natural order, G =
V4, H;). Let M={veG|v, =0} (by 1 we denote the greatest element
of B). Then M is a prime o-ideal of G, hence M gsatisfies (38) and M
contains no lattice ordered o-ideal different from {0).

ExAMPLE 2. Let 4= {0, 0,, 05}, where 0, < d;, 0, < 0, and é,, 9, are
incomparable. Put H;,, = E(i=1,2,3),G=V(4, H), M = (veG|v, =
v;, = 0}. Then the only o-ideal that contains M is G, thus (2) holds.
Let a,beG such that a; =1, a;,=a,,=0, b, =1, by =b;, =0.
The elements a¢ and b are p-disjoint in G and a¢ M, b¢ M, hence M
does not fulfil (3).
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4. Intersections and sums of two p-subgroups. Another pro-
blem formulated in [2] is whether the intersection of two p-subgroups
of a p-group G must be a p-subgroup of G; there is remarked in [2]
that this conjecture seems rather dubious. The answer to this pro-
blem is negative.

ExAMPLE 3. Let 4 = {0,, 0,, 05}, where 6, > d,, 0, > 0, and 0, 0,
are incomparable. Let H, = E(i =1, 2,3), G = V(4, H;). We write
v(9;) instead of v;. Let ¢; =0 (7 = 1, 2) be positive integers, ¢, # ¢,.
Denote

A; = {veG|vd) = c[v(d) + v(3,)]}

(1=1,2). Let ie{l, 2} be fixed. For proving that 4, is a p-subgroup
of G we have to verify that to each ve A; we can choose q, be 4,
@ =0, b= 0 such that (x) holds and v =a — b. It is easy to verify
that it suffices to consider the case when 0 and v are uncomparable,
hence we may assume (d,) > 0, v(6,) < 0 (the case v(3,) < 0, v(3,) > 0
being analogous). Let a, beG,

(1’(61) = 1)(61), a(az) = 0: a(53) = Cia(al) ’
b(3,) = 0, b(d:) = —v(ds), b(d;)) = —cv(3.) .

Then a and b have the desired properties, hence A; is a p-subgroup
of G. Denote C = A, N A4, If veC, we have

av(6,) + v(8:)] = v(0;) = &[v(8)) + v(0,)]

and thus (since ¢, # ¢,)v(0;) =0, v(d;) = —v(0,). Therefore any element
veC, v # 0 is incomparable with 0 and C is not a p-subgroup of G.

The method used in this example can be employed for proving
the following theorem:

THEOREM 2. Let 4 be a partially ordered set and for each
0ed let H, # {0} be a linearly ordered group, V = V(4, Hy). If V
1s mot lattice ordered, them V contains infinitely many pairs of
p-subgroups A,, A, such that A, N A, is not a p-subgroup of V.

Proof. Assume that V is not lattice ordered. Then 4 is no
root system, hence there exist elements 4, d,, 6, such that 6, > 4,,
9, > 9, and 4,, 0, are incomparable. Choose ¢;€ H;, e; >0 and let
¢, ¢, be positive integers, ¢, #¢,. Let V,={ve V]|wv, =0 for each
0 & {0, 0y, 03}},

A= fve V.| v(0,) = m.e, 0(52) = M85, V(05) = ci(m, + )€}

where %, and %, run over the set of all integers (¢ = 1, 2). Analo-
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gously as in Example 3 we can verify that A, and 4, are p-subgroups
of V. Let veC = A4,n A, Then ¢.(n, + n,) = ¢,(n, + n,), thus n, =
—mn, and v(d;) = 0. Therefore no element of C is strictly positive
and C is no p-subgroup of G. Since the positive integers ¢, # ¢, are
arbitrary there exist enfinitely many such pairs 4,, 4..

As a corollary, we obtain:

ProrosiTiON 1. Let V = V{4, H,), where each H; is linearly
ordered. Then the following conditions are equivalent: (i) V 1s
lattice ordered; (ii) if A and B are p-subgroups of V, then AN B
is a p-subgroup of V as well.

Proof. By Theorem 2 (ii) implies (i). Let V be lattice ordered.
Then a subgroup 4 of V is a p-subgroup of V if and only if it is
an 1-subgroup of V; since the intersection of two 1-subgroups is an
1-subgroup, (ii) is valid.

PROPOSITION 2. Let 4 be a partially ordered set and for any
ded let H, =+ {0} be a linearly ordered group. Assume that there
extist 0, 6, 0,€ 4 such that 6, < 0, 6, < 0, and 0,, 6, are incomparable,
V = V{4, H,). Then there are infinitely many p-subgroups A, B of
V such that A + B is not a p-subgroup of V.

Proof. Denote V,= {veV]|v() =0 for each d¢ {0, d, 0;}} and
let ¢ be a fixed positive integer, e;c H;, ¢; >0 (i =1, 2, 3). Put

A= {veV, |v0) = ne, v(0,) = —cne, v(5;) = ney} ,
B ={veV,|v@) = v(0,) = 0, v(ds) = nej;}

where n runs over the set of all integers. A and B are linearly
ordered subgroups of V, hence they are p-subgroups of V. The set
C = A + B is the system of all elements v e V, such that

7)(51) = N6, , '0(52) = —CN,6;, 7)(53) = Ny63
where n,, n, are arbitrary integers. Hence there is g € C satisfying
g9(0) =e€, g(0,)= —ce, 9g(d)=0.

Ifg=a—-0b, acC, becC, a =0, b=0, then ¢ = 0= b (since g > 0,
g < 0), thus a(d;) = b(0;) = e,. There exists ve V, such that v(;) =
a(d;), v(0,) < a(d,) and b)), v(0;) < a(d,) and b(d,). Thus v<a, v<b,
but 2v < a, 2v < b. Therefore a and b are not p-disjoint in G and
C is no p-subgroup of G.

One of the problems raised in [2] is affirmatively solved by
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THEOREM 3. Let A be an o-ideal of G and let B be a p-subgroup
of G. Then A+ B is a p-subgroup of G.

Proof. Let us denote G/A=G and for any teG write t + A=1%.
Let A+ B=X, xe¢X. There are elements ac A, be B such that
2 = a + b and since B is a p-subgroup there exist b,, b, B such that
b=10b, —b, and b, b, are p-disjoint in G. Further = =u — v, u,
ve@, where v and v are p-disjoint in G. According to [2] G is a
p-group and by [2], Proposition 2.2, b, and b, (% and ¥) are p-disjoint
in G. Further we have

T=0b—b=u—7,

hence if we apply (B) (§3) to the p-group G it follows that there
exists m € H(w, v) fulfilling

b=u+m, b,=v+m.
Again, by Proposition 2.2 of [2], there is m, € m such that m, € H(u, v).

Thus according to (B) the elements %, = w + m, and v, = v + m, are
p-digjoint in G and # = %, — v,. Since

wWEem, =0+m=u+m=>b=b+AcA+B=X

and analogously », € X, the set X is a p-subgroup of G.
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ON UNIFORM CONVERGENCE FOR
WALSH-FOURIER SERIES

C. W. ONNEWEER

In 1940 R. Salem formulated a sufficient condition for a
continuous and periodic function to have a trigonometric
Fourier series which converges uniformly to the function.
In this paper we will formulate a similar condition, which
implies that the Walsh-Fourier series of such a function has
this property. Furthermore we show that our result is stronger
than certain classical results, and that it also implies the
uniform convergence of the Walsh-Fourier series of certain
classes of continuous functions of generalized bounded varia-
tion, The latter is analogous to results obtained by L. C,
Young and R. Salem for trigonometric Fourier series,

Let {p.(x)} be the sequence of Rademacher functions, i.e.,

p)=+1(0se<2),  @=-1(F=s=<1),
P +1) = po)

Pa(®) = po2x), (. =1,2,3, ---). In [3] R. E. A. C. Paley gave the
following definition for the Walsh functions {v,(2)}: ¥,(z) =1, and,
if n=2"42"+ ... 4 2%, with n, >n, > <<+ > n,, then ,(x) =
P (@) P, (@) +++ @, (). J. L. Walsh [6] proved that the system {v..(x)}
is a complete orthonormal system. For every Lebesgue-integrable
function f(x) of period 1 there is a corresponding Walsh-Fourier
series (WFS):

f@) ~ Seaue), with o, = | bt .

As in the case of trigonometric Fourier series (TFS), we can find a
simple expression for the partial sums of a WFS,

S.(f,9) = Sevn@) = [ f@ + 0Dt

where D,(¢) = iz (). For the meaning of 4+ and for further
notations, definitions and properties of the WFS we refer to [2].

2. In [4], Chapter VI, R. Salem proved the following theorem:
Let f(x) be a continuous function of period 27. For odd =, let

T.w) =3, (0 + D 1A @ + 2pa/n) - fo + @p + Do)

117
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and let Q,(x) be obtained from T,(x) by changing 7 into —=m. Then,
if lim,_. T,(x) = lim,... Q,(x) = 0 uniformly in z, the TFS of f(x)
converges uniformly to f(x). R. Salem also showed that this theorem
implies both the Dini-Lipschitz test for continuous functions with
modulus of continuity o(f, 6) = o(log -)* as 6 —0, and Jordan’s
theorem on continuous functions of bounded variation. Finally, he
extended this last theorem to certain classes of continuous functions
of generalized bounded variation. For a proof of Salem’s results,
see also [1], Chapter IV, §5.

3. Our main result about WEFS can be stated as follows:

THEOREM. Let f(x) be a continuous function of period 1. Let
2%—1
U.(x) = ;::{ | fle + 2p/2"tY) — fle + 2p + 1)/2%1 | .

Then, lim, .. U,(®) =0 uniformly in x implies that lim,... S,(f, ©) =
f(@) uniformly in .

Proof. For each natural number & we have
Su(f, %) = @) = [ DOl + 0 - f@ldt

Let &k = 2" + K, with 0 < k' < 2", then, according to [2], p. 386, we
have D(t) = D;a(t) + Vron(t) - Dy (t), where

2" on [0, 2-7)
Dia(t) = , Du(t) =K on [0, 27",
0 on [27% 1)

and

+1 on [2p/2**, (2p + 1)/2"*)
Van(t) = for p=0,1, ¢+, 2" — 1

—1 on [(2p + 1)/2**, (2p + 2)/2"*)
Therefore,
18u(f,8) = f@| = | | Da® 17 + &) — saat]
+ | | o@Dl + 1) - f@Nat| = 4+ B.

For the first term of this sum we have
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2—n
Az S+ - f@)dt < of, 27) .
For the second term we have

B= 5[ pootse + 0 - s

p=0 2p/2n+1
S(2p+2)/2"+1

e De LA 1) f(x)]dt)[

2n—1 S(2p+1)/2"+1

D @OLf@ + ) — f@)]

=0 zplz”H’l

— Dp(t + 27 fle + (¢ + 277) — f(x)])dtl .

Now we observe that, since k' < 2", D,.(¢) is a sum of functions
vi(t) with 7 < 2". Each of these functions is constant on the
intervals [k/2", (kK + 1)/2%), (% =0,1, --.,2" —1). Therefore, if
te[2p/2~, (2p + 1)/2"*Y), then D, (t) = D.(t + 27"") = D,.(2p/2"*").
Thus we have

B= S Do 0 — s & ¢+ 2t
= S Dol + @ + 2m2y)
— flo + (¢ + @p + D/2)]dt |
- | S [Dowzise + ¢ + 22+
— f@ + (t +2p + 1)/2”+‘)]dt'
< |27 [ DL + 420 — s + ¢+ D/2lat |

+

S D
< 2—n—l,k1.w(f’ 2—-n—-1) + l Sl<2—%—-12§1 .o .)dt‘ = B1 + B2 .
0 p=1

Using the fact that for we(0, 1), | D,(u)| < 2u™, [2], Lemma 1, we
obtain the following inequality for the integrand, I, of B,:
2n—1
[T = 327 204p™ | flo + (¢ + 2p)/2")
— fl@+ (& + 2p + /2" | .

Now we observe that for every ¢ ¢ [0, 1) there is an %€ [0, 1), & = %(t),
such that = + (t + ¢)/2""' = & + ¢/2"** for all ¢ =1,2, -.., 2" — 1.
Therefore
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Il = g p | & 4 2p/2") — (@ + 2p + D)/2") | = U.@) .

Under the hypothesis of our theorem U,(%) — 0 uniformly in ¥ as
n — oo. This implies that B, — 0 uniformly in z as » — -, and so,
lim, .. (Si(f; ) — f(x)) = 0 uniformly in .

4, In this section we will show that our main theorem implies
two classical results for WFS. The first is the Dini-Lipschitz test
for WFS, which was first proved in [2], Th. XIII. A generalization
of it can be found in [5], § (3.5).

COROLLARY 1. Let f(x) be a continuous function of period 1
and let o(f, 0) = o(log 6~ as 6 —0. Then the WFS of f(x) con-
verges uniformly to f(x).

Proof. We see immediately that
2m—1
| U.(@) | = z{V;'.Lza‘lw(f, 21 < w(f, 27")C log 2"
for some constant C. Thus lim,.. U,(x) = 0 uniformly in .

The next corollary is Jordan’s test for WFS, which was first
proved in [6], Th. IV.

COROLLARY 2. Let f(x) be a continuous function of period 1.
If f(x) is of bounded wariation on [0, 1], then its WFS converges
uniformly to f(x).

Proof. We can find a nondecreasing sequence of natural numbers
{m(n)} such that (a) m(n) <2 —1 for all n, (b) m(n)— ~ as n— oo,
(¢) o(f, 2" ") log m(n) — 0 as n— c. Then,

U@ | < o(f, 2—n—1)[1 + .é. bt m%n)]

+ Z)ﬂp—l | f(@ 4 2p/2*+) — flx + 2p + 1)/2"H) |

p=m(n

< Co(f, 27 log m(n) + (m(n) + 1)~* Var (f) .
Thus lim,.. U,(x) = 0 uniformly in x.

Finally we will prove a theorem for WFS analogous to certain
results of L. C. Young [7] and R. Salem [4] for TFS, and which is
an extension of Jordan’s theorem. First we will give a definition of
bounded @-variation.
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Let o(u) be a continuous, strictly increasing function defined for
% = 0, such that ¢(0) =0 and lim,_...p(u) = . Let + be the inverse

of @. Next, let O(u) = §u¢(t)dt and ¥(u) = Su«,lr(t)dt. Functions so

obtained, are called complementary in the sense of W. H. Young, and
they satisfy the following inequality, due to W. H. Young: if a, 5= 0,
then ab < @(a) + ¥ (b), see [8], ». 16.

DEFINITION. A function f(x) on [0, 1) is said to be of bounded
O-variation if there is an M < « such that for each finite partition
02, <@-- <2, =1 we have 377 0 f(wir) — flz) ) < M.

We can prove the following

COROLLARY 8. Let O(x) and ¥(x) be functions complementary
i the sense of W. H. Young and let >, U (k™) < . Let f(x) be
a continuous function of period 1 and of bounded @-variation. Then
lim,... S,(f, ) = f(x) uniformly in 2.

Proof. Since Sy, U(k™) < o, we can find a sequence {e(k)} of

positive numbers, decreasing to 0 as k£ — o, and for which
kZ:‘,qu(ke(k))“‘) < oo
Let
| fl@ + 2p/2*7) — flw + @2p + D/2") | = 4, .
Then, according to Young’s inequality, we have
4y (pe (P)~ = O(4,) + T((pe(p))7™) -

From our hypothesis it follows that there is a constant N < c such
that for each m

T A ) £ 3 04) + SE(@ep)) < N

Therefore,

2%—1

S, 4,p7t < Ne(m) .
p=m

Choosing {m(n)} as in the proof of Corollary 2, we have

U@ 5 0 214 5+ oo s | 4 Nemn) + 1),

i.e., U,(®) — 0 uniformly in x as n — co.
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The author wishes to express his gratitude to Professor D.
Waterman for bringing this problem to his attention and for his
encouragement during its solution.
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ON CERTAIN TOEPLITZ OPERATORS
IN TWO VARIABLES

STANLEY J. OSHER

The problem of inverting and/or factoring Weiner-Hopf
operators in two variables is one of the basic unsolved pro-
blems in classical analysis. In this paper we shall consider
operators which are a perturbation of a product of operators
in one variable, the perturbation differing from such simple
operators by an operator in one variable, The principal tools
used are the spectral mapping theorem combined with the
known results on operators in one variable,

2. Preliminaries. Consider the space I, of sequences of complex
numbers

&= {50, =0

with

2.1) &l = <; golgkjlzy/z < oo,

Let

(2.2) a={a}w b=} c={}.

be absolutely convergent sequences of complex numbers. Define

9 = {0i}5j=—

2.3 .
@3 9i; = a;b; + ¢;0(5)

for
o()y=0if 70, 0(0)=1.
It is clear that

2 i;_mlg“l < oo

j=—c0

We are concerned with the operation

Te:l,—1,,

(T46)i; = 2 2 9i—t,i—r8hL
2.4) Lo k=
9;,;

1.

123

il

[9:;
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Our techniques and results are exactly the same in the two
variable Weiner-Hopf integral analogue.

Define
G(ew’ eip) — i ki gkjg—ijgp—ikﬂ
Ae?) = i ake—mo
(2.5) e
B(e?) = 3 be
k=—co
Ce*) = _i ce”v .
So
(2.6) G(e', ¢'¢) = A(e'’)B(e*) + C(e*) .

Let I, denote the space of doubly infinite sequences in the second
subsecript, singly infinite in the first.

feli, &= (Eiowmin
@) tele= (3 Ser)”.

Let us Fourier transform I, and [, with respect to the second
subscript, i.e.,
(2.8) §= .} e B,

where
Sk(ei@) 2{, Ekjeim .
=

We shall obtain on E, a transformed Toeplitz operator whose
elements are themselves Toeplitz operators
Define

(2.9) P—g_z;) i Ekjeijsp sl i Ekjeii(? y
. =

J=—o0

and on the space of singly semi-infinite sequences, define the Toeplitz
map

(2.10) (An); = % ;s -

Thus, the total operator transforms to the compound operator

2.11) PB(e)AE + P¥IC(e)E = P¥ L(e")E .
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3. Main results.

MAIN THEOREM. (A) < (B) = (0)

(A) Q) G(e e*) = 0 real 0, o.

(2) The change in argument of G(e”, ¢’*) as 0 goes from 0 to
27 is 0 for any real o.

(8) The change in argument of G(¢%, ) as ¢ goes from 0 to
2r is 0 for any real 4.

(B) L(e**) can be factored

L(e*) = L_(e**) L (e*) for 0 < » < 2w where

L_(e*), L.(e’*) commute and are continuous in ¢ and bounded
for each @. Moreover L_(e**) has an analytic operator valued exten-
sion to |2] > 1 which is invertible for these z, L, (e’*) has an analytic
operator valued extension to |z| < 1 invertible for these z. This
factorization is unique if L_(o0) = L.

(C) T, is invertible.

Proof. Assume (A). Consider
3.1) pB(e¥) + C(e)

where first ¢ = A(e’’s) for some real 6,. Conditions (1) and (3) and
the results of [1] guarantee that a factorization

(3.2) #B(e*) + C(e) = D_(t, D, (2, ¢*)

exists for each such g where the factors D_ and D, have the same
properties as functions as L._(e*) and L.(e’*) have as operators.
Since property 8 is a homotopic invariant, such a factorization fails
to exist for some g in the spectrum of A if and only if 3y, in the
spectrum of A and some real ¢, with

(3.3) tB(e#0) + Cle*)) = 0.
If B(ei") = 0, then C(e*?) # 0 by condition (1). Thus,

C(e*)
3.4 =€)
3.4) Yo B

But by condition (2) the change in argument as 6 goes from 0
to 2w of [a(e’) — p,] = 0, thus g, does not belong to the spectrum
of A. .

Thus the factorization (3.4) exists for all ¢ in the spectrum of
A. It is clear from the construction involved in [1] that the factors
are locally analytic in ¢ for g in the spectrum of A.
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We normalize so that D_(g, <) = 1. Then the equation (for any
L in the spectrum of A)

3.5) PO[uB(e™) + Cle)]h(e*) =1,

on the space of Fourier transforms of semi-infinite sequences with
one subscript, has the unique solution

hule'®) = D(g, €) .

Single-valuedness of the factors is now immediate. Thus each factor
is analytic separately in g on the spectrum of A. Moreover, for
such p, D_(y, e¢'*) has an analytic extension to |z|>1, invertible
for |z] = 1. Thus, the operator D_(A4, ¢**) has the same properties,
by the spectral mapping theorem. We may make the analogous
statements about D. (g, €*).

Thus, by the spectral mapping theorem we may replace p by A
in D_(y, %), D,(y, ) and obtain L_(e*), L, (¢**) with all the appro-
priate properties of analyticity in z and invertibility.

Next, suppose

(3.6) M_(e") M. (¢*) = L_(e*)L. (¢%),
M_, M, having the same properties, then
(3.7) LZH(e*)M-(e*) = L. (¢*)M7'(e")

and hence they are both analytic in the whole plane and equal to
the identity at oo, or
(3.8) L_(e*) = M_(¢*) , L. (6%) = M, (¢*)

or the factorization is unique.
Thus 4= B.
Now, let us assume B. We wish to solve:

(3.9) PPLE)E =1 .

Consider the operator P Lz'(e*).
By the isometry of the Fourier transform

(3.10) | PP L=Me) || = sup ||| L='(™) | ]
osps2r
where ||| ||| denotes operator norm on the space of semi infinite

sequences with one subscript. Similarly

(3.11) L7 || = sup [ LT eI -
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Let
§ = L) PP L) -
Then
P.L(e¥)E = ) + PIPL_(6¥)(P{ —I)L7(e")7) ,

but by the anti-analyticity of L_(¢**) and the definition of P+ we
have

PPL(@)E =1).

Thus 7, has a right inverse. This right inverse is easily shown to
be a left inverse using the anti-analyticity of Lz'(e%).

Next we assume C. Suppose G(ei%, i) = 0.

Then, if T, is invertible, so is T,, + 01, for all M large enough
and all |6] small enough and:

M M ]
(3.12) Ga(6?, 69) = 3 a6 S be i + 3 etk
j=—M 7 k M

=~ k=—M

Moreover, we may choose M, ¢, 6,, 0, such that |J,] < d and
M, = M and

(3-13) GMO(eialy eiq;l) + 60 — 0 .
Next consider the sequence of vectors &V, where
¥y o= ___1-______ iGotke) if 0 <4, k< N
(3.14) VS N =
. &Y, = 0 otherwise .
Clearly
|| SNH = 1 while zlvlm (TgMO + 5OI)§N —0.
Contradiction.

Now suppose the change in argument in condition 2 is 277, = 0.
(This number is obviously independent of ¢). Thus, for M large,
Gy(e”, ¢%) has the same 7, for each ¢, If 7,<0, then L,(e*°) anni-
hilates some vector

K = {ky kyy +--}, Kl =1.
But then the sequence

=L hemif0Sj<N,

VN+1

(3.15) ) .
Y. =0 if N <J, has the property
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(3.16) [1&¥]| =1, but lim T, " =0.
N—co

Thus T,, is not invertible, hence neither is T,. If 7, >0, we
merely consider 7. Finally, we assume that the change in argu-
ment is 27 7, # 0 in condition (3). Then consider

e~9¢G(e”, ¢¥) = H(e”, €*) .

This function obeys the conditions of (A), hence it is factorable
and T, is invertible. However, if », > 0, then
(3.17) S*1e = Sk1e T(T,)™ = TW(T,)™*

where S, is the right shift operator on the j subscript. This is
impossible since the two operators on the right are invertible. If
7y < 0, we merely consider the adjoint.

Thus (C) = (A), and we are finished.

4. Example. Let B(e) and C(e*) have finite expansions

B = i bje——'ijgo
(4.1) —
C= 3 ce v
==K
and suppose
(4.2) pto_y +c_y#0 for p in the spectrum of 4 .

Assume conditions 1, 2, 3. Then we may factor
N u Y4
@3)  pB@E) + 0@ = (#b_y + c-a) I (¢ — (e [T (1 — L)

for all x in the spectrum of A and each |x;(p)| > 1, |y,(p)]| < 1.
See [3]. Then it follows that

(.9) L@ = L)L)
with
(4.5) L =11 (1- 24
J=1 ?
(4.6) Li(®) = (Ab_y + ) 1T (2 — () -

We expect this factorization to play an important role in the
study of difference equations arising from hyperbolic systems in
regions in space having corners.
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ON THE MEASURABILITY OF PERRON
INTEGRABLE FUNCTIONS

W. F. PrEFFER AND W. J. WILBUR

By means of majorants and minorants a Perron-like inte-
gral can be defined in an arbitrary topological space. Although
for its definition only a finitely additive set function is used,
it turns out that if the underlying topological space is Haus-
dorff and locally compact, then the integral itself gives rise
to a regular measure. The natural question, whether every
integrable function is measurable with respect to this measure,
is the subject of our paper.

In §2 some sufficient conditions for measurability of inte-
grable functions are given and the connection of our measure
with the original set function is described, The results of this
section are then applied to integration with respect to the
natural and monotone convergences, The natural convergence,
which can be used in any topological space is discussed in § 3.
In § 4 some elementary properties of the monotone convergence
are derived, This convergence can be used in any locally
pseudo-metrizable space and it seems to be the most important
convergence for the definition of an integral over a differenti-
able manifold. A proof that for the monotone convergence
every integrable function is measurable is given in §5. Finally,
§ 6 contains a few illustrative examples,

Throughout, P is a topological space which is always assumed to
be Hausdorff and locally compact. The reader can, however, easily
detect those parts of the paper which remain correct in an arbitrary
topological space P. By P~ = P U(~) we denote a one point com-
pactification of P. If A c P, A~ and A~ stand for closure of 4 in P
and P~, respectively. The interior of a set A P is denoted by A°.
For « € P~, I', is a local base at « in P~ (see [3], p. 50). We shall
always assume that U < P and U~ is compact for all Uel”, with
zeP. If o is a pre-algebra of subsets of P (see [5], 1.1) such that
{UnP:Uel',} Co for every x € P~, we call the pair R =<0, I',) a
net structure in P.

Ifdcoand Ac P~ weleto, ={Bei:Bc 4}, AsystemdcCo
is said to be semihereditary if and only if 6, N 6 = @ for every finite
disjoint collection o, © 0 whose union belongs to . A system 6 C o
is said to be stable if and only if @ ¢4 and for every A cé and every
2 e P~ there is a Uer', such that 6, ,# @.

A convergence” in a net structure (s, ",y is a function £ which

1) What we call a convergence is sometimes called a derivation basis (see [1], 1.1).

131
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to every x € P~ associates a family «, of nets {By, Uel', C} C ¢ where
I’ is a cofinal subset of I",. For 6 C ¢ and xe P~, k,(0) = {{By} ek, :
{By} C ¢} and 0* = {x e P~ :£,(0) + O}.

A convergence £ is called admissible if and only if the following
conditions are satisfied :

;. For every e P~,{UNP Uel, C}ek,.

;. If xe P~ and {By, Uel’, C} ek, then for every VeI, there
is a U, el such that B, c V for all UeI" for which U c U,.

%5 If xe P, {By}yer €k, and I is a cofinal subset of I, then
also {By}yer €£,.

4. If xeP~, {By}ek,, and Aeco, then also {By, N A} ek,.

%. If 6 C 0 is a nonempty semihereditary system, then 6* is
nonempty.

%. If 6 C o is a nonempty semihereditary stable system, then
0* is uncountable.

A triple I =N, £, G is called an integration base in P if and
only if N =<0, I',> is a net structure in P, £ is an admissible con-
vergence in N, and G is a nonnegative finitely additive function® on
o such that G(4) < + « for every A co with A~ compact.

It was shown in [6] that integration bases exist in P and that
for each of them we can define a nonabsolutely convergent integral
I which is closely related to the Lebesgue integral. For the reader’s.
convenience we shall summarize the basic definitions.

Let xe P~, A c P, and let F' be a function on o,. We call the
number ,F(x, A) = inf {lim inf F(B,) : {B,} € £,(0,)} the lower limit of
F at x relative to A and the number ,F(x, 4) = ,(F/G)(x, A)® the
lower derivate of F at x relative to A and it is denoted by I(f, 4).

Let Aco and let f be a function on A-. A superadditive func-
tion M on o, is said to be a majorant of f on A if and only if there
is a countable set Z,, © A~ such that (—G)(x, A) = 0 for all ze Z,,
Mz, A) = 0 for all xe€Z, U (=), and — oo =*  M(x, A) = f(x) for all
xeA- — Zy. The number I, (f, A) = inf M(A) where the infimum is
taken over all majorants of f on A is called the upper integral of f
over A. If I(f, A) = —I,(—f, A) # + o this common value is called
the integral of f over A.

If Aco and f is a function on A~, we denote by IM(f, 4) the
family of all majorants of f on A. The family of all functions inte-
grable over A co is denoted by FPB(A4).

For A c P, y, denotes the characteristic function of A in P. By
€ and I we denote the families of all compact and open subsets of
P, respectively. Using the integral I, we shall define measure spaces

2) Unless specified otherwise, by a function we always mean an extended real-
valued function.

3 We let a/0 = +o for ¢ =0, a/0 = —o for a <0, and a/(+ ) =0.
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(P, g, 7) and (P, &, 7,) as follows:

(i) <2 is the family of all sets A < P such that y,,, € B(P) for
every CeC@; and for Ae g, 7(4) = L(x4 P).

(ii) For AC P,

T(4) = inf {-(U): Uell and A C U}

and T, is the family of all r-measurable subsets of P.

These measure spaces will play an essential part in our paper.
Some of their important properties can be found in [7], §’s3 and 4;
e.g., there is a proof that they actually are measure spaces. We just
recall here that 1 ¢ €, < T and that the measure 7z, is regular.

2. Measurability in general. In this section we shall prove a
few general theorems concerning the measurability of integrable func-
tions. Throughout we shall assume that there is given an integration
base § = <o, I',, K, G> in P.

ProrosITION 2.1. If the lower derivate of every superadditive
Sunction on o is T -measurable, then T = I, and every function from
PB(P) is T-measurable.

Proof. Let Ae¥ with A~ e@. Then by [7], 2.7 there are narrow
majorants M, e M (x,, P) (see [7], 2.5) for which M,(P) — I(y P) <
im, n=1,2,+--. IfB,={xecP: M, (x, P) = 1} then by our assump-
tion B, €%, Letting B= A~ n (N, B.), we have BeZ, B-eC, and
A c B. Because

7(B,) — ©(4) = M(P) — I(xs» P) < 1/n

for » =1, 2, -+, it follows that (B — A) = 0. Now replacing A4 by
B — A and repeating the previous construction, we obtain a set Ce g,
for which C-¢@,B — A c C, and

(C) =t(B— A) +(C—[B— A]) =0.

By [7], 4.7 also 7,(C) = 0 and since 7, i3 a complete measure, A =
B — (B — A) belongs to Z,.

If AeZ is arbitrary, then (A N C)~ €€ for every Ce€. Thus
AN CeZ, for every CeC€ and it follows from [7], 4.7 that Ae&,.

The last part of the proposition is now a direct consequence of
{71, 4.8.

The previous proposition and Proposition 4.3 in [7] indicate the
importance of the following :

PROPOSITION 2.2. Let M be a function on o, where Aco, and
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let ¢ be a real number. If o,M,c) = {Beo,: M(B)/G(B) < ¢}, then
N> 0i(M, ¢ + 1/n) = {we A~ : M(x, A) < c}.

Proof. If ,M(x) < ¢ and » is a positive integer, then there is a
net {By}y.r€£.,(0,) such that

lim inf [M(B,)/G(By)] < ¢ + 1/n.

Hence there is a cofinal subset 7™ of I” such that {Byly.r < 0.(M, ¢ +
1/n). It follows from .°%; that x eo%(M, ¢ + 1/n). On the other hand
if xeokX(M, ¢ + 1/n) then it follows that M(x) <c+1/n,n=1,2, ...

DEFINITION 2.3. An integration base & in P is said to be mea-
surable if and only if every function from PB(P) is T,-measurable. It
is said to be strongly measurable if and only if 6* — () belongs to
I, for every o C o.

It follows at once from 2.1 and 2.2 that every strongly measura-
ble integration base is measurable. On the other hand, Example 6.1
shows that a measurable integration base need not be strongly mea-
surable. From [7], 4.7 we see that if & is measurable, then T = E,.

REMARK 2.4. Let ¢ be a real number and let Aco. It is easy
to see that o,(M, ¢) is semihereditary whenever M is a superadditive
function on o,. Furthermore, it can be shown that if ,(—G)(x, 4) =
0 for every x e A~, then o0,(M, ¢) is semihereditrary and stable when-
ever M is a majorant for some function on A~ (see [6], (4.4)). How-
ever, Example 6.1 indicates that there is no link between the semi-
hereditariness or stability of 6 — ¢ and the Z,-measurability of 6* —

().
THEOREM 2.5. If CecG@, then
7/(C) = inf 3} G(A)

where the infimum is taken over all finite families {4}, C o for
which C < (Uk, 4,)".

Proof. Let Ce@ and let A4,, ---, 4, be sets from o for which
Cc (U A). If we set M(B) = >, G(B N A, for Beo, then Me
M(xe, P) and so

@(C) = <(C) < M(P) = 3, G(4) -

On the other hand, given Ce @€ and ¢ > 0, there is a U €U such that
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Cc U U-€€, and 7(U) < 7(C) + ¢. Using [5], (1.1), we can find
disjoint sets B, ---, B,, from o for which

Cc(Q Bi)och['C U.

If we set N(B) = — 3, G(B N B;) for Beo, then NeD(—yxy, P)
and thus

2(C) + € > 7(U) = ¢(U) = —I(— 7z, P)
z —N(P) = 3,G(B).

Using the regularity of 7, (see [7], 4.7), we obtain the following :

COROLLARY 2.6. Let <o,I,, &, G> and Ko, I, k,G) be two
ntegration bases in P. If ¢ N ¢’ is a pre-algebra which contains a
topological base of P and if G = G on o N o', then (T, 7,) = (T}, 7).

Proof. Suppose 7(C) > 7,(C) for some Ce €. Then by [5], (1.1)
there is a disjoint finite family {4;} < ¢ such that C < (U 4,)° and
2.G(4) < /(C). Since C is compact, using again [5], (1.1), we can
find a disjoint finite family {B;} c 0 N ¢’ such that C < U B} © UB; C
(U 4,)°. Hence

7(0) = 3 G'(By) = SLG(B)
= %G(Ai N B = ; G(4)

which is a contradiction. By symmetry z,(C) = 74(C) for every CeC.
Now the corollary follows from [7], 4.7.

The previous corollary is the main reason why we are discussing
Z,-measurability rather than T-measurability.

Let 3 =<0, I, £, Gy and § = (o', I}, £, G"> be two integration
bases in P. If o' C 0, G’ is the restriction of G to ¢’, and for every
xeP~, I c I, and &, C k,, we say that & is larger than & and
write ' < &. Obviously, the relation < is a partial ordering in the
family of all integration bases in P. Imitating the proof of Theorem
31 in [4], one can easily see that it I’ < ¥ then P(4) < P'(A4) for
every Aeco’; here P(4) and P'(4) are the families associated with J
and ¥, respectively. From this and Corollary 2.6 it follows that if
X is a measurable base in P so is ¥ for every J > J.

The next difinition and proposition will be used in §5.

DEFINITION 2.7. An integration base & in P is said to be locally
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strongly measurable if and only if for every x e P there is an inte-
gration base J’ in P (generally depending on 2) which satisfies the
following conditions :

(1) (Z 7)) = (&, T0)-

(ii) There is a neighborhood Ueco N o' of x such that P(U)
P'(U) and 6* — (o) e T} whenever 6 C 7.

ProrosITION 2.8. If & 1s locally strongly measurable then X is
measurable.

Proof. Let feB(P). We shall show that every point xe P has
a neighborhood V such that f restricted to V— is ¥,-measurable. It
will follow that f restricted to any compact subset of P is Z;-mea-
surable and hence by [7], 4.7 also f itself is T ,-measurable.

Choose xc P and let ¥ and U have the same meaning as in
Definition 2.7. Then by [6], 6.8, f¥’ (U) and we can choose major-
ants M,e W' (f, U) such that M (U) - I'(f, U)<1l/n, n=1,2 «-.
By the definition of majorant (see [6], 3.2) with each M, there is
associated a certain countable set Z, < U~. For weP let h,(v) =
oM, (@, U) if xe U~ — Zy, and h,(x) = + o otherwise ; here, of course,
oM, (x, U) denotes the lower derivate computed in J’. By 2.2, the
h, are Z,-measurable, and so is h = infh,. Set r(x) = h(x) — f(x) if
this difference has meaning and »(x) = 0 otherwise. Since h = f, r =0
and

0 < Li(r, U) = inf Li(h,, U) — I'(f, U)
= inf [M(U) — I'(f, U)] = 0

(see [6], 6.4). Now choose Vel”, such that V~c U° and let r, =
ryy-(we define (k) .0=0). Since 0=7r < I)(r, U)=0 and
r, e P (U). Exactly as before we can define a ¥ -measurable function
g = 7, such that if we set s(®) = g(x) — r,(x) whenever this difference
has meaning and s(x) = 0 otherwise, then I'(s, U) = 0. Letting g, =
gxy—- and s, = s)y—, we obtain I'(g, P) = I'(g,, U) = I'(s,, U) + I'(r,,
U)=0;forg, =0o0on (P— U) and 0 <s <s. Since g, is nonnega-
tive, ¥,-measurable, and has a compact support it follows from [7]

4.2 and 4.7 that S g.dt, = 0. Because 7, is a complete measure and
P

g, =1, =0, also r, is ¥,-measurable. Therefore f restricted to V-,
which is equal to & + 7, restricted to V-, is ,-measurable too.

Let & be measurable or strongly measurable and let Aco be
different from P. Then, in general, we do not know whether the
functions from P(A) are T -measurable over A-. This fact, e.g.,
caused the main difficulty in proving Proposition 2.8. The following
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proposition is a contribution to this problem.

PrROPOSITION 2.9. Let & be measurable, let o %, and let
G(A) = 7(A) for every Aco for which A~ is compact. If Aco is
such that A N (P — A)~ is t,0-finite, then every function from P(A)
18 T-measurable.

Proof. If feP(A) let f(x) = f(x) for x€ A~ and f7(x) =0 for
xeP — A-. According to [7], 4.14, f"ePB(P) and the proposition
follows.

3. Some remarks on the natural convergence. Let % = <o, I",>
be a net structure in P and let £ be a convergence in N. If for every
x e P~, k, consists of all nets {B,} which satisfy the condition %%,
then « is called the natural convergence and it is denoted by &x°.
According to [6], 4.3 the natural convergence £° is admissible.

Hence assume that there is given an integration base I = (o, I",,
&% G> where £° is the natural convergence. It is easy to see that
for ¢ C o, 6* is closed in P~ (see [5], 2.1) and so & is strongly mea-
surable. In fact we have more precise information.

LeMMA 3.1. Let Aco and let M be a function on o, If
«Mx, A) > —oco for all xeP, then the fumction ,M(-, A) is lower
semicontinuous.”

Proof. If ¢ is a real number, then

feeP: Mx,A) >c}=(P—A)U {red :
M@, A) >c} =P —{weA™: Mx, A) < c}.

By 2.2, {xe A~ : M(x, A) < ¢} is closed in P~ and the lemma follows.
THEOREM 3.2. The measure T ts regular.

Proof. Since we already know that 7 is inner regular on U and
finite on € (see [7], 8.13), it remains to show that 7 is outer regular
on T. Hence choose Ae¥ and ec(0, 1). Since everything is trivial
if 7(A) = 4 o, we may assume that 7(4) < +. By [7], 3.10, y.€
Po(P) and so there is a narrow majorant Me M(y,, P) such that
M(P) — 7(A4) < ¢ (see [7], 2.5, 2.7T). By Lemma 3.1, ,M(-, P) is lower
semicontinuous and hence the set U= {xeP: M, P) >1— ¢} is
open. Clearly A < U and M/(1 — ¢) is a majorant of ¥,. Therefore

4 See [3], Chapter 3, Problem F, p. 101.
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7(4) = 7(U) = M(P)/(1 — ¢) < [t(4) + €]/ — ¢)

and the outer regularity of = at A follows from the arbitrariness of
e.

COROLLARY 3.3. (%, 7) = (Z,, 7).

Proof. By a rather standard procedure it follows from [7], 4.7
that the measure 7, has no proper regular extension. Hence T = g,
and because both ¢ and 7, are regular, also 7 = z,.

4. The monotone convergence. Let N =<0, I',> be a given
net structure in P and let £ be a convergence in M. If for every
x € P~, k, consists of all nets {By, Uel', c}ek’ such that B, c B,
whenever U C V, then £ is called the monotone convergence and it is
denoted by £'. The following proposition indicates the essential dif-
ference between £° and k.

ProposiTiON 4.1. If xe€ P~ and {By, Uel', C}ekl, then either
€ Nuer By or there is a VeI such that By = @ for all Uel' for
which U cC V.

Proof. If ¢ Ny.r By then x¢ By, for some U,el’ and hence
there is a U,erl’, such that U, N By, = @. To U, we can assign a
U,e " such that Ue " and U c U, implies B, c U,. On the other hand,
Uerl’ and U c U, implies B, C By, and thus V can be any element
of I" for which Vc U, n U,.

REMARK 4.2. Let P be the set of all real numbers with the
usual topology. Let & =g, I',, £, G> be an integration base in P
defined as follows: o is the pre-algebra generated by all one-side-open
intervals, for xe P~, I, C ¢ is an arbitrary local base at 2 in P~,
and G is the Lebesgue measure on ¢. Using the previous proposition,
we see rather easily that if £ = &' is the monotone convergence, then
X gives precisely the classical Perron integral (see [10], Chapter VI,
§8).

We also note that a sitngularization of a monotone convergence
is again a monotone convergence (see [8], §2).

PROPOSITION 4.3. Let N = {a, I',) be a net structure in P. If the
space P is locally metrizable, then the monotone convergence in N is
admissible.

Proof. Conditions .2 — %%, are satisfied obviously. To show



ON THE MEASURABILITY OF PERRON INTEGRABLE FUNCTIONS 139

that also .%%; and .9, are satisfied we can repeat verbatim the proofs
of Proposition 3.1 and Theorem 3.2 in [5], respectively.

We note that in an arbitrary topological space the monotone con-
vergence still satisfies conditions 277 — 2#;; however, we do no know
whether it also satisfies conditions .2 and %, An example of a net
structure in a nonlocally metrizable space in which the monotone
convergence is still admissible will be given in 6.2.

We shall close this section with a proposition which will show
how conditions 277 — .2%; are related to each other.

PRrOPOSITION 4.4. Conditions 2%, — 57, are independent and they
do not tmply ;. Conditions 2% — %% and 57 are independent
and they imply %

Proof. Examples 6.3 and 6.4 show that .27 — 977 do not imply
% and that 27 — 27 do not imply .9, respectively. The remaining
examples which are needed to prove the independence are quite simple
and their construction will be left to the reader. We shall complete
the proof by showing that 27, 27, and %; imply .°%;.

Let N = (o, I",> be a net structure in P, let £ be a convergence in
N satisfying conditions .97, .5;, and %%, and let 6 o be a nonempty
semi-hereditary system. If ¢ is stable, then by .2, 6* is uncountable
and so nonempty. Hence suppose that 6 is not stable. Then either
O €6* = P~ [see [6], (4.1)] or there is an Acd and an xe P~ such
that 6, , = @ for all Uel',. Choose Uel',. Since UNAeo, A=
(Un AUz, B, where B, ---, B, are disjoint sets from o,_,. There-
fore B,, -+, B, do not belong to 6 and because § is semi-hereditary,
we conclude that A N Ued. Now it follows from .>¢7 and %7 that x ¢ 6*
and thus again 6* is nonempty.

COROLLARY 4.5. Let N =<0, I",) be a net structure in P and
let 0 contain no nonempty semihereditary stable system. Then every
convergence in I which satisfies conditions 2%, — 5%; 1s admissible.

The assumption of this corollary is always satisfied if P is count-
able. It is also satisfied if P is the set of all ordinals less than a
given ordinal a topologized by the order topology (see [5], 1.4).

COROLLARY 4.6. Let N be a net structure in P and let £ and
&' be two convergences in N satisfying conditions ¢ — ¢ If k, =
k., for all but countably many x € P~, then k 1is admissible if and
only if k' is admissible.

Proof. Let S be the countable set of those ze P~ for which
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K,#K, Since 0* — S =¥ — S for every 6 — o, it follows that &
satisfies condition .97 if and only if &’ does.

According to Proposition 4.4 condition .9%; is superfluous for the
admissibility of a convergence. Nevertheless, for a given convergence,
establishing .9%; is usually the first step in establishing .57 (see [5]
and [9]). It should be also noted that a convergence which satisfies
only conditions .%%; — .%; is still adequate for the definition of the
narrow integral (see [7], 2.5).

5. Measurability with respect to the monotone convergence.
Throughout this section we shall assume that the space P, in addition
to Hausdorff and locally compact, is also locally metrizable. We shall
assume that there is given an integration base & = (o, I",, £', G> where
k' is the monotone convergence and we shall prove that & is measur-
able. We begin with a simple but useful remark.

REMARK 5.1. Let e P and let {By, Uel', C}eck.. Since P,
being locally metrizable, is first countable, 7" has a linearly ordered
countable cofinal subset I” = {U,}. Hence there is a sequence {C,}¢
k;({By}) such that C,., cC, for n =1,2, ... ; for it suffices to set
C, = By,. The sequence {C,} may consist only of a single element if
2 is an isolated point of P.

LEMMA 5.2. Let Aco and let 6 c 0,. If o, is countable then
0% — (c0) ts Tymeasurable.

Proof. Since I',Co for all z ¢ P, it follows from the countability of
o, that A is paracompact and hence metrizable by [2], Th. 2-28, p. 81.
Choose a metric on A and if B c A denote by d(B) the diameter of B
with respect to this metric. Because ¢ € 6 implies 6* — (c0) = P which
is ¥,-measurable, we shall assume that @ ¢ 6. Let {B,}, be an enumera-
tion of the family {Be d:d(B) < 1}. If By,...,, where n and &, -+, k,
are positive integers, has been already defined we let {B, ..., +}» be an
enumeration of the family {Bedz,....,:d(B) <1/(n + 1)}. Setting
B,,...,, = @ for those groups (%, --- k,) of positive integers for which
B,,., was not previously defined, we obtain a determining system
{Bi,....,} of T-measurable sets (see [10], Chapter II, §5). By [10],
Chapter II, Th. (5.5), p. 50, its uncleus

o

N= U B,

kykgesr m=

is also ¥-measurable. On the other hand, using 5.1 it is easy to see
that N = 0* — (o).
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COROLLARY 5.3. If 0 is countable then & is strongly measurable.

LEMMA 5.4. Let o be a pre-algebra of subsets of P, C g, and
let Aco be such that {A N B:Bed} is countable. Then there is a
pre-algebra o' C o containing 6 and for which ', is countable.

Proof. Let 0° consist of all finite intersections of elements from
0. For B, B'e€dy we let (B, B ={C, ---, C,} where C,, --+, C, are
disjoint sets from o for which B— B’ =J~,C;. For B, B'cd we
let [B, B'l|={D, +++, D,} where D,, .-+, D, are disjoint sets from o
for which (B—B)— A=U~,D;. Set a= U {(B, B"): B, B' €},
B=U{BBl:B,Beé},andd*'=0"UaUpB. Thendcé co, Aec
0yand {A N B:Beco'}={A N B:Bed" U a} is countable. If B, B’ €4,
then B N Bed' and

B-B=BNA-BnA)UI[B-B) - Al
=(Ge)u (G o)

where the last term is a disjoint union of sets from ¢'. Note also
that @ €é* and Ped*, for @ = A — A and P is the empty intersection
of sets from d. Let o, = 0 and assuming that o, has been already
defined let 0,,, =05, n =1, 2, ---. The system ¢’ = |J7., 0, has now
all the desired properties.

THEOREM 5.5. The integration base X s locally strongly
measurable.

Proof. Choose w,c¢ P and Uel',, whose closure U~ is compact
and contained in some open metrizable neighborhood of «,. Then for
each x € P~ we can define a local base I, — I, such that U,.,-I"
is countable and UN V=@ for every Vel with xe P~ — U-.
Setting 6 = {U} U (U,ep~{V N P: Vel}), we have 6 Cc 0, Ued, and
{UN V:Ved} is countable. Let ¢’ be a prealgebra from Lemma 5.4
and let G’ be the restriction of G to ¢’. Then ¥ =o', I'}, £, G') i8
an integration base and by 2.6, (%, 7)) = (&, 7). Since J'<I (see
§2), BU) < P(U) and the theorem follows from 5.2.

COROLLARY 5.6. If P is metrizable then (T, t) = (T,, 7,).

This corollary follows from [3], Chapter V, Corollary 35, p. 160
and [7], 4.9.

6. Examples. Four examples illustrating the previous sections
will be given here.
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ExampPLE” 6.1. For ¢ =1,2, .-+ let P, = {0, 1} be the two point
set with the discrete topology and let y; be the measure in P; defined
by £:({0}) = pi({1}) = 1/2. We set P = [z, P, ¢ = I1. t4, and define
o as the family of all y-measurable subsets of P. Then P is a com-
pact metrizable space whose points are sequences {x;}7, of zeroes and
ones, ¢ i3 a regular measure in P, and o is a o-algebra containing
all rectangles. If # = {&}e P we let I', = {U,}7-, where U, = {{y;} ¢
Py =2, t=1,2,--,m}, n=12,.-.. It follows from 5.5 and
2.8 that § = <o, I',, &', ¢>, where £' is the monotone convergence in
{o, I',», is a measurable integration base. We shall show, however,
that there is a nonempty semihereditary stable system 6 — ¢ for which
0* i8 not r,-measurable. Thus, in particular, the integration base &
is not strongly measurable.

For » = {x;} let f(x) = {fi(x)} where fu(®) =y and fu.,(x) =0,
1=1,2,+---. Then f: P— P is a continuous map and we denote by
@ its image. The sets @, = f~*(x) with 2 ¢ @ are disjoint, nonempty
and prefect, and their union is equal to P. If x = {x;}e@Q and n = 1
is an integer, let Q' = {{y;}eP:y, =12y, ¢=1,2,---,n}. Then
1@z =2 and 7., Qr = Q,. Hence p(Q,) =0 for all xc@. Let
A cC P be closed and let p(A) > 0. By the compactness of P, f(4) is
also closed and so it is either countable or its cardinality is the con-
tinuum. Since A C U,cs Qrwy = Uyerw @, and p(A4) > 0, it follows
that the cardinality of f(A) is the continuum. Plainly Q, N A # @&
for all y e f(4).

Let v be the least ordinal whose cardinality is the continuum and
let {4,:0 < a < v} be a well-ordering of all cloged subsets of P with
positive measure. By the previous paragraph there are z,, 2, € Q, x, =
x;, such that @, N A, # @ and Q% N A4, #* @. Let 8 be an ordinal
less than v and assume that for all ordinals « less than B we have
already defined distinct elements ,, ;€@ such that Q, N A, # @
and Q. N A # O. Since the cardinality of @ = {x,, 2,:0 < a < 5}
is less than the continuum and the cardinality of {xc Q: Q, N A; # @}
is equal to the continuum, we can choose @;, 2, € Q@ — @', x; = x}, such
that Q,, N 4; # @ and Q,, N 4, = @. Letting B= U {Q, :0=sa<
7} and B = U {Q,,:0=a<7}, wehave BN B’ =@ and AN B
@, AN B # @ for every closed set A P for which ¢(4) > 0. There-
fore every closed subset of B or P — B has measure equal to zero.
If Beo, then by the regularity of p, u(B) = (P — B) = 0 which
is impossible for p(P) =1. Hence B and similarly B’ are not u-
measurable.

Now let 0 consist of all uncountable subsets of @, ,0 =< a <.
Then 6 is a nonempty semihereditary stable subsystem of ¢ and 6*

5 This example is due to K. Prikry.
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computed by «' is equal to B. Since the measure g has no regular
extension, it follows from [7], 4.12 that g = 7, and so 0* is not ;-
measurable.

Note that the hypothesis of the continuum was not used in this
example.

ExAMPLE 6.2. Let P be a compact Boolean space (see [3],
Chapter 5, Problem S, p. 168), let o be the algebra of all compaet-
open subsets of P, and let I, = {Ueco:2c U} for all xe P. If &' is
the monotone convergence in <o, I",>, then by 4.1, every net from &}
has the form {U, Uel", C} where I" is a cofinal subset of I",. It
follows from [9], 4.3 that &' is admissible. Since, e.g., the Tychonoff
product of any family of finite discrete spaces is a compact Boolean
space, we see that the space P need not be locally metrizable.

ExaAmMPLE 6.3. Let P = [0, 1) together with the usual topology
and let ¢ be the pre-algebra consisting of all half-open intervals
[a, ) < P. We sghall identity P~ with [0, 1] and for every xec P~ we
shall let I', ={[lx — 1/n, 2+ 1/n) N [P U @)]}7-.. If xc P~ then let
£, congist of all sequences {[x — 1/n,,  + 1/n,) N B}y, where Beo
and {n,} is an increasing sequence of positive integers. Thus defined
the convergence £ = {£,:x € P~} clearly satisfies conditions .27 — 9%,
and if {B,}ek,, then for all sufficiently large =, B, is a half-open
interval of rational length (which may be zero). Hence if § consists
of all intervalg of irrational length, then 6* = . However, it is easy
to see that d — ¢ is a nonempty semihereditary stable system (see
[9], 4.2) and so x does not satisfy conditions .97 and .57

ExAMPLE 6.4. Let P, P~, and ¢ be the same as in Example
6.3. For xeP~,I', ={[x — 1/n, z,) N [P N (x)]}r-, where {x,}5-, is a
decreasing sequence of irrational numbers converging to x. Denote
by @ the set of all rational numbers in [0, 1]. If xe P~ then let &,
consist of all sequences {[a,, b,)}i-;, € 0 such that lima, =limb, = 2
and for all sufficiently large =, either b,¢ P — Q or b, = b,,,. It is
easy to see that thus defined the convergence £ = {k, : x € P~} satisfies
conditions .%; — .%%;.. Let 6 C o be a nonempty semihereditary system
and let [a, b)ed. If a = b then 6* = P~. Hence assume that a <bd
and choose an %, € (a, b)) — Q such that max (x, — a, b — x,) < 3(b — a).
By the semihereditariness of 9, e.g., [a, )€d. Now choose z,¢
(@, ) — @ such that max (x, — a, 2, — %,) < 3(x, — a) and select an
interval from [a, %,), [, %) which belongs to 6. Inductively, we obtain
a decreasing sequence {B,},-, < d for which O3-, By = (). Obviously,
x € 6* and so k satisfies also condition .2%. However, £ does not satisfy
condition .2%;. To see this, let 4, consist of all intervals [a, b) € 0 such



144 W. F. PFEFFER AND W. J. WILBUR

that b —a >0 and be Q. Then 0, C 0 is a nonempty semihereditary
stable system and 6 = @ is countable.
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ON THE CONFORMAL MAPPING
OF VARIABLE REGIONS

FrRANK J. POLANSKY

We establish an estimate for the functional

If.gi00=| 170 - o-ldtl,

v

C, is the circumference || = p,0 < p <1, Here f and g are
normalized conformal mapping functions of (2| <1 onto a
pair of bounded, open, simply connected, origin containing
domains in the w plane whose boundaries are near each other
in some sense, In the second part of the paper we establish
an estimate for the functional I( f’, g’; p) in case the boundaries
are additionally assumed to be rectifiable.

We are motivated by the fact that if one of the domains is a
disc we get the case of “nearly circular” domains which has been
much studied.

Aside from an absolute constant our estimates are geometric in
nature, being expressed in terms of numbers which are derived from
properties of the boundaries of the mapped domains. They are of
interest to us because they hold uniformly for all p,0 < p <1 and
because they approach zero when one of the domains converges to the
other as described in the paper.

1. DEerFiNITION 1. Let D, and D, denote a pair of open, bounded,
simply connected sets in the w plane both of which contain the origin.
Let I'; and I', denote their respective boundaries. Let 4 denote the
component of D, N D, which contains the origin and let I" denote the
boundary of 4. Let M\, be the radius of the largest disk lying in
the complement of I"; and having its center on I" (if no such disk
exists, write A, = 0). Let\, be analogously defined. The inner distance
is defined by the formula

e=¢e(l"y I';) = Max (\py ) «

The statement ‘¢(z) is a normalized mapping function’ means that
#(?) is the conformal mapping function of one bounded, simply connected,
origin containing domain onto another and that ¢(0) = 0, and ¢'(0) is
positive.

The symbol C, will always be used to denote the locus |¢| = p,
0<p<Ll

Let R, and R, denote the radii of two circles with centers at w = 0

145



146 F. J. POLANSKY

which are such that the boundaries 7", and I", lie in the ring

0<R <|w| <R,.

THEOREM 1. If f(z) and g(2) are the normalized mapping functions
of |2z| <1 onto Dy and D, respectively, if 0 < e(l'y, I')) < R,, then

15,00 = | 1) — o)1+ dt] = KR(S-)"
’ ’ Cp = 1 2 Rl .
The number K, is an absolute constant, and the inequality holds
uniformly for all 0,0 < p < 1.

Before proving Theorem 1 we state some results which are used
in the proof.

LEmMMA A. ([4], p. 349.) Let D be a bounded, simply connected
domain which contains the origin and let z = y(w) be the normalized
mapping function of D onto the disk |z| < 1 in the z plane. If w
is a potnt of D at a distance 0 from the boundary of D, then

1— [y(w)| < 4/5y°(0) .
LEMMA B. ([3], p.563.) Let w = 4(2) be the normalized mapping

function of |z| <1 onto the domain whose boundary D lies in the
ringl—o<|w|=1L,0<0<1. Then

[, 196) = tI1dt| < Ko
Cp

The number K, is an absolute constant, and inequality holds uniformly
for all p,0 = p < 1.

LEmMMA C. ([1], p.165.) If F(z) and O(2) are regular in |z| <1
if 9(0) =0 and |0()]| <1 in |z2]| <1, then

[, 1FO@-1at < | (FOPlal,
Cp cp
untiformly valid for all p,0 < p < 1.

2. Proof of Theorem 1. (a) From Definition 1, each point of
I’ will have distance at most ¢ from 7";. The inverse of f(z) maps 4
onto a domain E which lies in |z| < 1. Let E, denote the boundary
of E. From Lemma A, the set E, will lie in the ring

1 — 44/ fo <|z|]<1

f(0)
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Since

JS(0) = inf [===

jzI<1t

the set E, will lie in the ring

1—41/%§lz[§1.

The above inequality fails to define a ring if ¢/R, = 1/16. We treat
the two cases separately. Let w(z) be the normalized mapping function
of |[2] <1 onto E. If ¢/R, < 1/16, we have from Lemma B,

Jioy =, 1o —tF|dt] < 16K, <.

1

For the case 1/16 < ¢/R, < 1, we have trivially,

J(o) < 4-27mp < 12871'--}%- .

1

Thus, if K, = Max [1287, 16K,], then

,0<e<R,.

)
(1) To) = Kio

(b) For0<r=<1,|z|]<1let
B.(2) = f(z) — f(r?) .
Then
f(?) — flw(z)) = B.(2) — B,(0(z)) + f(r2) — f(ro(z)) .

Hence
MECERONREY
(2) <[, 1B@1a+ | 1B )
+ S £ty — Fro@®) || dt| = I+ I, + I, .
If f(z) = 3.7 042" then

I < 2mp-| | |B§)-|dt] = 2m03 |a P (L — r¥)2mp

<A | ML — 1Y)
=473 |, PA — A+ r+ 12+ o0 + 1Y)
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< 4n*(1l — 2 a; |*-k) = 4r(1 — r)-(area of D)
<4n(l — r)-wR: .

Thus, if K} = 4n°,

(3) I1§K4R2'\/1—7',0§7'§1.
From Lemma C, the same bound is valid for I,:
(4) L<KRV1I—r,0r<l.
(c¢) If 0<r<a<l1, we have for the integrand of: I:
e, O 2 |
— < = . - Jdd
| frt) — flro(®) | = o Ua!f(“/)l T v e [ dv|
1 ‘ re — rt I
< — . | d
7 4 Sca 70| vy — rt)y(v — rw) |
< suplf!-rlw—tig [dv]
- 2r oo |Y —rt]]7 — 10|

Bl o L T

< Blo— t|[ 2ra ]‘/2.[ 2ra ]"2
= or a — |rt]? @ —|rord

Let « —1 and we obtain
firt) = feroe)| < 2O o< r a1

Hence, from (1)

[, 1700 = fro@) 1t = 2 o - ¢l1at)
Cp —rJe,

B[] 1o —tpia] veme

1—7rLle,

e i CN ]

1

(5)

IA

IA

If we combine (2), (3), (4) and (5), we obtain the estimate

ECENCOIES

—— 12
<oKRVI—7+ 11_32T [ZTCKS(;I)] 0<r<1.

(6)

(d) The whole argument can be repeated with ¢(z) in place of”
f(). In this case we shall have an estimate analogous to (6):
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[, 196) = g@,) I+t
(¢) R ,

< 2K, R 2 £ ]”

< 2K.RVT =7 + 1—r[2”K3(R1> O<r<1.
The function w,(z) is the normalized mapping function of |z| < 1 onto
the image of 4 under the inverse of g(z). Since f(w(2)) and g(w.(z))
are both normalized mapping functions from |z| < 1 onto 4 it follows
from the uniqueness that

(7) flw(z)) = g(w,(2)), |2] <1.

If we combine (6), (6'), (7) and choose r so that 1 — » = (¢/R)", the
conclusion of the theorem is established.

Throughout the remainder of the paper we shall assume the
situation of Theorem 1 with the added hypothesis that I, and I", are
rectifiable Jordan curves of lengths L, and L,. In this case it is
well-known that D, is the continuous image of |z| < 1 and that if
f'(z) is defined at the boundary by

F1(e) = Limi%—z—gfﬂ, lz]<1,

2616

then f’(¢®) exists almost everywhere, is Lebesgue summable, and
2 .
L= 1re) a8

3. The following definition ([4], p.337) and lemma ([4], p. 837)
are useful.

DEFINITION @. Let ¢ denote a crosscut of D, which does not
pass through w = 0. Let T denote that subregion of D, determined
by ¢ which does not contain w = 0. Let N denote the diameter of ¢
and let 4 denote the diameter of 7. For any 6 > 0 consider all
possible crosscuts ¢ for which » < d. The crosscut modulus is defined

is defined to be
75(0) = sup 4 .
AS0
The crosscut modulus is monotonic and has the property:
7,0)—0 as 0—0.

LEMMA D. Let A, denote the area of D;. Let z, be any point
on |z| =1 and k, the part of the circle |z — z,| = s which lies in
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|z| < 1. Then for every s,0 < s <1, there exists a 0, s<0 < s'*
such that the image of k, is a crosscut of length

l, < _%f_ e .
log 1
s
We introduce the abbreviation:

(8) v,0) = 7, 2”‘4{ Mo<o<t.
logy

An immediate consequence of Lemma D is

LeMmA 1.
hy(r) = lszl'l:r; [f() — frz) [ = v, —7),0<r<1.

4. DEFINITION 2. For m = 2, let {w,, w,, w;, +--, w,} be any set
of m distinct points taken in cyclic order on I'; and so distributed
that ", is partitioned into m subarcs of equal length, each subarc
having length L;,. Let I, be the length of the perimeter of the
cyclically determined polygon, and let A, the norm of the partition,
be defined by '

>"=M3X[|w1”“wm|yIwz_wllylws‘wzl9 “‘ylwm"wm—1|]°

The number [, can be written as
L= w, — w,| +}§ [ Wiy — Wy | .
For any 6 > 0 consider all partitions for which A < §. Let
U;0) =Infl,.
AS6

It is easily shown that Sup Us0) = L;. We define the modulus of
rectifiability to be

£0) = Ly — U40) -
The modulus {;(0) is monotonic and has the property: {;(6) — 0 as 6 — 0.

LEMMA 2. If Lg(r) is the length of the level curve in D, which
18 the vmage of |z| = r, then
Ly — Lir) (Vv — 7)) + 2LV v, (1 — 7)
+4(1-r,0<r<1t.



ON THE CONFORMAL MAPPING OF VARIABLE REGIONS 151

Proof. Let the positive integer m be defined by

Let w,, w,, +--, w, be a set of points in cyclic order 7", so arranged
that I, is partitioned into m equal subarcs, each subarc having length
L;/m. Clearly the norm of the partition does not exceed L,/m and
if 1, is the length of the perimeter of the polygon, then

(10) L -l 0(2).

We define the points z,, @, by w, = f(zx), @, = f(rz;): The set @,
determines a polygon inscribed in the level curve in D, which is the
image of |z| = r. Comparing corresponding sides of the polygons, we
have from Lemma 1,

Iwk+1—wkl§lwk+1_wk+ll+ Iwk;}-l—wkl_i_ |'wk""wk]
= h(r) + [ Wi — Wi | + hyp(r)
S 21 — 1) + [ Wi — W]

Similarly,
| Wiy, — Wy | < 20,1 — 1) + | Wity — Wi | &
Thus, if I], is the length of the perimeter of the level curve polygon,
(11) [ U — ln] < 2mys(1 — 7).
Noting that I, < Lx(r), we have from (10) and (11)
L;,—L(r)sL;—- U, <L;—1l,+|l,—1U.].

(12) c( )+2mwﬂ—r)
From (9)
L, Ly
o R Vorier S

The conclusion follows from (10), (11) and (12).

In the estimate of Lemma 2, it would appear that the first term
should dominate the others and this will be so if {; is sufficiently weak.
However, it is possible (e.g., if D, is a disk) for the term 2L,/ v,
to be dominant. For purpose of final estimate we introduce the
boundary functional

(13) B:0) = (V) + 2L Vv;(0) + 4v4(9), 0 <6 < 1.
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LeEmMMmA 3.
[, 170 — e 1d] < 2VTET =7
0<r<1l, forall p,0<p<1.
Proof. The function Vf'(2) (i.e., the branch which is positive

at the origin) is regular in |2| < 1. If Vf'(z) = 3 c.2%, it is well
known that X |e¢,|* is convergent and

L, = | VI@WVF@Id0 = 225 e,
Lr)= S:"l/f"(?eT’)Wrd@ =213 e, [ 0 < r < 1.
We write
[S 170 = £t -l at ]|

<\, WVF® - VI r-lat)-| 1V + Ve P atl

= I1'I2 ’
I = 210-3 | 6 [P0%(1 — 20 + %) < 203 | ¢, [*(L — 1)

= Ly = L)+ < L, - L,

I, =210 3 | e, | 0™ + 20* + 1) < 273(| e, [*-4) = 4L, .

From these inequalities and Lemma 2, the conclusion is apparent.
5. Final estimates. We assert:

THEOREM 2. If I'; and I, are rectifiable Jordan curves of lengths
L; and L,, if 0 <¢/R, <1, then

I(f', 9'; 0) < 2[V'L; + V'L, + M/R*1V'B,(0) + 2V L, ,
uniformly for all 0,0=p<1,

where ¢ = (¢/R)", pt = | L; — L,|, M = Max [K,R,, 2V L,K.Ry].

Proof. Write
15 g s | 150 = £ellael+ |1t — oot |-l dt)
+ Sc lg'(rt) —g'@) |-|dt| =1L+ L, + I, .

Choose 1 — r = o, from Lemma 3,
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L <2vVL,B,0).

Let 0 < p < a <1, then, from Theorem 1
IéS [‘LS L= 'ldﬂ]-ldti < KBy(e/R)"
Cp 21 Jo, (»y — ,rt)z (1 — ,'.)2
= K\R,0* < K.Ro .

From the proof of Lemma 3 (with ¢ in place of f)
I, < 2VL(L, — L,(r)*,
and
L; — Ly(r) < | L, — L¢| + Ly — Ly(r) + | L(r) — Ly(7) |
=pn+ A+ B.
From Lemma 2, A < B,(0), and

B= ||, 15601~ 1genia < | 17en — o -1 i
=I, < K.Ro*.
Thus,
L<2VL,(t+ A+ By'® <2V L, (1" + A + B .

Combining estimates we have

(14) I(f', g5 0) = Z(Vrf_ + VL_::)” Bs(0)
+ 2V L,pr + V' L,K.R, + K.R))o .

From (8) and (13) and the definition of 7,,
1/,8f(0') > 2(v,(0))" = 7]1‘(( 27 A, )1/2)112 (%)1/4
1 1
og-b—

\%

log 1
o
= ((27°Ri).0) = Rio .

Hence

(15) @VIL,ER, + KR)o < 2M11/2 B/0)

the conclusion follows from (14) and (15).

LEMMA 4. If p=|L;— L,| and if
I*=SupI(f',¢g;0),0=<p0<1, then p<1I*.
P

153



154 F. J. POLANSKY
Proof. We have
Loto) = L@ | = || 17®1dt1 = | [gt)1-1at]

<

SC tf’(t) —‘_g’(t) I'I dat| = I(f', ¢'; p) < I*.
‘p
Let o —1 on the left and the lemma is proved.

LEmMMA 5.
| f(e") = gle”) | < I*.
Proof. The Fejer-Riesz inequality asserts that
a=| |HOPd= " |HEPda =B,
p >0 and x is real.

Here H(z) which is regular in |z| < 1 belongs to the Hardy class H?
in 2| <1. Letp =1 and we make the choice H(z) = pe¥(f’(z0e") —
g'(20¢")). Noting that AngH(x)dx‘, that 2B = I(f", ¢'; 0) < I*,
we let o —1 and we get the conclusion of the lemma.

We are now able to state our convergence theorem as

THEOREM 3. If the f boundary is held fixed and the g boundary
18 allowed to vary, a necessary and sufficient condition that I(f', ¢'; 0) —
0 uniformly for all p,0 < p <1, is that pt + o — 0.

Proof. We get the sufficiency from Theorem 2. From Lemma 4
we see that I* — 0 implies that g —0 which is one part of the
necessity. From Lemma 5, we see that if I* is arbitrarily small the
boundary point f(¢*) will be arbitrarily close to the g boundary and
vice versa. So we have I* >0 implies ¢ —0 implies that inf B, > 0
so that I* —0 implies that ¢ —0. This completes the proof of
Theorem 3.

Without estimate, S. E. Warschawski [2] established a result that
is similar to Theorem 3. -
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SUFFICIENT CONDITIONS FOR A RIEMANNIAN
MANIFOLD TO BE LOCALLY SYMMETRIC

KOUEI SEKIGAWA AND SHOKICHI TANNO

In a locally symmetric Riemannian manifold the scalar
curvature is constant and each k-th covariant derivative of
the Riemannian curvature tensor vanishes, In this note, we
show that if the covariant derivatives of the Riemannian
curvature tensor satisfy some algebraic conditions at each
point, then the Riemannian manifold is locally symmetric,

Let R be the Riemannian curvature tensor of a Riemannian mani-
fold M™ with a positive-definite metric tensor g. Manifolds and ten-
sors are assumed to be of class C= unless otherwise stated. We
denote by V the Riemannian connection defined by g. For tangent
vectors X and Y, we consider R(X, Y) as a derivation of the tensor
algebra at each point. A conjecture by K. Nomizu [4] is that
R(X,Y)-R=0 on a complete and irreducible manifold M™(m = 3)
implies VR = 0, that is, M™ is locally symmetric. Here we consider
some additional conditions.

For an integer k& and tangent vectors Vi, ---, V, at a point p of
M™, we adopt a notation:

(VER) = (Vi Viewy = ++, Vi3 VER)
= (Vz: Vl‘?-—l tee V{Vtvs e VrR(blcd) y

where V¢, etc., are components of V,, etc., and V,V, ... V,R%, are
components of the k-th covariant derivative V*R of R in local co-
ordinates.

ProOPOSITION 1. Let M™(m = 3) be a real analytic Riemannian
manifold. Assume that
(1.0) the restricted holonomy group is irreducible,
1.1) RX,Y)-R=0,
1.2 RX,Y)(VER)=0 for k=1,2, --.,
Then M™ s locally symmetric.

Here we note that condition (1.0) means that it holds at some,
hence every, point and condition (1.1), and (1.2), mean that for any
point p and for any tangent vectors X, Y, V,, ---, V, at p, they hold.

PROPOSITION 2. Let M™(m = 3) be a Riemannian manifold. As-
sume (1.1) and (1.2) and that
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(1.0)" the infinitesimal holonomy group is trreducible at every point.
Then M™ is locally symmetric.

Propositions 1 and 2 are essentially related to the following results.

PrOPOSITION 3. Let M™(m = 3) be a Riemannian manifold. As-
sume that the restricted holonomy group H® (the infinitesimal holo-
nomy group H', resp.) is irreducible, and R is invariant by H°
(H’, resp.). Then M™ is locally symmetric.

ProrosiTioN 3. (J. Simons [5], p. 233) Let M™ (m = 3) be an
irreducible Riemannian manifold. Assume that R is invariant by
the holonomy group H. Then M™ s locally symmetric.

Proposition 3 is a generalization of a result by A. Lichnerowicz ([2],
p. 11), which contains an assumption of compactness. We remark
here that condition (1.2) is equivalent to

1.2y RX, Y)(Vy,Vy,_,+++VyR)=0for k=12, ---,

where X, Y, V,, --+, V, are vector fields on M™.
With respect to Nomizu’s conjecture and the above propositions
we have ‘

THEOREM 4. Let M™ (m = 3) be a Riemannian manifold. As-
sume that

(i) the scalar curvature S is constant,

(ii) RX, Y)-R=0,

(iiiy R(X, Y)-V,R =0,

(iv) RX, Y)-(X, V; V’R) = 0,

(or (iv) R(X, Y)-V4yV,R =0 for vector fields).
Then M™ is locally symmetric.

THEOREM 5. Let M™ (m = 3) be a Riemannian manifold. As-
sume that

(i) the Ricet curvature tensor R, is parallel; VR, = 0,

(ii) RX, Y)-R =0,

(iii) R(X, Y)-V,R = 0.
Then M™ 1s locally symmetric.

In Theorems 4 and 5, if m = 2, then VR, = 0 implies VR = 0.
In Theorem 5, if M™ is compact, (iii) can be dropped (A. Lich-

nerowicz [2], or K. Yano [6], p. 222).
In §2 we reduce proofs of Propositions 1 and 2 to that of Proposi-
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tion 3, and next we reduce proofs of Propositions 8 and 3’ to that of
Theorem 4. In §3 we prove Theorems 4 and 5.

2. Holonomy algebras. Conditions (1.1) and (1.2) imply that

[B(X, Y), (ViE)(4, B)] = (ViE)(R(X, Y)A, B)

2.1) + (VER)(4, R(X, Y)B)

for £k =0,1, ---, where V'R means R, and [T, T’] for linear trans-
formations T, T' means TT' — T'T.
Now we show

LEMMA 2.1. The condition (2.1) implies

[(ViR)X, Y), (ViR)(4, B)] = (ViR)(ViR)(X, Y)A, B)

2.2) + (ViR)(4, (ViR)(X, Y)B)

Sfor 3, k=0, 1,‘ 2, +--. And (2.1) s equivalent to

[(ViB)(X, Y), R(A, B)] = R(Vi.R)(X, Y)A, B)

(2.3) + R(4, (Vi;R)(X, Y)B)

for 57=0,1,2, ...,

Proof. We prove (2.2) by induction in 5 and by tensor calculus
in local coordinates. By (2.1), (2.2) holds for (4, k) = (0, k), k = 0,
1,2, --.. Assume that (2.2) holds for (s — 1, k), (4 — 2, k), ---, (0, k),
k=0,1,2, .... Then, denoting by V,V, --- V.R?, the j-th covariant
derivative of R and by V,--- V,R¥, the k-th covariant derivative of
R, we show

Vtvs e Vngzny M VeRgab - Vf s VeRZathVs e Vquuxy

2.4
( ) = Vf s VeRgvatVs M VTR;zy + Vf M VeRgathVs M VrRny .

In fact, we have

ViVe+er V.RL V- VR — Vyee V.RILV,V, - VR,

= VY, - VRV, V.R})
~V, VR, V.V, V,Rl,
- Vt(Vf <o VRV, - Vngzy
-+ Vtvf e VeRgasz s Vngxu

=V(Vs-e- VRV, --- VR, + V; oo VRV, -+« V,R},,)
-V, VR,V V- VRl (by (2.2) for (7 — 1, k))
+ Vtvf e VeRgasz cee Vrszw

=V, s VRIWYVY, -+ VRl + Vs oo VRLVY, - V,RL,
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+ (VtVf coe VeRZusz .o 'VrR:a;y —_— Vs ces V«rRz:cthVf e VeR:;ab)
-+ (Vtvf e VeRgubVa b VrR:xy + VtVf M Vngast e VrRZzu) .

The second and third terms vanish by (2.2) for (5 — 1, & + 1). There-
fore we have (2.4).
Similarly we can show that (2.3) implies (2.2), including (2.1).

By the theory of holonomy groups (cf. A. Nijenhuis [3]), the set
of linear transformations

(2'5) R(X7 Y)y (VWR)(X, Y)r (V%VR)(X’ Y)y e

for X, Y, W, --- € M,, the tangent space to M at p of M, spans a
Lie algebra &, called the infinitesimal holonomy algebra at p. &,
generates the infinitesimal holonomy group H, which is a subgroup
of the local holonomy group H} = HYU). Clearly H} is a subgroup
of the restricted holonomy group HY. If a Riemannian manifold is
real analytic we have H' = H* = H°. :

The condition (2.3) implies that

(2.6) [T, R(A, B)] = R(TA, B) + R(A, TB)

for any Tch,. This says that R is invariant by 7. Therefore, for
any element ae H, we have

2.7 aR(A, B)C = R(aA, aB)aC for A, B,CelM,.

Thus, we have reduced proofs of Propositions 1 and 2 to proof of
Proposition 3.

Since (2.7) or (2.6) is equivalent to (2.1), condition (2.7) implies
conditions (ii), (iii) and (iv) of Theorem 4. Consequently, if we show
that, under the conditions in Proposition 3 (8, resp.), the scalar curva-
ture S is constant, then Proposition 3 (8, resp.) will follow from
Theorem 4.

Let E;,, 1 < ¢ < m, be an orthonormal basis at p. Then the Ricei
curvature tensor R, is given by

RB(X, Y) =3 9(R(X, E)Y, E) .

Since R is invariant by H’ or H® or H, we have R(X, Y) = R/(aX, aY)
for any a¢c H’, or H® or H. Since H' or H® or H is irreducible, we
have some real number )\ so that R, = \g at p. Because p is an
arbitrary point of M and m = 3, ) is constant on M, and hence S =
m\ is constant.

3. Proofs of Theorems 4 and 5. To prove theorems it suf-
fices to show two propositions below.
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ProrosiTION 3.1. On M™ (m = 3) assume that

(i) the scalar curvature S is constant,

(ii) (R(X, Y)-R)(X, V) =0,

(iii) (R(X, Y)-V,R)(X, Y)V =0,

(iv) (B(X, Y)-VyR)(V, X) =0,

(v) (BX, Y)(X,V;VE)V,Y)=0,

(or (v)) (R(X, Y)-V4V,R)V, Y) =0 for vector fields).
Then we have VR = 0.

Proof. Let {E;} be an orthonormal basis at p of M. Put X = E,,
Y=F, V=E, in (iii) and take a sum on z, ¥, v. Then we have

Rimuvervw _ RrvxyV”Rirz" — ermvaRivry _ RrymvaRivxT — 0 .

The third and fourth terms vanish. We apply the second Bianchi
identity to the first two terms;

Rir(—-V R, — V,R,,,) = —2R"™V ,R,, ,
—R"*¥(-V.R,,,, — V,R,.,) = R""V.R,,., + R"*V,R,.,
= R"'V,R,,., + R"*V ,Ri,., .
Therefore, we have

(3.1) —4R"'V,R,, + R"V'R,,., = 0 .
Likewise, (iv) implies that

(3.2 R™V,R,, + R*,,V,R, =0.
And (v) implies that

(3.3) RV, V,R,, + R",""V,V,R: =0 .

For (v)’ we assume that E are local vector fields such that (VE;), = 0
and {E; forms an orthonormal basis at p. Then we have the same
(3.3).
Since V,R; = (1/2)V,S = 0, by (3.1), (3.2) and (3.3), we have
RMMV:.;V”RM, =0 y
R™V,.R,,,, = 0.

On the other hand, in a Riemannian manifold generally we have
thh(RijklRijM) = 2(VhR¢jlehRijkl)
+ 8R¥MV. V. R;; + AR"*B,, .. ,

where Bi;;,.,X*Y" are components of R(X, Y)-R (A. Lichnerowicz [2],
p. 10). Since (ii) is equivalent to B%, ,; =0, we have V,R;;;, = 0.

(3.4)

PROPOSITION 3.2. On M™ (m = 38) assume that
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(i) VR, =0,

(ii) (R(X, Y)-R)(X, V) =0,

(iii) (R(X, Y)-V,R)(X, Y) = 0.
Then we have VR = 0,

Proof. We have (3.1) by (iii). Then we have V,(R;;, R"*) = 0.
Therefore, (ii) and (3.4) show VR = 0.
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LOCALLY COMPACT CLIFFORD SEMIGROUPS
J. W. StEPP

Let S be a locally compact Hausdorff semigroup which is
a disjoint union of subgroups one of which is dense, If S the
disjoint union of exactly two groups one of which is compact,
then S has been completely described by K. H. Hofmann, and
if S is the disjoint union of two subgroups where the dense
subgroup G has the added property that it is abelian and G/G,
is a union of compact groups, then S has been described in a
previous paper of the author,

It is the purpose of this paper to consider S when each
subgroup of S is a topological group when given the relative
topology and G (the dense subgroup) has the added property
that it is abelian and G/G, is a union of compact groups. In
particular, we show how to reduce such a semigroup to a
semigroup which is a union of real vector groups (§3). In §4
we give the structure of S under the added assumption that
E(S) is isomorphic to E[(R®)"], where (R*)" denotes the n-fold
product of the nonnegative real numbers under multiplication,

2. Definitions and notations. If G is a topological group, G,
will denote the identity component. Let & denote the full subcategory
of the category of locally compact abelian groups whose objects G
have the property that G/G, is a union of compact subgroups. Let
&, denote the full subcategory of & whose objects G, have the pro-
perty that G, is a union of compact subgroups. If Ge%, then by
the structure theorem for locally compact abelian groups [2, p. 389]
there is a real vector subgroup W of G such that G/Wew,. If
W = R, then n = dim G will be called the dimension of G. We will
use the following properties of & and &,: P,; for each G in & there
is a unique subgroup G, € &, such that G/G,. is a real vector group.
P, [7]; if a: G— W is a morphism in & with «(G) dense in W and
if W is a real vector group, then there is morphism 8: W — G in & such
that a8 = I, (the identity morphism on W). P, [7]; if a: G— H is a
morphism in the category of locally compact abelian groups with a(G)
dense in H and Ge %, then He . Also, if G/G, is compact, then
HJ/H, is compact.

Let .&” denote the category whose objects S are locally compact
Hausdorff semigroups satisfying (i) S is a disjoint union of subgroups
one of which is dense and (ii) each maximal subgroup of S is a member
of ¥, and whose morphisms are the continuous identity preserving
homomorphisms. Let .<# denote the full subcategory of .&¥ whose
objects R have the properties that (i) each maximal subgroup of R
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is a real vector group and (ii) the minimial ideal of R exists and is
compact (thus a zero for E).

Let Se¢.%”. Then we will use 1 to denote the identity for S.
For each x in S let H(z) = {y e S|yS = «S}. Since S is an abelian
Clifford semigroup, each H(x) is a maximal subgroup of S. Let
0: S — E(S) be the function defined by d(s) is the idempotent of S
such that H(s) = H(0(s)). If A< S, then A will denote the closure
of A. Partially order E(S) by ¢ < f if and only if ef = ¢, and for
each ¢ and f in E(S) let (e, f) = {ac E(S)|e <a < f}. Let Z =1{0,1}
under multiplication, and let Z" denote the n-fold product of » copies
of Z. Finally, for a semigroup 7 we use K(T') to denote the minimial
ideal when it exists.

3. The purpose of this section is two fold. First we prove that
each S in .&” splits into the direct product of two closed subsemigroups.
V and W, where V is a real vector group and where We.&” with
the added property that K(W) e &, (Proposition 8.5). Second we prove
that there is a congruence o on S such that S/o is a locally compact
Clifford semigroup with each H-class a real vector group and with
E(S) = E(S/p) (Theorem 3.11).

Throughout this section S will represent a fixed member of .&7,
and E(S)* will denote E(S)\{1}.

LEMMA 3.1. Let ec E(S)*. Then H(e) 1s open in S\H(1) if and
only if dim H(e) = dim H(1) — 1.

Proof. By [7], if H(e) is open in S\H(1), then dim H(e) =
dim H(1) — 1.

Let ec E(S) with dim H(e) = dim H(1) — 1. Again by [7], if
feE(S) such that e¢ < f, then dim H(e) < dim H(f). Thus, since
dim H(f) < dim HQ) for all f in E(S)* [7], (¢,1) = @. Let ¢v:S—eS
be the morphism defined by +(s) = es. Since H(e) is a topological
group, H(e) is open in H(e) [8] which is eS. Since + is continuous.
and since H(e) = (S\H(1)) N v'(H(e)), it follows that H(e) is open in
S\H(1).

COROLLARY 3.2. If ec E(S)*, then there is an f wn E(S) with
e < f and dim H(e) = dim H(f) — 1.

Proof. Let f e E(S) with e < fand (e, f) = @. Then H(e) = H(f).
Let +: H(f) — ¢H(f) morphism defined by +(s) = es. Since (¢, f) = &,
H(e) = (H(AH\H(S)) N (+(H(e))), and it follows that H(e) is open in.
H(H\H(f). Thus, by Lemma 3.1, dim H(e) = dim H(f) — 1.
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LEMMA 3.3. A subgroup He &, of S is closed in S.

Proof. Let ge H. Since H & H(e), for some e in E(S) and
g €d(g)H, it follows that g € H(g),. Thus there is a compact subgroup
C of H(g), with geC. Since {g"}7_, S C and C is compact, §(g) € {g"}7_.
[4, p. 15] which is a subset of H; thus d(g) e H. By [7], there are
no maximal subgroups of H which are topological other than H; thus
d(g) = e, and H< H(e). Thus we need only show that H is a closed
subgroup of H(e), but this follows since H is a locally compact sub-

group of a locally compact topological group.

PROPOSITION 3.4. Let ec E(S), and let + be the map from S onto
eS defined by +(s) = es. Then there are closed subgroups V and W
of H(1) with the following properties:

(@) W = y~(Hle).),

(b) V is a real vector group, and

(¢) The morphism m: V x W— " (H(e)) defined by m(v, w) = v-w
18 an 1somorphism.

Proof. Let a be the natural map from H(e) onto H(e)/H(e),, let
Q@ be the corestriction of |5, to H(e), and let B: H(e)/H(e), — H(1)
be a morphism in & such that (®Q)8 is the identity map on H(e)/H(e),
[P,)]. Let V = B(H(e)/H(e).), and let W = Q~*(H(e),). Then V and W
are the desired closed subgroups of H(1). The inverse of m is given by
s ((Bay)(s), [(Bay)(s)]~'s) which is clearly continuous. The theorem
now follows.

PrOPOSITION 3.5. There are closed subgroups V and W of H(1)
with the following properties:

(a) V is a real vector group,

() K(W)ew,, and

(¢) The morphism m:V x W— 8 defined by m(v, w) = v-w is
an isomorphism.

Proof. Again by [7], if e ¢ E(S)*, then dim H(e) < dim H(1). Thus
there is an f in E(S) with dim H(f) < dim H(e) for all e in E(S).
Since dim H(ef) < min {dim H(e), dim H(f)} with equality holding only
for e < f or f <e, f is unique. The proposition now follows from
Proposition 3.4 along with the observation that S = —'(H(f)) where
¥: S — fS is the morphism defined by +(s) = sf for all s in S.

PROPOSITION 3.6. If there is a s, in S with H(s,), compact, then
H(s), ts compact for all s in S.
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Proof. From the structure theorem for locally compact abelian
groups [2, p. 389] one can get that if Ge %, then G, is compact.
Thus for any s in S we have that H(s), is compact if and only if
H(s),/(H(s).), is compact. But H(s)./H(s).), is compact if and only if
H(s)/H(s), is compact. Therefore, by P, and since H(1) = S, the theorem
will follow if we can prove that H(1)/H(1), is compact.

We do this by contradiction. That is, assume H(1)/H(1), is not
compact, and let ¢ ¢ E(S) satisfying the following:

(i) H(e)/H(e), is compact,

(ii) o(sy) < e, and

(iii) if f e E(S) with e < f, then H(f)/(f), is not compact.

By Corollary 3.2 and since e = 1, there is an f in E(S) withe < f
and dim H(e) = dim H(f) — 1. Let T = H(f), and let : T—eT be
the morphism defined by ++(s) = se. By Proposition 3.4, there is a
real vector subgroup V of H(f), a closed subgroup W of H(f) with
=" (H(e),) = W, and a morphism m: V x W — 4(H(e)) which is an
isomorphism. Since W\W = H(e), which is compact and by [3], W
contains a compact subgroup C such that W/C is a real vector group.
Thus Hy(f), is compact. Since the corestriction of m |, .2 VX W—H(f)
is an isomorphism and V is a real vector group, it now follows that
H(f), is compact. This is the desired contradiction and the proof now

follows.

SUBLEMMA. Let ¢ and f be elements of E(S) with dim H(e) =
dim H(f) + 1 and with f <e. If H is a subgroup of H(e) with
He %, then fH is a closed subgroup of S.

Proof. Let ge fHN H(f). Since He %, fH < H(f)., and thus
there is a compact subgroup C of H(f) which is open relative to
H(f), and with g e C. Let +: H(e) — fH(e) be the morphism defined by
Y (s) = fs. It follows from Proposition 3.4 and the fact that H(f) is
open in H(e)\H(e) that ~*(C) is a locally compact semigroup which
contains a dense group +—(C) N H(e) whose complement C is compact.
By [3], there is a unique compact subgroup C, of 4+~ (C) N H(e) and a
one-parameter subgroup M of —(C)N H(e) such that v(C) = M-C,.
Let {g.}4c4 be a net in fH which converges to g. Since C is open in
H(f),, thereis a S € A such that if « = 8, then g, € C. ForeachacAd
with a = 8 there is an h,e H with g, = fh,. It follows that each
h.€C,, and therefore there is an # in C, N H such that fh = g. Thus
fH < fH< fH. We now have fH is a closed subgroup of H(f)., and
therefore fHe &,. The sublemma now follows by Lemma 3.3.

LEMMA 3.7. If H is a subgroup of S with He &, and if fe E(S),
then fH ts closed.
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Proof. Let he H; then o(h)-f < d(h). If o(h)f = é(h), then fH =
fo(h)H = 6(h)H = H which is closed by Lemma 3.3. If (k). f < d(h),
then there is a chain of idempotents e, ---, ¢,., which is maximal with
respect to the properties: (i) e, = d(h)f and (ii) e,., = d(h). Observe
that since e, ---, ¢,4, is maximal, dim H(e;) = dim H(e;,) — 1 for ¢ =
1,2, ..-.,q. If fH is not closed, then there is an integer p,1<p=¢
such that ¢,H is not closed and e, H is closed. Since ¢,H = (¢,-¢,+,)H =
e,(¢,+.H) and since ¢, Hec &, ¢,H is closed (sublemma). Thus ¢, H is
both closed and not closed which is impossible; thus it follows that
fH must be closed.

Now that one has Lemma 3.7 it is easy to prove the following
corollary.

COROLLARY 3.8. (i) For each x in S, xH(1), is closed.
(i) If U is a monempty compact subset of S, them U-H(1), s
closed.

THEOREM 3.9. Let R = {(x,y)eS x S|®HQ1), = yHQ1),}. Then R
is a congruence, and S/R is a locally compact semigroup with the
following properties:

(i) If 6 is the natural map from S onto S/R, then 6 is an open
map and 0 (H(s)) = H(s)/(6(s)H(1),) for all s in S.

(i) The corestriction of 6|z to E(S/R) is an isomorphism.

Proof. Clearly R is a congruence. Since H(1l) acts as a group
of homeomorphisms on S and since 6-*(0(A4)) = A-H(1), for all A # &,
it follows that 6 is an open map. Since 4 is an open map, S/R is
locally compact and also multiplication is continuous. We now show
S/R is Hausdoff. Let z,yeS with xH(1), = yH(1),. Since yH(l), is
closed (Corollary 3.8) and since S is a locally compact (thus regular)
Hausdorff space, there is a compact neighborhood N, of 2« with
N,NnyHQ1), = @. Thus y¢ N,-H(1), which is closed by Corollary 3.8,
and using the fact that S is regular we obtain a compact neighbor-
hood N, of y with N, N (N,-H(1)),= @. It follows that (N,-H(1),) N
(N,-HQ1).) = @, and thus S/R is Hausdorff. This completes the proof.

REMARK. We wish to point out that each maximal subgroup of
S/R is connected, and thus H(6(s)), is compact for each s in S.

LEMMA 3.10. Let Te.&” with K(T) compact. Then for each non-
negative integer n there is a T, in & and a surmorphism «,: T— T,
m S satisfying:

(@) The corestriction of &, |z to E(T,) 1s an isomorphism.

(b) Ifxe T with dim H(x)<n, then a,(H(x)) = H(a,(x))= H(x)) H(x)..
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(¢) If xe T with dim H(x) > n, then the corestriction of |z, to
H(a(x)) ts an isomorphism.

Proof. The proof is by induction. Let B, = {(x, y)|x =y or x € K(T)
and y € K(T)}. Clearly R, is a congruence, and since K(7') is compact,
it follows that T/R, is a locally compact semigroup. Let «, be the
natural map from T onto T/R, = T,. Then, clearly, a, and T, satisfy
(a)-(c) for n = 0.

Let k& be a nonnegative integer such that there is a T, ¢.%” and
a surmorphism «,: T'— T, satisfying (a)-(c). If %k = dim H(1), then
let T.o, =T, and «a;,, = «,. Then T,,, and «,,, satisfy (a)-(c). If
k< dim HQ1), let A= {ecE(T,)|dimH(e) =k + 1}, and let T, =
{x e T,|xcH(e) for some ¢ in A). For each ¢ in A let 4,: S —eS be
the morphism defined by +.(s) = es. Then v;*(H(e)) N T\ = H(e), and
thus each H(e) is open relative to T,,. Let B ={(x,y) e T, X Tple=y
or 6(x) = d(y)e A and xcyH(d(y)),}. It is easy to show that R, is
a congruence. By Proposition 3.6 and since K(T,) = {0}, each H(e),
is compact. Since each H(e), is compact and since each H(e) with
ec A is open in T, it follows that T./R;., is a locally compact semi-
group. Let Ty, = T,/R,., and «,., = na,, where 7 is the natural
map from T, onto T,/R,,;,. Then T,;,, €% and a,,: T— T, is a
surmorphism satisfying (a)-(¢) for n = k¥ + 1. The theorem now follows
by induction.

THEOREM 3.11. Let S€.5”. Then there is a Te.S” and a sur-
morphism a: S — T in & satisfying:

(i) The corestriction of &l onto E(T) is an isomorphism.

(ii) FEach H-class of T is a real wvector group.

Proof. By Proposition 3.5, there is an isomorphism 8:S—V x T
where V is a real vector group and where Te.&” with K(T)ec &..
By first applying Theorem 3.9 and then Lemma 3.10 for » = dim H(1)
one can obtain a surjective morphism B,: T — T, which preserves the
structure of E(T) and where the H-class of T, are real vector groups.
Let T=V x T, and a:S— V x T, be the map defined by a(s) =
(2.,(B(8)), Bi(p,(B(s))). Then clearly T and a:S — T satisfy the con-
ditions of the theorem.

4. Let 5% denote the full subcategory of .&¥ whose objects S
have the property that E(S) = Z* for some nonnegative integer g¢.
In this section we characterize the objects in .&4. The fact that there
are objects in .&” that are not in &7 is demonstrated by J. G. Horne,
Jr., in [6]. However, if Se.%” with dim H(1) < 2, then it is shown
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that Se &

Let R, denote the multiplicative group of positive real numbers,
and recally that R* denotes the multiplicative semigroup of nonnegative
real numbers.

LEMMA 4.1. Let E be a Hausdoff topological space which 1s the
disjoint union of Ry X R® and a singleton set {w}, where R. X R*
has the product topology. If {w} U (R, x {0}) s homeomorphic to R*
with we (0, 1] x {0}, then E s mot locally compact at w.

Proof. We assume F is locally compact at w and show that this
assumption leads to the conclusion that R® is compact. Let U be an
open neighborhood of w with U compact. Then U\U is a compact
subset of R, x R*. Since w U (R, X {0}) is homeomorphic to R* with
(0, I[ < {0} = ((0, 1] x {0}) U {w}, there is an a in R, with {(z,0)|0<z<a}<U.
For each b in R, with 0<b<a either {b} x R*< U or ({b} x R®) N (U\U) = @.
To see this, assume ({8} x R®)N(U\U) = @. Then {b} x R* is the disjoint
union of the two relatively open sets (E/U) N ({b} x R*) and UN ({b} x R?).
Since {b} x R” is connected and {b} x R°*NU = @, (E\U)N({d} x R*) = @
and hence {b} x R° & U.

We now prove there is a 7, < a in R, satisfying; if be R, and
b< 7, then {8} x R*° = U. If this were not the case, then by the
above there would exists a sequence {b,}7-, in R, such that {b,, 0)}o_,
converges to w, and each ({b,} X R*) N (U\U) # @. For each positive
integer n let «, be an element of R* such that (b,, x,) € U\U. Since
U\U is a compact subset of R, x R’, the sequence {(b,, *,)}7-, has a
cluster point (b, ). Thus {(b,, 0)}3-, converges to w and clusters to
(b, 0) which is impossible. Thus we now can conclude that there is a
7, in R, such that if b€ R, with b < r,, then {8} Xx R* < U. We point out
at this point that if be R, and b < r,, then {} X R*={w} U {b} x R*.

For each ! in R,, {(r, l)|7, =< 7} is connected, and (7, !) ¢ U. Thus
a similar argument to the one above proves there is an I, in R* such
that if 1 =1, then {(v, l)|r, < r} & U. Similarly, there is a ¢, e R, with
t, =7, and such that if te R, with ¢ = ¢, then {((,)|0 I} U.
Let B = [r, t,] X [0, ] which is a compact subset of R, x R*. It is
easy to show that E\B< U and thus E = UU B and is compact. In
particular, (R x {0}) U {w} is compact and homeomorphic to R*. This
is the desired contradiction.

THEOREM 4.2. If S is a member of <& with dim H(1l) = 2, then
ES) = Z*.

Proof. Since Se <2, S has a zero. By Corollary 3.2, there is an
element f in E(S) with dim H(f) = 1.
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Case 1. There is only one f in E(S) with dim H(f) = 1. That is,
E(S) = {0, ¢,1}. By [7], S\{0} = R, x R*. By [5] and since R, X {0} =
R+ x {0}) U {0}, R x {0} is homeomorphic to R*. By applying Lemma
4.1 we have S is not locally compact at {0}. Thus Case 1 is impossible.

Case 2. There are exactly two idempotents e, and e, with
dim H(e,) = dim H(e,) = 1. Clearly in this case E(S) = Z-.

Case 3. There are at least three idempotents e, e, ¢; with
dim H(e;) = 1. Let P, and P, be one-parameter subgroups of H(1)
with P, = P, U {e;} (Proposition 3.5). Let {s,} be a net in H(1) which
converges to e;. Since S\H(1) is an ideal, {s;'} does not have a cluster
point. Since H(1) = P,-P,, there are nets {s,,} & P, and {s,,} & P, such
that s,,-s,, = s, for all @. By [3] and since {s;'} does not have a cluster
point, either {s,,} clusters to ¢, and {sz'} clusters to e, or {s'} clusters
to e, and {s,} clusters to ¢,. But the former implies e, = ¢;-¢,, and
the latter implies e, = ¢,-¢;. Since ¢;-¢, = 0 and ¢,-¢; = 0, either ¢, =0
or ¢, = 0. This is the desired contradiction. Thus Case 3 is impossible.

LEMMA 4.3. Let S be a member of <Z with dim Hy(1) = 2, and
let ec E(S) with H(e) = R,. Then there is an f in E(S), such that
dim H(f) = dim Hs(1) — 1 and that ef = 0.

Proof. By Corollary 3.2 and since dim H(l) = 2, there is an
idempotent ¢, in S such that e < ¢, and that dim H(e,) = dim H(e) + 1 = 2.
Let T = He,), then T is a member of < and dim H,(1) = 2. Thus,
by applying Theorem 4.2 to T one observes that there is an f in E(T)*
(and thus in E(S)*) such that f = 0 and that ¢f=0. Let f be a
maximal such idempotent with respect to f = 0 and ef = 0.

Clatm. dim H(f) = dim Hg(1) — 1. If this were not the case, then
applying Corollary 3.2 two time we observe there are idempotents f,
and f, such that < f; < f; and dim H(f) = dim H(f,) —1 = dim H(f,) — 2.
By applying Proposition 3.4 to H(f,) we observe there is a subsemigroup
R < H(f,) such that K(R) = {f} and dim H(1) = 2. By Theorem 4.2,
there is an idempotent f; in E(R)* (and thus E(S)*) such that f, = f
and f,-f, = f. But since f, and f, are elements of E(S)* which are
larger that f, ef. = 0 and ef, # 0. In fact, since ¢f, < e and ef; < ¢,
ef.=ef;=e. However, 0 =e¢f =e(f.f:) = ¢f; = e, and this is the desired
contradiction. Therefore, f is maximal in E(S)*. From the proof of
Lemma 3.1, we have that f maximal in E(S)* implies dim H(f) =
dim H(1) — 1. For the remainder of this paper we will use the follow-
ing notation. If Se.” and ¢c E(S), then +,: S — ¢S is the morphism
defined by +.(s) = es for all s in S.
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We omit the proof of the next lemma since the proof is straight
forward.

LEMMA 4.4. (i) If f and e are element of E(R*)") with
dim H(f) = 1,dim H(e) = n — 1 and if +7(f) N ¥.7'(e) = {1}, then the
morphism m: ¥7(f) X ¥ (e) — (B*)", defined by m(s, t) = st, is an
1so0morphism.

(i) If e E(S) with dim H(e) = p, then (a) ¥;'(e) = (R*)"* and
(b) v.[(R)"] = (B°)".

LEmMmA 4.5. If a:(R)"—(R)"e Z 18 a surmorphism with
a(E(R*)") = E((R*)"™), then a is an isomorphism.

Proof. The proof is by induction on dim H(1). The lemma is
trivially true for n = 0. If » =1, then a(R,) is a dense connected
subgroup of R* and thus «(R.) = R,. By [2, p.84], alz :R.— R,
is an isomorphism, and thus it follows that « is bijective. We show
a is a closed map. Let A be a closed subset of R°. If A & R,, then
there is an » in R, with [0,7] N A = @. Thus a(A) is closed in R,
and [0, (7)) Na(4) = [0, f(r)] Na(4d) = @. Since [0, f(r)) is open in
R®, 0 ¢ a(A), and thus it follows that a(4) = @(4). If 0 € A, then either
A = R* or there is an r in R, with r¢ A. If A = R* then clearly
a(A) is closed. If there is an » in R, with r¢ A4, then A4 =
(0, r1 n A) U (Jr, «) N 4). We now have

a(A) = ([0, r] N A) U ([r, =) N 4)]
= ([0, 7] N A) Ue(lr, =) N 4) .

Since [0, 7] N A is compact, a([0, 7] N 4) is compact, thus closed, and
by the first case a([r, <) N A) is closed. We now have a is a closed
bijection and thus an isomorphism.

Let » be an integer larger than 1 such that the lemma is true for
all nonnegative integers less than n. Let S denote (R®)", and define
a: E(S) — E(S) by a(e) = a(e) for all e in E(S). Since & is bijective
and since E(S) is finite, @ is an isomorphism. For each e¢ in E(S)
define +,: S—eS by 4r.(s) =es for allsin S. Let ¢, =(0,1,1, .-+, 1)
and ¢, =(1,0,0,---,0), and let A = ;' (e) and B = vy'(e;). Then
A= R*, B= (R*)"*and ¢,-¢, = 0. Define F: A x B— S by F(a, b) = ab;
then, by Lemma 4.4i, F' is an isomorphism. Let f, = a(e,) and f, =
a(e;). We now show a(4) = ;' (f,) = R®, a(B) = ¥7)(f,) = (R*)", and
a(4) N a(B) = {1}. From which it will follow by Lemma 4.4i that the
morphism G: a(4) x a(B)— S, defined by G(a, b) = ab, is an isomorphism.
Let A, = ¥7(f.) and A4, = ¥7(f,). Since & is an isomorphism, & pre-
serves the less than order on E(S); thus dim H(f,) =dim H(e) =n — 1
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and dim H(f,) = dim H(e,) = 1. Therefore, 4, = R®* and A, = (R*)"
(Lemma 4.4iia). If 4, N A, # {1}, then either f, e A4, N A, or there is
an element ge H1) N 4, N 4, with g = 1. Since f,-f, = a(e,)-a(e,) =
a(ee) = a(0) =0, f,¢ A,, and thus there is a ge H(1) N 4, N 4, with
g # 1. Since A, = R* either {¢9"};_, converges to f, or {(g~*)"}:, con-
verges to f, [3]. But both imply f, € A, which is impossible by the
above. Thus A, N A4, = {1}. Clearly, a(4) & A,. Let tcA,. Since
a(S) = a(A-B) = a(A)-a(B), there is an element a € a(4) and b c a(B)
such that ¢ = ab. It follows that f, = f.t = f.a-b = f,b which implies
beA,. But a(B)S B, and B, N A, = {1}; thus b = {1}. The proof that
a(B) = B, is similar and will therefore be omitted. We now have the
following commutative diagram:

a

S — S
F- G
A x BaXelz, pa) x aB) .

By the inductive hypothesis, a|,: A— a(4) and «|z: B— a(B) are
isomorphisms. The lemma now follows.

LEMMA 4.6. Let X,Y and Z be Hausdorff spaces and assume
F: X x Y—Z is a continuous surjection. If there are continuous
surjections a: Z— X and B: Z— Y such that the diagram

XxY
P”/l \P-
SN
X«L—Z————»Y

18 commutative, then F ts a homeomorphism.

Proof. The inverse of F' is given by 2z (a(z), B8(z)) which is
clearly continuous.

THEOREM 4.7. If S is an object in both # and &%, then S = (R*)"
where n = dim Hg(1).

Proof. The proof is by induction on dim H(1). The claim for
dim H(1) =1 is proven in [5]. Let » be an integer larger than 1
such that the claim is true for all positive integers less than n. Let
e be an idempotent with e > 0 and ¢S = R* (Corollary 3.2). By Lemma
4.3 there is an idempotent f with f 0, dim H(f) =n — 1 and ef = 0.
Let A = ¥7'(f) and B = +;'(e). Then by the inductive hypothesis,
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A=R* and B= (R°)*". Also ;' (H(e)) = H(e) X B= R, x B (Pro-
position 3.4). Now define a morphism F: 4 x B— S by Fl(a, b) = ab.
Observe that +,(F'(a, b)) = eab = ea and +(F'(a, b)) = fb. We now show
S = A-B. Since E(S) = Z" it follows that E(S) = E(A)-E(B). Let
s € S; then d(s) = e,- f, for some ¢, € E(4) and f, e F(B). Also, s=0(s)-g
for some g € Hy(1).” Since H,(1) N Hx(1) = {1} (see proof that A, N B, =
{1} in Lemma 4.5), g = a-b for some ae H,(1) and be Hy(1). Thus
s = d(s)g = d(s)ab = e,f,ab = (e,a)(f.b) € A-B. Clearly, ¥,(4) =ed < eS.
Let tceS; then t = ea-b for some ac A and be B. Thus t = eab =
eb-a = ea and hence ¢A =e¢S. By Lemma 4.5, +,|,:A—eS is an
isomorphism. Similarly it can be shown that fB = fS and thus, by
Lemma 4.5, +/|z: B— fS is an isomorphism. We now have the
following diagram

P,

R=A—rt A xB—T0 B Ry~

lm l 1w13

~

oS P N ___‘(_’f__,fs

which can be reduced to

A X B
P/ \Pr,
! N

A« S B
W ove  @FB)ods

Thus by Lemma 4.6, F is an isomorphism, and the theorem now
follows by induction.

DEFINITION. An objeet S in .&” is an H-semigroup if (i) Hs(1) = R.
and (i) K(S) is compact.

LEMMA 4.8. Let S be a object in .4 having the added properties
that (i) Hy(1) is a real vector group of dimension n and (ii) K(S) s
compact. Then there are subsemigroups S, ---,S, of S which are
H-semigroups, the morphism m: X, S;— S defined by m((s,, -+, 8,)) =
8,8y * o+ +8, 18 a surmorphism which preserves the H-class structure of
X2, S;, and also m induces an isomorphism on the groups of wunits.
Further, for each i there is an idempotent e; with dim H(e;) = n — 1
and S, = 43 (H(e),)-

Proof. Since E(S) = Z*, there are exactly n-idempotents e, ---, ¢,
in S with dim H(e;) = » — 1. By Proposition 3.4 and since Hg(l) is
a real vector group, each '(H(e;).), is an H-semigroup. Let S; =
V. (H(e;),), and let F:S—(R")" be a surmorphism which preserves
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the H-class structure of S (Proposition 3.11 then Theorem 4.7). Since
F preserves the H-class structure of S, dim H(e;) = dim H(F(e;)) = n — 1
for i =1,2, .-+, n and, also, F(S;) = y.:'(H(e})) = R for i = 1,2, -++, n,
where ¢; = F'(¢;). Using the structure of (B*)" we know v ;'(F(e})) = R*
if and only if there is an integer j(7),1 < j(4) < n such that

P, |¥a (F(e): ' (F(e) — R

is an isomorphism. For each 7,7 =1,2, ---, n let 7;: S; — S;,/K(S;) be
the natural map where S/K(S;) denotes the Rees quotient semigroup.
Since each K(S;) is compact [3], 7; is a closed map. Thus for each
1 there is a bijective morphism B;: S; — R® such that the following
diagram commutes

Si P’j(i)°F|Si R®

=| /"
! /B
S/K(S)) .

By Lemma 4.5 each B, is an isomorphism. Since each K(S;) is compact,
it is easy to show that a net {9,}... & S; has a cluster point if and
only if {7;(¢.)}«c has a cluster point. Thus it follows that {g,}... & S;
has a cluster point if and only if {P, . (F(g.)}.cs has a cluster point.

Let x €S and let {g,}.c. be a net in Hy (1) which converges to x.
Then for each a there are elements g;(@)eS; ¢t = 1,2, ---, n such that
9o = (@) g(@)- + -+ -g, (). Since P,  F(gia)) = P, (F(g.) for 1 =
1,2,38, ---,n and since P, (F(9.)) has a cluster point and by the
above, each {g;(®)}.., has a cluster point. Clearly, we can choose a
subnet {g.}«.z such that each {g.(«)}..» converges. It now follows
that x e m(X~,S;). Clearly, m induces an isomorphism on the groups

of units.

THEOREM 4.9. Let Se.%,. Then S= T x R for a suitable n and
where T is an object in &7 satisfying the following: There are subsemi-
groups Sy, -+, S, of T with each S; an H-semigroup and a surmor-
phism m: Hp(1), X (X72,S;) — T which preserves the H-class structure
and which induces an isomorphism on the groups of uwmits. Further,
there are surmorphisms G.: S — (R*)" and G,: Hy(1), X (XX.S;) — (R*)"
such that the following diagram is commutative

'HT(]-)c X (X’anlsq,) "'j‘n—‘)) T
N\ /
G2\ L/Gl
(R*)"
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Proof. By Proposition 3.5, S = T x R™ for a suitable choice of
m, where Te.S” with K(T)e%,. Since E(S) = Z" for some n and
since E(S) = E(T), Te &4. Using Lemma 3.1 and Corollary 3.2, it is
easy to see that dim H,(1) = n. Since E(S) = Z", there are exactly n
idempotents e,, ---, ¢, such that dim H(E;) = n — 1. For each ¢; let
C; be a compact subgroup of H(e;), which is open relative to H(e;),. It
follows from Proposition 3.4 and the fact that each H(e;) is open in
T\H,(1), that each v;(C;) is a locally compact semigroup which contains
a dense group whose complement is compact. Since each ¥;(C;) € &
and by [7], there is a one-parameter subgroup P; & v;(C;) N Hy(1) such
that P, N C;# @. For each ¢ let S; = P;; then each S; an H-semigroup.
Let m: Hy(1), x (X~.S;)— T be a morphism defined by m(g, s,, ++-,s,) =
g+8,+ Sy +++ +8, and let m;: X~,S;— T be the morphism defined by
m,(s) = m(l, s) for all s in X,S,.

Let T/R be the semigroup constructed as in Theorem 8.9 and let
F: T— T/R be the natural map. Since F' preserves the H-class struc-
ture, dim H(F'(e;)) = n — 1 for each 7. Since for each ¢ F(K(S,)) is a
compact ideal for F(P,), F(P;) = F(P,) UF(K/S,)) [5]; thus F(S,) = F(P).
Also, HiF(e)), is a compact ideal for F(P,); thus F(S;) = F(P) =
F(P,) U H(F(e;)),- It now follows from Lemma 4.8 that F(m,(X~.S,)) =
T/R and thus m;(X~,S;)-H;(1) = T. Therefore, m is a surmorphism.

Let T, = m,(X~.S;). Since E(T) = E(m,(X™~.S,)) = Z", E(T)= Z",
and thus it follows that dim H, (1) = n. Let F.: T,— T,/R, be the
natural map where T,/R, is the semigroup guaranteed by Theorem 3.9.
Let H, = H,/R,(1). Then H, is an n-dimensional vector group with
F.(m(X!.P)) = H. Thus by P, there is a morphism 8: H, — X.P;
such that Fim,8 = I, . It follows that the inverse of F|, (X-.P;)
is the corestriction of m,8 to m, (X, P;). Thus m, (X%~ P;) is a locally
compact subgroup H; (1) and thus closed. Therefore, it follows that
the corestriction of m,| X~ P;:: X P,— X, P, is an isomorphism.
Since H,(1) = my(X~.P) n H;(1), and m,(X~.P;) N H (1), = {1}, it now
easily follows that m induces an isomorphism on the group of units.

The remainder of the proof follows directly from Theorem 3.11
and Theorem 4.7.

The author wishes to thank the referee for his many helpful
suggestions. In particular, the author wishes to thank the referee for
his suggestions on the order in which the results should be presented.
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FRATTINI SUBALGEBRAS OF A CLASS OF
SOLVABLE LIE ALGEBRAS

ERNEST L. STITZINGER

In this paper the Lie algebra analogues to groups with
property F of Bechtell are investigated. Let X be the class
of solvable Lie algebras with the following property: if H is
a subalgebra of L, then ¢(H) < ¢(L) where ¢(L) denotes the
Frattini subalgebra of L; that is, ¢(L) is the intersection of
all maximal subalgebras of L. Groups with the analogous
property are called E-groups by Bechtell, The class X is
shown to contain all solvable Lie algebras whose derived
algebra is nilpotent. Necessary conditions are found such that
an ideal N of LecX be the Frattini subalgebra of L. Only
solvable Lie algebras of finite dimension are considered here.

The following notation will be used. We let N(L) be the nil
radical of L and S(L) be the socle of L; that is, S(L) is the union
of all minimal ideals of L. If A and B are subalgebras of L, let
Zz(A) be the centralizer of A in B. The center of A will be denoted
by Z(A). If [B, A] < A, we let Ad,(B) = {adb restricted to A4; for
all be B}. L’ will be the derived algebra of L and L” = (L').

PrOPOSITION 1. Let L be a Lie algebra such that L' is milpotent.
Then the following are equivalent:

(1) ¢(L)=0.

(2) N(L) = S(L) and N(L) is complemented by a subalgebra.

(3) L' is abelian, is a semi-simple L-module and is comple-
mented by a subalgebra.

Under these conditions, Cartan subalgebras of L are exactly those
subalgebras complementary to L’'.

Proof. Assume (1) holds. Nilpotency of L' implies ¢(L) =2 L”,
so L’ is abelian and may be regarded as an L/L’-module. We may
assume L' = 3 & V,, V, indecomposable L/L/-submodules. If M is a
maximal subalgebra of L and if V, £ M, then MNV, is an ideal of
L. If Sis an L/L/-submodule of V, properly contained between M NV,
and V,, then M + S is a subalgebra of L properly contained between
M and L, contradicting the maximality of M. Therefore M contains
all maximal submodules of V, for each p. Then ¢(L) = 0 implies the
intersection of all maximal submodules of V, is zero for each p. If
Vi, ---, V, are maximal submodules of V, with V,\n.---NV, =0 and
are minimal with respect to this property, we have V.= V,n.--V,#0

177
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and VNV, =0 so that V@ V, = V,, contradicting indecomposability.
Therefore each V, is irreducible and L’ is a completely reducible L/L'-
module and is also a completely reducible L-module. Since L is solva-
ble it containg Cartan subalgebras by Theorem 3 of [1]. Let H be
a Cartan subalgebra of L and let L, and L, be the Fitting null and
one component of L with respectto H. Then L=L,+ L, = H+ L, &
H+ L' shows L = H+ I/. Weclaim that HNL' =0. If HNL’ += 0,
then, since I’ is abelian, H is nilpotent and L’ is a completely re-
ducible L-module, L' is a sum of irreducible H-modules, U, .-, U,
such that for each U;[---[U,, H]---H]=0 for some k, hence [U;, H]=0.

k
Thus [H, L' H] = 0. One sees that each U; is a central minimal
ideal of L, and since ¢(L) = 0, U; is complemented by a maximal sub-
algebra M. Therefore U, is a one-dimensional direct summand of L,
contradicting U, & I/. Hence L'NH =0 and H is a complement to
L' in L. Since [H, Hl S HNnL' =0, H is abelian. Any minimal ideal
not in L' satisfies [L, A] & ANL' = 0, so is central. Therefore S(L) =
L' + Z(L) and, since H is a Cartan subalgebra, Z(L) & H. Let H,
be a complementary subspace to Z(L) in H. One sees that N(L) =
L'+ Z(L) + (N(L)N Hy) = S(L) + (N(L)NH). If h is a nonzero ele-
ment in N(L)NH, ad & is nilpotent but not zero which implies

k

[V k] = V, for some V, & L’ and [---[V,,T]-\-_-—ﬁ] = 0 for some k, a
contradiction. Thus S(L) = N(L) and H, is a complement. Conse-
quently (1) implies (2).

Assume (2) holds and proceed by induction on the dimension of
L. Since L' = N(L) = S(L) and minimal ideals are abelian, L’ is
abelian. If every minimal ideal of L is contained in L', then S(L) = L’
and (3) follows. Therefore let A be a minimal ideal of L such that
AZL'. Hence A% ¢(L) and there exists a maximal subalgebra M
of L such that L = M + A. Since [L, A]€ ANL' =0, A is central,
hence one-dimensional. It follows that L is the Lie algebra direct
sum of M and A. Since M inherits the condition (2), M satisfies (3)
by induction. It now follows that L also satisfies (3).

Assume (8) holds. Then L’ is a sum of minimal ideals of L, which
we denote by 4,, -+, A,, and L = L' + H, H a subalgebra of L. Since
H' € HNL' = 0, H i3 abelian. One sees that L’ = [L’, H] and, con-
sequently, A; = [A;, H] for all 7. Since Z, (H) is central in L, Z,(H)
is an ideal in L contained in A;. Since Z, (H) # A, Z,(H)=0. It
follows that H is its own normalizer, hence is a Cartan subalgebra
of L. Now H+ A, + «++ + A, + -+ + A, is a maximal subalgebra
of L since any containing algebra has a nonzero projection on A; which
is ad H stable, hence equal to A;. Therefore ¢(L) & H and ¢(L) &
HnNL = 0. Hence (1) holds.
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That complements to L' are Cartan subalgebras is shown in (3)
implies (1). That Cartan subalgebras are complements to L’ is shown
in (1) implies (2). This completes the proof of Proposition 1.

THEOREM 1. Let L be a Lie algebra such that L' is mnilpotent
and ¢(L) = 0. Then, for any subalgebra M of L, (M) = 0.

Proof. Suppose L' = M. Let H be a complement to L’ in L, so
HNM is a complement to L' in M. Since L acts completely reducibly
on L' and L’ is abelian, H acts completely reducibly on L’. Then,
since H is abelian, HNM acts completely reducibly on L’, hence so
does M. Therefore L' = M' @ A for some ideal A in M where M
acts completely reducibly on M’ and A + (HN M) is a complementary
subalgebra of M’ in M. Thus by Proposition 1, ¢(M) = 0.

Suppose L' & M. Since M + L' falls in the preceeding case, we
may assume M + L’ = L. Since L’ is abelian, L'NM is an ideal in
L, M/(L' " M) complements L'/(L’ N M) = (L/L'NM) in L/(L'NM) and
M/(L’ " M) acts completely reducibly in L'/(L'NM), M/(L'M) is a
Cartan subalgebra of L/(L'NM). Let C be a Cartan subalgebra of
M. By Lemma 4 of [1], C is a Cartan subalgebra of L. Thus C is
a complement to L' and C + (L'NM) = M since C & M. Hence C is
a complement to L'NM in M. Since M acts completely reducibly on
L'NM and M' € L' M, M acts completely reducibly on M’, L'NM =
M P (L'NZ(M)) and, since Z(M) = C, ZM)NL' < CNL = 0. There-
fore C = M’ = M and CNM' = 0. Now M satisfies part (8) of Proposi-
tion 1, hence ¢(M) = 0.

If L is a solvable Lie algebra it has been shown in [2] that ¢(L)
is an ideal of L. We look for a condition on the subalgebras of L/¢(L)
which are necessary and sufficient that LeX. In order to do this
the following concept is introduced.

We shall say that a Lie algebra L is the reduced partial sum of an
ideal A and a subalgebra B if L = A + B and for any subalgebra C
of L such that L = A + C and C & B then C = B. It is noted that
if A & ¢(L), then there exists a B = L such that L is the reduced
partial sum of A4 and B. On the other hand, if A S ¢(L) and L is
the reduced partial sum of A and B, then B = L.

LEMMA 1. Let L be the reduced partial sum of A and B. Then
ANB < ¢(B).

Proof. Suppose C = ANB & ¢(B). Then B contains a subalgebra
D gsuch that C+ D=B. Then L=A+B=A+C+ D=A -+ D.
This contradicts the minimality of B.
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LEMMA 2. Let L be the reduced partial sum of A and B. Then
#(L/A) = A + ¢(B)/A.

Proof. Since ANB S ¢(B), AN¢(B) = AnNB. Since L/A=A +
B/A ~ B/ANB, ¢(L/A) = ¢(B/AN B) = ¢(B)/ANB = ¢(B)/AN ¢(B) =
A + ¢(B)/A.

ProOPOSITION 2. The following are equivalent for the Lie algebra
L:

(1) LekX.

(2) For any subalgebra H of L/¢(L), ¢(H) = 0.

Proof. Let L satisfy (1) and let 7: L — L/¢(L) be the natural
homomorphism. Then ¢(n(L)) = n(¢(L)) = 0. Let W be a subalgebra.
of L/¢(L) and let W be the subalgebra of L which contains ¢(L) and
corresponds to W. Since L satisfies (1), (W) S ¢(L). If (W) = o(L),
then #(x(W)) = w(¢(W)) = n(¢(L)) = 0. Suppose then that ¢(W)ce(L).
Then W can be represented as a reduced partial sum W = ¢(L) + K.
Let T be a subalgebra of W such that T/¢(L) ~ ¢(W/s(L)). If T/¢(L) =0,
then T = TN(¢(L) + K) = (TN¢(L)) + (TNK) = ¢(L) + (TN K). Con-
sequently there exists an x € TN K, x ¢ ¢(L). Since ¢(K) S 4(L), x ¢ ¢(K)
and there exists a maximum subalgebra S of K such that x¢S. We
claim that either ¢(L) + S = Wor ¢(L) + S is maximal in W. Suppose
#(L) + S = W and let J be a subalgebra of W which contains ¢(L) + S..
Then S & JNK, so, by the maximality of S, either JNK =S or
JNK =K. If JNK = 8, then ¢(L) + S = ¢(L) + (JNK) = JN((L) +
Ky=JnW=J. If JNK = K, then J 2 K and, since J 2 ¢(L), J =2
#(L) + K = W, hence J = W. Consequently there exist no subalgebras
of W properly contained between ¢(L) + S and W, hence either ¢(L) +
S = Wor ¢(L) + S is maximal in W. If ¢(L) + S = W, then ¢(L) + K
is not a reduced partial sum which is a contradiction. If ¢(L) + S
is maximal in W, then ¢(L) + S/¢(L) 2 ¢(W/¢(L)) = T/¢(L). Hence
TS o(L) +S. Since SS¢(L) +Sandee TNKc TS ¢(L) + S, K =
{S, x} & ¢(L) + S. Then W = ¢(L) + K S ¢(L) + S < W implies ¢(L) +
K is not a reduced partial sum, a contradiction. Hence (W) =
T/3(L) = 0 and (2) is satisfied.

If L/¢(L) satisfies (2), then w(¢(H)) S ¢(x(H)) = 0 for every sub-
algebra H of L. Then ¢(H) < ¢(L) for every subalgebra H of L.

Combining Proposition 2 and Theorem 1 we have

THEOREM 2. Let L be a Lie algebra such that L' is nilpotent.
Then LeX.

THEOREM 3. Let LeX and let T be a Lie homomorphism of L.
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Then T(p(L)) = ¢(T(L)).

Proof. T(¢(L)) is always contained in ¢(T(L)) by Proposition 1
in [6]. If N = kernel T < ¢(L), then equality holds by Proposition 2
in [6]. Suppose N & ¢(L). Let L = N + K be a reduced partial sum.
Using Lemma 2, ¢(T(L)) = ¢(L/N) = N + ¢(K)/N = T(4(K)). Since
T(N + ¢(L)) = T(¢(L))S¢(T(L)) = ¢(L/N) = T(N + ¢(K)), N + ¢(L)&
N+ ¢(K) S N + ¢(L). Hence N + (L) = N + ¢(K) and ¢(T(L)) =
T(3(K)) = T(s(L)).

THEOREM 4. Let LeX. Necessary conditions that an ideal N
of L be the Frattint subalgebra of L are that

(1) ¢(Ady (L)) = Ady (3(L))-

(2) There exists a subalgebra M of L such that M/N =~
Ady (L)/Ady ($(L)).

Proof. (1) Let T be the mapping from L into the derivation
algebra of N by T(x) = adx restricted to N for all ze¢ L. Then
T(¢(L)) = Ady (9(L)) = ¢(T(L)) = ¢(Ady (L)).

(2) Let M = Z (¢(L)). Suppose that M & (L) and let F = L/s(L)
and A = (M + ¢(L))/¢(L). Since Ad,, (L) = L/M and Ad,, (3(L)) =
$(L)[Z($(L)) = ¢(L)/MN¢(L) = (M + ¢(L))/M, F|A=(L/¢(L))[(M + ¢(L)/
#(L)) = L{(M + (L)) = (L/M)/(M + ¢(L))/M) = Ady, (L)/Adsq, (#(L)).
Since ¢(F') = 0, there exists a subalgebra D in F such that F' is the
reduced partial sum of 4 and D. TUsing Proposition 2 and Lemma 1,
ANDZ ¢(D) =0, hence AND =0. Let E be the subalgebra of L
which contains ¢(L) and corresponds to D. Then E/¢(L) ~ D =~ F/A =
Adyyy (L)/Ady, (3(L)). I M < ¢(L), then Adyy, (L)/Adyy, (6(L)) =
(LIM)[(p(L)/ Z(¢(L))) = (L M)/(¢(L)/ M N ¢(L)) = (L/M)/(¢(L)/ M)~ L/(L).

Related to part (1) of Theorem 4 are the following results.

THEOREM 5. Let Le¥X and let K be an ideal of L containing
H(L). Then ¢(Adg (L)) = Adx (K) if and only if K = ¢(L) + Z(K).

Proof. Let T be the Lie homomorphism from L into the deriva-
tion algebra of K given by T(x) = ad x restricted to K for each z¢ L.
Then  ¢(Adg (L)) = ¢(T(L)) = T(¢(L)) = Adg (¢(L)) = ¢(L)/Zs)(K) =
HL)(Z(K) Ng(L)) = (¢(L) + Z(K))/Z(K). If ¢(L)+ Z(K) = K, then
Adx(K)=K/Z(K) = (¢(L) + Z(K))/Z(K)=¢(Adg (L)). If ¢(L) + Z(K)C
K, then Ad; (K) = K/Z(K)D(#(L) + Z(K))/Z(K) = ¢(Ad, (L)).

THEOREM 6. Let LeX and let A be an ideal of L contained in
$(L). Then ¢(Ad, (L)) = Ad, (A) of and only if ¢(L) = A + Z,,(4).
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Proof. If (L) = A+ Zyu)(A), then Ad(4) = Ad($(L)) = T($(L)) =
$(T(L)) = ¢(Ad(L)).

Conversely, Ad, (L) = L/Z,(A) and Z,(A) + A/Z,(A) =~ A|Z(A)
Ad, (A). Then L/Z.(A) + A = Ad, (L)/Ad, (4) and ¢(L/Z,(A) + A) =
¢(Ad, (L)/Ad, (4)) = ¢(Ad, (L))/Ad,(A) = 0. Hence ¢(L) S Z,(4) + A
and ¢(L) = Zy,(4) + A.

Ul

The author wishes to thank the referee for many helpful com-
ments. In particular the present form of Proposition 1 and Theorem
1 are his generalizations to results originally submitted.
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THE GROUP CHARACTER AND SPLIT
GROUP ALGEBRAS

GEORGE SZETO

G. J. Janusz defined a splitting ring R for a group G of
order = invertible in K. Then, the Brauer splitting theorem
was given by G, Szeto which proves the existence of a finitely
generated projective and separable splitting ring for G. Let
M be a RG-module and R, be a subring of £, Then we say
that M is realizable in R, if and only if there exists a R,G-
module N such that M = R Qz, N as left RG-modules. This
paper gives a characterization of splitting rings in terms of
the concept of realizability as in the field case, The other main
results in this paper are the structure theorem for split group
algebras and some properties of group characters,

Throughout this paper we assume that the ring R is a commutative
ring with no idempotents except 0 and 1, that the group G has order
n invertible in R, and that all RG-modules are unitary left RG-modules.
We know that the order of G, n, is invertible in R if and only if RG
is separable. )

1. In this section we study splitting rings in two ways. That
is, splitting rings can be characterized in terms of the concept of
realizability and structure theorem for split group algebras will be
given.

PROPOSITION 1. Assume the ring R has no idempotents except 0
and 1, and P is a finitely generated and projective R-module. Then
P is a faithful R-module.

Proof. Because P is a finitely generated and projective R-module,
R = a(P) + Tr(P) where a(P) is the kernel of the operation of R on P
and Tr(P) is the trace ideal of P in R ([3], Proposition A.3). Thus
a(P) is a left direct summand of R ([3], Th. A.2(d)). But R has no
idempotents except 0 and 1 so that a(P) = 0. Therefore P is a faithful
R-module.

Using the above proposition we can have the following definition
given by G. J. Janusz.

DEFINITION 1. A ring R is a splitting ring for G if the group
algebra RG is the direct sum of central separable R-algebras, each
equivalent to R in the Brauer group of R; that is,

183
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RG = @Zs HomR(Pii Pz) ’

where {P;} are finitely generated and projective R-modules. The num-
ber of different conjugate classes in G is equal to s ([5], Definition
6). '

DEFINITION 2. Let M be a RG-module and R, be a subring of R.
Then we say that M is realizable in R, if and only if there exists a
R,G-module N such that M = R ®;, N as left RG-modules.

THEOREM 2. If R s strongly separable over R, and R is a
splitting ring for G, RG = @ >.;-. Homz (P;, P;); then P; is realizable
wn R, for all 1 if and only if R, is a splitting ring for G.

Proof. If R, is a splitting ring for G, that is, if
RG = @3, Hom, (P, P) ,

then P; = R, Qgz, P;. This means that P; is realizable in R, for all .

Conversely, if P; is realizable in R, for all 7, then there is R,G-
module M; such that P; = R ®g, M; for all ©. Since R is a strongly
separable R,-algebra, R,-1 is a R,-direct summand of R. By the de-
finition of a split group algebra, P, is a finitely generated and pro-
jective R-module for each ¢; so M; is a finitely generated and projective
R;-module for each ¢. In fact, because R = (R,-1 R;) for some R -
module Ry,

P; = (Bo-1 @ R) Qr, M: = (Ry-1 Qz, M) D (B Q, M) .

Thus M; = R,-1 @z, M; is a R,-direct summand of P, On the other
hand, P; is finitely generated and projective over R and R is finitely
generated and projective over R,; so P; is finitely generated and pro-
jective over R,. Therefore M; is a finitely generated and projective
R,module. We then have

RG = @3, Homy(P, P) = 3, Homy(E ®x, My B ®s, M)
= R @ (D3] Homy (M, M) .

Noting that M, is a finitely generated projective and faithful R-module
for each ¢ by Proposition 1, we have that Homg(M;, M) is a central
separable R,-algebra with a unique central idempotent in R,G for each
1 ([2], Proposition 5.1). Therefore RG = D>i-, Homg (M;, M;). This
proves that R, is a splitting ring for G.
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We are going to discuss the structure of a split group algebra
over some kinds of rings, in particular, over a Dedekind ring.

THEOREM 3. Let P denote a finitely generated and projective
R-module. (a) If R is a Dedekind domain, then Homg(P, P) is free
as a R-module. Consequently, a split group algebra is a free R-
module. (b) If R is a local ring or a semi-local ring or a principal
ideal Dedekind domain, then Homg(P, P) is a matriez ring over E.

Proof. Because P is a finitely generated and projective R-module,
Hom,(P, P) = P®; Homy(P, R). Let the rank of P be k. Then P =

DS RPI SR are k — 1 copies of R and I is in the class group
of R. By substltutlon,

P®, Homy(P, R) = (@kg R @I) &, Hom,, (@”g ROI, R)
= (@kﬁ; RO I) Qe (eaki Hom(R, R) @ Hom ([, R))

IR

DTRDI) R (DL RDI)

(k—1)2

D RO (DS R I) D (D5 E®:]) & U@, )

n

I

(k~1)2+1

'S Do)

n

(
(
(05 Ro(eZr)e (o5 )ox
(

ih

(EB}:’,)R This proves part (a).

For part (b), because P is a free module of finite rank over each of
these rings, Homg(P, P) is a matrix ring over RE. For a local ring
R, see Theorem 12 in Chapter 9 in [6]. For a semi-local ring R, see
the remark on Theorem 3.6 in [2]. For a principal ideal Dedekind
domain, see Exercises 22.5 and 56.6 in [4].

REMARK. There exist split group algebras over those rings in
the above theorem from the proof of the Brauer splitting theorem
([8], Th. 2).

THEOREM 4. Let R denote a Dedekind domain, P a finitely
generated and projective R-module and P(R) the class group of R.
Then, for P= @ i RPJ, there is I in P(R) such that I* = J*
where k = rank (P) and J is in P(R) if and only if Homy(P, P) is a
matrie ring over R of order k by k.
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Proof. Because Homg(P, P) is a matrix ring over R if and only
if there exists I in P(R) such that PRI = P DL, R, a direct sum
of k-copies of R (Lemma 9, [7]). But P= > RP J for some

Jin P(R); so (@S R)®J)@sI= DL R,
SO UR.D=ONR,

SH@U-D=@NR

@
ey o
[ I
[LRA [ERRN

?e\
I[M

where we use the fact that J QI = J.-I. But
k—1 k—1
<G§§I> SUD=BLRDIJ

then I*.J = R. So, if we can prove the fact that J &I = J-1, the
theorem is proved. In fact, because J-I is in P(R) and J-I is pro-
jective and finitely generated, the exact sequence

0 — Ker (1) —> J @z I —> J-I— 0

splits. Thus J®I=Ker(n)PJ-I. Let R, denote the quotient
ring with respect to a prime ideal M.

Ry Rr(JQrI) = Ry QrKer () D By @ z(J-1),

that is, Ry, = R, QrKer(n) H Ry. Hence R, XzKer(r) =0 for all
prime ideals M. On the other hand, because Ker (x) is finitely gene-
rated, Ker () = 0 by Nakayama’s lemma. This proves that J QI =
J.I. Therefore the theorem is completed.

COROLLARY 5. Keep the same notations as Theorem 4. If the
rank of P and the order of J are relative prime, then Homg(P, P)
is a matriz ring over R.

Proof. 1t suffices to prove that there exists I in P(R) such that
J ' = I* by Theorem 4. Consider the subgroup generated by J*.
Because k, the rank of P and the order of J are relative prime, this
subgroup is the same as the subgroup generated by J. Hence J =
J* for some ¢ from 1 to the order of J minus 1. Thus I = (J7) is
what we want. In fact, I* = (J7)%* = (J*#*)~' = J

DEFINITION 3. The subgroup of P(R), U, is called the R — Z group
for a finitely generated and projective R-module P if U = {I such that
Iis in P(R) and I.P = P}. (For this group see Theorem 14 and
Theorem 15 in [7]).
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THEOREM 6. (a) Let R be a Dedekind domain and H = {J such
that P = PSS RP J and Homz(P, P) is a matrixz ring over R where
J is in P(R)}. Then H is a subgroup of P(R). (b) Assume the R —
Z group is equal to P(R). Then, P ts a free R-module if and only
1f Homg(P, P) is a matrix ring over R.

Proof. For any J’' and J” in H, there are I’ and I in P(R) such
that J'-(I')* = R and J”.(I")* = R by Theorem 4. We then have
JJ LI = (ST = B Thus J'-J” is in H. Algo, for
any J in H, there is I in P(R) such that J.I* = R. We then have
J-(I*)' = R, that is, J'-(I"")* = R. Thus J™' is in H. Therefore
H is a subgroup of P(R). This proves part (a).

For part (b), one way is clear. If P is free, then Homy(P, P) is
a matrix ring over R. Conversely, if Homg(P, P) is a matrix ring
over R, P =@ ' RP J with J in H by Theorem 4. But the R — Z
group is equal to P(R); then I* = R for all I in P(R). Thus H = 0.
Therefore P is a free R-module.

REMARK. (a) Corollary 5 ecan be expressed in terms of the R — 7
group as following. If the exponent of the R — Z group and the
order of J is relative prime, then Hom,(P, P) is a matrix ring over
R.

(b) Theorem 4, Corollary 5, and Theorem 6 tell us the structure
of Homg(P, P), any component of a split group algebra. We thus
have the similar structure theorems for group algebras by considering
P,P,-..P, and J, J, ---J, in the same time where P, 7 =1, 2,
.+« 8 are in the definition of a split group algebra RG with

k;—1
P, = @g} R&@ J; as in Theorem 4.

2. Let us recall the group character of a finitely generated and
projective RG-module.

DEFINITION 4. Let M be a finitely generated and projective RG-
module with dual basis {F, F,, -« F,; X,, X,, --+ X,}J. Then the
group character T,:G — R is defined by T,(9) = J», Fi(9X;) for any
g in G ([8], §2).

In this section some properties of group characters will be given.
Let K be a field and K(p) be K(p(g9), #(9), +++ #(g,)) where ¢ is a
group character for G = {g,, 95, ---9.}. We know that K(p) is a
separable extension over K. In the ring case, R[T] can be proved
as a strongly separable R-algebra where 7T is a group character for
G. Finally, we point out the usual orthogonality relations on group
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characters in the ring case.

THEOREM 1. (a) Let T be Tp, where P; is in the definition of
a split group algebra RG (see Definition 1). Then T%(g) is a constant
for all splitting rings R with the same prime ring R, for a given
group G, where g is in G. (b) T(9) is @ sum of ni*-roots of 1 where
g s im G and g™ = 1;, the identity of G.

Proof. Since R is a splitting ring for G, RG = @3-, Hom,(P;, P;).
Setting R’ = R[¥ 1] where ¥ 1 is a primitive m*-root of 1 and m
is the exponent of G, we have

RG=R ®,RG=R Qs (@g Hom (P, Pi)>
= @3, Hom, (R @ Py B @ P) -

By Lemma 1 in [8], R’ is also a gplitting ring for G. Clearly,
Trone, = T oo+ (1) -

Next, consider R” = R[%¥1]. It is a splitting ring for G ([8],
Th. 2); that is, R’G = @G> i, Hom,.(P/, P!"). We then have

RG =R Qp R'G= @i Homz (R Qg P{’y R Qgp. P{’) .

Thus Tpy = Tre,,»y -+ (2), and for each ¢
Homp (R Qr: P’y B Qg P{') = Homp(R' Q@ P;, B’ Q» ;) .

The later implies that K Qp. P!’ = (R Kz P) Qr J, where J is in
the class group of R’ ([7], Lemma 9). Consequently,

TR'®R,.P;' = TR’®RP,- - (3.

From (1), (2) and (3), 7% = Tp,. But R” depends on R, and G only
so that T is a constant for all splitting rings R with the same prime
ring R, for a given group G, 7 =1, 2, --+, s. This proves part (a).
The proof for part (b) divides into two cases. Case 1. Char (K)
is equal to p~ where p is a prime integer and » is a positive integer.
Then the prime ring of R is Z/(p") where Z is the set of integers. Let
%1 be a primitive m™root of 1 where m is the exponent of G.
Then R = Z/(p)[¥ 1] is a splitting ring for G ([8], Th. 2); that
is, RG = @3 3., Hom,(P;, P,). Since R’ ig a local ring (see the proof
of Theorem 2 in [8]) and P; is a finitely generated and projective R’-
module for each 1, P; is a free R’-module for each ¢ ([6], Th. 12 in
Chapter 9). Therefore Ti(g) is a sum of n{-roots of 1 where ¢ is in
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G and g™ = 1,4, the identity of G.

Char (R) is equal to 0. Then the prime ring of R is Z(n), the
quotient ring of Z with respect to the multiplicative closed set {n,
n?, «--}. By the Brauer splitting theorem again, R’ = Z(n)[¥ 1]
is a splitting ring for G; that is R'G = @3-, Hom,.(P;,, P;. Since
R’ is a principal ideal Dedekind domain, P; is a free R’-module for
each 7 ([4], Exercises 22.5 and 56.6). Therefore Ti(g) is a sum of
n-roots of 1 as in Case 1.

THEOREM 2. Let R[T‘] denote R[T(g,), Tg,), ---] where G is
equal to {g,, gz *++, 9n}. Then R[T] is a strongly separable R-algebra
for each 1.

Proof. As in the above theorem, R divides into two cases. Case
1. Char(R) = 0. Then the prime ring of R is Z(n), the quotient
ring of integers with respect to the multiplicative closed set {n, »? --:}.
We know that the quotient field of Z(n)[T%(9)] is Q(Ti(g)) for each
g in G and the quotient field of Z(n)[¥ 1] is Q(¥'1), where Q is
the set of rationals. Because Z(n)[%¥ 1] is separable over Z(n) by
the Brauer splitting theorem, Q(%¥1) is unramified over @ ([1], Th.
2.5). But Q(Ti(g)) is a subset of Q(¥ 1) and contains Q; so Q(T(g))
is unramified over @ ([9], Proposition 8.2.4). Thus Z(n)[T(9)] is
separable over Z(n) by Theorem 2.5 in [1] again. This implies that
RQ,m Z(m)[Ti(g9)] is a separable R-algebra ([2], Corollary 1.6); so
R[T‘(g)], the homomorphic image of R 5., Z(n)[T(g)], is also a se-
parable R-algebra. On the other hand, because T(g) is integral over
R, R[Ti(g9)] is a strongly separable R-algebra. Therefore R[T] is a
strongly separable R-algebra.

Case 2. Char (R) i p~ for some prime integer p and a positive
integer . Then the prime ring of R is Z/(p7). We know that Z/(p")
[T%g)] is a local ring with the nilpotent maximal ideal (p)/(p")[T(9)].
Also, Z/(p")[T(g)] is a Noetherian ring such that

O)/@T (9] N Z[(p7) = (©)/(®") -

Let M denote (p)/(»)[T*(9)]. Then (p)/(p")-(Z/(p")[T*(9))x is equal to
M- (Z/(p)[ T 9)])x for Tg) is in M, ( ), i8 a local ring at M.

Z[(NT V(D)) T 9] = Z/[(p)(T(9))

is a separable Z/(p) extension. Therefore Z/(p")[Ti(g)] is a separable
Z[(p7)-algebra ([1], § 1). Then as in Case 1, R[T%] is a strongly sep-
arable R-algebra by the same arguments. This proves the theorem.
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REMARK. We know that an element a in the separable closure
of R is separable means that it satisfies a separable polynomial over
R. This is also equivalent to that R[a] is a separable R-algebra ([5],
Lemma 2.7). Then T%(g) is a separable element such that T(g) is a
sum of n-roots of 1. Because these roots satisfy the separable
polynomial, X" — 1 = 0, all roots are also separable elements. But
it is not true that a sum of separable elements is separable. The
following example is due to G. J. Janusz. Let R be Z(2), the
quotient ring of Z with respect to the multiplicative closed set
2,24 ...}, S be R[i] where * = —1. Then S is strongly separa-
ble over R. An element a -+ ib is a separable element if and only if
(@ + 2b) — (¢ — tb) = 2¢b is invertible in S ([5], Lemma 2.1). Hence
the separable elements are of the form a + 27 where a is in Z(2)
and =0,1,2, ---. Clearly, 1 + ¢ and 1 + 72 are separable elements
but (1 + %) + (1 + 42) = (2 + ¢3) is not.

We conclude this section by pointing out the usual orthogonality
relations on group characters as in the field case.

THEOREM 3. If T' = Ts,, for 1=1,2, -+, 8, then
2T T (g™ = ndy;
where n is the order of G and d;; ts the Kronecker delta.
Proof. Let E; be the i*"-central primitive idempotent of RG,

(g1

E;, = Z————ktT (g )g ’
g n

where k; = rank (P,) ([8], Lemma 5). Taking the characters in both

sides, we have the answer.

REMARK. By using the above theorem and standard methods,
the other usual orthogonality relations on group characters can be
proved (see § 31 in [4]).

The author wishes to thank Professors F. R. DeMeyer and G. J.
Janusz for their many valuable suggestions and discussions.
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HOMOLOGICAL DIMENSION AND SPLITTING
TORSION THEORIES

MARK L. TEPLY

The concept of a torsion theory (7, & ) for left R-
modules has been defined by S. E. Dickson. A torsion theory
is called splitting if it has the property that the torsion
submodule of every left B-module is a direct summand. Under
restrictive hypotheses on the ring R, several specific splitting
theories have previously been examined. This paper continues
the investigation to more general classes of torsion theories,
In the first section, comparisons are made between injective
modules and torsion modules for a splitting theory, and the
following results are obtained: (1) A torsion class .7 is closed
under taking injective envelopes if and only if the maximal
.7 -torsion submodule of an injective module is injective, (2)
If (77, & ) is splitting and R € &, then inj dim (T) <1 for
all Te 7. 3 If (7, ) is splitting and hereditary and
if Re &, then every homomorphic image of a .7 -torsion
injective module is injective, In §2 it is shown that rings R,
for which R has zero singular ideal and Goldie’s torsion theory
is splitting, have the property: 1, gl, dim R < 2, It is shown
that the relative homological dimension arising from a
hereditary torsion theory often gives information about
splitting, especially when this dimension is zero., In the final
sections, the zero-dimensionality of a hereditary torsion theory
is discussed and related to results of J, P, Jans, The rings,
all of whose hereditary torsion theories have dimension zero,
are characterized as direct sums of finitely many right perfect
rings, each of which has a unique maximal ideal,

In this paper, all rings R have identity, and all modules are
unitary left R-modules. The category of left R-modules is denoted
by z .

A torsion theory of modules is a pair (7, &) of subclasses of
r” satisfying:

1) T ne = {0}

(2) B A and Ae. 7 implies A/Be 7.

3) B< A and Ac.¥ implies Be #.

(4) For each Ac, , there exists a (necessarily unique) exact
sequence

0 7 A F 0

such that Te 9 and Fe .
For this definition and the following results, the reader is referred

193
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to [5].

Let (7, &) be a torsion theory for p_#. Modules in .7 are
called torsion, and those in # are called torsionfree. Each Ac , #
has a unique maximal torsion submodule, denoted by 7 (4). 7 is
closed under taking direct sums, and & is closed under taking direct
products. 7 = {Ter # |Hom, (T, F)=0 for all Fe s}, and
F ={Fep# |Hom, (T, F) =0 for all Te 77 }. A subclass & of
a2+ 18 closed under taking extensions if 4, Be ¥ and 0—A— X—B—0
is exact imply Xe%. Both .7~ and &# are closed under taking
extensions. A class & is closed under taking injective envelopes if
Ac % implies E(A) e &, where E(A) denotes the injective envelope
of A. 7 is closed under taking submodules if and only if & is
closed under taking injective envelopes. When (7, & ) has this
property, then (7, &) is called a hereditary torsion theory. In
this case .7~ is also a class of negligible modules in the sense of
P. Gabriel [10], and hence there is a topologizing and idempotent
filter FI(9") of left ideals associated with 7. For results concerning
these filters, the reader is referred to [10] or [15].

For convenience Ext% (4, B) will be written as Ext” (4, B) through-
out this paper. The following notations concerning homological
dimensions are used for the ring R and the R-module M:

inj dim (M) = inf {n | Ext"** (—, M) = 0}
h.dim (M) = inf {n | Ext*** (M, —) = 0}
L.gl.dim R = inf (h. dim (M) | Me . #} .

1. Injectives and splitting. Let (.7, & ) be a splitting torsion
theory for p #, i.e., 7 (M) is a summand of each Me , # Since
an injective module is always a summand of any module containing
it, it is natural to wonder how much a module in .7~ must “resemble”
an injective module. The first lemma examines the case of the
maximal torsion submodule of an injective module. It shows that
the splitting of (7, &) implies that .7~ is closed under taking
injective envelopes.

LemMMA 1.1. Suppose (7, F ) is a torsion theory for p_#. Then
7 is closed under imjective envelopes if and only if 7 (A) is
tnjective for each injective module A e p_#.

Proof. (=). Let A be injective. Then E(7 (A)e.7 by hy-
pothesis. But then E(7 (4))/.9 (A) e and

E(7 (A)].7 (A) = A9 (A)e 7 .
Hence E(7 (4)/7 (A)e 7 N ZF = {0}.
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(=): Let Te.7. By hypothesis, E(T) = 7 (E(T)) D F, where
Fe 7. Since 7 (E(T)) + Te.7 is contained in E(T), then TS
7 (E(T)), and hence F = 0.

The following lemma is clear:

LEMMA 1.2. The following are equivalent for a torsion theory
(7, F) for p 7.

1) (7, &) 1is splitting.

2) Ext(F,T)=0 for all Fe s, Te 7.

THEOREM 1.3. Let (7, & ) be a splitting torsion theory for
ztte If Re Z, then injdim (T) £1 for all Te 7.

Proof. Since Re.#, every submodule of a free R-module is in
. So for each Me ,_+, there is an exact sequence

0 K F M 0

with F projective and K, F e &#. Hence by Lemma 1.2, the exact
sequence

Ext(K, T) — Ext*(M, T) —> Ext*(F, T) = 0
yields Ext* (M, T) = 0 for all Te 7.
Now suppose for induction that Ext" (M, T) = 0 for all Te 7.

If Te 7, then E(T)e.9 by Lemma 1.1, and hence E(T)/Te 7.
So, by the induction hypothesis, the exact sequence

Ext" (M, E(T)/T) — Ext"** (M, T) — Ext"*' (M, E(T)) = 0

yields Ext"** (M, T) = 0 for all Te 7.
Hence the result follows by induction.

COROLLARY 1.4. Let (7, &) be a splitting torsion theory for
roZ. Let A be an injective module and f a homomorphism of A.
If Re.# and if the kernel of f is in 7, then the image of f is
njective.

Proof. Let K be the kernel of f, and let I be the image of f.
‘Then Theorem 1.3 yields the following exact sequence for any M € ,_#"

0 =Ext' (M, A)— Ext' (M, I) — Ext*(M, K) = 0.
Hence Ext' (M, I) = 0 by exactness, and so [ is injective.

The following result is the special case of Corocllary 1.4 for a
hereditary torsion theory.
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COROLLARY 1.5. Let (7, &) be a splitting hereditary torsion
theory for p.#. If Re & , then every homomorphic image of a
torsion injective module is tnjective.

2. The Goldie theory. A submodule A = M is said to be
essential in M if AN B +#0 for every nonzero submodule B of M.
The singular submodule of M€, # is Z(M) = {x € M | (0: z) is essential
in R}. If Z(M) =0, then M is called nonsingular.

Goldie’s torsion theory (&, #") is the torsion theory given by
A" ={Nez# |N is nonsingular} and & = {G € ,_# | Z(G) is essential
in G}. (2, .47) is hereditary and has as its filter F(&) ={[|I <
J essential in R, and (I:x) is essential in R for all xeJ}. This is
the smallest topologizing and idempotent filter containing the essential
left ideals. For other results on (&, _#"), the reader is referred to
[1], [11] or [14].

V. Cateforis and F. Sandomierski [4] have studied the splitting
of (¢, _#7) for commutative rings with Z(R) =0. Z(R) =0 if and
only if Z(M) = < (M) for all Me ,_#. Hence saying (&, .#") splits
and Z(R) =0 is equivalent to saying that the singular submodule
always splits off. In [4] it is shown that whenever (&, ") is
splitting, R is commutative, and Z(R) =0, then lL.gl.dimR < 1.
‘The results below show that this bound can be kept for modules in
A" (i.e., h. dim(N) <1 for all Ne._#") when the commutative
hypothesis on R is dropped. Moreover, if (¥, .#") splits and Z(R) = 0,
then 1. gl.dim R < 2.

THEOREM 2.1. If (%, ") splits and Re _+; then h. dim (N) <1
for all Ne 47

Proof. Let N, Fe._4. Then E(N)/Ne¥%, so that
Ext (F, E(N)/N) =0
by Lemma 1.2. Then the exact sequence
0 = Ext' (F, E(N)/N) — Ext* (F', N) — Ext* (F, E(N)) = 0
yields Ext*(F, N) = 0 for all F, Ne_#. By Theorem 1.3,
Ext" (F, E(N)/N) =0
for all » = 2. So the exact sequence
0 = Ext" (F, E(N)/N) — Ext*** (F, N) — Ext"* (F, E(N)) = 0

yields Ext***(F, N) =0 for all F, Ne_#" and all n = 2.
Let Me, . By splitting M = (M) P M/ (M). Hence
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Ext" (F, M) = Ext" (F, & (M)) @ Ext* (F, M/<(M)) =0

for all n =2 and all Fe_#; by Theorem 1.3 and the first part of
the proof.

THEOREM 2.2. If (&, 4") splits and Re 47 then 1. gl. dim R < 2.

Proof. Let Fe_ 4~ and Me, #. By Theorem 1.3 there is an
exact sequence

0 = Ext (M, E(F)/F) — Ext" (M, F) — Ext" (M, E(F)) = 0

for all » = 3. Thus Ext" (M, F') = 0 for all n = 3.
Let M, M, e .. By splitting M, = (M) ® M,/ (M,). Hence,
for n = 3,

Ext" (M, M) = Ext" (M, & (M,)) & Ext" (M, M,/ (M) = 0

by Theorem 1.3 and the first part of the proof. Hence 1. gl. dim R < 2.

3. Relative homological algebra. In [6] the right derived
functors of a torsion subfunctor of the identity were calculated. This
leads to a relativized injective dimension of modules for each hereditary
torsion theory, and hence to a global dimension of ,_# depending
on the hereditary torsion theory (.7, %) chosen. This global dimen-
sion is denoted by .7 gl. dim. R.

In [1] it is shown that if & gl. dim. R = 0, then (&, _#") splits.
S. E. Dickson has conjectured [7] that the simple theory (<7, &)
(i.e., the torsion theory whose torsion class is the smallest torsion
class containing the simple R-modules) splits if and only if &% = ,_/Z.
In this section it is shown that & = ,_# if and only if & gl.dim. R =
0. Moreover, for any hereditary torsion theory (.7, &), Theorem 8.1
below shows that .7~ gl. dim. R = 0 if and only if & is a TTF class
in the sense of [13], i.e., a class closed under taking submodules,
factor modules, direct products, and extensions.

The first right derived functor of A€, #Z relative to the
hereditary torsion theory (7, &) is

R.4) = 7 (B4 4)[Z- Wj” +4

Then .7 gl.dim. R = 0 if and only if R-(4) =0 for all Ac , #

Following [1], a module F'e & called .Z-absolutely pure (relative
to the hereditary torsion theory (7, &) if L2 F and Le %
imply L/F e #. [1], Proposition 1.4 states that F'e & is .7-absolutely
pure if and only if E(F)/Fe Z.
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THEOREM 3.1. For a hereditary torston theory (7, F ), the
following are equivalent:

Q) T:M— 7 (M) VMe o #Z ts an exact functor.

(2) Ewvery Fe. & s F-absolutely pure.

() & 1s closed under taking homomorphic images.

4) 7 gl.dim. R = 0.

Proof. (1)=(2): Let F, Le.s and L =2F. Then apply the
exact functor T to the exact sequence 0 - F — L — L/FF—0 to get
0— 9 ((F)—> 7 (L)y— 7 (L/F)—0. Since Le &, then o (L/F) =0
by exactness, and hence L/F e . Thus F is .F-absolutely pure.

(2) = (3): Let f: F— M be an epimorphism of Fe &, and let K
be the kernel of f. Since & is closed under taking submodules,
Ke. 7, and hence M = F/Ke . by (2).

(3) = (4): For any M e 7, the exact sequence

0— 9 M)— M — M/ (M) —0
induces the exact sequence
R A7 (M))— R (M) — R (M|F(M)) .

By [6], Lemma 2, R (< (M)) = 0. Hence it is sufficient to show
that R(F') =0 for all Fe #. Since &# is closed under injective
envelopes, .7 (E(F')) =0 for all FFe .&# . Hence the formula for R _(F")
reduces to .7 (E(F')/F') whenever Fle #. But (3) and E(F)e &
imply E(F')/F e Z , and hence R -(F') = .7 (E(F)/F) = 0.

(4) = (1): This is clear since T is always left exact.

The simple torsion theory (&7 %) has .&” defined [5] by Te.&”
if and only if every nonzero homomorphic image of T has nonzero
socle. Then & corresponding to .97 is the class of modules with
zero socle.

COROLLARY 3.2. The following are equivalent:
1) <~ gl.dimR = 0.
(2) Nonzero modules have monzero socles.

Proof. (1) = (2): Suppose R ¢ .&% so that .&(R) is a proper ideal
of R. Let M be a maximal left ideal of R containing .&“(R). Then
R/Me .&” is a homomorphic image of R/S”(R)e.s. But (1) and
Theorem 3.1 (3) yield R/Me ., which contradicts & N . =0.
Hence Re &% and so &7 = 5 #, i.e., (2) holds.

(2)=@1): By (2), & = z. and hence & = {0}. Thus & is
trivially closed under homomorphic images, and hence (1) follows
from Theorem 3.1.
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Let .75 denote the smallest torsion class containing the simple
R-module S. If each Te & < ,_# can be written as

T=@3 75T,

where & is a set of nonisomorphic simple R-modules, then R is said
to have primary decomposition (PD) for .. For further results on
(PD), the reader is referred to [5] and [9].

In order to characterize rings for which every hereditary torsion
theory has dimension zero, the following result of H. Bass [2] is
needed:

THEOREM P. The following are equivalent:

(1) R s right perfect.

(2) R/J(R) is semi-simple Artinian and J(R) is right T-nilpotent,
where J(R) denotes the Jacobson radical of R.

(3) R contains mo infinite sets of orthogonal idempotents and
nonzero left modules have nonzero socles.

THEOREM 3.3. FEvery hereditary torsion theory (9, F# ) for
2 has 7 gl.dimR =0 if and only if R is the direct sum of
finitely many right perfect rings, each of which has a unique
maximal twosided ideal.

Proof. (=): By S gl.dimR =0 and Corollary 3.2, nonzero
modules have nonzero socles. From .75gl.dim R = 0, Theorem 3.1,
and [5], Theorem 5.3, it follows that R has (PD). Since each 7(R)
is a two sided ideal, then R = R, 4 R, 4 +-- 4+ R, (ring direct sum),
where each R; = . 73(R) for some simple module S. Then nonzero
left R,-modules have nonzero socles, and hence J(R;), the Jacobson
radical of R, is right T-nilpotent by an argument of H. Bass [2].

It remains to show that R,/J(R;) is a simple Artinian ring; for
then the required properties of R; follow from Theorem P. Let B
be the inverse image in R; of Soc (R/J(R;); then B is a two-sided
ideal of R;,. If B+ R; and M is any maximal left ideal of R; con-
taining B, then the following property holds: R,/M = R,/M’' implies
M’ 2 B. Since nonzero R;-modules have nonzero socles, then B == J(R,).
So since J(R;) is the intersection of maximal left ideals of R;, it
follows that there exists a maximal left ideal M, such that M, 2 B
and hence R;/M % R,/M,. This contradicts the fact that R; has only
one simple R;-module (up to isomorphism). Hence B = R, i.e.,
R;/J(R;) = Soc (R;/J(R;)). Hence R;/J(R;) is semi-simple Artinian. Since
R; has only one simple R,-module up to isomorphism, then R;/J(R;)
is a simple ring.
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(=): Let R=R, 4+ R, + --- + R, (ring direct sum), where each
R; is a right perfect ring with a unique maximal ideal. Then from
Theorem P it follows that nonzero modules have nonzero socles. So
for any hereditary torsion theory (7, &) either R;e .9 or R;e &#
for 2=1,2, -+, n. Then it is not hard to see that & is closed
under homomorphic images, and hence .7~ gl. dim R =0 by Theorem 3.1.

A torsion theory (7, &) for .# 1is said to be of simple type
if it is hereditary and nonzero modules in .- have nonzero socles.
Then (7, &) is of simple type if and only if .7~ is the smallest
torsion class containing a given set of simple modules.

COROLLARY 3.4. Suppose every hereditary torsion theory (.7, F )
Jor oo has 7 gl.dim R = 0. Then the following are equivalent:

(1) Every torsion theory for p.# s of stmple type.

(2) J(R) is left T-nmilpotent.

(8) Nomzero left R-modules have maximal submodules.

Proof. (2) = (3) is immediate from [12], Lemma 1 and Theorem 3.3.

1)=(3): Let 0 A€z~ be a module with no maximal sub-
module. Define & by & = {Xe€,, # |Hom (4, X) = 0}. Itis easily
checked that & is closed under taking submodules, extensions, and
direct products; hence .# is a torsionfree class by [5], Theorem 2.3.
Since all the simple left R-modules are in &, this contradicts (1).

(8) = (1): From Theorem 3.3 it follows that nonzero left modules
have nonzero socles. Let (9, &) be a torsion theory. It is
sufficient to prove that for each Me 7, Soc(M)e 7. If S is a
simple submodule of M e .77, then choose N maximal in the properties
NE M and NNS =0. Then S is isomorphic to an essential sub-
module of M/Ne. 7. Since R has (PD), it follows that M/Ne 75,
where 75 is the smallest torsion class containing S. Thus every
maximal submodule T/N of M/N has the property (M/N)/(T/N) = S.
(Such maximal submodules exist by (3).) Thus M/Ne.7 implies
Se 7.

COROLLARY 3.5. Let R be commutative. Then the following are
equivalent:

(1) Ewery hereditary torsion theory (7, % ) has 7 gl. dim. R=0.

(2) R is a direct sum of finitely many local perfect rings.

() h.dim (M) =0 or « for each Mec r_#.

(4) Every torsion theory for p.# 1is splitting.

(5) R has (PD) and (&, &) is splitting.

Proof. (1) = (2) is Theorem 3.3; (2) = (3) is a result of I
Kaplansky (see [2]); and (2) = (5) is [9], Theorem 5.4.
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(1) and (2) = (4): By Corollary 3.4, every torsion theory is of
simple type. (PD) follows from (2), and hence every torsion theory
splits.

(4) = (5): Suppose (PD) does not hold. Then there exists non-
zero Me .« such that (M) = PDiscs T(M), where A is a re-
presentative set of nonisomorphic simple modules. Let

§'=N| 5. 7500 s M| 5, 7500

The 75-torsion part of N is .75 (M), by splitting N = 7,.(M) P K
and 74(K) = KN 95(M) = T5(M). Since K # Xsc, T5(M), then

S'=K| > FsM).
SeA—{S’}
Since the smallest torsion theory containing the set A — {S'} splits,
then
k=] s san]|es,

SeAd—(S’

which is a contradiction to KN 75 (M) = 0.

4. Central splitting. A pair of torsion theories (&, 97),
(7, &) is called a torsion-torsionfree (TTF) theory. In this case
.7 is both a torsion and a torsionfree class, and hence .7~ is called
a TTF class as in [13]. In § 3 it was pointed out that TTF theories
are related to & gl. dim. R = 0, whenever (&, .77) is hereditary. The
splitting of TTF theories is studied in [13], and the following is the
main result obtained:

THEOREM 4.1. ([13], Th. 2.4). Suppose that (&, 7°), (T, F)
s & TTF theory. Then the following are equivalent:

Q) For all Me #, M=% (M)D .7 (M).

2) R=%(R)+ 7 (R) (ring direct sum).

B F =<

4) T(EM)=0and €M7 (M)) =M/ (M) for all M e _7.

The following questions concerning a TTF theory (&, .97), (9, &)
were raised in a conversation between R. L. Bernhardt and the
author: (1) If (7, &) is splitting, is (&, 97) also splitting? (2) In
case (&, .77) is splitting, when does (&, .7") have the special type
of splitting described in Theorem 4.17

Examples are given to show that either one of (&, 97) or (7, &)
may be splitting without the other splitting. Conditions under which
the splitting of one implies the splitting of the other are discussed.
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If (&, 97) satisfies the condition described in Theorem 4.1 (1), then
(&, Z77) will be called central splitting (as in [3]). The following
result ([13], Th. 2.1) may be useful to the reader in the sequel: A
hereditary torsion theory (7, % ) for p.# has the property that
.7 is closed under taking direct products if and only if the filter
F(7)={K|R/Ke.7, K is a left ideal of R} has a smallest element
I. In this case I = & (R), where (&, .7 ) is a torsion theory.

ExAMPLE 4.2. < is a TTF class and (&, .#") is splitting, but
(&, &) is not splitting. Let K be a field and A a countably infinite
index set. Let @ = [[,.. K, where K = K. Then let

R:ZK(a)‘*‘K'ng)

a€A

where 1€Q. It is shown in [4] that the Goldie torsion theory
(&, ") is splitting. Since Z(R) =0, then F(Z) = (R, Dca K},
and hence Z i3 closed under produects. Finally, (&, &) is not
splitting since Z(R) = D,.c4 K@ is not a summand of R.

Before stating the first sufficient condition for the splitting of
(7, ) to imply the splitting of (&, .97), a lemma due to S. E.
Dickson is needed. [7], Proposition 1 is a weaker form of this lemma,
however, the proofs are almost identical.

LEMMA 4.8. Let I = >, m;R be a finitely generated right ideal
of R. Then the class &7 = {De z.# |ID = D} is closed under direct
products.

Proof. Let D,e &z (aeB). If xe[lsesz D, then for each aecB
there are x*, x{®, .., 2! ¢ D, such that

Ty = MEY + ME® + o o0 + M .
Hence, if x,, ®,, --+, «, are defined in the natural way, then
T =M + My®y + 0 + mnmneI(HaeB -Da) .

Hence <7 is closed under direct products.

THEOREM 4.4. Let (&, . 9), (7, F ) be a TTF theory such that
(7, F) is splitting. Suppose the minimal ideal I in the filter F(.F7)
contains mo nonzero nilpotent left ideals of R. Then (&, . 7) 1s
central splitting if and only +f I is finitely generated as a right
1deal.

Proof. (=): Since (7, &) is splitting, R = .7 (R)@P F with
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Fe . Then R/Fe 7, and hence F' 2 I by the definition of I. By
Lemma 4.3 the class & = {D e . | ID = D} is closed under products.

Claim & = 2. Suppose De & and ¢: D — Te . 7. Then o(D) =
@(ID) = I-p(D) < I-T = 0 and so it follows that Hom (D, T) = 0 for
all Te 9. Thus & € &. Conversely, let Ac % and observe that
A/IAe 7 by the fact that 9 = {Mec . |IM = 0}. Since & is
closed under homomorphic images and & N .7 = 0, it follows that
IA=A. Thus € & 2.

Next observe I is essential in F. For if K is a left ideal of R
contained in F and KNI=0, then IK=0. Thus K& 7 (R)NnF =0.

Claim I+ 0 for all 0«xcF. For if not, let yI =0 for
0+#yeF. Then Ryn I = 0 since [ is essential in F. But (RyNI) <
RyI = 0, which contradicts the hypothesis that I contains no nonzero
nilpotent left ideals.

Hence F' can be embedded as a left R-module in a product of
copies of I in the usual way. Moreover, [[,c.l.€. =2 (where I, =1
and A is any index set) by Lemma 4.3 and the fact that I*=1I.
Since (7, &) splits, .7~ is closed under taking injective envelopes
by Lemma 1.1. So [5], Theorem 2.9, gives & = & is closed under
submodules; in particular, FFe% and F =IF =1 But I=%(R),
and hence R = 7 (R) P F = 7 (R) + & (R) (ring direct sum). Hence,
(&, 77) is central splitting by Theorem 4.1.

(=): By Theorem 4.1, R = Z°(R) + .7 (R) (ring direct sum) and
hence I = & (R) is a principal right ideal.

PRrOPOSITION 4.5. Let (%, 7)), (7, % ) be a TTF theory such
that (7, &) splits. Then the following are equivalent:

1) (&, 9) is central splitting.

@) (&, 7) is splitting.

(B) & s closed under taking injective envelopes.

4 =27

Proof. (1) = (2) is trivial, and (2) = (3) follows from Lemma 1.1.

(8)= (4): By (7, &) is splitting, Lemma 1.1, and [5], Theorem
2.9, ¥ 1is closed under taking submodules. Let Fe. & and note
& (F) S F < E(Z(F)): For if not, then there exists 0 = T e .7~ such
that T < F, which leads to a contradiction of .~ N .~ = 0. But (3)
and & closed under submodules then yield F'€ &, and hence & 2 & .

(4) = (1): Since (.7, %) is splitting, write R = 7 (R) @ F with
Fe . Since R/Fe 7, then F 2% (R). But Fe?® by (4), so
F = Z(R). Hence R= 7 (R)+ € (R) (ring direct sum), so that
(&, 97) is central splitting by Theorem 4.1.

ExAmPLE 4.6. 7 is a TTF class and (&, Z7) is splitting, but
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not central splitting. Let R be the ring of all 2 x 2 upper triangular

matrices over the field Q of rational numbers. Let I = {(8 $> ’ X, Ye Q},

so that I is a two-sided idempotent ideal of R. Define:

T ={Mer#Z|IM = 0}
F ={Mepr# |Hom (T, M) =0 for all Te 77}
& ={Mep# |Hom (M, T) =0 for all Te 77}.

Then 7~ is a TTF class, and (&, .9) and (7, &) are torsion
theories. Since R/I is a projective simple R-module, it follows that
all modules in .7~ are projective. Hence (&, .77) is splitting. But

7 (R) = {(g %) ’ x, yeQ} is not a direct summand of R; so (7, &)
is not splitting.

ProposITION 4.7. Let .7 be a TTF class, and let (&, 7 ) be a
splitting torsion theory. Then the following are equivalent:

1) (&, ) is central splitting

@) (&, 9) is hereditary

B ZRNITR =0

4) &€ (R)N 7 (R) contains no nonzero nilpotent left ideals of R.

Proof. (1)= (2) is immediate from Theorem 4.1 (3).

If (2) holds, then Z(R) N 9 (R) e &€ N .7 =0, and hence (2) = (3).

(3) = (4) is trivial.

Suppose (4) holds. Since (&, .7") is splitting, R=FR) D T
with Te 7. Hence .7 (R) 2 T. But then

[ZE)n T RFsZ[R)-7(R)=0

implies Z(R)N .7 (R) =0 by (4). Hence T = 7 (R), and thus (1)
holds by Theorem 4.1 (2).

REFERENCES

1. J. S. Alin and S. E. Dickson, Goldie’s torsion theory and its derived functor, Pacific,
J. Math. 24 (1968), 195-203.

2. H. Bass, Finitistic dimension and a homological generalization of semi-primary
rings, Trans. Amer. Math. Soc. 90 (1960), 466-488.

3. R. L. Bernhardt, Splitting hereditary torsion theories over semi-perfect rings, Proec.
Amer. Math. Soc. 22 (1969), 681-687.

4. V. Cateforis and F. Sandomierski, The simgular submodule splits off, J. Algebra
10 (1968), 149-165.

5. S. E. Dickson, A torsion theory for abelian categories, Trans. Amer. Math. Soc.
121 (1966), 223-235.

6. , Direct decompositions of radicals, Proc. Conference on Categorical
Algebra, La Jolla, 1965.




HOMOLOGICAL DIMENSION AND SPLITTING TORSION THEORIES 205

7. ————, Noetherian splitting rings are Artinian, J. London Math. Soc. 42 (1967),
732-736.

8. P. Freyd, Abelian categories, Harper and Row, New York, 1964.

9. J. Fuelberth, On commutative splitting rings, Proc. London Math. Soc. 20 (1970),
393-408. i

10. P. Gabriel, Des catégories Abélienmes, Bull. Soc. Math. France 90 (1962), 323-448.
11. A. W. Goldie, Torsion free modules and rings, J. Algebra 1 (1964), 268-287.

12. R. M. Hamsher, Commutative rings over which every module has a maximal sub-
module, Proc. Amer. Math. Soc. 18 (1967), 1133-1137.

13. J. P. Jans, Some aspects of torsion, Pacific J. Math. 15 (1965), 1249-1259.

14. M. L. Teply, Some aspects of Goldie’s torston theory, Pacific J. Math. 29 (1969),
447-457.

15. E. A. Walker and C. Walker, Quotient categories and rings of quotients (to appear)

Received February 20, 1969.

UNIVERSITY OF FLORIDA
GAINESVILLE, FLORIDA






PACIFIC JOURNAL OF MATHEMATICS
Vol. 34, No. 1, 1970

FINITE LINEAR GROUPS OF DEGREE
SEVEN 1I

Davip B. WALES

The determination of finite groups which can be re-
presented as a group of 7 X 7 matrices irreducible over the
complex numbers is finished in this paper. To simplify the
cases, the matrices are assumed unimodular and the groups
are primitive. The groups discussed here are essentially
simple and have orders 7-5°-3°.2°, The theory of groups
with a prime to the first power in the group order and of
course the representation of degree seven are used heavily
in the determination.

This paper is the third in a series of papers discussing linear
groups, the first two being [24, 25]. We shall prove the following
result.

THEOREM I. Suppose G has an irreducible complex representa-
tton X of degree T which s faithful, primitive and unimodular.
Suppose, further, that G has an abelian T-Sylow subgroup. Then,
by [5, 4A], Z, the center of G, has order 1 or T and G =G, X Z
SJor a subgroup G, of G. We prove that G, is one of the following
groups. Let |G,| be the cardinality of G..

I. G, = PSL(2,13) |G, | = 13-7-3-2* = 1092.
II. G, = PSL(2,8) |G| = 782" = 504.
. G = A4, |G, | = 8!/2 = 20160.
IV. G, = PSL(2,7) |G,| = 7-3-2° = 168.
V. G, = U3 |G,| = 7-8-2° = 6048.
VI. G, = S,2) |G, | = 75842 = 1451520.

VII. An extension of III, IV, V by an automorphism of order
2 or an extension of II by an automorphism of order 3. For 111 it
is Sy for IV 4t is induced by PGL(2,7). For V and II it s induced
by field automorphisms. For V it is G4(2).

This result together with [25, Th. 4.1] determines the linear
groups of degree 7. The proof is in several parts. Rather than use
the notation G, we assume G is as stated in the theorem and assume
Z =e Set |G|=g, the order of G. By [5, 4A] we know |G| =T-g,
where 74)g,, Let |G|=g =7-5°8".2°. We use the notation of
[24, 25]. Thus yx is the character of X. As y is of zero 7-defect,
%) =0 where & is an element of order 7 [7, Th. 1]. This means
the eigenvalues are all distinct and so by [5, 3F] C(P) = P where P

207
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is a 7-Sylow group. The characters of G satisfy many properties
described in [5, §8]. These are different depending on the value
s = | N(P)/P|. The possible values are 2, 3, or 6. The value s =1
is impossible as by Burnside’s theorem there would be a normal
7-complement contradicting the primitivity of X. The cases 2, 3, 6
are treated separately. The case s = 6 is by far the most difficult.
It is treated first (§2-§5) because some of the ideas are used for
the case s =3 (§ 7). However much of the treatment for s = 8 (§7)
and all of the treatment for s = 2 (§6) is independent of the earlier
sections and can be read independently.

If there are primes higher than 7 occurring in g = |G|, G is case
I by [17, 5, 2D]. In the remaining cases we assume g = 7-5°-3%.2°,
We know by [5, 3E and 25, 2.6] that ¢ <6, b <8, ¢ <10. A flow
chart for the order of the elimination is given at the end.

As in [24 or 25], some notation is standard. Thus if K is a
subset of G, C(K) and N(K) are the centralizer and normalizer of N.
If yeG we define N(v) = NKv)). Also set C(K)N K = Z(K). Let
| K| denote the cardinality of K. We have set |G| = g. We mention
Theorem 2.1 of [25] which says that a 5-Sylow group of G is
abelian. We label the principal p-block B,(p) for any prime p
dividing g.

2. Preliminary properties of ¥ when s = 6. We first assume
s =6, G=G. By [5, 8A], G is simple. As in [5, §8] the results
of [2] apply to G. There are seven characters y;, ¢=20,1, ---,6,
in By(7) of G. Their degrees =;, 7 =0,1, ---,6 are congruent to
+1 (mod 7). We set (&) =6, 21=0,1,.-.,6. Here 0, = +1,¢
is an element of order 7. The degree equation for By(7) is >, 0,x; =0
[2, Th. 11 or 5, §8]. We assume Y, is the identity character.

If y is the character of degree 7 corresponding to X we have

6
X?_CZXo'f‘g;aiXi""]‘

Here 7 is a sum of irreducible characters of G oi zero 7-defect.
There must be some ¢ with a; 0 1=1,2, ..+, 6 for which ¢; = —1.
This is because ¥(¢) = 0 and so xx(£) = 0. The possible values of x;
are 6, 20, 27, and 48. This means G must have a character, say y,,
of degree 6,20,27, or 48. We will consider each of these cases.
individually in this and later sections. The case x; = 6 is easily
eliminated by considering the restriction of ¥ to N(§). As this
analysis will be needed in later sections, we include more than is.
necessary here.

Let N = N(§). We are assuming |N| =42 =T7-6. Let 7 be an
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element of order 6 in N. The character table is as follows where
e = il3,

TABLE 1. Character table for N = N().

element|{1 & 7 ¢ ¢t ©°

Vo 1 1 11 11 1
Wy 1 1 —¢ & -1 ¢ =¢
Wy 1 1 & e 1 & ¢
P 1 1-11-11-1
Py 1 1 e & 1 & &
Vg 1 1 —-¢& ¢ -1 & —¢
e 6 -1 00 00 O.

If x; is a character of G of degree 6 ;| N = +,. However the
eigenvalues of the representation corresponding to () are 1, —1,
—e, —¢&*, g, €. This means the determinant is —1. The representa-
tion X; corresponding to %; cannot be unimodular and so G # G'.
As we are assuming in this section that G’ = G we can assume there
are no characters y; of degree 6.

For later use we require some further results. The restriction
of ¥ to N must contain 4, and ; 0 <j <5 as constituents. In
order that X(z) be unimodular, j = 8. This gives

(2.1) XIN = A5 + .

Let P,(x) be the character corresponding to the symmetric tensors of
rank 2 for X and Cy(y) be the character corresponding to the skew
symmetric tensors of rank 2. Their restrictions to N are as follows

(2.2) Cz(X) I N = 3V + P, + A5 + Vg,
(2-3) Pz(X) 1 N = 4"‘1”‘6 + 2“#0 + Ay + Ay .

We obtain similar results for a character y; of degree 8 or 20.
Here y;| N will have two linear constituents. The character + of
degree six will appear once if ); has degree 8 and three times if y;
has degree 20. As the representation corresponding to y; is unimodular
there are three possibilities for the two linear constituents. These
are Y, + Vs, Yy + Yy, P, + Y. If x; has degree 8 this gives

(1) x:ilN:"/’s‘i"‘/fo’*""Fs
(2.49) (ii) Xi | N = g + oy + 9,
(iii) Xi | N = g + s + 5 .
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If x; has degree 20 the corresponding result is

(1) XJ[N:3”SI’6+'§[’0+’1/’3
(2.5)  (ii) Xi | N =396 + 9, + ¥
(111) leN:31[’s+“/’4+"lf5-

If x; is real the only possibilities are (2.4)(i) or (2.5)().
The following lemma will be needed several times.

LEMMA 2.1. Let Q be a 5-Sylow group of G. If a character u
of G is not real and p|Q is not rational, there are at least four
distinct monreal conjugates of p.

Proof. Let K be a splitting field for G containing \, = €*¥/®,
Let K, be the subfield of K containing any »-th roots of 1 lying in
K where r runs over the primes in g other than 5. We may pick
o0eG(K/K,) the Galois group of K over K, so that o(\) = ().
Suppose 4, p°, #, £° are not all distinct. As there are no elements
of order 5° in G[5,3B], ¢|Q # p°|Q by hypothesis. Also p# [
by hypothesis. This means 2 = p°. In particular p¢°|Q = Z|Q.
Let 7 = 0. We have /|Q = /| Q = ¢°| Q. This implies z°|Q =
1 Q a contradiction. We see p, p°, &, #° are all distinct. Clearly
none can be real. This proves the lemma.

Several times we will need to study the case in which @ is cyclic
of order 5. That is g = 7-5-3°.2°. The results of [2] can be applied
for p = 5. Let m be an element of order 5. By Burnside’s theorem
C(m) =<7> x V. As there are no elements of order 5.7, | V| = 3621,
Let | N(7)/C(n)| = w. As G has no normal 5-complement w is 2 or 4
by Burnside’s theorem. HEach 5 block contains e nonexceptional
characters and 4/e exceptional characters where e is 1, 2, or 4. Let
B,(5) be the 5-block containing y. If y is nonexceptional there are
two possibilities for x| C(w) as can be seen from close inspection of
[2, II, Th. 1]

(2.6) X< X V =6+ 300

where 6 is of degree 2 with 6(x) =2, ) is the linear character of {7)
such that \(7) = ¢, ¢ is a linear character of V.

2.7 x| <> x V:¢l+<p2+i§:_‘(,)v¢

where \, @ are as in (2.6) and ¢, @, are distinct linear characters
of ¢() conjugate in N(w). Also @in) =1,7 =1,2. In the case (2.6)
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V is nonabelian; in the case (2.7) V is abelian.
Suppose y is exceptional. If s =4 and ¢ = 1 or 2 an examination

of [2, II, Th. 1] shows y cannot have degree 7. If ¢ = 4 any of the
characters in B,(5) can be chosen exceptional and so y can be chosen
nonexceptional. In any case X satisfies (2.6) or (2.7). If s = 2, there
are at least two characters ¥ and y’ of degree 7 in B/(5). By [7,
p. 579] xx’ has a constituent in By(5). As y ## )’ this constituent is
not x, and so By5) has a nontrivial character whose degree is at
most 49. By [2] there are three characters in B(5) besides #,. Their
degrees must be congruent to +1 or 0 mod7. By examining the
possibilities one sees the smallest such degree equation for B,(5) is
1+ 63 = 64. This means y cannot be exceptional and so y must

satisfy (2.6) or (2.7).

3. The case ¥{ = Yo + X, degy, = 48, g = 7-5°-83*.2°. In this
section we consider the case IB where y¥ = ¥, + ¥, degy, = 48. We
still assume s = 6. This case is eliminated by first showing y is
rational when restricted to 5-Sylow group and so @ < 1. The case
a = 1 is eliminated by finding C(x) where 7 is an element of order 5.
The case a = 0 is then eliminated using some results in [6].

Suppose ¥, is not rational. In particular let o be an element of
the Galois group of a splitting field K for G over the rationals for
which (y,)” # x.. Clearly x°X° = %, + %7 This implies yy°%x° has %,
as a constituent with multiplicity 1. This means yy° of degree 49 is
irreducible giving a contradiction. We see y, is rational. Also y¥ =
%o + % must be rational

Let = be an element of order 5. Suppose x|<{7> = 3 b\,
where the \;, © =1, 2, .-, t are distinct linear characters of <z, b, = 0.
Certainly ¢t <5 and 3, b;=7. If ¢c=>%,(b) we have yj(n) =
¢ — b where ¢ + 4b = 49. This means ¢ = 1 (mod 4). If the numbers
{b,, -+, b,} are arranged in decreasing order the following possibilities

oceur.
38,1, 1,1,1}5{2 2,2, 1}; {4, 2, 1}; {3, 2, 2}; {6, 1}; {5, 2}; {4, 3} .

Now let N be the linear character of (x> with \(m) = >,
Suppose y | <7> = 3t aA'. This means

'S

4
2. { Oajaj_i}k,* .

0 g

AT <> = (S an {3 an) = ;

1

As yy is rational we obtain

4
3.1) Sa0.=b, i=1,234.
P
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The nonzero entries among {a, a,, ---, a,} are the values {b, ---, b}
given in the above paragraph possibly rearranged. A routine check
of these possibilities shows {3, 1, 1, 1, 1} to be the only set for which
(8.1) can be satisfied. The checking is facilitated by noting that the
first two integers a, a, can be picked arbitrarily from {b, ---, b,
0, --., 0} without changing the form of (3.1). Here the bracketed
integers are completed with zeroes to give 5 terms. The case [4, 2, 1}
or {3, 2, 2} can be chosen as {0, 0, 6,, 6,, 6;} where 0,, 0, 6, is 4, 2,1 or
322 in some order. Equation (3.1) gives 0,0, + 0,0, = 0,0, This is
impossible for any of the choices of 4, 0, 0,, The case {2, 2, 2, 1}
can be taken as {0, 1, 2, 2, 2}. Equation (3.1) is not satisfied. In the
cases {b, b} we consider {b, b, 0,0, 0}. Equation (3.1) cannot be
satisfied. In the case {3,1,1, 1,1} the unimodularity of X gives
x1<m> =3\ 4+ A 4+ N+ A + AL This means y(n) = 2.

Suppose = has order 5% As zn° has order 5 the constituents of
x| <7%> are {3\ X, N, A%, M} where M7°) = ¢, Let the linear con-
stituents of ¥ |<{@> be (N, Ay Ny &, € &, &) Where (&) | ("> =\,
() [ <m®> =\ Suppose N; =N;, £ 7, 4,5 =1, 2, or 3. This means
en; and e\, are equal and so all twenty conjugates appear with
equal multiplicity at least 2 in yy |<{z)>. The following thirteen linear
characters also appear in yy |<{m)>: &, 1=1,2,3,4; M\, 0, k=1, 2, 3.
None of these are conjugate to &X; and so we have too many con-
stituents. This means A\, N\, A; are all distinct. Also ¢, &, ¢, ¢, are
all distinct as their fifth powers are distinct. This means the trivial
character of (7> occurs seven times. The number of conjugates of
any nontrivial character is 4 or 20 and hence divisible by 4. How-
ever 4 f42. This means there are no elements of order 5* in G.

We have shown y is rational on a 5-Sylow group. In particular,
by [21] a £ 1. We now consider this case, case IB(ii) of the flow
chart. There are two possibilities for y | C(w), (2.6) and (2.7). In
case (2.7), C(rm) is abelian as y | C(w) has seven linear constituents.
In case (2.6), V is nonabelian as y | V has a constituent of degree 2.

We may also congider the restriction y, | V x m. Here y(7) = 3.
The only possibility [2, II, Th. 1} is x, | V X 7w = 6-\°, degd = 3.
This means V is nonabelian as 6 is irreducible. In particular, case
(2.7) above does not occur. The character ¢ is rational as y, is
rational. As ¥y =y, + y. we have 6.0, =6, + 0 where 0, is the
trivial character of V, x| V x {n) = 0, + i N-p.

We know y| V=0,+5p. If R is in the kernel of 0, (p(R)y’=1
by the unimodularity of X. This means @(R)=1 and so 0, is faithful.
Let V, be a 3-Sylow group of V. As 6, is faithful of degree 2, V,
must be abelian. We see X | V, has at most 3 distinct linear charac-
ters and so | V,| < 3 [5, 3D]. Let V, be a 2-Sylow group of V. As
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V, has a faithful representation of degree 2 there is an abelian sub-
group A of index 2. As X | A has at most 3-distinet linear characters,
|A]| <2 [5, 3D]. Here V, is nonabelian if and only if | V,| = 2
In this case an involution in Z(V,) must satisfy 6,(J) = —2. Clearly
@(J) = 1. In particular Je Z(V).

We now consider §. Let K be the kernel of 6. As 6,0, =6, + 0,
if ReK, |6,(R)| = 2. In particular Re Z(V). Suppose there is an
element R of order 8 in K. As ¢ is faithful and rational on V/K
| V] = 8%.2°, Also 6,(R) is 2u or 2u* where u = ¢***, We can agssume
0,(R) = 2u by taking R? if necessary. By the unimodularity of X,
p(R) = u?. If there is an element J in V for which 6,(J) = —2,
@(J) =1 and Blichfeldt’s theorem is violated for X and JR. This
means 6 < 2. As V/K has a representation of degree 3, 6 = 2. If
V, is elementary abelian there is an element J for which 6,(J) = —2.
We see V, is cyclic. This means there is a normal 2-complement.
However, in this case there can be no character of degree 3 by Ito’s
theorem [12, 53.18]. This shows there are no elements of order 3 in K.

As V/K has a rational character of degree 3 | V| = 3.2°. Here
V has characters of degree 3 and 2. As 3 4 2* > 12 we see | V| =
3.2°. This means V, is nonabelian and so there is an involution in
Z(V) for which 6(J) = —2. Let T be an element of order 3 in V.
If 6(T) =u + % where u = ¢*'®* the element 7J would contradict
Blichfeldt’s theorem. This means 6,(T) =1+ % or 1+ u:. We see
8.+ 0,. By the unimodularity of X, x(T) =1+ 6u. We see T is
not conjugate to 7' in G. There must be a normal three comple-
ment to <7 in V and so the number of linear characters of V is a
multiple of three.

The characters obtained so far have degrees 1, 1, 1, 3, 2, 2. There
must be one further character of degree 2. As 6,0, = 6, + 6 has two
irreducible constituents, 6,0, = P,(6,) + C,(6,) must have two irreducible
constituents. These are the characters corresponding to the symmetric
tensors of rank 2, P,(4,), and the skew symmetric tensors of rank 2,
Cy(0,). We see Py6,) =6. Similarly yx = P,(x) + C.(x). As yy =
1+ x, PSx) and Cy(y) are irreducible. Clearly yy(zv) = 6.,6,(v) =
(@ + Cy(8))(v), where ve V. Let + = Py(x). Clearly «(zv) = 6(v).
This means + is in the same 5-block as x,. Denote this 5-block by
B,(5). Evaluating +(T) we find (T) = {(1 + 6u)* + (1 + 6u}/2 =
—5 + 15u*. This means + # 4. However +(mv) = (7v) for veV
and so ¥ € B,(5). We show case I B(ii) is impossible by showing the
block B,(5) cannot be completed without giving a contradiction.

There cannot be two exceptional characters in B,(5) or there
would be too many characters. Here 4, 4 cannot be the exceptional
characters as 28 = 48 (mod 5). This means there are two missing
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characters with degrees R and S. There are two cases for the degree
equation 104 + R =S and 104 = R + S. There must be one more
character from By(7) and one whose degree is not divisible by 3. If
the degree of the character from By(7) is not divisible by 3 it must
be 8, 64, or 512. The only solution is 48 + 28 + 28 + 8 = 112, If
the character of degree 8 is denoted by e Xs| V = 0 + 5 where {
is linear. As 6(J) =38 we see {(J) =1. This means J is in the
kernel of y, contradicting the simplicity of G. This means R or S
is of the form 7.2 where 7-2% = +2 (mod 5). The degree of the
character in By(7) is divisible by 3. Wesee B=2, 4, 6, 8,10, 7-22=1
(mod 3). We need only consider the cases 7.2 =3 (mod5). The
values are 28, 448, 7168. There are no solutions. This case is there-
fore impossible and we can assume g = 7-3%.2°,

We now begin Case IB (iii). We assume s =6, g = 7-3*.2°. We
know b < 8. By Sylow’s theorem b=1,3,5, 7. There must be a
character of degree 27 or 729 and one of degree 8,64, or 512.

If a character of degree 729 occurs it must be in a 3-block con-
taining 3 characters of degree 729, for if not there would be a

character of degree at least 6-729. The degree equation would then
8
be 1 + 729 + 729 + 729 + { 64} = 48 + %,. There is no solution.
512
There must be a character y, of degree 27. Let g = 7-3°.2°

Sylow’s theorem gives b = 3,5, 7. Suppose first b = 3. Then ¢ =
3,6,9. If ¢=3 or 6, g < 20,000. All simple groups of order at
most 20,000 are listed in [19] and none have this order. If ¢ =9
the result [6, 1H] is contradicted as 2° = 12-3° = 324. When b =5
or 7 [6, 1L] can be applied to show there is no character of degree
512. As there must be a character of degree 2% it must be 8 or 64.
Each of these cases can be eliminated with a routine elimination of
degree equations using block separation and Schur’s theorem [21].
We do not include the details.

4. The case Y = Yo+ Yo + +--,degy, = 20,9 = 7-5°-3*.2°. In
this section we consider the case IC where yy =, + % + -+, deg x, =
20. The case is eliminated by first showing a = 1. This case is
eliminated by considering x| C(x) where 7 is an element of order 5.
The relations (2.1)-(2.7) are used.

We begin with a preliminary discussion regarding the tree for
the prime 7 [2]. The character y is a principal 7-indecomposable
and so x) is a sum of principal 7-indecomposables [9]. There is
exactly one principal indecomposable containing %, as a constituent.
This is X, + ); where y; is adjacent to , on the tree. This means
Xo + X; is a constituent of y¥. We have already eliminated the case
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¢; =6 or x; =48, This means ; is 20 or 27, We are assuming
2, =20. If x; =27, y¥ would have two linear constituents con-
tradicting the simplicity of G or the irreducibility of ¥. This means
x; = 20.

Suppose j 7= 1. This would mean x¥ =y, + x. + x; + ¢ Here
p would be of degree 8. Clearly x; is real as it is adjacent to ¥, on
the stem. Also p isreal as it is the only constituent of yy of degree
8 and XY is real. Using (2.4) and (2.5) we see x, + ¢ + x; | N has
4, as constituent with multiplicity 3. However (2.2) and (2.3) imply
%X | N has +, as constituent with multiplicity 2. This means j =1
and so %, is adjacent to ¥, on the stem.

Let ¥ =% + x. + p. As above yx, is real. From (2.2)-(2.5)
we see

(4-1) ﬂ|N=4“ﬂe+“/’x+¢5+“/’z+’¢’4-

In particular +, and +, are not constituents of x| N. This means by
(2.1) that g has no irreducible constituent of degree 7. By (2.5), ¢
has no real constituent of degree 20. As p itself is real it can have
no constituent of degree 20. By (2.4), ¢ has no real constituent of
degree 8. If there is a nonreal constituent its conjugate also appears
as p is real. This leaves a remaining constituent of degree at most
12 which is impossible as no x; has degree 6. This means g is irre-
ducible or has two constituents of degree 14.

We can now show y, is rational. Suppose there is some element
o of the Galois group of K such that /= yx. Then (x3)° = )X’ =
Xo+ X!+ #°. As p° has no constituent of degree 20, 7 must be
adjacent to y, on the stem. However this means y, = x7.

We now show that y, is not in the principal 5-block By(5). In
fact we show that a character 7 of degree 20 in By(5) must be
irrational when restricted to a 5-Sylow group Q. Suppose not. If 7
has order 5, n(w) = —5. If there is an elementary abelian subgroup
of @ of order 5° summing the character n over the subgroup gives
(—5)(24) + 20 < 0 giving a contradiction. If @ has order 5° % has
5-defect 1 and so 7 ¢ B,(5). This gives the result as there are no
elements of order 5° in G. Let B,5) be the 5-block containing ..

We will now assume @ = 2. This is Case IC(i) in the flow chart.
We have

(4.2) XL =X+ X+t

Again, let @ be a 5-Sylow group. As a = 2, x| Q cannot be rational
by Schur [21]. Let ¢ be an element of the Galois group of a
splitting field K which fixes all p-th roots of unity for primes p
other than 5. Set
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(4.3) 77 = S aks.

Here the {; are irreducible characters of G. Let 4.2 be written in
terms of {; as

(4.4) 17 = S b .

We see xy and x°y are equal on 5-regular element. This means for
B any 5-block

(4.5) D @Ci(0) = i en b:Ci(0)

for any 5-regular p.
We apply (4.5) with B = B,(5), the b5-block containing yx,. The

character y, appears with multiplicity one on the right hand side.
There is possibly one second character of degree 14 appearing with
no zero coefficient on the right hand side. The degree is therefore
20 or 34. In particular it is congruent to —1 (mod 7). This means
the left hand side must contain a character y; of degree 20 or 27.
As (4.3) is a sum of principal 7-indecomposables there is a character
%, whose degree is congruent to 1 (mod 7). Its degree must be 8 or
15. Also y; and yx, are adjacent on the tree.

Suppose 2, = 8. It follows from the discussion in the above
paragraph that x, ¢ B«5). As N is b-regular we may use (4.5), (4.1),
and (2.4) to see yx, cannot be real. If y,|@ is not rational where @
is a 5-Sylow group of G, then Lemma 2.1 gives four nonreal con-
jugates of ;. The degree equation for B,(7) must now be

1+8+8+8+8=20+13.

This is impossible and so y, | @ is rational. By Schur’s theorem [21],
a < 2. As we are assuming a = 2 we have a = 2. Also B,(5) is of
defect 1 and so the right hand side of (4.5) is y,. This means 1L

has degree 20 and x, = ); for 5-regular elements.
Suppose j # 1 and so x; # x.. If x; is not real the degree equa-

tion becomes
14+8+84+43 =20+ 20+ 20

which is impossible. If x; is real it is on the stem. The stem hasg
5 characters giving

.Xk
y
Xo X e Xi/ X
° O ® O [}
AN
AN

.Zk
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The character x; has degree 8 or 15. This is impossible as 8 +- 8 +8> 20
and so 2z, + «;, > «;. This means 7 =1 and so ¥; = %..

As y; = %, and there are no characters with degree smaller than
8, the tree must be

( 243
Xo X1
o O

|

.

The 7-modular constituents of ¥, are therefore of degree 1, 8, 8, and
3. By [23] the constituent of degree 3 is realizable in GF(7). How-
ever 5° ) |GL(3,7)| giving a contradiction. This means z, = 15.

Suppose now %, has degree 15. Let . be in the 5-block B,(5).
We assume first B,(5) # By(5). Apply equation (4.5) with B = B,(5).
A character of degree 15 cannot be fitted into the sum (4.5) over
B,(5) as that sum is of degree 20 or 34. This means B,(5) = B,y(5).
The possible sums of degree over B,(5) on the right of (4.5) are 14
and 28. However 14 < 15. If the sum is 28, (4.3) must have a linear
constituent giving a contradiction. This means ¥, € By(5).

Because ¥ € By(5), x.(m) must be irrational for any element 7 of
order 5. This means yx, | @ is irrational where @ is a 5-Sylow group
of G. If y; is not real Lemma 2.1 gives four nonreal conjugates of
Xx The degree equation is impossible. Therefore y, is real. If yg
is a conjugate of y, a similar argument with x° shows yxg is real.
There is at least one such xi # X:.

Assume first x; = .. As ). and x; are real they are on the stem.
The stem contains at least five characters. Also yx, is adjacent to y,
on the stem. This forces a branch at y,. The tree must be

[ 74}
/

Xo X/ Xk o
® O ‘\‘
AN
N
oy,

Clearly #, =8 and G has a 7-modular representation of degree 3.
This contradicts ¢ = 2 and implies ¥; # .-

We now eliminate this case using the tree and the degree equation.
The tree has at least 5 real characters as ¥, Y, Xi» Xw X are all
real. A branch at y, implies a 7-modular character of degree 8 which
is a contradiction. This means the character ¥, adjacent to %, other
than ¥, must have degree at least 19 and so cannot be ¥, or xi. In
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turn the stem must have 7 characters. If y; has degree 27 the
configuration

X

®

3 12 15

implies yx; has a 7-modular constituent of degree 3 again giving a con-
tradiction as @ = 2 [23]. It follows that «; =20. The degree equation is

1+15+154+ 2, =20+ 20 + =z,

where ¥, is the character adjacent to x7 above. As y; is a constituent
of %0 = XX, its degree is at most 20-.21/2. The only such degrees
are 36, 50, 64, 120, and 162. There is only one solution

1+15+ 154 36 =20+ 20 4 27,

This is eliminated by 5-block separation using B,(5). We have com-
pleted all cases where a = 2 which is part IC(i) of the flow chart.

We now consider the case in which o = 1. This is IC(ii) of the
flow chart. We use the results (2.6) and (2.7). The case is eliminated
by a careful examination of the decompositions of yy¥ and yx and
their restrictions to C(w). The results of [2] provide contradictions
for each of the possibilities for decompositions of ¥y and xy.

We know from (2.6) and (2.7) that y is 5-rational, that is y lies
in the field of ¢/5th roots of unity. This can also be shown using
(4.5). We know that ¥ = x, + . + ¢ From (4.1) we know that p
is either irreducible or has two constituents g, and g, of degree 14.
Also (4.1) shows ¢, | N # p1,| N. As yx is 5-rational so is pg. As N
consists of 5-regular elements, y, and p, are 5-rational also when g
is reducible. This means that the constituents of ¥ of full 5-defect
are all 5-rational and consequently nonexceptional for »p = 5. [2].

Let S, be the character of (x> defined by S,(e¢) =5, Sy(z) = 0.
In case (2.6) let v = @, in case (2.7) let v = ¢, + @,. Then by (2.6)
or (2.7), X|C(n) = v + oS, Let v¥ = &, + & where &, is the trivial
character of C(x). This means

(4.6) 1| C(m) = & + & + @S, + ¥pS, + 59’@'5'0 .

Assume now p is reducible. By [2, II, Th. 1] set p;|C(w) =
+4;+S; where 4, is a sum of 7, irreducible characters 0i, j =
1, 2, --., 7; containing 7 in their kernel. The S; are v,S, where v; is
a character of V. The 6, j =1, 2, ..., 7, are conjugate in N(7) and
so 7; = 1, 2,4. Using 4.6 and 4.2 we see =+, + 4, = &. If 4 #= 4,
both signs must be plus. Interchanging «, with +, if necessary we
may assume ¥, has degree 1, 7, = 1. But then degree y, = 1 (mod 5)
giving a contradiction. If 4, = 4, then both signs must be equal.
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As £, has odd degree this is impossible.

This contradiction implies that g must be irreducible. We may
set u|C(m) = £+ + S as before. This time 4 =&,. As 4 is a sum of
7 irreducible characters ¢/ of C(x) with the same degree and 7 =1, 2, 4,
we see 7 =1 and #' has degree 3. In particular V is nonabelian
and so case (2.6) holds. This gives 00 = &, + 6.

The same technique can be applied to yy. We have first that
XX = Piy) + Cy(yx). Using (2.2), (2.3), (2.4) and (2.5) it can be seen
that the constituents of yxy are all of zero T7-defect. As yxy has
three distinct irreducible constituents so does yx. Using (2.2) and
(2.3) we see that either P,(}) has two distinct constituents of degree
14 and C,(y) is irreducible or P,(x) is irreducible and C,(x) has con-
stituents of degrees 14 and 7. Let these be 7, 7, 7,. We may again
check using (2.2), (2.3), (2.4) that they are 5-rational.

We also have 6> = P,(0) + C,(0). Also P,(0) and C,(6) are irreducible
as 00 = &, + 6'. As before we may set 7, | C(w) = + 4, + S; where the
4r; are sums of characters conjugate in N(m) each with 7 in the
kernel. We have "

Tty Yy Py = Py(0) + Cy(0) .

If the v, 1 = 1, 2, 3 are all distinct there would be three constituents
on the right. It is easy to see that we may assume 4, = 4, and
the signs are opposite. Therefore +; = Py(f) + Cy(d) which is im-
possible as P,(0) is irreducible of degree 3 and +; is a sum of irre-
ducible characters of the same degree. This contradiction finishes
thig section.

5. The case X =)o+ Yo + +-+,degy, =27, g = 7-5°.3"-2°. In
this section we consider the case ID where xy =%+ .+ -+, deg y, =
27. Here s = 6. There is exactly one group of this form S,(2) of
order 7.5.3*.2°. Cases are eliminated by first showing % is rational
when restricted to a 3-Sylow group. This is done much as in §4
where it was shown that y restricted to a 5-Sylow group was rational.
Here the character y, of degree 27 cannot be in the principal 3-block
by [8]. We can therefore use relations like (4.5) for the 3-block
containing %,. Once it is known that ) restricted to a 3-Sylow group
is rational, the value of b is at most 4 by Schur [21]. As y, is of
degree 27, b = 3. The two cases b= 3 and b = 4 are treated separately.
For b = 3, the generalized decomposition numbers for ¥ on C(z?) are
examined where 7* is of order 3 and normalizes a 7-Sylow group.
These lead to a contradiction. For b = 4, the 3-Sylow group is
determined explicitly. The character y, is of 3-defect 1. The various
possibilities for the tree are eliminated except of course the one
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leading to Sy(2). In this case it is shown there is an involution J
for which y(J) = —5. Adjoining —I to the matrices X(G) gives a
group generated by reflections. These groups are all known and we
obtain Sg(2).

The analysis here is much longer than in preceding sections and
we do not give all the details. Where arguments are similar to
earlier arguments they are not repeated. In eliminating cases, the
various known techniques involving block separation, cyclic defect
groups, etc., are used implicitly. Consequently, only the most trouble-
some cases are treated.

Let X = % + % + ¢ If p contained a constituent of 7-defect 1
its degree would by 6, 8, or 20. We have ruled out a degree 6 in
§2. As p has degree 21, p has no constituents of 7-defect 1. As
in §4, %, + x. is a principal 7-indecomposable and so y, adjoins ¥, on
the stem. In particular y, is real. As in §4, y, is rational.

We now consider the case in which x| S is not rational. Here S
is a 3-Sylow group of G. This is part ID(i) of the flow chart. Let
B,(3) be the 3-block containing y,. By [8] it is not of full defect.
This means that B,(3) # By(3) where B,(3) is the principal 3-block.
Also the degrees of the characters in B,(3) are all divisible by 3.
Let 0 be an element of the Galois group of K which fixes all roots
of unity except 3rd roots of unity and for which ¥°|S # x|S. This
will mean ¥°y and ¥ are equal on 3-regular elements. Let

(5.2) XA =2bL .
Let ¢ = > ¢{;, We have for 3-regular elements p
(5.3) %(0) + 23 eli(0) = 33 b.Li(0)

where the sum >' is taken only over the characters {; in B,(3). If
some ¢; * 0 appearing in (5.3) the degree {, must be 21 as such
degrees must be divisible by 3. This means some constituent of (5.2)
is linear giving a contradiction. Therefore the degree of >!',; is
27. There must be a b, # 0 appearing in (5.3) for which the degree
is congruent to —1 (mod 7). It can only be 27. This gives for
3-regular elements p

(5.3 x:(0) = Cu(0)

where (, is an irreducible character of G in B,(3). As in §4 there
are two cases (i) {, = y, and (ii) &, # y..

In either case there must be exactly one further character ¢, in
By(7) appearing in (5.2). Its degree must be 8 or 15. As ¥°¥ must
be a sum of principal indecomposables {, + {, must be a sum of
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principal indecomposables and so (, is adjacent to £, on the tree.

It is now possible to eliminate each of these cases by careful
analysis of the tree. The method is routine using block separation,
properties of the tree, and the degree equation. Lemma 2.1 and
Schur’s theorem [21] are used when {, is of degree 8 and nonreal.
We do not give any further details of this enumeration.

We now treat the cases in which x| S is rational. Again S is a
3-Sylow group. By Schur’s theorem [21] the order of S, 3¢, is at
most 3*. As yx, has degree 27 we have either b =3 or 4. We will
first treat the case b = 3, ID (ii) of the flow chart. We then treat
the case b = 4, ID (iii) of the flow chart.

Assume then that | S| = 3*. We will show first that S is non-
abelian. Suppose first S is abelian. Let x| S = 3., A; where the ),
are linear characters of S. Suppose there is an element 7 of order
9 in S. There must be an ¢ for which \;(T) is a primitive 9-th root
of unity. As x is rational all six conjugates must appear amongst
the N;, ©=1,2,..-,7. For the remaining character \; we have
N(T) =1 by the unimodularity of X. There can be no element of
S independent from 7. As there are no elements of order 27 in G
[5, 3B] we see |S|<9. Therefore S must be elementary abelian.
We can write x| S =X\ + X + N + Xy + N + X5 + A, where ), is the
trivial character. We know %, of degree 27 appears as a constituent
in x¥. As x,|S is the character of the regular representation of S,
we see all linear characters of S appear as constituents of ¥x|S.
Checking with the characters X\, \,, \; shows that yx¥|S cannot
contain 27 distinct linear characters as constituents. This means S
is nonabelian.

As x| S is faithful it must contain a nonlinear constituent. As
S is a 3-group its degree must be 3. Let g be this nonlinear character
and let U be the representation corresponding to it. Here U must
be faithful as any proper quotient group of a group of order 27 is
abelian. There is an element R in Z(S) for which px(R) = 3u where
u = ¢*'*, Here U(R) = wl, where I, is the 3 x 3 identity matrix.
This means g is nonreal. As x| S is rational Z must also appear as
a constituent. We see x| S = ¢ + Z# + N, where )\, is linear.

The constituents of y | S are all distinct and so | C(S) | is divisible
by the primes 3 and 7 only by [5, 8F]. As 7} |C(S)|, we see C(S) =
Z(Q). This means that the principal 3-block B,(3) is the only 3-block
of full defect [3, 16D]. We know Z(S) has order 3. Let {<R)> = Z(S).
Then Y(R) = 3u + 3% + M(R) = —3 + M(R). Clearly A (R) = 1 and so
X(R) = —2. In particular, if S is a 3-element and x(S) # —2, then
S is not in the center of any 3-Sylow group and so 3°}|C(S)]|.

We will apply this to the element z* of order 3 given in Table
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I, §2. Here t?c N(§) where & is an element of order 7. We may
assume e S. By (2.1), x(z®) =1 and 80 3°}|C(z%|. Let |C(z?)]| =
3*.¢, where 3 ) c¢,. Here |C(z*)/K7">| = 3¢,. For the sake of simplicity
we will replace 7* with 7. This case will be eliminated by considering
the generalized decomposition numbers for T.

Let C = C(T), C = CKT». We know |C| = 3¢, |C| = 8¢, If
b is a 3-block of full defect of C there is a corresponding block b of
full defect for C. The modular characters of b all have T in their
kernel and can be considered as modular characters of the block & of
C. If C, is the Cartan matrix for b, the Cartan matrix, C,, for b
is 3C,, [4, p. 154].

Any 3-block of full defect of C has a cyclic defect group of
order 3. The theory of such defect blocks can readily be applied [2].
There are two cases, (a) and (b). In case (a) there is one modular
character and three ordinary characters of the same degree. The
Cartan matrix is (3). In case (b) there are two modular characters
and three ordinary characters. If f, and f, are the degrees of the

modular characters, the degrees of the ordinary characters are
S fo + fo foo Also f, = f, (mod 3). The Cartan matrix is [% é]

We apply these results to the principal 3-block 5,(3) of C. We first
show case (a) is impossible. Suppose, then, C had one modular
character in b,3). Then the principal 3-block b5,3) of C has one
modular character which is of course the trivial character ¢,, We
know that y € By(3) as there is only one 3-block of full defect. Re-
sults on generalized decomposition numbers in [3, 4] show ¥(7S) =
dpy(S) = d where Se C(T) and S is 3-regular. We may pick J = 7°
of order 2. From (2.1) we see ¥(T)=d =1. Therefore d=1. How-
ever from (2.1) we see also x(7J) = —1. This would mean d = —1
giving a contradiction. This shows case (a) does not occur.

This means case (b) occurs. There are two modular constituents
of C(T) in by(3). One is @,. Let @, be the second. Let J = 7% If
d, and d, are the decomposition numbers for ¥ we obtain

X(T) =d, + dl@l(e) =1

64 UTT) = dy + dpy(T) = —1.

Subtracting we find d(p(e) — @(J)) =2. As J is an involution
p.(e) — pi(J) is an even integer. Therefore d, =1, ¢,(¢) — @.(J) = 2.
Equations (5.4) become

do + pi(e) =1

G4 dy + p(J) = —1.

This means d, is a rational integer. As dd,<6 and o,(¢) =1 (mod 3)
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we see ¢@¢) =1, d, =0. This shows that for any character y of
degree 7 the decomposition numbers are d, = 0, d, = 1.

We are now in a position to analyze the decomposition matrix if
there are at least four characters of degree 7. Suppose then that
there are four characters of degree 7. Let D be the nonzero rows
of the decomposition matrix of By(3) with respect to 7. We know

DD = [g g] The entries of D are in Z[o] where o = ¢, We
let the first column correspond to ¢, the second to ¢,. By a small
amount of trial and error, we find there is one possibility to within

permutations of the rows and changes in sign. This is

1 0]

P
H+

H+
T e

[\

S O O O

1

- )

This shows there is exactly one character whose degree is not
congruent to zero (mod 3) other than y, and the four characters of
degree 7. This is the character corresponding to the second row.
As By(3) is the only 3-block of full defect, these six characters are
the only ones whose degrees are not divisible by 8. This new
character must therefore be in B,(7) or the degree equation could
not be satisfied.

We are now in a position to obtain a contradiction if ¢ = 2 where
g ="7-5%3.2°. Certainly if a>=2, y|Q is irrational by Schur’s
theorem. Here @ is a 5-Sylow group of G. Suppose )y is not real.
By Lemma 2.1 there are at least four conjugates of y. The conclu-
sions of the above paragraph apply. Let P,(x) = 3 a;%; where 7, are
irreducible characters of G, P,x) is the character corresponding to
the symmetric tensors of rank two for X. As y # ¥ none of the 7;
are linear. By (2.3) no character of degree 7 can be a constituent of
Py(x). As 28 is not divisible by 8, P,(y) is reducible by the above
paragraph. In fact it is impossible to write P,(¥) as a sum of
characters satisfying the above paragraph. This means ¥ |@Q is real.

Suppose a = 3 where ¢g = 7.5°.3*.2°. By [25, Th. 3.1], | @ is
not real. The above paragraph applies and eliminates this case.
Therefore a < 2. Sylow’s theorem gives a = 2 or 0.

We first treat the case a¢ = 2. By the paragraphs above we
know y is real. Therefore ¥ = xx = P.x) + Cx(x) where P,(y) is the
character corresponding to the symmetric tensors of rank two. As
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X is a constituent of yy we see by considering degrees that P,(y) =
%o + X As X, and yx, are rational this means P,()) is rational. Using
the formula for P,(y) we have that y*R) + x(R? is rational for any
ReG. We prove a lemma regarding this situation. We assume
x| Q is real.

LEMMA 5.1. If Py()) | Q s rational, Q s cyclic. Here Q is the
5-Sylow group of G, Pyx) ts the character associated with the
symmetric tensors.

Proof. Let m be an element of order 5. Let ¢ be an auto-
morphism of R[\] mapping M to A\* where \ = ¢***, R = rationals.
We have x°(z) = x(z%), x*(r) = x(r) = x(z). Also

(x*(m) + (7))’ = x¥(x) + (=) ,
X (m) + x(m) = x¥(x7) + x’(%) ,
=0 +x—Dx=0.

This implies y°(7) = (%) or (x°+x—1)(w) =0. Assume first (y°+x)(7)=
1. This will be true also for «, 7% 7%, n*. Therefore

0+ N@E+7+ 7+ 7+ e)

is 18 giving a contradiction. Therefore x°(z7) = yx(x). In particular ¥
is rational when restricted to elements or order 5 in Q. As Q is
abelian it must be cyclic by Schur’s theorem [21]. This completes
the proof of the lemma.

As there are no elements of order 125, |Q| < 25. Let 7, be a
generator such that (7))’ = 7. We know y(7w) = 2. Suppose

XIQ=)\11+X1+7\:2+X2+7\;3+X3+7\:0,

where the \; are linear characters of @, \, is the trivial character.
Only two of A, A, Ay can represent 7, by a primitive 25-th root of
unity. This means there are at least five conjugates of y contradict-
ing the above paragraphs.

We have shown then that g = 7.3%°.2°. Sylow’s theorem gives
¢c=3,6,9. The cases 3,6 are well within the known range under
20,000 [19] and there are no simple groups with these orders. If
¢ =9 we again mention [6, 1H] which shows 2° < 12.3° = 324.

This eliminates all cases for which b = 3, Case ID(ii) of the flow
chart. We begin now Case ID(iii) of the flow chart in which b = 4.
We show there is exactly one group of this form Si(2).

We are considering groups whose orders are 7.5%.3*.2°. Sylow’s
theorem gives ¢ =1 (mod2). As ¢ <6 we have a =1, 3, or 5. We
will first show that a = 5.
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Suppose then that a = 5. Let @ be a 5-Sylow group. We know
from [25, Th. 2.1] that @ is abelian. By [25, Corollary 2.8] an
elementary abelian subgroup of @ has order at most 5*. In particular
Q is not elementary abelian. Let 7, be an element of order 25.

We know yx, is a rational character of degree 27. Let

27
X ' Q = ; N
where the \;, 1 = 1,2, ..., 27 are linear characters of Q. As y, is

faithful there is an ¢ such that \(z) is a primitive 25th root of 1.
Each of the 20 conjugates of \; must appear as constituents in y, | Q@
as y, is rational. Let K be the kernel of )\;,, As there are no
elements of order 125 in Q, K has order 125 and Q = K x <{7).
Clearly K is in the kernel of each of the conjugates of ;. If
A+, A, are the characters )\; not conjugate to \; we have y =
SV N a faithful rational representation of K. As K has order 5°
this is impossible by Schur’s theorem [21]. We have proved that
a # 5 and so @ must be 1 or 3.

The character ¥, of degree 27 is in a 3-block of defect 1. Let
B,(3) be the 3-block containing y,. As the defect group is cyclic of
order 3 we may apply results in [13]. There are exactly three
characters in B,(3). The three characters in B,(3) may all be of
degree 27, in which case two are nonreal, or there will be two
degrees v,, vy, besides 27 such that 27 + ¥y, = y,. The degrees y, and
9, will be divisible by 3° but not 3*. By checking the various possi-
bilities for the degrees of representations of the groups we are con-
sidering we find exactly one possibility. This is y, = 189, y, = 216.
Block separation has been used in this elimination. This means that
By(7) contains characters with degrees 1, 27, 216 or characters with
degrees 1, 27, 27, 27. In the latter case the tree has a branch.

It is now possible to eliminate all but eleven possible degree
equations by straightforward techniques as described earlier. We do
not include the details but list the degree equations not eliminated.

1. 1+ 15+ 120 + 512 = 27 + 216 + 405
1+ 64 + 386 + 162 = 27 + 216 + 20
1+ 120 + 120 + 162 = 27 + 216 + 160
1+ 960 + 120 + 162 = 27 + 216 + 1000
1+ 64 + 64 + 162 = 48 + 27 + 216
148+ 120 + 162 = 27 + 216 + 48
1 4 512 + 288 + 162 = 27 + 216 + 720
14 120 + 162 = 27 + 216 + 20 + 20
14120 =27 4+ 27 4+ 27 + 20 + 20
14 120 + 120 = 27 + 27 + 27 + 160
1+ 960 + 120 = 27 + 27 + 27 + 1000.

L S Ul ol

T
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We now separate the cases g = 7-5-3*.2° and g = 7.5°.3*.2°. We
begin with g = 7.5.3*-2° and show that all degree equations are
impossible except (1) and that this leads to Sg(2).

By Sylow’s theorem ¢ = 3,6,9. The only possible degree equa-
tions for ¢ =3 are (8 and (9) as the remaining equations contain
degrees divisible by 16. Equations (8) and (9) can be eliminated
using the two characters of degree 20 which must be in a 2-block of
defect 1. However on the tree they are off the stem and so they
must be complex conjugates. This is impossible. This leaves the
two cases g = 7-5-3'.2° and g = 7-5.-3*.2°. We will do the latter
case completely to obtain S,(2). The case g = 7.5-3*.2° can be done
similarly.

We assume then that ¢ = 7.5.3*.2° or 7-5.3*.2% The results
and notation of §2 for groups of order 7.5-3°-2° will be used, in
particular equation (2.6) and (2.7). Let 7 be of order 5, C(w) =
x> x V. We know | V| =38"-2". Let V, be a 2-Sylow group of V
and V, a 3-Sylow group of V. The restriction x| V, has linear con-
stituents by (2.6), (2.7) and so V, is abelian. By (2.6), (2.7), X |V,
has at most 3-distinct linear characters. Using [5, 3D] we see
| V,| < 3. In particular » < 2. If V, is abelian, the variety' of x| V,
is at most 3 and so s < 2. In case 2.7 this is always the case. In
the case 2.7, V, at any rate has a subgroup of index two which is
abelian with variety at most 3. In this case s <3. If V, is in fact
nonabelian | V;| = 2%, and 6(J) = —2 where Je Z(V,).

We also know that x| V, is rational. Therefore there can be no
element of order 9 in V, as the variety is at most 3. Furthermore
if T is of order 3, the eigenvalues of X(T) must be A, %, 1,1,1,1,1
where A = e, In case (2.6) then o(T) =1, 6(T) = —1; in case
2.7, ¢(T) =1, (p, + )(T) = —1. In particular 32} | V|. If there
is an involution J which commutes with 7, then X(J) will have
either six or two eigenvalues —1. In particular, the eigenvalues of
X(TJ) will be {1,1,1,1,1, —x, —X\} or {—1, —1, —1, —1, —1, A, —)\}
for T or T*. In each case Blichfeldt’s theorem [1, p. 96] is contradicted.
This means that V cannot contain an element of order 6. In par-
ticular if | V| is divisible by 24 this is the case. In case (2.7), V is
abelian and so | V| is not divisible by six.

We now consider the case g = 7-5-3*.2°. Let w = | N(xn)/C(%)]|.
If w =2 by Sylow’s theorem | V| = 2 (mod5). This means | V| =2
or 12. If |V| =2, V is abelian and so case (6.7) applies. However
here @, must equal @, giving a contradiction. If | V| =12, V must
be nonabelian and so case (2.6) applies. Therefore V has an irreducible
representation of degree 2 and so there is an element of order 6 in

1 The variety is defined in [1] or in [24, Introduction].
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V. This shows w # 2.
Suppose g = 7-5-3'-2° and w = 4. In this case Sylow’s theorem

gives | V| =1 (mod5). This shows |V|=1 or 6. If [V| =1 there
would be one b5-block of full defect and so no character of degree 7.
Therefore | V| = 6. As there can be no element of order 6 in V, V
must be isomorphic to S, as there are only two nonisomorphic groups
of order six. Case (2.6) applies.

The group V is generated by an element 7' of order 3 and an
involution J such that J7T.J = T-'. There are three irreducible charac-
ters of V; %, 7, 0. Here 7, is the trivial character; 7,(7T) =1,
n(J)= -1, n() =1, &T)=—1, 6(J) =0, 6(e) =2. There are
therefore three 5-blocks of full defect: By(5) corresponding to 7, B,(5)
corresponding to 7,, and B,(5) corresponding to ¢. In each case ¢ = 4
and so each block consists of 5 ordinary characters. The degrees of
characters in B,(5) and B,(5) are congruent to +1 (mod5). In By5)
they are congruent to +2 (mod 5).

Suppose there is a character, say ., of degree 162. Then y, € B,(5)
and so Y(rT) = +1. As y, is of full 3-defect this is a contradiction
[7, p. 579]. This shows that cases 2, 3, ---, 8 are impossible.

The cases 9, 10, 11 can be eliminated by block separation as y, is
the only possible character in By(7) N By(5).

This leaves (1) as the only possible degree equation remaining.
The degrees in B,(5) are so far 7, 27, 512. If x is not rational the
.degree equation would be 7 + 7+ 27 + 512 = 553 = 7.79 which is
absurd. Therefore x is rational.

It is now possible to show G = Si(2). Let J be an involution in
V. As 6(J) =0, ¢(J) = —1 by the unimodularity of X(J). There-
fore X(J) has six eigenvalues —1 and one eigenvalue 1. As G is
simple the conjugates of J generate G.

We consider the group G = G x Z, and a representation X of G
given by X(a, b)) = X(a)p(d) where acG, be Z,. Here 7 is the non-
trivial character of Z,, Z, is the group of order 2. As X is rational
and of odd degree it can be written in the real field [22]. We may
assume the matrices are orthogonal. If Z, = {J), X(JJ) is a re-
flection in R. The same is true of any conjugate. The group
generated by these conjugates is G as can be quickly checked. This
group is then a group generated by reflections in R’. These groups
have all been classified as Weyl groups of certain Dynkin diagrams
containing seven elements [10, 11, 26]. These are A, B, D, E.,.
The only group with the correct order is the Weyl group of E,. It
is known that the Weyl group of E, has a subgroup of index 2
isomorphic to Sy(2) and that it has a complex irreducible representa-
tion of degree 7 [14].
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The case g =7.5-3*.2° can be handled similarly. All degree
equations can be eliminated.

We now proceed to the case g = 7.5°.3*.2°. Sylow’s theorem
gives ¢ = 4, 7,10. The cases 1,2,6,7, 8,9 can be eliminated by a
routine use of the established techniques. For example in cases 1
and 7 the character of degree 512 implies ¢ = 10. However the
character of degree 512 is then of 2-defect 1 and so must occur with
multiplicity two. In cases 2, 8, and 9 the characters of degree 20
cannot be in B,(5) and the cases are eliminated by 5-block separation.
In case 6 there is a rational representation of degree 8 contradicting
[21].

The remaining cases 3, 4, 5, 10, 11 will be eliminated by examining
a 3-Sylow group of G. It will be shown there is a self centralizing
element 7, of order 9. As 5°|g we know that x| P; is not real by
[25, Th. 3.1]. By Lemma 2.1 there are at least four conjugates of
%. The cases can be eliminated by showing it is impossible to complete
the m, column of the character table. The decompositions of x¥
and yy together with equations (2.1)-(2.3) will be used. As no groups
arise we sometimes only sketch the arguments.

We first show there is a self centralizing element of order 9.
Let T generate the defect group of B,(3). Then, as B,(3) is not of
defect 0, x.(T) =0 by [3]. As g-%(T)/|C(T)|27 is an algebraic
integer 3} |C(T)|. Therefore @ is nonabelian where @ is a 3-Sylow
group of G. As earlier using the fact that x| @ is rational we obtain
X1Q = p+ Z + N\ where p has degree three. The representation U
corresponding to g can be written in monomial form.

There must be an abelian subgroup of order 27. Let M be any
abelian subgroup of order 27. Let x| M = >, {;. Suppose there is
an element of order 9 in M. If {, represents it faithfully all six
conjugates must appear in )| M. Therefore , is faithful and M is
cyclic. This is a contradiction and shows M is elementary abelian.

The matrices U(M) may be picked as all diagonal matrices of the:
form

0,0 0

0 0,01, (0)=1.
0 0 p

If R¢ M we may choose a basis so that

U(R) =

Qo o
©c o R
o~ o
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C 00
As UR) = [O C g we have C*=1. We may choose R so that
0 0

C =1 or p where p = ¢, Picking R with C = p gives an element
7w, of order 9. The eigenvalues of ¥(w,) are distinct and so |C(w,)| is
a 3-group by [5, 3F] and the fact 74 |C(my)|. If 3°||C(m,)| there
would be an abelian subgroup of order 27 which was not elementary.
This means 7, is self centralizing. We have also shown y(z,) = 1.

The value of ¥, and the four characters of degree 7 on 7, is 1.
Let 7, +-+, 7, be the remaining characters of G for which 7,(z,) # 0.
Let 7,(m,) = b;,. The orthogonality relations give

b5, = 4
(5.5) T
> ban(e) = —29.

There must be at least one character from B,(7) amongst the ),
and in the 5 remaining cases such degrees can be given explicitly.
In case 5 the characters of degree 64 must be amongst the 7. In
cases 3 and 10 the character of degree 160 and in cases 4 and 11 the
character of degree 1000 must be one of the 7,, From the tree in
each case it can be seen the value is real and except for case 5 is
rational and so the value b; can be obtained by its congruence mod 3.

We now show there are at least two #; occurring as constituents
of xx. As yy has at least three constituents the same is true of yy.
This implies P,(x) or Cy(x) must be reducible. From (2.2) and (2.3)
we see that P,(y) has no constituents of degree 7 and C,(y) has at
most one. If P,(x) is reducible there are two constituents of degree
14. As P,(y)(m,) is 1 they are not both equal. If C,(x) is reducible
there is one constituent of degree 7 and one of degree 14. In any
cagse there are at least two new constituents. Their values on 7,
can be readily evaluated. In each case it is now impossible to satisfy
(5.5). This completes the final case in Section ID of the flow chart.

6. The case s = 2. In this section we consider the case s = 2.
There is one group PSL (2,8), of order 504, of this kind, case II in
Theorem I. This is section II of the flow chart. There are five
characters in By(7), %, the trivial character, y, of degree congruent
to +1 (mod 7) and three exceptional characters y;, xi, x5 whose degrees
are congruent to +2 (mod 7). There are two possible degree equations

(a) 1+x=2 or (b) 1+ =ua

where 2, = degree y,, x; = degree Xi.
If x is the character of degree 7 set

6.1) XX = Xo + axy + 006 + X6+ X) + 7
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where 7 has constituents of zero 7-defect. Here a and b are non-
negative integers. As the degree of yy is 49 and the degree of 7 is
divisible by 7 it is clear that either ¢ = 0 and x, = —1 (mod 7) or b0
and 2!=2 (mod 7). This means that x, =6, 20, 27, 48 or =, =2, 9, 16.
The only degree equations possible for G are then

a 1+5=6, (b 1+1=2, () 1+8=9, ) 1+15=16.

The first case (a) is impossible by [5] or [17]. In case (b) G’ is
of index 2. But then G’ has a normal 7-complement and is not
simple [5]. It can also be eliminated by [1] or [2]. In case (c) 2-
block and 3-block separation imply ¢ = 7-5°.3%.2°, As there is a
rational character of degree 8 a < 2 by Schur [21]. Sylow’s theorem
gives ¢ = 0. There is one simple group PSL (2,8) of order 504 [19].
It has a representation of degree 7 by [15]. One can also work out
the character table quite easily.

In case (d) the character ¥, of degree 15 is rational. A 5-Sylow
group is abelian. Therefore ¥, cannot be in By5) as x(S)/15 =1
(mod 5) for any 5-element S. This would imply ¥%.(S)=15 or %.(S)=
—10. Neither are possible in G. This argument is similar to one in
§ 4 where a character of degree 20 was involved. If ¥, & By(5), 5-
block separation implies ¢ = 7-5-3°-2°. However the four characters
Yos Xos A3y x5 are all in By(5). By [2, Th. 11] there must be one further
character in B,(5) of degree 49. This is a contradiction and completes
this section.

7. The case s = 3. We now consider the case s=3, G =G'.
Thus G is simple by [5,8A]. This is section III of the flow chart.
In this case By(7) contains ¥, two characters y,, ¥, whose degrees are
congruent to +1 (mod 7), and two exceptional characters y}, ¥: whose
degrees are congruent to +3 (mod 7). If x; = degree y;, i = degree
yi for © = 1, 2 the degree equation becomes one of

a 1+, =2 +a 2, = —1 (mod7), ® =1 (mod7),
7.1) (b)) 1+ ai==w + 2, = —1 (mod 7) ,
() 1+ o + 2, =2l 2 =2,=1 (mod7).

As in §§2 and 6 we have
(7.2) AL = Ao + @Yo + ) + 005 + %) + 7

where again «a,, a,, b are nonnegative integers and the constituents of
7 are of zero 7-defect. We may assume that either (i) a, # 0, , =
—1 (mod 7) or (ii) b0 a5 =3 (mod7). We may also assume that
% or x: adjoins ¥, on the stem as yy is a sum of principal indecom-
posables [9]. The possibilities for «, in (i) are 6, 20, 27, 48. The
possibilities for x; in (ii) are 3, 10, 24. It is clear that case ¢ in (7.1)
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is impossible. This means the tree contains four real characters all on
the stem.

If there is a character of degree 3, then G = PSL (2,7) by [1, 2,
or 17]. Also, PSL (2,7) has a character of degree 7 by [15]. Alter-
natively, the character table for PSL (2,7) can be quickly worked
out. This is Case IV of Theorem I.

We will show that when x, =6 G = PSL (2,7); when x, = 20, G = A,,
when x, = 27, G = U,(3). The remaining cases can all be eliminated.
The methods are similar to those of earlier chapters but in general
much simpler because there are only two missing degrees in the degree
equation. The details will not all be given.

Suppose that z, = 6 and y, adjoins X, on the stem. This means
that x,x, contains ¥, as a constituent in case (a) or yi as a constituent
in case (b) by an argument involving the tree. In particular y, or
% has degree at most 21 as (¥,)* has constituents of degrees 15 and
21 corresponding to the symmetric and skew symmetric tensors.
The possible degree equations are

(i) 1+8=6+3 and (ii) 1+15=6+10.

Case (i) is again by [1 or 2], PSL (2,7).

In case (ii), y, is in By(5) by 5-block separation. [As y, is rational,
5° g and 3°f¢ by [21]. This means g =7-5-3°.2°; b <4. As in §2
we apply the results in [2, II, Th. 1] for the prime 5 this time with
replaced by y.. Let C(x) = <> X V where 7 is a 5-element. Then
0lV =@, +5p, where ¢, is the trivial character of V, ¢, is a
linear character of V. It is immediate from the unimodularity of
the representation corresponding to y, that ¢, = ¢,. This means
| V| =1. In particular there is only one 5-block of full defect by
[3] and so x € By5). This means B,(5) contains Y, X, ¥ and a fourth
character ¥* conjugate to 7.

As there are no elements of order 5-2 or 5-3 block separation
applies to By5). If b =1, By(b) N B«(3) contains three characters
Xo» X> x*. This contradicts the theory of cyclic 3-defect groups.
Therefore b= 2. By block separation By(5) N By3) = B,5). In
particular x, € B,3) and so 56=3 [12, 90.19]. Let 7=, be an element
of order 3 in the center of a 3-Sylow group. As yx, is rational,
Lu(m) =3,0, —3. As y,€By(3), Y(m) = —3. This implies x(w,) =
1¥*(my) = —2. Computing a(z, 7, 7;) [6-3.1, 3.2] now gives a negative
value and so a contradiction. This case is therefore impossible.

Suppose x; = 10 and ¥; adjoins ¥, on the stem. Using arguments
involving the tree we see x, <100. The only degree equations possible
are



232 DAVID B. WALES
(i) 1+15=6+10 (ii) 1+36=10+27.

Case (i) is eliminated as in the above paragraph. In case ii, ¥} is
rational when restricted to a 5-Sylow group and so 5°})g. The case
g = 7-5°.3*.2° is eliminated by 5-block separation on x; and ¥ The
case 7-5.3".2° ig eliminated by 5-block separation with B,(5).

If y, = 48 or z} = 24 an argument similar to that of § 38 applies
to give g = 7-3°.2°. This case can be eliminated as there must be a
degree congruent to =1 of the form 2% or 3’. These few cases can
all be easily eliminated.

There are two cases remaining, x, =20 and «, = 27 with y,
adjacent to x, on the stem. We can apply the same tree arguments
to see that y; or y, has degree at most 210 if x, = 20 and at most
378 if x, = 27. There are only a few possibilities and all but the
following three can be easily eliminated using techniques already
discussed.

(i) 1+64=20+45

(ii) 1+32=27+6

(iii) 1+50=27+24.

In case (ii) the order is 7.5%.3%.2° by block separation. As y,
has degree 6 and is rational ¢ <1 by [21]. By Sylow’s theorem
a = 0. There is exactly one simple group with this order, U,(3), [19].
It is known to have a representation of degree 7. For example, a
character table is given in [16].

In case (i), y, of degree 20 is rational. As in §4, ) cannot be
in B,(5). Block separation now gives g =7-5.3*-2°. This means b=2
or 8. For b =2 the order is 20160. There are two known simple
groups of this order A; and PSL (3,4). Only A; has a character of
degree 7. The character table can be completed in a routine way to
the character table of A;. By [20], G must be A,. The case b =8
can be eliminated by closely examining C(x) and noting | V| = 2, 12,
or 72.

The third case is, curiously enough, quite troublesome. We do
not give full details but just sketch the argument. Block separation
on the characters of degrees 50 and 27 gives g = 7-5%-8%.2°. Sylow’s
theorem gives ¢ = 3, 6, 9.

If y is real P,(x) = %, + . and so P,(x) is rational. By Lemma
5.1 a 5-Sylow group is cyclic. This case can now be eliminated using
[13]. This shows % is not real. By Lemma 2.1 there are at least
four conjugates of y.

As in §5 it can be shown that the 3-Sylow group is nonabelian.
Let T be an element of order 3 not in the center. The decomposition
numbers for C(T) can be analyzed. The analysis is not as easy as
in §5 as there is no involution inverting a 7-element. As in §5
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there are two possible Cartan matrices (9) and [g 2] Using Yo Yo

and the four characters of degree 7 and carefully analyzing the
possible decomposition matrices this case can be eliminated.

8. The case G#G'. We now discuss the case in which G=G'.
This is case IV of the flow chart. It is shown in [5] that G’ is a
simple group and so X(G') is one of the representations already
obtained. The candidates for G’ are PSL (2, 7), PSL (2,8), A, and U,(3).
G’ could not be S;(2) as | N(P)/C(P)| =6 in this case and so any exten-
sion would have an element in C(§) where & is an element of order
7. For the same reason |G:G'| =2 if G’ is PSL (2,7), A; or U,3);
|G: G| =38 if G is PSL (2,8).

If « is an element of G not in G’ the map 6,: &£ — &% £eG’ is an
automorphism of G’. As a cannot commute with an element of order
7, 0, cannot be the identity automorphism. It cannot be an inner
automorphism as no element an, » € G’, can commute with an element of
order 7. Therefore 6, is an outer automorphism. The automorphisms
of our groups are all known. A very readable account without proofs
using the fact they are all Chevalley groups can be found in [9].

In the case of PSL (2,8), (4,)° is an inner automorphism as a’e G’.
By taking 6,7 where 7 is an inner automorphism we can assume
(6, =6, as in G a T-element is self centralizing. We see then that
G is the semidirect product of G by <0,>. If A is the automorphism
group of PSL (2,8), I(A) the inner automorphism group, then A/I(A4)
has an element of order 3 generated by a field automorphism. There
are seven such extensions all isomorphic. We may assume then the
extension is induced by a field automorphism. From the character
table [15], PSL (2,8) has four characters of degree 7 and so one
must lift.

In the remaining case (,)* is an inner automorphism as a*eG'.
In each of the remaining cases there is exactly one element of order
2 in A/I(A). It must be 0,. By taking an element a7z instead of «
we can assume (4,)* = 6, the identity automorphism. In this case a?
must commute with all elements of G’ and so must be ¢. This shows
that G is uniquely determined as the semidirect product of G’ and
<{a) with the automorphism 6,.

In each of the groups PSL (2,7), A;, and U,3), there is exactly
one rational character of degree 7. This means 6, must leave it fixed
and so the character of degree 7 can be lifted to G.

In the case of PSL (2,7) there is certainly only one representation
of degree 7 as the sum of the squares of the degrees in B,(7) is

168-7°. The element a can be taken [‘(1) (1)] /[_(1) _(1)] in the usual
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matrix form of PSL (2,7).

In the case of 4, one may check the character table [18] to see
there is only one representation of degree 7. However, this is not
necessary because S, is known to have an irreducible unimodular
representation of degree 7 and so G is S,.

For the final case U,(3) one must check a character table [16].
Here there are three representations of degree 7, two of them are
conjugate and the third rational. The automorphism is a field auto-
morphism. The group G must be the group G,(2) as G.(2) cannot be
Zy, x G’ or it would have an automorphism of order 2 [9].

Frow CHART. |G| =g = T7-5%-3".2°.
L s=6. =%+ 2oap+1n G=G.
A(§2). One of y;, t=1,2, ---, 6 has degree 6.
B(§3). Some a;, =1, x;, = 48. We assume a, = 1, x, = 48.
(i) yx irrational on a 5-Sylow group.
(ii) g="17-5.3.2
(iii) ¢ =17-3".2"
C(§4). Some a;, =1, z; = 20. We assume a, = 1, &, = 20.
(i) a=2.
(ii) a=1.
D(§5). Some a, =1, x; =27. We assume a, = 1, x, = 27.
(i) yx restricted to a 3-Sylow group is irrational.
(ii) b =3.
(iii) & = 4. (This case gives Sy(2)).
II. (§6). s=2 G =G'. (This case gives PSL,®8).)
IOI. (§7). s=8 G=G'. (This case gives PSL,(7), 4;, and U,3).)
IV. (§8). G+ G'. (This is VII of Theorem I).

The author wishes to thank Professor Brauer for his help and
encouragement. He suggested many of the techniques and helped
to shorten many of the original proofs.
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AN ISOMORPHIC REFINEMENT THEOREM
FOR ABELIAN GROUPS

R. B. WARFIELD, JR.

In this paper we find a class & of Abelian groups with
the property that if a group A is a direct sum of groups in
the class &, then any two direct sum decompositions of A
have isomorphic refinements, The class & includes those groups
which are complete and Hausdorff in their natural topology
and also the torsion-complete p-groups,

All groups in this paper are Abelian groups, additively written.
The natural topology (or Z-topology) is defined on a group G by taking
as neighborhoods of 0 the subgroups nG, for nonzero integers n. A
group G is called Hausdorf if it is Hausdorff in this topology, or, equiva-
lently, if Nx#G = 0 (where n ranges over all nonzero integers). G has
bounded order if for some nonzero integer n, nG = 0. We will fre-
quently use Prufer’s theorem that a group of bounded order is a
direct sum of cyclic groups [9, Th. 6]. The groups which are com-
plete and Hausdorff in the natural topology are exactly the reduced
algebraically compact groups in the terminology of [9]. A p-group
is torsiom-complete if it is Hausdorff and it is the maximal torsion
subgroup of its completion in the natural topology (which in this case
is the same as the p-adic topology).

We use the symbol 3 for the direct sum of a family of groups,
A@ B for the direct sum of the groups A and B (either abstractly
or as a subgroup of another group), and A + B for the ordinary sum
of two subgroups of a group (not necessarily a direct sum). If a
group G has two direct sum decompositions, G = >;.; 4; = ;s B
we say that these decompositions are isomorphic if there is a bijective
mapping ¢: I — J, such that 4; = B, for all eI, and we say that
the second decomposition is a refinement of the first if each B; is
contained in one of the A..

A group B has the exchange property if for any group A, if
A=B®@C=73,.;D;, with B= B’, then there are subgroups D, < D;
such that A = B"@ 3., Di. If this holds in every case where the
index set I is finite, then B is said to have the finite exchange pro-
perty. It is not known whether these two properties are equivalent.
The exchange property has been exploited for the study of infinite
direct sum decompositions by P. Crawley and B. Jonsson in [4].

DEFINITION. An Abelian group G is in the class & if it satisfies
the following three conditions:

237
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(i) @G is Hausdorff;

(ii) G has the finite exchange property;

(iii) If f: G — M is a homomorphism of G into a Hausdorff group
M and M = >;.; M, then there is a finite subset J<= I and a decom-
position of G, G = G, P G,, where G, is of bounded order and every
nonzero element of G, has a nonzero muitiple whose image under f

is in >ye, M.

The main result of §4 below is that complete Hausdorff groups
are in &. Torsion-complete p-groups are also in & since Crawley
and Jonsson showed [4, Lemma 11.4] that they have the exchange
property, and property (iii) is easy to check directly (using, for ex-
ample, the completeness of the socle in the p-adic topology and ap-
plying the Baire category theorem as in §4 below).

There are many other examples of groups in &. Crawley proved
[3, Lemma 3.5] that for p-groups properties (i) and (ii) above imply
(iii) (his condition appears weaker than (iii) but is actually equivalent)
so any Hausdorff p-group with the finite exchange property is in <.
He also constructs in [3] a class of “stiff” p-groups which are in &,
but which are not torsion-complete. For other examples, we remark
that if G is a Hausdorff group whose maximal torsion subgroup 7 is
a stiff p-group and if G/T is divisible of finite rank, then G is a
mixed group in <. Finite rank pure subgroups of the p-adic integers
(for any prime p) are examples of torsionfree groups which are not
complete but which are in & (see Proposition 1 and the proof of
Proposition 4 in [14]).

We will need two important additional properties of <.

LEMMA 1. If G is in &, so is any summand of G. If Gt =
1, «--,n) are in &, sois G, --- BG,.

LEMMA 2. If Ge<&, any two finite direct sum decompositions
of G have isomorphic refinements.

Lemma 1 is obvious except perhaps for property (ii) for which
see [4, Lemma 3.10]. Lemma 2 is immediate from the finite exchange
property. The groups in & actually have the exchange property (not
just the finite exchange property). For a proof we refer to [3,
Lemma 3.6], only remarking that one must use our Lemmas 6 and 7
below instead of Crawley’s 3.2 and 3.3. We will not need this result.

We will state our main results for abstract classes of groups,
since the class % is not the only class of groups for which these

theorems can be proved.



AN ISOMORPHIC REFINEMENT THEOREM FOR ABELIAN GROUPS 239

THEOREM 1. Let < be a class of groups such that

(i) Summands and finite direct sums of groups in & are in
,

(ii) If Ge &7 then any two finite direct sum decompositions of
G have tsomorphic refinements, and

(iii) If Ge &, and f:G— M is a homomorphism, where M =
Nie: M;, and the M, are all in <, then there is a finite subset J =
I and a decomposition of G, G =G, P G, where G, is of bounded
order and every monzero element of G, has a nonzero multiple whose
image under [ is in D, M.

Then if A is any group which is a direct sum of groups in the
class =, any two decompositions of A imto summands in the class
<7 have isomorphic refinements.

THEOREM 2. Let <7 be a class of Abelian groups satisfying the
hypotheses of Theorem 1, and such that the elements of < have the
finite exchange property. Then if a group A is a direct sum of
groups in the class <, any summand of A is also a direct sum of
groups in the class .

Sections 2 and 3 below are devoted to the proofs of these
theorems.

COROLLARY. If <7 is a class of groups satisfying the conditions
of Theorem 2 and A is a direct sum of groups in the class & then
any two direct sum decompositions of A have isomorphic refinements.
In particular, this applies to the class &, (by definition and Lemmas
1 and 2) so (specializing further) if A is a direct sum of complete
Hausdorff groups or of torsion-complete p-groups, then any two direct
sum decompositions of A have isomorphic refinements.

The results of this paper for torsion-free and mixed groups are
entirely new, but the corresponding questions for p-groups have a
considerable history. Reinhold Baer completely solved the problem
for countable p-groups in 1935 [1]. Kulikov proved in [11] that if
an Abelian p-group is a direct sum of ecyclic groups, then any two
direct sum decompositions of the group have isomorphic refinements,
thus generalizing one of the results obtained by Baer in the counta-
ble case. Kulikov also defined torsion-complete p-groups in [11] and
showed that any two direct sum decompositions of a torsion-complete
p-group have isomorphic refinements. E. Enochs, in work based partly
on earlier work of Kolettis [10], proved in [5] the special case of
Theorem 1 involving direct sums of torsion-complete p-groups. Our
proof of Theorem 1 was motivated by his paper. Crawley generalized
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this result in [3], replacing torsion-complete p-groups by Hausdorff
p-groups with the finite exchange property. In both of these cases
one still needs to prove the corresponding special case of Theorem 2.
This has previously been done only in the special case of direct sums.
of torsion-complete p-groups—for countable sums by Irwin, Richman
and Walker [7], and in general by P. Hill [6] and the author [12],
independently.

We close this introduction with some examples to illustrate the
limitations of our results. Numerous examples of groups without the
isomorphic refinement property are known, due to Baer [1] (for count-
able p-groups), Jonsson [8] (for torsion-free groups), and Corner
and Crawley [2] (for Hausdorff p-groups). On the other hand, there
are groups not in the class & for which a theorem such as ours
should be provable. If G is a p-group such that the subgroup G' of
elements of infinite height is torsion-complete and not zero, and such
that G/G* is stiff (in the sense of [3]) then G has the exchange pro-
perty and any two direct sum decompositions of G have isomorphic.
refinements, but G is not Hausdorff and therefore is not in &. Pos-
sibly the class & could be enlarged by omitting condition (i) and
suitably altering condition (iii).

1. Lemmas on pure subgroups and projections. We recall that.
if A is an Abelian group and B a subgroup, then B is pure in A if
nB = BN nA for all integers n. We define the p-height (denoted 4,)
of an element x by setting h,(®) = » if x = p™y for some y but z #
p"*'z for any 2z, and h,(x) = ~ if x is divisible by all powers of p..
By the height of # we mean the function associating to each prime:
p the number A,(x). Clearly a subgroup B is pure in A if and only
if the heights computed with respect to B and with respect to A are:
the same.

Most of the lemmas that follow are generalizations to mixed.
groups of well-known and widely used results for p-groups. The first.
two, for example, are generalizations of Lemmas 12 and 7 of [9].

LEMMA 8. If M is a group and N a pure subgroup such that for
every v e M (x % 0) there is an integer n such that nx # 0 and nx e N,
then N = M.

REMARK. This lemma is not true for modules over an arbitrary
integral domain. For instance, if D is a divisible R-module which is.
not injective, and E is the injective envelope of D, then D is pure:
in E and every nonzero element of E has a nonzero multiple in D,
but F = D.



AN ISOMORPHIC REFINEMENT THEOREM FOR ABELIAN GROUPS 241

Proof. By a finite reduction process, it suffices to show that if
p is a prime and pxe N, then xeN. If px =0 this is trivial by
hypothesis, since some nonzero multiple of # must be in N. Other-
wise, px = py for some y e N (by the purity of N) and p(x — y) =0
so either # = y (and we are done) or ¢ — y is of order p and hence
in N, and = (x — 9) + ¥ is a sum of elements in N.

LEMMA 4. Let M be a group and N a subgroup and say that
for all xe N (x == 0) there is an integer m such that nx + 0, and nx
has the same height in M and in N. Then N is pure.

Proof. By a finite reduction we need only show that if px has
the same height in N and M then so does x. Since x and px have
the same g¢-height for all primes ¢, ¢ # p», we need only consider p-
height and we must show that if 2 = p"y for some y € M then there
is a ze N with & = p"z. If px = 0 the result is trivial since in this
case, if max # 0 then nx and x have the same height. We therefore
assume px = 0. :

Suppose x = p"y, y € M. Then px = p**'y and by hypothesis, pxr =
p"*'z, for some z,€ N. Then p(p"z, — x) = 0 so either x = p"z, (and
we are done) or p"z, — x i8 of order p and hence has the same height
in M as in N. Since it is divisible by »" in M (since x = py) it is
also divisible by p™ in N, so that there is a z, € N with p"z, = p"z, — =,
that is, « = p"(2, — 2z.), proving the result.

DEFINITION. If two pure subgroups A and B of a group M have
the property that each nonzero element of A has a nonzero multiple
in B and each nonzero element of B has a nonzero multiple in A, then
A and B are said to be essentially linked.

LemMMA 5. If M is a group with pure subgroups A and B which
are essentially linked, such that A is a summand (M = AP A’'), then
B is also @ summand and M = B A’.

Proof. The conclusion is equivalent to the statement that the
projection #: M — A carries B isomorphically onto 4. @ restricted to
B is clearly injective since any nonzero element of B has a nonzero
multiple which is left fixed by 6. We next note that #(B) is a pure
subgroup of A, by Lemma 4, since if 6(b) is in 6(B), then for some
integer n, n6(b) = nb = 0, and nd(b) has the same height in 6(B) as
in B (since @ restricted to B is injective) and the same height in B as
in A (since A and B are pure). Finally, any nonzero element in A
has a nonzero multiple in 6(B), so A = 6(B) by Lemma 3.
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LEMMA 6. If M is a group with pure, essentially linked subgroups
A and B, both summands (say M =A@ A = BEB'), then also
M=ADB =BgpA.

Proof. Apply Lemma 5 twice.

LEMMA 7. If A and B are summands of a group M and every
nonzero element of B has a nonzero multiple in A, then the pro-
jection of B into A carries B isomorphically onto a summand of A.

Proof. Let the projection into 4 be 6. 6(B) is pure by Lemma
4. By Lemma 5 therefore, (B) is a summand with the same com-
plement as B.

LEMMA 8. If M 4s a group and n a positive integer, we can
decompose M = AP A’ where nA = 0 and any nonzero element of A’
has a nonzero multiple in nA’. Furthermore 1f G = B B’ ts ano-
ther such decomposition then A= B and A = B’

Proof. Choose A to be a subgroup of M maximal with respect
to the properties that 4 is pure and n4 = 0. A pure, bounded-order
subgroup is a summand [9, Th. 7], so we can decompose M = AP A4'.
We must show that any nonzero element of A’ has a nonzero multiple
in nAd’. If the element has infinite order the result is trivial, and
otherwise it has a nonzero multiple of prime order, so it will suffice
to show that if € A’, x + 0, and px = 0, for some prime p, then x
is divisible by n. This is equivalent to showing that %,(x) = &, where
p* is the highest power of p dividing ». If this were not the case,
there would be an element y e A’ with p™y = %, where h,(x) = m and
m < k. By Lemma 4, the subgroup [y] generated by % would be
pure, and hence a summand of A’. A Jy] would then be a pure
subgroup satisfying n(4 & [y]) = 0, contradicting the maximality of
A,

To prove the final statement, note that nM = nA’ = nB’, so A’
and B’ are essentially linked, so by Lemma 6, M = AP B =B P A4,
which implies that A = B and A’ = B'.

LEMMA 9. Let M be a group, and M = APBPHC =APDDPE,
and suppose that A and A’ are essentially linked, and every monzero
element of D has a nonzero multiple in AG B, and that ©w is the
projection of M onto B from the first decomposition. Then n(D) is
a summand isomorphic to D, and the subgroups AP n(D) and A’ P
D are essentially linked.
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Proof. Let 6 be the projection of M onto B C. By Lemma
6, M= AP DDE, so (D) is a summand of B C. By the condi-
tion on elements of D, every nonzero element of 6(B) has a nonzero
multiple in B. By Lemma 7 therefore, n(D) = m(6(D)) is a summand
of B, and it is clearly isomorphic to D. Note that #(D) and 6(D)
are essentially linked by construction. To prove the last statement
of the lemma, it suffices to show that any nonzero element of D has
a nonzero multiple in A @ 7w(D) and that any nonzero element of z(D)
has a nonzero multiple in A’ @ D. For the first, we note that D &
A D O(D), and any element of AP H(D) has a nonzero multiple in
A @ n(D). For the second, let © be a nonzero element of w(D) and
nx a nonzero multiple which is in 6(D). Then ne = a + d, where
acAanddeD. If a =0 we are done. Otherwise there is a nonzero
multiple ra of a in A’. Certainly rnz = ra + rd is in A’@ D, and,
since ra # 0, rnx = 0 gince rac A’, and rdeD and AN D = 0.

2. Proof of Theorem 1. We begin with three remarks which
we will need to refer to.

(2.1). Hypothesis (iii) of Theorem 1 can be strengthened by add-
ing the condition that none of the finite set of summands M (ieJ)
are of bounded order. To see this, let n be a positive integer such
that nM; = 0 for all of the M, (¢eJ) which are of bounded order.
This is possible since there are only a finite number of them. Let
G, G, and G, be as in the statement of condition (iii) and use Lemma
8 to decompose G, so that G, = Gf G G;, where nGF = 0 and every
nonzero element in G, has a nonzero multiple in »Gj. We now let
G, = G, P Gy, so that G = G| P G}, where G is again of bounded order,
and every nonzero element of G} has a nonzero multiple whose image
under f is in the sum of those M;(i € J) not of bounded order.

(2.2). If G is in the class &7 then any two direct sum decom-
positions of G have isomorphic refinements. For if G = 3., 4; =
Sier B;, then by condition (iii) of Theorem 1 there is a positive in-
teger n such that nAd; = nB; = 0 for all but a finite number of the
7’s and 7’s. We now apply Lemma 8 to each of the summands A,
and B;, using this integer %, and obtain decompositions

A; = Ay @ A}, B; = B @ B

where nd} = nBf =0 for all 1el, jeJ, and any nonzero element of
A} or B has a nonzero multiple in nG. If A = >, A, A" =D Al
and B and B’ are defined similarly, then G = AG A’ = B B’. These
decompositions satisfy the conditions of Lemma 8, so A= B and



244 R. B. WARFIELD, JR.

A’ = B'. These four groups have decompositions inherited from the
original decompositions of G. The decompositions of A and B are
finite, so by hypothesis (ii) of Theorem 1 they have isomorphic re-
finements. A’ and B’ are of bounded order and hence are direct sums
of cyclic groups, so their decompositions have isomorphic refinements
by Kulikov’s theorem ([11] or [9, Exercise 34]). Putting these results
together, we have the required isomorphic refinements of the original
decompositions.

(2.8). Applying (2.2) several times, it is easy to see that if G
is a group which is decomposed in two ways as a direct sum of groups
in the class 2,G = >, C, = 4 D;, and if these decompositions
have isomorphic refinements, then if G = 3);.; A; is a refinement of
the first decomposition, and G = 3;., B; is a refinement of the second,
then these two decompositions also have isomorphic refinements.

We now outline the rest of the proof of Theorem 1. Suppose
G =3 4;=>;.;B; where the A; and B; are groups of the class
. We regroup the summands A; into finite sets, setting C, = Zi“r A,
where v is an ordinal in some initial segment of the ordinal numbers
(v < N), and the I, we construct will be disjoint and their union will
be I. We similarly group the summands B; defining D, = 3 ;. 7 B;,
where J, is a finite subset of J, and the J, are disjoint sets which
together include at least all elements jeJ for which B, is not of
bounded order.

We will then have

G=3C=(LD)® 3 B
7<4 7<2 Fedx

where J, is the set of all jeJ not contained in any of the J,, and
all of the B;(j eJ,) are of bounded order. We will construct isomor-
phic refinements of these decompositions, which will prove Theorem
1 by (2.8). We will decompose the C’s and D’s as follows:

C,=C@CeC D, =D;DD:DD;
and we will have by construction
O Di=C;
(2) D:=C%,, where C:=0if v =0 or v is a limit ordinal.
(3) D: and C? are of bounded order.
4) 3, D, DD and >, (C; P ChH are essentially linked.

We now note that in the above situation, the theorem is proved,
since by (4) and Lemma 6,

G=3COMOBXLDID 2 B,
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so that 3, DED D B = <2 C}, and since these last groups are
direct sums of finite cyclic groups, we can get isomorphic refinements
by Kulikov’s theorem. Hence our pairing in formulas (1) and (2)
above and this remark together prove the theorem.

We now construct the subgroups C,, D, and their decompositions
to satisfy (1), (2), (3), and (4). We say the process is completed up
to k if

(a) for n < k (ordinal numbers) the finite sets I, of indices are
chosen, and for n < k the sets J, are chosen.

(b) for m < k the D, and C, decompose as above and the summ-
ands Di, C} satisfy the statements (1), (2), (3) where they apply.

(¢) C,is chosen and C}, a summand such that C}= D%, if k —1
exists, and C: = 0 if %k is a limit ordinal.

@ S (C:pCHPCtand 3., (D:Ep D) are essentially linked.

Now let the induction hypothesis be that this has been done for
all k < v, and do it for v. If v is a limit ordinal the process is trivial.
Take C, to be any summand A; not previously included in C.(k <v),
and set C*=0. I, is the single chosen index 7. (If no A; remain
then we are done, for no B; can remain except possibly groups of
bounded order, since by the previous argument, if we let K be the
sum of the remaining summands B;, we have >,,., Di @ K = >, Ci,
a direct sum of finite cyclic groups, and by condition (iii), any element
of & which is a direct sum of eyclic groups is necessarily of bounded
order.)

If we are not at a limit ordinal, we change notation and assume
that the process has been carried out for v and do it for v +1. We
are given C, and C;. Let Cj be a complement to C?in C,. Let 37 B;
be the sum of those summands B; not in D, for any k < 7.

We now apply condition (iii) of Theorem 1 to the subgroup C}
and its natural inclusion mapping into G, using the decomposition

G=2D.OD)O L DI B;.

‘We obtain a decomposition C} = C} P C;, where C; is of bounded
order, and also a finite subset J, of J digjoint from all of the J,,
k <7, such that if D, = 3., B, then any nonzero element of C; has
a nonzero multiple in

SD:emeD,.

Hence we have used remark (2.1) to eliminate summands of the form

%k <v. We now apply Lemma 9, where A and A’ (in the term-
inology of that lemma) are 3., (Di@ Di) and >, (C: D CH P C,
B is D,, and D is C;. We obtain a summand D; of D, which is
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isomorphic to C}, and such that the subgroups
%(C;EBC,%)@C}EBC‘;’

and Y., (D, @ D;) @ D: are essentially linked.

We now apply the same process in the other direction, choosing
I, Cp, D% D, Ci,, exactly as we choose J,, D, Ci, Ci, and D}, re-
spectively. The proof is exactly the same, thus completing the induec-
tion and the proof of Theorem 1.

3. Proof of Theorem 2. Suppose we have
M= ZJ’eJMJ' :A®Ba

where the M; are groups of the class &2, We group these, as in the
proof of Theorem 1, defining summands N;, where each N, is the sum
of a finite number of the M,. The indices % of the N; will form an initial
segment (¢ < A) of the ordinal numbers and the N; will be constructed
by transfinite induction, so that we will have M = 3,.; N;. For each
1 we will also construct summands A;, B; of 4 and B respectively,
where A; and B, are in the class &7 and we will set C; = 4, & B..
By construction the C; will be independent, by which we mean that
the subgroup generated by them is their direct sum. We will de-
compose the N, as follows

N; = N; @ NP N;

where N} is of bounded order and N =0 if i=1 or % is a limit
ordinal. We then regroup and decompose again, so that we will have

NE@Nfﬂ‘—‘H@PE

where P} is of bounded order (the superscript 3 will always mean
this). Finally, the subgroups 3., P; and Y.; C; will be essentially
linked, so that by Lemma 5, 3., C,; is actually a summand of M.

Let us first show that when this construction has been carried
out we will have proved the theorem. By Lemma 6 the summands
i< P and >, ; C; interchange and we have

M= Zi<1 Ci @ Ziq (Pis @Nf)

where the second term is a direct sum of finite cyclic groups. Now
SiciCi = i A D Dlic; By, and since >,.; C; is a summand of M, so
are >, A4; and >,.; B, Hence >, A; and >, B; are summands
of A and B respectively, and we have A = >, A, D A*, B=>;., B;GB*,
and A* P B* = 3., (P? @ N?) (since both are complements to >;.; C))
and since this is a direet sum of cyclic groups, so are 4* and B* by
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Kulikov’s theorem. Any cyclic summand of M is in & (by hypothesis
(i) of Theorem 1) since it is actually contained in (and therefore a
summand of) the sum of a finite number of the original summands
M;. Hence A = A*@ >, A; is a direct sum of groups in the class
<7, which is what we wanted to prove.

To complete the proof, we must carry out the construction of
the subgroups N;, C; and P, in the way outlined above. We say the
construction has been carried out for k& if for ¢ < k, N, is chosen and
for v < k, C,, A;, and B, are chosen (all belonging to the class <),
where A; and B; are summands of A and B respectively, C; = 4, &P B;,
and all these are chosen so that '

(@ N; =N @ N:DN!(1 < k) with N} of bounded order and
N!=0if ¢ =1 or a limit ordinal,

(b) N, has a summand N} which is zero if k is 1 or a limit
ordinal.

(¢) Fori <k, Ni@ N}, = P; D P} where P} is of bounded order.

(d) The C; are independent and 3., C; is a pure subgroup of
M.

() S C; and X . P; and essentially linked, so tha.t in par-
ticular, 3., C; is a summand of M by Lemma 5.

We now suppose that this has been done for all ¥ < v and do it
for v. Suppose first that v is 1 or v is a limit ordinal. We let N,
be one of the remaining M; (if any remain) and set N? =0 (as we
must). Note that this choice guarantees that the process eventually
terminates with the choice of all of the M;. Conditions (a) and (c)
are trivially verified, having already been assumed for ¢ < v, and (b)
is immediate from our definition of NZ. For (d), it is clear that the
C; (7 < ) certainly are independent and their direct sum is a pure
subgroup, since it is an ascending union of pure subgroups. For (e),
we note that X,.,C; and 3., P, are essentially linked, and since
>« P; is a summand, we can apply Lemma 5 to show that Y., C;
is also a summand. This completes the induction in this case.

Suppose, then, we are not at a limit ordinal. For econvenience
we assume that the construction has been carried out for v and do
it for v + 1. Say N, = N} @ N}, and let the projections to A4 and
B respectively be 6, and 6,. We can decompose M in three ways.

(1) M=2.C.PAr D B?

<7

where A} is a complement in A of 3., A;, and B} is a complement
in B of 3., B

(2) M=3PON S (PION)O XM
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where Y7 M; denotes the sum of those M; not chosen to be in N;
for any %, 1 <v. Since 3., C; and >, P; are essentially linked we
also have

(3) M=3CONOSPION)OS M.

We now apply condition (iii) of Theorem 1 to the group N; and
the two homomorphisms 6, and 6, (applying the condition twice),
using the decomposition (3) above. We obtain a decomposition

N} = N; © Ny

where N} is of bounded order, and there are a finite number of the
summands M; not included in any N; for 7 < v, such that if L, is
the sum of this finite number of subgroups, then any nonzero element
of N} has a nonzero multiple whose images under 4, and 6, are both
in

2CON DL -

<7

Hence we have used remark (2.1) in order to eliminate summands of
the form P} or N}.

Now let = be the natural projection of M onto AF @ Bf from
decomposition (1). We have immediately

(4) KZ‘;CiEBNy*GBLm=§Ci€Bﬂ(Nr*69Lr+l)-
We let K =3, C; DN} L,,,. Note also that

(5) KN (A7 @ By) = n(N? @ L)

Now #(N} & Ly4,) is isomorphic to N} @ L,., and is therefore in &
(since summands and finite direct sums of elements of & are in &)
and therefore has the finite exchange property, so that

A @ By = (N7 @ L..,) D AF* © Bf*
where A}* = A¥, Bf* <= Bf. We have natural decompositions
Af = A @ D{, B = B;* @ D}
where the groups Df, D? can be identified as follows:
D7 = A7 0 (m(N @ Ly+) @ BF)
D7 = Bf N (w(Ny @ Ly+) © A7) .
Note that the above formulas and statement (5) imply that
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(6) KNArcD4 and KNB*<D?.

We let D, = D @ DE, and we claim that any nonzero element of
N} has a nonzero multiple in >}, C; @ D,. By the original definition
of N}, if xe N} and 2 = 0, then « has a nonzero multiple nx such
that if nx = y + 2, with ye€ 4 and ze B, then ¥ and z are in K. We
will show that y is in 3., C; @ D,, and the proof for z will be the
same. We have y = a, + a,, where a,€>,;4; and a,e A}. Since
@, €Y< C;y it will be enough to show that a,e D,. Since ¥ and a,
are both in K, so is a,, 8o a,€ A, N K, and thus is in D, by formula
(6).

We have now shown that any nonzero element of N} has a non-
zero multiple in 3., C; B D,. We apply Lemma 9 to obtain a summ-
and D} of D, such that the subgroups >, P, N} and >, C; P D;
are essentially linked.

Let D} be a complement to D} in D,. As usual, we cannot
handle all of D}, so we apply condition (iii) of Theorem 1 again, with
respect to the decomposition

M=3iPON DL, DXuc; (PPDON)D S M; .

where we use the notation >’ M; to denote the sum of those M; not
chosen to be in N; for any ¢ < v or in L,,,. We obtain a decomposi-
tion D} = D Di, where D? is of bounded order, and there are a
finite number of summands M; from the term >} M; such that if we
let N,., be the sum of L,,, and this additional set of summands, then
any nonzero element of D? has a nonzero multiple in
%P&BN#@NH“
Applying Lemma 9 again, (where this time the subgroups correspond-
ing to the A and A’ of that lemma are >, ., P; @ N} and 3., C; P D;
respectively), we obtain a summand N?,, of N,,, such that the sub-
groups >,;«,C/PD;PD; and 3., P, N; P NZ, are essentially linked.
Unfortunately, D; @ D? cannot be the C, we need for our induc-
tion since it is not necessarily the sum of its A and B components.
‘We return then to D,, and compare decompositions. We have

D, =D/ ® D! =D; @D Dy,

where nD: = 0 for some positive integer n. Applying Lemma 8 (using
this integer n) we obtain decompositions

Dr = A, @A}, D} = B, D B;

where A? and B? are of bounded order and every nonzero element of
A, and B, has a nonzero multiple in D; @ D;. Let
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C.,=ADB,.

Let o be the projection onto N} N?,, from the decomposition
M = %R@(N#@Nﬁﬂ)@%(f’ﬁ@m) DN DN D M;,

where N}, is a complement to N}, in N,,,. Since >;., C; and >;.; P;
are essentially linked, and Y., C; P D; @ D? and >,;., P; P N} P N,
are also essentially linked, we know that ¢ takes D; @ D; isomorphic-
ally onto N;@ N?,,. Let P, = 0(C,) and P} = 0(A: D B}). We then
have

N}@Nf+1=PT@Pﬁ,

where P} is of bounded order. We now apply Lemma 9 once more,
where the A, A’, and D of that lemma correspond to .., P;, D.i<; Ci,
and C, respectively, and we see that the subgroups ... P; P P, and
> CDC
<7
are essentially linked. It is also clear that C, is in < since it is
isomorphic to P, and P, is a summand of N, @ N,,,, which in turn
is a direct sum of a finite number of groups in the class =, We
therefore have completed our induction and the proof of Theorem 2.

4. Complete Abelian groups. For any Abelian group A there
is a natural homomorphism

A—lim A/nA

where the limit is taken over the nonzero integers » ordered by di-
visibility. The inverse limit is denoted A and it is the Hausdorff
completion of A with respect to the uniform structure defined by
taking as neighborhoods of zero the subgroups nAd (v #= 0). The map-
ping A — A is injective if and only if A is Hausdorff. We remark that
the homomorphism A — A induces an isomorphism A/nA — A/nA, so
that the image of A is a pure subgroup of A and the Z-topology on
A agrees with the topology induced (by the completion process) from
the Z-topology of A. The group A is complete and Hausdorff if and
only if 4 = A.

Note that a subgroup B of A is pure if and only if for all integers
n, n # 0, the natural homomorphism B/nB— A/nA is injective. B
is dense in A (with respect to the Z-topology) if and only if for all
nonzero integers =, the natural homomorphism B/nB— A/nA is
surjective.
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LEMMA 10. If B is a pure dense subgroup of a group A and f
is a homomorphism from B into a complete Hausdorff group C then
f extends in one and only one way to a homomorphism from A to

C.

This follows from standard inverse limit or topological arguments.
(From the topological point of view, one needs to observe that any
homomorphism between two groups is continuous in the Z-topology
and that the Z-topology on a pure subgroup B agrees with the topology
induced from the Z-topology on A.)

If A is any group, we let A' be the subgroup of A consisting
of those elements divisible by all integers n. The proof of the follow-
ing lemma is an elementary computation.

LemMmA 11. If B is a subgroup of a group A, then the closure
of B is the inverse image in A of (A/B)'. In particular, B is closed
if and only if A/B is Hausdorff, and B is dense in A if and only
iof A/B s divistble.

For any prime p, we denote by Z, the ring of rational numbers
which can be written as fractions with denominators prime to p, and
for any group A, we let 4, = AR Z,, regarded as a Z,-module. A4,
is the localization of A at the prime p. If Al is the submodule of
A, consisting of all elements divisible by all powers of p then we
define the Hausdorf localization, A} of A by AF¥ = A,/A,. We have
natural homomorphisms ¢,: A — A4,, and hence a natural homomorphism

6: A— T AF .
P

If A is Hausdorff, this imbeds A as a pure, dense subgroup of IJ, A%.
This proves the following lemma.

LEMMA 12. If C is a complete Hausdorff group then the natural
homomorphism C— I1,C¥ is an isomorphism.

To exploit this lemma, we need some results about modules over
the rings Z,. The results are actually valid for modules over any
discrete valuation ring. A subset X of a Z,-module is a pure inde-
pendent subset if the elements are independent and the submodule [X]
generated by X is a pure submodule. A submodule B of M is a
basic submodule if it is pure, dense, and a direct sum of cyclic modules.
By [9, Lemma 21] any maximal pure independent subset generates a
bagic submodule, and it is trivial to verify that if X is a pure inde-
pendent subset then X is maximal if and only if [X] is dense (or
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equivalently, M/[X] is divisible). The next lemma is a refinement
of [9, Th. 23].

LEMMA 18. If M is a Z,-module and C a pure submodule which
18 complete and Hausdorff, X a maximal pure independent subset of
C, and Y a set disjoint from X such that X U Y is a maximal pure
independent subset of M, then M = C @ D, where D 1is the closure of
the submodule generated by Y.

Proof. Define a function f on the set XU Y by f(x) =z if xe X
and f(y) =0 if ye Y. This extends to a homomorphism of the basic
submodule generated by X U Y, which can be regarded as a homo-
morphism of [X U Y] into C. By Lemma 10, this extends to a homo-
morphism of M into C, which we also call f. Since f is the identity
on [X] and [X] is dense in C, f is a projection onto C. If D is the
kernel of the projection then D is closed since C is Hausdorff. To
show that D is the closure of Y, we remark that M/[X U Y] is di-
visible and M/[X U Y] = C/[X] D/[Y], so D/[Y] is divisible, which
implies that Y is dense in D by Lemma 11.

LEMMA 14. If M is a Z,-module with torsion submodule T, and
X is a subset of M, and X, and X, are the subsets of X consisting
of the elements of finite and infinite order respectively, then X is a
maximal pure independent subset tf and only if X, is a maximal
pure independent subset of T and X, is mapped bijectively onto a
basis of the Z|pZ-vector space M/(T + pM).

Proof. Let X be a maximal pure independent subset of M and
let C = [X,]. Then the natural homomorphism C/pC — M/(T + pM)
is an isomorphism by the proof of Lemma 21 of [9], and certainly
X, is a maximal pure independent subset of 7, which proves half of
the lemma. Conversely, if the condition above is satisfied, and
0: M— M|T is the natural map, then ¢ takes X, bijectively onto a
maximal pure independent subset of M/Y by [13, Lemma 3]. The
submodule B generated by o(X,) is therefore free, so

o”(B) = T [X].

It follows immediately that X is an independent set. Also, since B
is pure in M/T, o~*(B) is pure in M, and since [X] is a pure submodule
of the summand 7, [X] is a pure submodule of M. Finally, M/[X]
is clearly divisible, since 77[X,] and M/(T + [X.]) are both divisible.

LEMMA 15. Let M be a Z,module, Y a maximal pure independ-
ent subset of M, and X a pure independent subset of M. Then there
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38 a subset Z of Y, disjoint from X, such that X U Z is a maximal
pure independent subset of M.

Proof. This result was proved for p-groups in [4, Lemma 10.12].
We therefore know that if X, and X, are the sets of elements of
finite order and infinite order respectively in X and Y, and Y, are
the corresponding subsets of Y, then there is a subset Z, of Y,, dis-
joint from X,, such that X, U Y, is a maximal pure independent subset
of the torsion submodule T of M. If ¢ is the natural map of M onto
M/(T + pM), (where T is the maximal torsion submodule of M), then
¢ takes Y, bijectively onto a Z/pZ-basis for M/(T + pM), and X,
bijectively onto an independent subset of M/(T + pM). There is there-
fore a subset Z, of Y, disjoint from X,, such that ¢ takes X, U Z,
bijectively onto a basis for M/(T + pM). This proves the lemma,
setting 72 = Z,U Z..

THEOREM 3. A complete Hausdor[f group has the exchange pro-
perty.

Proof. Let A be a group and C a complete Hausdorff summand
of A, and say A = X;.; D;. We will show that there are subgroups
D.< D, with

AZC@ZieID',i'

We first prove the theorem in the local, Hausdorff case. Suppose
that A4, C, and the D, are all Z,-modules. Suppose in addition that
A is Hausdorff. Let X be a maximal pure independent subset of C
and Y, a maximal pure independent subset of D,. By Lemma 15, we
can extend X to a maximal pure independent subset of A by adding
elements from the sets Y,. Let the added sets be Y/=7Y,, and let
Z be the union of the sets Y/ (so that X U Z is a maximal pure in-
dependent subset of A). By Lemma 14, if E is the closure of the
subgroup generated by Z, then A=C@E. We let E; = END,,
and we claim that F = 3,;.; E,. Since A is Hausdorff, D, is closed,
so E; is also closed. Since the E; are in different summands, >;.; E;
is closed, and it contains Z, so E = 3,.; F; as desired. Hence, 4 =
Ch>S.; E;, proving the exchange theorem in this case.

We now prove the theorem in general. If A = >;., D, then 4} =
Sve(Dy)F and C} is a Hausdorff complete summand of A}. By the
previous case, there are submodules E;(p) = (D,)} such that

A3 = C; B S EW) -

This means that there is a projection g,: AF — C¥ such that
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(1) Ker (g,) = >, ker (g,) N (Dy); -

What we need to prove is that there is a projection f: A-— C such
that

(2) Ker(f):ieZ;Ker(f)ﬁDi.

The definition is now clear. Let
g: 1T Ay =11 C;
D D

be the homomorphism induced by the mappings ¢,: A¥ — C}, let ¢ be
the natural homomorphism

o1 A—TI A

with coordinate mappings ¢,, and let

o: 11 C;—C

be the inverse of the isomorphism of Lemma 15. Let f = o0g¢é. To
prove that (2) holds, we need only check that if xe A and # = 3 «;
in the decomposition 3;.; D; then if f(x) = 0, we also have f(x;) = 0.
If f(x) =0, then ¢,(>) ¢,(z;)) = 0 for each prime p. By (1), this im-
plies that g¢,(¢,(x;,)) = 0 for each prime p, which shows that f(x,) =0
as desired. This proves that (2) holds, and if we define

then we have
A=COYE;.

This completes the proof of Theorem 3.
COROLLARY. A complete Hausdorff group is in the class <.

Proof. Condition (1) is immediate and condition (ii) is contained
in Theorem 3. For condition (iii), we suppose that C is a complete
Hausdorff group and f: C — M a homomorphism of C into a Hausdorff
group M which is a direct sum, M = >,.; M;,. We first remark that
it will suffice to show that there is a finite subset J < I, such that
for some nonzero integer n, f(nC)E=>,.,M;,. For in this case we
apply Lemma 8 to obtain a decomposition C = C, @ C,, where nC, = 0
and any nonzero element of C, has a nonzero multiple in #C,., whose
image under f is therefore in >;.; M.

We assume first that the decomposition of M is countable, M =
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= M,. The subgroups f~(3.%, M;) are closed subgroups of C whose
union is all of C, so by the Baire category theorem, for some integer
m, (X, M;) contains a neighborhood of 0, namely »C, for some

nonzero integer .

If the result were false in the general cage (with an arbitrarily
large index set I) and if the mapping f and the group M in fact
provided a counterexample, then we could find a sequence of integers
n,(j = 1,2, --+), a sequence of elements x; of C, and a sequence of
distinet summands of the original family, which we simply write N,
such that z; is divisible by »; and f(x;) has a nonzero coordinate in
N,. If we let N, be the direct sum of all of the summands M; not
in our chosen list, then we have a decomposition M = >3, N; which
provides another counterexample, this time with a countable number
of summands. Since this has been shown to be impossible, the coroll-
ary is proved.
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THE AMBIENT HOMEOMORPHY OF AN INCOMPLETE
SUBSPACE OF INFINITE-DIMENSIONAL
HILBERT SPACES

JAMES E. WEST

The pair (H, Hy) is studied from a topological point of
view (where H is an infinite-dimensional Hilbert space and Hy
is the linear span in H of an orthonormal basis), and a com-
plete characterization is obtained of the images of H; under
homeomorphisms of H onto itself. As the characterization is
topological and essentially local in nature, it is applicable in
the context of Hilbert manifolds and provides a characteri-
zation of (H, Hy)-manifold pairs (M, N) (with M an H-manifold
and N an Hy/manifold lying in M so that each coordinate
chart f of M may be taken to be a homeomorphism of pairs
(W, Un N) L (A, AU) 0 H).

This implies that in the countably infinite Cartesian pro-
duct of H with itself, the infinite (weak) direct sum of Hy
with itself is homeomorphic to H; (the two form such a pair),
and that if K is a locally finite-dimensional simplicial complex
equipped with the barycentric metric (inducing the Euclidean
metric on each simplex) and if no vertex-star of K contains
more than dim (H) vertices, then (K X H, K X Hy) is an
(H, Hy)-manifold pair.

These results are used in [10] to study H,-manifolds much more
intensively to obtain results previously available only for H-manifolds
or in the case that H, is separable, i.e., connected H,manifolds are
homeomorphic to open subsets of H,, homotopy-equivalent H ~manifolds
are homeomorphic, and there is an essentially unique completion of
an H,-manifold into an H-manifold, yielding an (H, H,)-pair.

It should be remarked that this characterization has already
been achieved for separable Hilbert spaces by R. D. Anderson [1]
and by C. Bessaga and A. Pelczynski [5], and that the observations
concerning (H, H,)-manifold pairs have been made by T. A. Chapman
[6, 7] in that case. (Chapman then proceeded to obtain most of the
results of [10] in the separable case by methods which seem at the
moment to be limited to separability.)

Throughout the discussion, X will denote some complete metric
space, and 57 (X), the group of all homeomorphisms of X onto itself.
The term “isotopy” (“isotopic”) will be understood as an abbreviation
for “invertible, ambient isotopy”, that is, a map F: X x [0,1] - X
such that the function G: X x [0, 1] — X x [0, 1] defined from F by
setting G(z, t) = (F(z, t), t) is a homeomorphism. (When an embedding
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f of a subset of X into X is said to be isotopic to the identity,
then, there will exist an extension g of f to an element of S~ (X)
which is invertibly ambient isotopic to the identity.) If % is a
collection of open sets of X, a map f of a subset ¥ of X into X
will be said to be limited by % if for each point y of ¥ such that
y + f(y), there iz a member of % containing both. A homotopy
F:Y x[0,1] - X will be said to be limited by % if for each point
y of Y such that F({y} x [0, 1]) # {y}, there is an element of %
containing F({y} x [0, 1]). If .&¥ is a collection of subsets of X then
&“* will denote their union, and .&¥ will be termed normal whenever
there is an open cover % of .&“* by mutually disjoint sets with the
property that for each U in 7%, UN $*e.5% The letter N means
the positive integers. Finally, if 4 is a subset of X and & is a
collection of subsets of X, then st (4, %) denotes the star of A with
respect to .57 that is, the union of all members of . meeting A4,
and st (&) = {st (S, &) | Se.&”}. Also,

st* (4, &) = st (st* (4, &), &),

and st™(S) = st (st"'(%”)). All refinements used will be understood
to be composed of open sets, and 7 is a st"-refinement of .&” pro-
vided that st*(7") refines &%

The first lemma is due to Anderson and Bing [2].

LeEMMA 1. Let {f.}..v De a sequence of homeomorphisms of the
complete metric space X onto itself, and let Z be any open cover
of X. If {UJ:-, 1s a collection of open covers of X such that
st® (%) refines 2 and for each n in N Z, is a star-refinement of
Y, 0f mesh less than 1/2%, thewn {f,o -+« o filienw converges (umi-
formly) to a member of =7 (X) which 1s limited by % provided
that for each n in N f,., s limited by %/, and mesh

(fito eee o filZ) < 1/2" .

Proof. Anderson and Bing proved that {f,o -+ o fi}.ex con-
verges uniformly to a member f of 5#(X). To verify that f is
limited by %, it is sufficient to observe that for each z in X and n
in N, there is a U(x, n) in %, containing both f,o -+ o fi(x) and
fuiro +=+ o fi(x), and there is also a U(x, 0) in %, containing both =z
and f,(x). If V(x, ») is an element of Z,_, containing st (U(x, n), %)
for each x and n, then # and f,., 0 -+ o fi(x) le in

U UG, m) < U U, m) U Vi, n)

c@iU(x, m)U Vizg, n —1) < -+ < U, 0) U Viz, 1)
cst (U, 0), %) ,
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so ¢ and f(x) must lie in the closure of st (U(x,0), %,), which is
contained in st® (U(x, 0), %), which lies in some member of 7.

LEMMA 2. If Z 1s a collection of pairwise disjoint open subsets
of X, then there is an open cover 7" of Z'*, refining 7/, with the
property that if for each Ue Z fy 1is a homeomorphism of U onto
itself which is limited by <, then the function f defined by f(x) =
Jo(®), if xe U, and f(x) =2, if x&Z*, 18 a homeomorphism of X
onto itself.

Proof. Let 7" = {V(x) = {ye X | d(y, ) < d(z, x)/2 for each z in
X\U}|xe Ue Zz'}, where d(-,-) is the metric for X. Then for any
points z of X\U*, and y of X, d(z, f(y)) < 3d(2, ¥), which establishes
continuity. As f must be one-to-one and onto, and the same argu-
ment establishes the continuity of f—*, f is a homeomorphism.

Let 9 be an hereditary collection of closed subsets of X which
is invariant under the action of 57 (X), that is, each closed subset
of a member of % isin 9% and f(K)e 9% if Ke 2 and fe 9 (X).
A set A in X will be termed .2 -absorptive if for each open cover
7 of a member K of .2 and each member K’ of .9 contained in
K N A, there is a homeomorphism f in 5~ (X) which is limited by
Z/, is the identity on K’, and carries K into A. If f may always
be chosen so that there is an isotopy from it to the identity which
is limited by %/, then A will be called strongly ¢ -absorptive.

LemMA 3. If A is 7 absorptive (strongly 7-absorptive), L is
an open subset of a member of 2, and U s an open cover of L in
X, then there is a member f of 57 (X) carrying L into A which 1s
limited by Z- (is 1sotopic to the identity by an isotopy limited by Z7).

Proof. As Z7* is an open subset of the complete metric space
X, it may be given an equivalent metric under which it is itself
complete, so Lemma 1 holds under the new metric. Let {V,},.» be
a sequence of open sets in X such that each contains its successor
and Neey V. = X\U*, and let 97" be a refinement of % which
covers Z* and has the property that any member of S5# (% *) which
is limited by <7~ extends to an element of S#(X) which is also
limited by 7. If .2 is the collection of all members of .2 which
lie in Z*, then from the definition of (strong) .27-absorptivity it is
immediate that as a subset of *, AN U* is (strongly) .27-
absorptive. Using Lemma 1 and the fact that L\V,., contains L\V,
for all » in N and that both are in .27, select a sequence {f,}.cx
of members of SZ7(Z/*) with {f, o -+ o fil..y converging to a member
of 57(Z/*) which is limited by 97" and such that for each =, f,
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carries f,_, o ++- o fi(L\V,) into AN Z* and is the identity on
Jacromee o f(I\V,2) -

This may be done because each of the functions f,o .- o f, may be
kept limited by %77, which ensures that they permute the elements
of 27”. Extending the limit homeomorphism to all of X so that it
is the identity off Z* produces the desired member of 5~ (X). (In
the case that an isotopy is desired, and that A is strongly .S7-absorp-
tive, consider the cover %' = {W x [0,1]| We %7} of Z* x [0,1]
and construct a level-preserving homeomorphism of Z* which is
limited by 977, is the identity on Z* x {0}, and carried L x {1}
into A x {1}. The associated isotopy extends to X.)

A collection . of members of K will be called a .#~complex if
it may be expressed as a countable union U, .%”, of subsets of
itself such that o7 = %, 7% is closed for each n and [n] =
{A\or™'| Ae.o,} is normal for all n. (Here, %' = @.) The set
S7* will be said to admit the structure of o SF-complex. If o7*
is (strongly) .27-absorptive, then it will be referred to as a (strong)
% -absorption base.

THEOREM 1. If Z is an open cover of X and A* and B* are
two (strong) .Z%-absorption bases in X, there is a homeomorphism f
of X onto itself (an isotopy F of X), limited by 2/, such that
f(4%) = BX(F(A* x {1}) = B¥).

Proof. Let & = Up ., and <& = Up., <&, be _Z#7-complex
structures for A* and B* respectively. As the construction of an
isotopy in the strong case may be handled from the construction of
a homeomorphism in the other case as was done in the previous.
proof, only the latter construction will be made here. It is quite:
simple. Since .9 is invariant under the action of 5#(X), so is the
collection of (strong) .97-absorption bases. A sequence f,, gy, fa Gar **°
of members of 5#°(X) is to be chosen with {g; o foo +++ 0o 97 o filuew
converging to an element f of 5#°(X) which is limited by 2. Further-
more, f,(gilio «++ o f(7") is to be a subset of <#*, ¢,.(=#") is to be a.
subset of f,og 0 +ee0grto fi(.7*), f. is to be the identity on
Oty 0 fucr om0 gite fi(Z" ") U ™, and g, is to be the identity on
foogatioserogito f(r™)U & ". Then the limit homeomorphism
fi8 limited by % and f(.57*) = <&#*. The selection of these homeomor-
phisms may be made inductively so as to satisfy the convergence:
criterion of Lemma 1 because for each n, .97 [n] and <#[n] are normal
and 97" ! and <Z™! are closed, so Lemmas 2 and 3 may be applied
and the homeomorphisms constructed piecemeal on collections of pair--
wise disjoint open sets in X.
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THEOREM 2. If U is an open subset of X, A* is a (strong)
i absorption base for X, and %7 is the set of all members of
" contained in U, then A* N U s a (strong) 57 '-absorption base
Jor U.

Proof. It has already been remarked that 4* N U is (strongly)
¢ '-absorptive, so all that is necessary is to demonstrate that it
admits the structure of a ¥ '-complex. If A*N U= @, then . &' =
{©}, and A* N U is a strong .2 ’'-absorption base for U. Otherwise,
let {V,}..y be a collection of open sets with X\Uc V,,,c V,,,C V,
for each n, and with M,.y V., = X\U. Now, let

o = HO{A\ V2(n—m+1) | Ae '—%}
and i = Unte A\ Veweminn | A€ %) If UsL, 2, is denoted by
%, it is apparent that <#" is closed for each n. To see that <Z[n]
is normal for each =, let {Z%,}..» be a collection of sets of mutually
disjoint open sets of X with the property that %, * contains .o [n]*
and that for each U in %,, UN ¥ [n]* e .&[n]. Then define %5, =
oAU N Vitwemr+:\ Vanomin+ | U€ %} and

n+1 —
W onr = HO{UQ Vitnmi)\Venemin | UE %0}

for each n = 0,1, --- The collections 27, are composed of pairwise
digjoint open sets separating members of <#F[n], so <& is a F7-
complex. Since Z* = .o»* N U, the proof is complete.

If {Y.,},.» 18 a collection of spaces, then [[,.y Y, will denote
their Cartesian product. If, for each #,y,€Y,, then [[,ex (Y., ¥.)
will denote that subset of []..x Y, composed of those points with
n~th coordinate differing from y, for at most finitely many n. Also,
let ¥ be a clags of spaces which is closed under the operations of
taking closed subsets and of taking finite products, and for each
space Y, let & (Y) denote the collection of images of members of &
under closed embeddings in Y.

THEOREM 3. If {X,}..x ts a sequence of complete metric spaces
and f, for each n, ¥ (n) is a & (X,)-complex, and x, is a point of
Z(n)*, then Tl,.y(S7(n)*, x,) admits the structure of a & ([luex Xu)-
complezx.

Proof. For each finite subset S of N, let f denote the natural
injection of [[,.sX, into Il..» (X., 2.). Now, for each ordered
n-tuple (m,, ---, m,) of nonnegative integers, each of which is no
greater than n, let Z(n; m,, ---,m,) = {f(II}-; A) | A; € & (4),,}. Order
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the set of all these collections in such a manner that
._9?(7’&, My =, m'n) 2 t@(n,; m;; ey m"n’)

if n=n or if w =% and m; = m; for all j. The order selected
will be isomorphic to the nonnegative integers, so index the <#'s by
them in a manner consistent with the above requirements. Let
P = Uz Z,. For each n, <z,* is closed, so <" is, also. Thus,
in order to check that <& is a & ([l..y X,)-complex, it is only
necessary to verify that <Z[{] is normal for each 7. However, for n
and (m,, ---,m,) such that <&, = < (n;m, ---,m,), and for B in
#;, B\~ B\f(Il%-. .&7(5)™"), so if for each = in N and each
nonnegative integer m, Z/ is an open cover of .7 (n)[m]* in X, by
pairwise disjoint open sets U with the property that

Un .o @m)[m]* e o7 (n)m],

then 77 = {[1}-, U; x [I52ae, X; | U;e %, for j=1, ---, n} is a cover
of <#[i] by mutually digjoint open sets of [],.y X, with the property
that the intersection of each with <Z[i]* is a member of Z[i].
Thus, each <Z[t] is normal and <Z is a & ([[..x X.)-complex. Asit
is immediate that ZF* = [[,.x(.%(n)*, z,), the theorem has been
proved.

REMARK. It was tacitly assumed above that there were infinitely
many X,s. Of course, the same proof works for a finite collection.

COROLLARY 1. If, in the above, [[,.y (97 (n)*, x,) is (strongly)
E([{aex X,)-absorptive, then 1t is a (strong) & ({[..y X,)-absorption
base.

REMARK. It is clear from the definitions that if X and Y are
homeomorphic, then any homeomorphism between them carries the
& (X)-complexes to the & (Y)-complexes and the (strong) & (X)-
absorption bases to the (strong) & (Y )-absorption bases.

From now on, & will denote the class of all finite-dimensional
compact metric spaces. The next lemma is an extension of Proposi-
tion 4.5 of [5] to the nonseparable case and to isotopies. It consists
of combining Theorem 4.2 of [3] with the Bartle-Graves Theorem.

LEMMA 4. If X s an infinite-dimensional Fréchet space and
K 1is a compact subset of X, then for each open cover Z of K
there is a second, ¥, such that any embedding of K in X which is
limited by 7 1is (invertibly ambient) isotopic to the identity by an
isotopy which is limited by Z.
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Proof. For a real number (positive) » and a point z in a metric
space, N(z, ) will denote the open ball centered at « with radius r.

Let A be a Lebesgue number of % with respect to K, let
7, = {N(z, \/3° | x € K}, and, inductively, for » > 1, let

Zn = {N(x, M3"") |we 7,5},

Now, let 7" = Uney #,. If f embeds K in X and is limited by %]
let Y be the closed linear span in X of the image of F: K x [0, 1] =X
defined by F(z, t) = 1 — )z + tf(x). Let py: X — X/Y be the canoni-
cal projection, and let q,: X/Y — X be a right inverse for p, sending
0 to 0. (This is by the Bartle-Graves Theorem. For a proof see
[11].) Now, the function 4,: X/Y x Y — X defined by h; = ¢,p, + .
is a homeomorphism, where p, and p, denote the projections onto the
first and second factors, respectively.

From the definition of %7, it follows that for each element V of
st*(7"), V + N(0, »/3) is contained in some member of %/, where
here “-” denotes the set of all sums of pairs of elements, one from
the first set and one from the second. Letting W be a neighborhood
of the origin in X/Y which ¢, carries into N(0, A/3), one sees that
ho (W x(77*N Y)) lies in 7 * and, indeed, that {h (W x V)|V est (7| Y)}
refines 7. (Here, 77| Y={VNY|Ve7}.)

Select a map g¢: X/Y —[0,1] such that ¢—*(0)>(X/Y)\W and
0eg'(1). Since Y is separable and 7”"* N Y is open in Y, [3] yields
an isotopy G: (77* N Y) x [0, 1] —=7"* N Y from the identity homeomor-
phism at ¢t =0 to an extension to *NY of f at ¢t = 1 which is
limited by st* (7"} Y). Then H: X x [0, 1] — X given by

hs(pr (@), G020 A7), - g o0y (@), If e (WX (77*NY))
©

H(x, t) = ,if eeh (Wx(*NY))

is the desired isotopy.

Let H be an infinite-dimensional (real) Hilbert space, let E be a
complete, orthonormal basis for H, and denote by H, the collection
of all (finite) linear combinations of members of E.

THEOREM 4. H; is a strong < (H)-absorption base.
Proof. Two things must be shown, namely, that H, admits the
structure of a < (H)-complex and that it is strongly & (H)-adsorp-

tive. To see the first, let .o be the set of all integral linear
combinations of members of . For n > 0, let

@ ={Q = {Stuen [tac 0, Um =1, - n}le, -ore

are 7 distinct elements of E},
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and let &, ={4A=Q, +x|Q,c€&, xc.%,}. It is readily seen that
& = U, ., is a & (H)-complex with .o7* = H,.

By Lemma 4, in order to demonstrate that H, is strongly & (H)-
absorptive one must only show that for each member K of & (H),
each open cover Zz of K, and for each closed subset K’ of KN Hj,
there is an embedding f of K in H,, limited by %, which is the
identity on K’. Since K is compact, there exists a Lebesgue number
A for 7 with respect to K, so one must only find an embedding f
of K in H; which moves no point as much as A and is the identity
on K’. However, the total boundedness of K and the denseness in
H of H; lead to the existence of a sequence {e¢};.y in E and a
sequence {7(%)};ex in N such that if p; is the orthogonal projection of
H onto the span of {e;}?%);_ 4+, then || 3n, pi(x) — x| <2 ™2\ for
each me N and xe K. Also, since K is finite-dimensional, for each
set S of 2dim (K) + 2 distinct elements of FE, there is an embedding
of K in the unit sphere (=elements of norm one) of the subspace
spanned by S. Assume that for each 7, n(?) — n(t — 1) = 2dim (K) + 2,
and let f; be an embedding of K in the unit sphere of the span of
{e;}2%) i—yse Now, let g map K into [0, 1] such that K’ = ¢g~*(0), and
for each ¢ let h, map [0, 1] into [0, 1] such that A;7'(0) = [0, 1/n(3)]
and 27Y1) = [1/n(2), 1] and for 7 > 1,

R (0) = [1/n( — 1), 1] U [0, 1/n(i + 2)]
and 27'(1) = [1/n(¢ + 1), 1/n(¢)]. Finally, set

f@) = 25 (max {h; o g@)Hpi(®) + 2, 277N+ hi 0 g(@)fins(®) -

ienN

This is the desired embedding.

COROLLARY 2. If Z7 is any collection of open sets of H and Y
18 any & (Z *)-absorption base in Z*, then there is am ambient,
invertible isotopy of H onto itself which s limited by %/, is the
wdentity at ¢t =0, and at t =1 ts a homeomorphism h, such that

h(Y)=2Z* N H;.

Proof. Lemma 4 shows the equivalence of the concepts of & (Z *)-
absorption base and strong & (% *)-absorption base, Theorem 4 com-
bined with Theorem 2 gives that Z* N H, is also a strong & (% *)-
absorption base, and Theorem 1 supplies the isotopy on Z* limited
by an open cover given by Lemma 2 which refines % and has the
property that any isotopy limited by it may be extended trivially to
one on H.
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COROLLARY 3. Let {H,},.x be an indexed, countably infinite
collection of copies of H, and let Y be the subspace of [l,.» H,
consisting of all points with at most finitely many nonzero co-
ordinates, each of which lies in the appropriate copy of H;. Then
Y is homeomorphic to H,.

Proof. It is easy to modify the proof of Theorem 4 to show
that Y is & (II..y H.)-absorptive. If the copy of H, in H, is
denoted by (H,),, then Y = [I,cxy (Hy)a 0), so Corollary 1 applies to
show that Y is a &€ (I]..~ H.)-absorption base. However, [[..y H, i
homeomorphic to H by a theorem of Bessaga and Petczynski [4], so
by the remark following Corollary 1, ¥ may be embedded in H as a
& (H)-absorption base. Corollary 2 now applies to finish the proof.

The above result is crucial to [10]. The next two results identify
some simplicial complexes whose products with H, are H ,-manifolds.

THEOREM 5. If K is a metric simplicial complex and K x H
is an H-manifold, then K x H; is an H-manifold.

Proof. By Theorem 3 (the remark after Theorem 3), K x H, is
a (K x H)-complex, since K is by definition a & (K)-complex. The
strategy of the proof is to show that K x H, isa & (K x H)-absorp-
tion base, to embed K x H component-wise in H as open subsets
(using a theorem of Henderson [8]) and then to use Corollary 2 to
find a homeomorphism of the open subsets in question onto themselves
throwing the images of K x H, onto H; N\ (the open subsets). Thus,
all that is necessary is to establish the & (K x H)-absorptivity of
K x H;. In fact, since for each vertex v of K, st’ (v, K)— the open
star of v in K— is a contractible open set, st’(v, K) x H will be
homeomorphic to H by [9], so all that is needed is to show that
st® (v, K) x H; is & (st’ (v, K) x H)-abgorptive. Therefore, let X be
a finite-dimensional compactum of st°(v, K) x H, let Z¥ be an open
cover of X in st®(v, K) x H and let X’ be a closed subset of
XN(st’' (v, K)x Hf). Lemma 4 together with the fact that st’ (v, K)x H
is homeomorphic to H establishes that it is sufficient to find an
embedding of X in st’(v, K) x H, which is limited by %, and is the
identity on X’. Let » be a Lebesgue number for % with respect
to X, and let p, denote the projection of K x H onto H. As noted
in the proof of Theorem 4, there exists a sequence {¢;};cy in E and
another sequence {n(?)};.y in N such that n(i) — n(¢ — 1) = 2dim (X) + 2
for each 7 and || 3™, p; o px(®) — px(x)]] < 272\ for each m e N and
z e X, the rest of the notation being as in the proof of Theorem 4.
Constructing f,: X — H, by the same method as used in Theorem 4,
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except for the substitution of p, o p, for p;, and setting f = (pg, f,)
produces the desired embedding, if p, denotes the projection of
K x H onto K.

COROLLARY 4. If K 1is a metric, locally finite-dimensional,
simplicial complex such that mo vertex-star contains more vertices
than dim (H), then K x H; is an H-manifold.

Proof. By Theorem 4 of [12], K x H is an H-manifold, so
Theorem 5 applies. (This metric is assumed that in the abstract.)

Actually, if a pair (X, Y) of spaces, Y X, is called a (H, Hj)-
mantfold pair provided that X is a paracompact H-manifold and
there is an open cover % of X by sets U for which there are open
embeddings f,: U-— H such that f(UUY) = f,(U)N H;, then the
following have been established.

THEOREM 6. The patr (X, Y) is o (H, Hy)-manifold pair if
and only if Y s a & (X)-complex, X is an H-mawifold, and the
Jollowing weak & (X)-absorptivity condition 1s satisfied: For each
Jinite-dimensional compactum C of X, each open cover Z of C, and
each compact subset C' of CN Y, there is an embedding of C in Y
which 1s limited by Z and extends the inmclusion of C'. If (X, Z)
is another (H, Hy)-manifold pair and 7° is an open cover of X,
then there is an isotopy of X, limited by <, from the identity to
a patr homeomorphism of (X, Y) onto (X, Z).

COROLLARY 5. If (X, Y) and (X', Y') are (H, H;)-manifold pairs,
then (X x X', Y x Y") is an (H, H;)-manifold pair.

COROLLARY 6. If (X, Y) is an (H, H;)-manifold pair and K is
a metric, locally finite-dimensional, simplicial complex such that no
vertex-star contains more than dim (H) wvertices, then (X x K, Y X K)
1s an (H, H;)-manifold pair.
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ADJOINT PRODUCT AND HOM FUNCTORS IN
GENERAL TOPOLOGY

PETER WILKER

The well known natural equivalence [EXS, T] = [R, T¥],
valid in the category of sets and set mappings, can be derived
in various ways in the category of topological spaces and con-
tinuous maps, provided suitable topologies are introduced on
the product set B X S and on the set of all continuous maps
from S to 7. In this paper we will show how to construct
topologies of this kind, The ordinary product topology on
R X S and the compact-open topology on T will be given
their proper setfing in this context,

Given the category of topological spaces and continuous maps, we
shall write Con (4, B) for the set of morphisms from space A to space
B, A x B for the product of the carrier sets of A and B. If R, S, T
are three topological spaces, suppose topologies have been fixed on
R x S and on Con (S, T). [R x S, T] and [R, Con (S, T)] will denote
the sets of continuous maps from R x S to T and from R to Con (S, T),
respectively. (No topologies introduced on these sets.)

As in the category of sets and set mappings, there is a naturally
given function @ from [R x S, T] to [R, Con (S, T)] defined by

felR x 8, T; (@f)(r/s) = f(r, s) (reR,seS).
Its inverse is the function ¥ from [R, Con (S, T)] to [R x S, T], given by
gel[R, Con (S, T)]; (¥g)(r, s) = g(r/s) (rekR,sef).

The problem to be investigated in this paper is the following: what
topologies on B x S and on Con (S, T) will make the couple (@, ¥) a
natural equivalence, i.e., will make the functors — xS and Con (S, —)
adjoint functors?

The best known example is probably the use of the product
topology on R x S and of the compact-open topology on Con (S, T),
restricting S to locally compact Hausdorff spaces. Starting from this
standard situation, two lines of attack on the general problem have
been opened in the literature. One can start with the product topology
on B x S and look for conditions on Con (S, T'), or else one starts at
the other end by using the compact-open topology for Con (S, T), look-
ing for suitable topologies on R x S. (See [1], [2], [3]; the authors
do not use categorical language and their aims are somewhat different
from ours).

269
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In this paper we shall use a different approach. For the space
Con (S, T') a class K of topologies is chosen generalizing the class of
set-open topologies of [1]. Requirements for Con (S, T') and for R x S
to be functors and for (@, ¥') to be a natural equivalence will on the
one hand reduce K to a subclass of admissible topologies on Con (S, T)
and will on the other hand force R x S to carry topologies uniquely
determined by the topologies on Con (S, T). (The word “admissible”
is used in its ordinary sense, not as in [1]).

By a suitable choice of topologies a natural equivalence [Rx S, T]=
[R, Con (S, T)] can always be established in more than one way, irre-
spective of the nature of the spaces R, S, T. There is even a minimal
and a maximal nontrivial solution to this problem (given the clags K
of topologies on Con (S, T')). This will be the content of §’s 2, 3 and 4.

The remaining part of the paper is concerned with the role of
the compact-open topology on Con (S, T) and of the product topology
on R x S in this context. One of the admissible topologies on Con (S, T')
is determined by the compact sets of S; it turns out to be equal to
the compact-open topology only in case S satisfies a condition which
does not seem to be easily reducible to familiar properties of topological
spaces, but holds for well-known classes of spaces, e.g., Hausdorff
spaces. Given an admissible topology on Con (S, T) and the correspond-
ing one on R x S, if the latter is required to be the product topology
the space S has to satisfy a local condition related to local compactness.

2. Topologies on Con (S, T) and on R x S. Notation: R,S,T
will always denote topological spaces. Given S, the letter & will be
used to describe the space of open sets of S as well as the correspond-
ing lattice. ¥, ©, -.- will be used for filters on &, &#, &, 7, 57, «+-
for families of such filters. If K is any subset of S, §(K) will denote
the filter of all open sets of S containing K;& = () counts as a
filter. Finally, Z will stand for a Sierpinski space, i.e., a space con-
sisting of two points z, z, and with &, {z}, {2, 2} as its open sets.

Let % be a family of filters on & containing the filter & itself.
For any €.~ and any open set U of a space T we define

& Uy ={feCon(S, T):f~UecF}.

By requiring the family of all these sets to be an open subbagis one
introduces a topology (% ) on Con (S, T). If all filters of & are of
the form F(K), 7(F) will be a set-open topology in the sense of [1].

Let &, G e.7; obviously, <&, Upn<®, U) =<FNG, Uy, where
FNG is the intersection (meet) of the filters F and &. Hence there
is no loss of generality by assuming % to contain all finite intersections
of its members; this will be tacitely understood in the sequel.
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Next, look at each § € .& as a subset of the space & and introduce
a topology on & by requiring .&# to be an open basis.

To determine a topology on R x S we introduce a special notation.
Let AcR x S; for each re R, let ¢r denote the set of all se S such
that (r,s)e€ A. The function ¢ from R to the power set of S com-
pletely describes A and we shall write 4 = [¢].

Suppose topologies have been defined on & and on Con (S, T) by
means of a family .5 of filters on &, while R x S carries a topology
yet to be specified. Consider the transformations @ and ¥ introduced
in §1. For @ and ¥ to be natural transformations, the following
conditions are obviously necessary: given fe[R x S, T], g €[R, Con (S,
T)], r € R, the mappings @f: R — Con (S, T), (&f)(r/—):S— T and ¥g:
R x S — T must be continuous. We shall say that @ and ¥ must
preserve continuity.

THEOREM 1. @ and ¥ preserve continuily if and only if the
Jfollowing holds: a subset [¢] of R X S is open in the chosen topology
if and only if ¢ is a continuous map from R to &.

Proof. Assume the conditions on the open sets of B x S. Let
Ubeopenin T, fe[RxS, T], re R. Define ¢ by [¢] = f*U. It is easy
to see that for any § e &, (0f) "B, Uy =¢"'F and (@f)(r/—))"'U = gr.
@ preserves continuity if and only if ¢—'% is open in R and ¢r is open
in S, which is just our assumption. Similarly, for g ¢ [R, Con (S, T)]
define ¢’ by [¢'] = (Tg)—'U. ¥ preserves continuity if and only if [¢’]
isopen in B x S. But ¢'r = (g(r/—))"'U and ¢'7'F = g-Kg, U)>. Thus,
¢’ is a continuous map from R to & and [¢'] is open by assumption.

Suppose @, ¥ preserve continuity and let T = Z. If [¢] is any
open set of R x S, construct f: R x S — Z by putting f(r, s) = 2, for
(r, 8) e [g], f(r, 8) =2, for (7, s) ¢ [#]. Obviously, fe[RxS, Z]. Choosing
{z,} as the set U and repeating the argument used above we see that
¢ is a continuous map from R to &. Conversely, let ¢: R— & be
continuous. Construct g: R—Con (S, Z) by g(r/s)=z, for s € ¢r, g(r/s)=2,
for s¢ ¢r. We must show g e [R, Con (S, Z)]. Since (g(r/—))"Yz,} = ¢,
we have g(r/—) € Con(S, T). For any § € & and Uopen in Z, g7<g, U)
can only be equal to @, R or ¢~'%. Hence g is continuous. Repeating
the argument used to show that ¥ preserves continuity we see that
[¢] is open in R x S.

Theorem 1 restricts the system of filters & which may be used
to define a topology on Con (S, T), because the family of subsets [¢]
of R x S described by Theorem 1 must satisfy the axioms of a to-
pology. Actually, three of these axioms hold for any family .&#. The
sets @ and R X S are open in R x S, because they correspond to the
constant functions from R to & with @ and S as values, respectively.
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Let ¢, ¢,: R— & be two continuous functions and define ¢,N¢, by
(¢, N @)r = ¢,r N @7, the intersection on the right to be taken in S.
Obviously, [¢,]1N[g.] = [4.N,], hence ¢, N$, must be continuous. But
this is always the case, since for any filter F of . we have (¢, N ¢,)"'F=
freRigrNoreF) ={reR:greF and grePF} = ¢:'FN4:'F, which
is open in R x S. There remains the union axiom. For any family
¢:: R— &(i e I) of continuous maps define Ug; by (Ug)r = Ugr( e l).
Because U[g;] = [Udg;], Ug; must be continuous. We investigate this
requirement.

A filter § of & will be called compact, if for any system A;(7el)
of open subsets of S, whenever U A; e (¢ € I), there is a finite subset
KcI such that U4, e e K). If ¥ and & are compact, so is FNG.
If ¥ is of the form H(K), it is a compact filter if and only if K is a
compact subset of S. Filters of this kind will be called compactly
generated.

A family of filters .&# may satisfy the following condition:

(A) For any two open subsets A, 4, of S and for any $e &, if
A UA, %, there are filters &, &,¢.% such that A,e®, 4,6,
& NG,cH.

THEOREM 2. Ugy(iel) is a continuous map from R to &, for any
R, if and only if Z is a system of compact filters satisfying (A).

Proof. Let ¢;: R—&(iel) be a family of continuous maps. For
B e.F, define the set F' = (Ug,)"'F = {reR:U(gr) eF(tel)}. F must
be shown to be open in R.

Assume § compact; for each r ¢ F' there will be a finite subset
K,c I such that U(¢;r) € F(i € K,). Write F', = {se R:U(¢;3) € (¢t € K,)}.
By definition, FC UF . (rc F). On the other hand, for any sc F, we
have U(¢;8)C U(g;8)(t e K,, e I) and because F is a filter, U(4,3) €,
i.e., seF. Hence F = UF, and to show F open it will be sufficient
to consider only finite families of continuous maps ¢,. As the general
finite case follows by induction, two functions ¢,, ¢, will suffice.

&, U ¢, is continuous if and only if the set G = (¢, Ud)"'F = {re R:
srUsreE is open in R for any Fe.#. Assume &# to satisfy
condition (A). To any reG there correspond filters &,, §,e.& such
that ¢.r€®,, ¢,r € 9,, 8, NH,CF. We claim G = U (378, N ¢79,)(r € G).
By definition, G is contained in the right-hand set. Let s be an ele-
ment of ¢, N¢;'Y,, for some re R. Then

$5€@®,, ¢,5€9,, 65Ud5€9,NG,CF,

hence seG. This proves equality and shows G to be open.
For the converse, let Fe. & and let A, i el) be a family of open
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sets of S such that U A, e (7 € I). Consider the space R = &', equipped
with the product topology and write 7;: R — &(1 € I) for the canonical
projections. An open basis of R consists of finite intersections of sets
77'®, where & e &. The functions 7; are continuous. By hypothesis,
the same is true for Un,(1eI). Thus the set H= {ucR:U(ru)eF
(e I)} is open in R and each point of H belongs to a basic open set
contained in H.

Define a ¢ R by maa = A, for all iel. Then ae H and there are
a finite set JcI as well as filters ;€ & such that ae N77'9,CcH
(jed). This implies w,ae $; for all jeJ. Define beR by 7,;b = A;
(jed),ndb=@@el—J). Forjed, n;b = m;a, thus be N7;'H;. Since
N7;'9; is a subset of H,be H and Undb = U4;eF(tel,jeJ). This
shows ¥ to be compact.

Finally, let I be the set {1, 2}, otherwise using the same notation
as above. The element ac R = & x &, defined by ma = A4, 1.0 = A,
will again satisfy aen7', N7 ', H for two appropriately chosen
filters 9, D, F; thus 4,9, 4,€9,. Let the set C be a member
of ©.N 9, and consider the element ce R, defined by = = mye = C.
Because cen 9, N7;'9,cH, we have mcUme = Ce$. Since this
holds for any such C, $,N$.CF and &# satisfies condition (A).

A system of compact filters satisfying (A) will be called an ad-
joining system. Suppose all filters of a system & are compactly
generated. Our next theorem describes condition (A) in this case.

For any subset X of S define X* to be the intersection of all
open sets containing X. Obviously, (X,UX,)* = X}fUXJ); if K is
compact in S, the same is true for K*, because any open cover of
K* is also an open cover of K, hence contains a finite subcover which
must be above K*.

We shall call a compact set K for which K = K*, fully compact.
All compact sets of a topological space are fully compact if and only
if the space is T..

Let §(K) be a compactly generated filter; it is an immediate conse-
quence of our definition that F(K)=EEK*). Moreover, F(KF)NF(K )=
FUK, UK,)*) and & = (@) = F(D*). One may therefore assume that
the compact sets generating the filters of the given family & are
all fully compact.

We need one more fact, easily seen to hold: if K and L are com-
pact sets in S, then F(K)cCHF(L) if and only if L*cC K*.

THEOREM 3. Let & be a family of compactly generated filters
on &, and let & denote the family of fully compact sets of S which
generate the filters of #. Then F satisfies condition (A) if and
only if the following holds: if A,, A, are open sets of S and if Ke&
is such that KCA,UA, there are K, K,ec® with K,CA, K,CA4,,
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KcK, UK,

Theorem 3 is an immediate consequence of the facts established
above.

3. Functorial requirements. Given an adjoining system & on
&, Theorems 1 and 2 show that & uniquely determines topologies
on Con (S, T) as well as on R x S such that @ and ¥ preserve con-
tinuity. (@, ¥) determine a natural equivalence between [R x S, T]
and [R, Con (S, T)] if, given the space S,Con(S, T) and R x S are
(object mappings of) functors in T and R, respectively. This will
now be shown.

Let T, T'" be topological spaces, p: T— T’ a continuous map. As
usual, the morphism mapping C(p): Con (S, T')— Con (S, T") of the functor
Con (S, —) will be defined by C(p)f = »f, for any feCon(S,T). It must
be shown that C(p) is continuous with respect to the topologies defined
on Con (S,T) and on Con (S, T’). For U’ open in T” and for e &# we
have C(p)<E,U"> =< G, p' U’ >, which implies continuity of C(p).

Similarly, let R, R’, ¢: R— R’ be given, ¢ continuous. The mor-
phism mapping P(q): R X S— R’ x S of the functor — xS is defined
by P(g)(r, s) = (qr, s), for any (r,s)e R x S. We show that P(q) is
continuous with respect to the topologies chosen for R x S and R’ x S.
Let [¢'] be open in R’ x S and define ¢: R— S by ¢ = ¢'q. It is easy
to see that P(q)~'[¢'] = [4], which is open in R x S by Theorem 2.

The variety of adjoining systems for a given space S depends of
course on the nature of this space. To obtain a categorically significant
simultaneous choice of adjoining systems . (S) for each space S we
now require Con (S, T) and R x S to be functors in S as well. To
investigate this requirement we have to define two operations on sys-
tems & and list their properties.

Let & be a family of filters on & and let §,e &, 1el. In
general, U@;(teI) will not be a filter. We want to adjoin to & all
unions of its members which are themselves filters. Hence we define
7 to be the family of all filters on & which can be written as un-
ions of filters belonging to .. If all filters of % are compact, the
same holds for &, and if % satisfies condition (A) of §2, so does
Z. Consequently, if .# is adjoining, then .# is also adjoining. &
can actually be larger than #. The following example will incident-
ally prove the existence of compact, not compactly generated filters.

Let the space S consist of the set of natural numbers N together
with an element w¢ N. Write S;=N,S,=N-1{0,1,2, ---, n — 1}
(n = 1). Open sets of S shall be the sets S,, {w}, S,U{w} and the
empty set. Write §(n) for the filter generated by the compact set
{n} on S(neN). Then F = UF(n)(ne N) is a filter, as is easily seen.
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If it were compactly generated by a fully compact set KcS, the
intersection of all its members would be K. But this intersection is
the empty set @, while § = (@) = S, since {w}e¢F. Hence for
& = {F(n):ne N}, & is properly contained in 7.

THEOREM 4. Let 7, & be two (not mecessarily adjoining) fa-
‘milies of filters on a space &, and let ©(#, T), ©(&, T) be the cor-
responding topologies on the space Con (S, T). Writing 0 < 7, if the
topology T is finer than the topology o, we have v(&, T) < t(F, T)
for all T if and only iof & cC.Z.

COROLLARY. ©(#, T) = t(Z, T) for all T.

Proof. Let T = Z, a Sierpinski space, and let & e <. The set
<@, {z}> is not empty, since the constant function f: S — Z with value
2, belongs to it. On the other hand (@, {z,}> = Con (S, Z) if and only
if =&. Suppose &+ &S and assume (%, Z) < ©(F, Z). Then
LG, {z}> = UB, (2>t e I), where §; e . We want to show & = UFi.
For Ae®, define feCon(S, Z) by fa = z(ac A), fo = z(aeS — A).
Because fed®, {z}), there is an iel such that fed§, {2}>, which
implies Ae@; and G UF,;. By a similar argument, UF;CS. This
proves & C.Z.

The converse is an easy consequence of the definitions. The
corollary is implied by the fact that .&# is a basis for the topology
o, T).

Let S, S’ be two topological spaces and let ¢: S — S’ be continuous.
For any filter § on & define the subset ¢'% of & by ¢'F = {4'€&":
g A eF). ¢'F is a filter on &, and if § is compact, so is ¢'F; this
follows easily from the algebraic properties of ¢~*. If § = F(K), then
q'F(K) = F(qK); if, therefore, § is compactly generated, so is ¢'%F.

Given a family & of filters on &, let us write ¢ for the
family of filters ¢'§§, e &#. If & satisfies condition (A) of §2, the
same is true for ¢’ . This again is an immediate consequence of the
definitions. Together with the facts noted above we have: if & is
an adjoining system, then ¢.& is also adjoining.

Returning to the investigation of the functorial requirements, let
T be a fixed topological space and consider Con (S, T) as the object
mapping of the (contravariant) functor Con (—, T). TFor a continuous
.q: S — 8', define the morphism mapping D(q): Con (S, T) — Con (S, T)
by D(g)f’ = f'q (f’€Con(S’, T)). The topologies on the two spaces
Con (S, T') and Con (S, T') are assumed to be given by adjoining systems
& and # ', respectively. D(g) must be continuous, i.e., for each
Fe.# and for each open subset Uc T, the set D(q)~<(§, U) has to
be open in Con (', T). It is easy to see that D(¢)"<F, U> = {¢'%, U,
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which is a basic open set of the topology defined by ¢’.%# on Con (S’, T).
Thus, this topology must be coarser than the given one. Conversely,
if this is true, D(q) will be continuous. Theorem 4 now implies

THEOREM 5. If for each space Con (S, T), T fixed, a topology 1is
defined by the choice of an adjoining system 7 (S) on the corre-
sponding space S, then Con (—, T) together with the mapping D is
a functor vf and only if for each continuous map q: S — S’ the re-
lation ¢ .7 (S)c .7 (S) holds.

We shall describe this relation briefly by “.& (S) is functorial”.

If adjoining systems have been chosen according to Theorem 5,
then R x S with the topology induced by .& (S) is also, for fixed R,
(the object mapping of) a functor. For any continuous ¢: S — S’ de-
fine the morphism mapping Q(q): B x S— R x S’ by Q(q)(r, s) = (r, gs)
((r, s)e R x S). Q(q) is continuous. To see this, let [4'] be open in
R %< S, where ¢': R— &'. The inverse ¢ of ¢ induces a mapping
g & —&; define ¢: R—& by ¢ = q'¢’. Then Q(¢)7'[¢'] = [4], as
is easy to see. For any Fe & (S), we have ¢7'F = ¢ '(¢'F). By as-
sumption, ¢'$% is open in the space & with respect to the topology
given by & (S”). This shows ¢7'§ to be open in &, ¢ to be continuous,
[¢] to be open in R x S and finally Q(q) to be continuous.

4. Minimal and maximal adjoining systems. Let the variable
E range over the finite subsets of a topological space S. By & we
shall denote the family of all filters {(E). & is adjoining: every
®(F) is compactly generated, and if A, B are open sets in S with
AU BeF(E) for some E, then AeFANE), BeFBNE), FLANE)N
BBNE) =F(AUB)NE) = FE). It is also easy to see that & (S)
is functorial: for any continuous ¢: S — S, ¢FE) = F(¢FE), hence
qES)ycE Sz (Y).

Before stating the next theorem we need a preliminary discussion.
Let S, S’ be two topological spaces. Given a point ¢ ¢ S’, write ¢, for
the constant map ¢,: S — S’ with value ¢. If § is a filter on &, then
¢'F% = §({t}), provided F =+ &; otherwise, ¢/& = &'. This follows from
gt A = S(te A'cS), ¢ A" = @(te A).

Consider the system of filters .9~ on &, consisting of the filter
& = F() alone. It is a trivial fact that &~ is adjoining and .7 (S)
is functorial. One can prove a slightly stronger result: if & (S) is
functorial and & (S,) = 7 (S,) for some space S,, then .7 (S) = .7 (S)
for all spaces S. Let teS, (we exclude the empty space); for any
space S, consider the constant function ¢,:S—S,. Since F(S) is
functorial, we must have ¢, & (S)Cc 7 (S,) = 2 (S,), hence ¢\F% = &,
for all e . (S). By our discussion above, thig forces §§ = & and
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Z (S) = .7(S). Of course, the choice of 77 (S) leads to a trivial
solution of our original problem: Con (S, T') carries the indiscrete, R x S
the discrete topology.

THEOREM 6. £ (S) is a minimal adjoining system for any space
S, in the following sense: if F (S) is a functorial choice of adjoin-
ing systems different from 7 (S), then & (S)c.# (S).

Proof. Given S, let s ¢S and consider the constant map ¢,: S— S.
By assumption, there is a filter e & (S) with § + &. Since ¢.F =
F({s}), Theorem 5 implies F({s}) e F and &< = .

The topology induced by & on Con (S, T) is equal to the subspace
topology with respect to the space T° of all functions from S to T,
carrying the ordinary product topology. In keeping with the term
“set-open” a name sometimes used for this topology is “point-open’”;
it is called p-topology in [3], usually also the topology of pointwise
convergence.

The topology on R x S corresponding to & can be described in
different ways. Suppose r: B — PS is a mapping from R to the power
set of S, s: S — PR a mapping from S to the power set of B. We
shall call », s reciprocal, if for any veS, s(v) = {uc R:ver(u), or
equivalently, if for any u € R, r(u) = {v € S: u € s(v)}. Obviously, to each
r there corresponds exactly one reciprocal s, and conversely. If r
maps R to points of S, s is simply the inverse mapping .

Suppose r is a map from R to &, the space of open subsets of S.
We shall call » and its reciprocal s, topologically reciprocal, if the
same is true for s, i.e., if s maps S into R, the space of open sets
of R.

The topology on R x S, induced by the adjoining system & (S),
can now be described as follows: a subset [¢] of R x S is open in
this topology if and only if ¢ and its reciprocal «+ are topologically
reciprocal.

The filters F({s})(s € S) constitute an open subbasis for the topology
given by & on &. Because [¢] is open if and only if ¢: R— & is
continuous, [¢] will be open if and only if ¢~ 'F({s}) = {re R:secgr} =
4rs i3 open in R. This is exactly what we have claimed.

Another description of the topology on R x S has been given by
R. Brown (see [2]), who algo briefly comments on its connection with
the point-open topology on Con (S, T). ([2], Remark 1.15).

To obtain maximal adjoining systems, we first show how to con-
struet new systems out of a family of given ones. Let & ,(1e€I) be
a family of adjoining systems on a space &. Define U* & (¢ € I) as the
set of all filters which can be written as finite intersections of filters be-
longing to U.# ;. By a straightforward application of the definitions
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involved one proves easily: U*.& (¢ eI) is an adjoining system; if all
filters belonging to U.% ; are compactly generated, the same holds
for the filters of U*.& ;.

This construction allows to define two distinguished adjoining
systems on any space &. The first one is the system ._#, obtained
by applying our construction to the family of all adjoining systems
on &, _# is of course the maximal adjoining system on &; further-
more, .2 (S) is functorial.

The second distinguished system will be denoted by .27 it is
constructed from all adjoining systems consisting of compactly gener-
ated filters only. Since & is such a system, .57 is not empty. .27(S)
is functorial: for any continuous ¢: S — S’ and any compactly generated
filter F(K) we have ¢'F(K) = F(gK); ¢K is compact.

Note that other adjoining systems satisfying the functorial re-
quirement can be obtained by cardinality arguments. Consider for
instance, on a space &, the family of all adjoining systems of com-
pactly generated filters, where for each such filter a generator may
be found with cardinality <m, m a fixed infinite cardinal. Application
of our construction to this family yields an adjoining and functorial
system _27,(S) for each space S.

5. The compact-open topology. The compact-open topology on
a space Con (S, T) is defined by the system .2, of all compactly gener-
ated filters on &. .27 need not be adjoining, as will be shown pres-
ently; hence the compact-open topology does not always provide a
solution to our problem. However, due to the importance of this
topology for the theory of function spaces an investigation of spaces
S for which the compact-open topology on Con (S, T) is induced, for
any T, by some adjoining system is indicated.

Let .# be such a system. According to Theorem 4, we have
F = %, conversely, a system & satisfying this equality defines,
for any 7T, the compact-open topology on Con (S, T').

THEOREM 7. If F = %, for some adjoining system F on &,
the space S satisfies:

(D) If K is a compact subset, and if A, A, are open subsets
of S such that KCA,UA,, there are compact sets K, K, in S with
K.cA, K,cA, KcK UK,.

Conversely, if (D) holds, the adjoining system .2 defined in
§ 4 equals 25¢;.

Proof. Suppose # = %, and let K, A,, 4, satisfy the hypothesis
of condition (D). Then A,UA,eK) and F(K)e F. Since F is
adjoining, there exist filters F, F.€ % with 4, €F, 4, F.NFC



ADJOINT PRODUCT AND HOM FUNCTORS IN GENERAL TOPOLOGY 279

HK). Fi, F. being members of 57, there are compact sets Li;, Li;
(tel,jed) such that &, = ULy, F = USUn)el,jed). A eH
implies L,cA,, where L, is one of the sets L,; similarly, L,CA,.
Furthermore, & N3. = U(FLw) NB(Lsy)) = UF (LU Lyy), thus F(L,U
L)cF(K). As was shown in §2, the latter relation is equivalent to
KcK*cL{uUL}. By letting K, = L}, K, = L we have established
the first part of the theorem.

Suppose (D) holds in a space S; then it also holds if “compact”
is replaced by “fully compact”. Theorem 8 now shows .2, to be
adjoining. Obviously, 5%, = %<

Examples of spaces satisfying (D) are easily provided: discrete,
indiscrete and pseudo-finite spaces (all compact sets finite; see [4] or
[5]) are instances in case. We give a sufficient condition for (D) to
hold, which covers some important classes of spaces.

We shall use the following notation: Ti(¢ =1, 2, 8, 4, 5) denotes
the usual separation axioms, where for 7= 2 we do not assume 7..
A gpace is called a KC space (according to [5]), if every compact set
is closed; it will be called a K*C space if every fully compact set is
closed. This is equivalent to: if K is compact, 4 open, and if KCA,
then Kc A (where K is the closure of K). Finally, a space will be
said to be KT, if every compact subspace is a 7T, space.

THEOREM 8. Any KT, space satisfies condition (D). If the space
s a K*C space, KT, is equivalent to (D).

Proof. Let K be a compact subset, A,, 4, open subsets of a KT,
space S, such that KcA4,UA, The sets K — 4,, K — A, are closed
subsets of the subspace K and (K — A)N(K — 4,) = ¢. By assump-
tion, there are open sets B,, B, in S such that KX — A,cB,, K — A,CB,,
KnB,NB, = @. Writing K, = K — B, K, = K — B,, we have K,CA,,
K,cA, and K, UK, = K. The sets K,, K, being closed in the compact
subspace K, they are compact in S.

Let S be a K*C space satisfying (D), and let K be a compact sub-
gspace of S. If C,, C, are closed disjoint subsets of K, write D,, D, for
their complements in S. Because K< D,U D, and D,, D, are open, there
are compact sets L, L, in S with L,cD, L,cD, KcL, UL, By as-
sumption, L,cD,, L, D,. Writing M,, M, for the complements of L,, L,
in S, we have C,.c M, C,cM, KNM,nNM, = . Hence K is a T, space.

It is easy to see that T, T; and T} spaces are KT, spaces and thus
satisfy (D). This is trivial for T;. Any subspace of a T,(T,) space is
itself T,(T.); as is well known, a compact T,(T;) space is also a T, space.

We shall see in the next section that (D) holds also in locally
compact spaces.

On the other hand, neither T, (or the stronger KC) nor compactness
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imply (D). Consider the space QF, the one-point-compactification of
the space @ of rationals. Q' is a compact KC space (see e.g., [5]),
hence also T, and K*C. By Theorem 8, Q" will satisfy (D) only if
it is a T, space. Because T, and T, imply T,, @ would have to be
a Hausdorff space, which it is not.

6. The product topology. The topology induced on the space
R x S by an adjoining system on & need not be the product topology.
In this section we give necessary and sufficient condition in order
that a given adjoining system induces the produet topology on R X S,
for any R.

Let & be a filter on & and let Fi(¢tel) be the family of its
members. We write §° for the set (NF)(2el). (X° denotes the
interior of X in the space S). If ¥ = F(K) is compactly generated,
then §° = K*°.

Let R, S be two topological spaces, A an open subset of R, B an
open subset of S. We define a mapping (4, B): R—& by (A4, B)r = B
(re A), v(4, B)r = @(re R — A). Obviously, with the notation of §2,
[v(4, B)] = A x B. Let & be any filter on &. It is easy to see that
(A, B)7'% is equal either to A or to @ or to R. Hence (4, B) is
continuous for all A, B and A x B is open no matter what adjoining
system is chosen on & to determine a topology on R x S. This shows
that any such topology is finer than the product topology.

Since the family of sets A X B is an open basgis for the product
topology on R x S, an adjoining system on & determines this topology
if and only if to any continuous map ¢: R — & there correspond open
sets A,CR, B,CS(tel) such that [¢] = U[v(4,, B)l(tel).

THEOREM 9. Amn adjoining system F on & induces the product
topology on R x S, for any R, if and only if any open set ACS
satisfies A = UZ’, where F runs through all filters of & containing
A as an element.

Proof. The condition is necessary. Let R be the space & with
the topology given by #. We claim: the family of sets [v(%, B)]
(€., B open in S) is an open basis for the product topology on
& x S. Indeed, an open set in & is given by A = UF,;(F, € F jed)
and [y, B)] = U[¥(F;, B)l(eJ). Consider the identical mapping
e: & -—&. Since ¢ is continuous, [¢] is open in & x S and there exist
filters ;€ & and open sets B;,CS(ie€l) such that [¢] = U [v(F: Bl
(i eI), or equivalently, ¢ = U+ (F; B;) (according to the notation in-
troduced in §2). For any open ACS we have c4A = A = U (F; B)A =
UB;(t eI, j € J(A)), where the subset J(A)cI is determined by 7 e J(4)
if and only if Ae ;. Hence for any ¢el and any Ae$; we have
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B;C A and consequently B,c%!. Fix an open ACS and consider the
index set J(A4). Then F}c A for all j e J(A), hence UF;CA, but also
A= UB;CcU%}. This proves A = UP} and also A = UP’, as stated
in the theorem.

The condition is sufficient. Let R be any topological space, ¢: R—&
a continuous map. For any Fe. &, define 4(F) = +(6'F F). By
definition, for re R, ¢(F)r = F° if ¢éreF, otherwise ¢(F)r = ©. Tak-
ing the union of all the sets 4(F)r for all Fe &, r fixed, one obtains
Us(F)r = UG, where @ runs through all filters of & containing
ér. By assumption, this is equal to ¢r and we have ¢ = Ug(§) =
U (™%, F)NE e ). Hence [¢] is open in the product topology on
R x 8.

We shall call a space S satisfying the condition of Theorem 9,
locally &#. The reason for this terminology is the following: let A
be open in S, p a point of A. The condition is satisfied if and only
if there is a filter §e.% containing A and such that » e F cA.

If & consists of compactly generated filters and if &(£) is the
set of its fully compact generators, S is locally & if and only if for
any open AcCS and any point pe A there is Ke (% ) such that
peK'cKcCA, i.e., if and only if 8(£7) is a local neighborhood base
for each point of S. If R( %) is the family of all fully compact sets
of S, this is just (a version of) local compactness, as is eagily seen.

As was shown above, the product topology on R x S is always
coarser than any topology induced by an adjoining system. This re-
mark leads to.

THEOREM 10. Let &7 be a family of compact filters on & and
let the space S be locally . Then Z consists of all compact filters
on & and is adjoining; in fact, F equals the maximal adjoining
system _# on .

Proof. Let © be any compact filter on & and let Ae®. By as-
sumption, A = U’ where § runs through all filters of & containing
A. Since ® is compact, there is a finite number of such filters, say
R +++y Fno such that FU---UF, €B. Consider = F.N -+ NFn; it
is easy to check that §° O U --- UF>. Consequently, $°c¢ ® and HG.
For any Ac® we have found a filter $(A)e.# with A e H(A)CG;
hence @ = UH(A)(Ac®) and e Z.

To prove .# = ., we show that & is adjoining, i.e., satisfies
condition (A) of §2. Let e F, A, B open in S, AUBeg. Writing,
as above, A = UG, B= U9 (4 c®ec &#, BeHec &) we can find filters
®&(A), 9(B) ¢ & with Aec®(A), Be 9(B), $(A)°UH(B)eF. The latter
relation implies ®&(4) N H(B)CF, as is easily seen by using the formula
UL (GNH).
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COROLLARY. If S is locally compact (in the semse imtroduced
above, 1i.e., locally 5%;), then OF, = _# and the compact-open topology
on Con (S, T) corresponds to the product topology on R x S.

This corollary together with Theorem 7 implies that a locally
compact space satisfies condition (D) of Theorem 7. This fact can of
course be shown directly.

We shall now give an example of a space S which is not locally
& for any system of compact filters. By our results the product
topology on R x S will not, in general, be induced by any adjoining
system on &.

Let S be an uncountable set with the countable topology (a set
is closed if and only if it is at most countable or the whole space).
As is well known, the resulting space is pseudo-finite (compact = finite).
We want to show that every compact filter § on & is compactly
generated.

Let K be the intersection of all members of & and suppose KcC A4,
where A is open in §. We shall prove Ae . A is either cofinite or
cocountable. In the first case, let A=S— {v, ---, v,}. For each
w1=<1i1<mn, there is F,e® with v;¢ F;. Then Fin..-NF,cS —
{v, +-+,v,} = A and AeE. In the second case, let A = S — V, where
V = {v, vy +--}. For each natural 7, there is again F; ¢ ¥ with v; ¢ F’.
We use, for any %, the notation V; = {v, ---, v;}, 4; = AU V,. Obvious-
ly, FNF,N---NF,cS — V,, which implies S — V;e¢&. The union
of all A, is equal to S and therefore belongs to the filter ¥. Since
% is compact, there is a finite number of sets A; whose union is a
member of . As is easily seen, this union is equal to some A;.
Then A;N(S — V,)eP; but 4,N(S — V;) = A4.

Our result implies § = F(K), thus § is compactly generated. It
is now evident that S ecannot be locally & for any system of compact
filters &, for this would imply the existence of finite open sets on S.

The author wishes to dedicate this paper to Professor Hugo
Hadwiger of the University of Bern on the occasion of his sixtieth
birthday.
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A NOTE ON THE CHARACTERIZATION OF
CONDITIONAL EXPECTATION OPERATORS

DanNIEL E. WULBERT

Let (X, >}, ) be an arbitrary measure space. A complete
characterization is presented for the norm one positive projec-
tions P of LYX, 3, 1) into itself such that ||f|[~ = || Pf]|. for
each essentially bounded, summable function f,

If (X, 3, 1) is a probability measure space it is known [1], [2],
and [4] that such operators coincide precisely with the conditional
expectation operators defined on L' (see definitions below). In this
note we show that this characterization extends to an arbitrary mea-
sure space. The proof presented here is a direct, constructive proof
requiring only basic measure theory. Although this extension is not
unexpected, it does not seem to be a consequence of the methods used
in the case for the finite measure spaces. An independent proof for
this result, using the ergodic theory of Markov processes, was found by
S. Foguel. Also extensions to arbitrary measure spaces of related
theorems in [1], have recently been done by L. Tzafriri [5].

DEFINITION. Let (X, 3, ¢#) be a measure space. Let >, be a
o-subring of >,. We call a projection P on L(X, 3, p) a conditional
expectation operator with respect to 3, if Pf is >, measurable for
all £, and if for each U in 3, we have

SUPfd‘u - Svfd# )

Clearly a conditional expectation operator is positive projection of
norm one.

Notation. Let P be a norm one positive projection from L'(X,
> ) onto E. Let

Sh={KEX:K=suppf, f=0, finE}.

We use suppf to denote the support of a function f. The
characteristic function of a set 4 is written 1,.

LevMA 1. E 4s a lattice.

Proof. Let f and g be in E. Since fV g dominates f and g,
P(f \/ g) dominates f, g and hence f \/ g. Since ||FV gl = || P(f V 9,

285
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we have that f\Vv g = P(f V g).
LEMMA 2. 3, is a o-ring.

Proof. We need to show that countable unions of members of
3% are in 3, and differences of members in >, are in 3>},. Suppose
U;isin Y, for i =1,2, ---. Let f; be norm one positive functions
in F whose support in U;. Then f = 32, (1/2)f; is a positive function
in K whose support is U, U..

Suppose U and V are in 3, and are the supports of positive
fuction f and ¢ in K.

Let
fo=( —ng) VO.
Let
,on_ (f@ for zin U—V
Fiw = {O otherwise .

From the dominated convergence theorem f, converges to f’. Thus
U-Visin >,

LemMA 3. Suppose f vanishes off some member of >,. The
Sollowing is true.

(i) P(f) =0 implies f = 0.

(ii) if K is in >, then P(lgf) = 1xP(f).

(iif) SKPfd;e - gde/,c for all K in S, .

Proof. We will assume that f is nonnegative. Suppose g is a
nonnegative number of E such that f vanishes off supp (g). Since
f A ng increases monotonically to f, it suffices to assume that f is
bounded by a member of E. We will agsume therefore that 0 < f
=y.

(i) Pg—~fl=gsoligli=llg—Sll,but0=g — f=<g. There-
fore f = 0.

(ii) Suppose that 2 is a nonnegative member of E such that
supp h = K. Since g A nh converges monotonically to 1.9, it follows
that 1.9 is in K.

Now 0 < P(Axf) < P(1xg) = 1x9. Hence P(1.f) vanishes off K,
and P(Lef) = 1.P(f). We also have 1,9 — P(Lf) = P(1x(g — f)) <
1gP(g — f) = 1x9 — 1P(f). Thus 1xPf = P(1cf).

i) | fap=11ef I 2 1 P0eh) || = | Prdp. Similarly
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foa —§ san =1 (6 - Pap = 1xe - )

= || Pclg — Il = | (Py = PPy

Hence S Prip = | fip.
K K

For the remainder of the paper we will also assume that for each
esgentially bounded f in L, || flle = || Pf |leo-

LEMMA 4. FEach member of E is 3 -measurable.

Proof. We first show that g A ¢ is in E for each constant func-
tion ¢ and each g in E. It suffices to prove this assertion for positive
functions ¢ and for ¢ > 0. However this is almost obvious for since
P ig positive g = P(g A ¢) = 0, and from the hypothesis ¢ = P(g A ¢).
Thus g A ¢ = Plg A ¢). Now with K = suppg Lemma 3 (iii) implies
that g A ¢ = P(g A ©).

It follows that for any ¢, g — g A ¢ is in E. Hence if g is a
positive function in E, the set {x in X : g(x) > ¢} is also the support
of g — g A ¢, and thus is in >,. Hence Pf is 3, measurable for each
fin L\

PROPOSITION. P s the conditional expectation operator with
respect to >
Proof. Let fbein L. Letr= sup{g | fldp: K in zo}. Let K
K

be a member of 3, such that S | fldg =r Writing f=1cf +
K

(f — 1xf) we see that f is the sum of a function which vanishes off
a member of >}, and a function which vanishes on each member of
See Thus in view of all the previous lemmas it remains only to show
that Pf =0 if f vanishes on each member of >,. We may assume
that f is bounded and nonnegative. Since the support of nPf is in
3., and since f vanishes on all members of 3, we have

LS + nPflle = max (|| flloy 2 || Pf[l<)
but
I f + nPflle = [P(f + nPf) |l. = (n + 1) || Pf|l. .
This implies that || Pf|l. = 0.

REMARKS. The hypothesis that || f |l. = || Pf|l. is equivalent to
the assumption that P(1,) <1 for all sets A of finite measure.
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The referee has pointed out that the main result in this note is
valied for norm one projections defined on L, spaces. Besides the
proofs presented here, one would also use the fact that there do not
exist two distinet norm one projections of a smooth space onto a
subspace. (For L, spaces this result is in [1]. For smooth spaces a
proof is in [6, Lemma 1]). The organization of this note was also
suggested by the referee, and adapts to L, operators more readily than
the original.
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