LOCALLY COMPACT SPACES AND TWO CLASSES OF C*-ALGEBRAS

JOHAN AARNES, EDWARD GEORGE EFFROS AND OLE A. NIELSEN
Let X be a topological space which is second countable, locally compact, and T_0. Fell has defined a compact Hausdorff topology on the collection $\mathcal{G}(X)$ of closed subsets of X. X may be identified with a subset of $\mathcal{G}(X)$, and in the first part of this paper, the original topology on X is related to that induced from $\mathcal{G}(X)$. The main result is a necessary and sufficient condition for X to be almost strongly separated. In the second part, these results are applied to the primitive ideal space $\text{Prim}(A)$ of a separable C*-algebra A, giving in particular a necessary and sufficient condition for $\text{Prim}(A)$ to be almost separated. Further information concerning ideals in A which are central as C*-algebras is obtained.

Most of the theorems in the paper were suggested by the results for simplex spaces recently obtained by Effros [10], Effros and Gleit [11], Gleit [14], and Taylor [17]. The notion of a simplex space was introduced by Effros in [9]. If \mathfrak{A} is a simplex space, then max \mathfrak{A}, $P_1(\mathfrak{A})$, and $EP_1(\mathfrak{A})$ denote the closed maximal ideals in \mathfrak{A}, the bounded positive linear functionals on \mathfrak{A} of norm at most one, and its set of extreme points, resp., the first set provided with the hull-kernel topology and the latter two sets with the weak* topology. The sets max \mathfrak{A} and $EP_1(\mathfrak{A})$-$\{0\}$ are in a natural one-to-one correspondence, but the topologies do not agree in general. Information about the simplex space \mathfrak{A} can be obtained by comparing these two topologies (see [11], [14], [17]).

In trying to develop an analogous theory for a C*-algebra A, the first problem is to decide on replacements for max \mathfrak{A}, $P_1(\mathfrak{A})$, and $EP_1(\mathfrak{A})$. For simplicity, assume that A is separable and has a T_1 structure space. An obvious substitute for max \mathfrak{A} is the structure space of A, $\text{Prim}(A)$ (the primitive ideals in A, or in this case the maximal proper closed two-sided ideals in A, with the hull-kernel topology). To replace $P_1(\mathfrak{A})$ and $EP_1(\mathfrak{A})$ by the corresponding sets of linear functionals on A does not seem to lead to a fruitful theory. Instead, $P_1(\mathfrak{A})$ and $EP_1(\mathfrak{A})$-$\{0\}$ are replaced by $N(A)$ and $EN(A)$-$\{0\}$, resp., where $N(A)$ is the compact Hausdorff space of C*-semi-norms on A, and $EN(A)$ is the set of “extreme” points of $N(A)$ (see [4; § 1. 9. 13], [8], [12]). Then $\text{Prim}(A)$ and $EN(A)$-$\{0\}$ are in a natural one-to-one correspondence which is in general not a homeomorphism. By identifying these sets, the primitive ideals in A are endowed with
two topologies. Regarding Prim(A) as a subset of \(\mathcal{C}(\text{Prim}(A)) \), the identification of Prim(A) and EN(A)\{-0\} extends naturally to a homeomorphism of \(\mathcal{C}(\text{Prim}(A)) \) and \(N(A) \). Thus the second topology on Prim(A) is just its relative topology in \(\mathcal{C}(\text{Prim}(A)) \). It is therefore natural to attempt to formulate those theorems about a simplex space \(A \) which involve only the two topologies on max \(A \) in terms of a locally compact space \(X \) and the associated space \(\mathcal{C}(X) \).

The paper is organized as follows. §2 contains theorems which relate the topology of \(X \) to that of \(\mathcal{C}(X) \). The applications to C*-algebras are in §3. Two classes of C*-algebras, called GM- and GC-algebras, are investigated; they correspond to the GM- and GC-simplex spaces of [11]. A C*-algebra is a GM-algebra if its structure space is almost strongly separated, and a GC-algebra if it has a composition series \((I_{\alpha})\) of closed two-sided ideals such that the \(I_{\alpha+1}/I_{\alpha} \) are all central C*-algebras. These algebras were studied by Delaroche [2], who in particular showed that the GC-algebras are just the GM-algebras with only modular primitive ideals. A new proof of this fact (Theorem 3.7) is included. Finally, §4 points out how the GM- and GC-algebras are related to some of the classes of C*-algebras in the literature.

2. Locally compact spaces. Throughout this section \(X \) is assumed to be a locally compact topological space satisfying the \(T_1 \) separation axiom. Recall that \(X \) is \(T_1 \) means that if \(x, y \in X \) are such that \(\{x\}^- = \{y\}^- \) (bar indicates closure), then \(x = y \), and that \(X \) is locally compact means that if \(x \in X \), then each neighborhood of \(x \) contains a compact neighborhood of \(x \). It is important to remember that although a closed subset of a compact set must be compact, the converse need not be true in a non-Hausdorff space. Let \(X_i \) denote the closed points in \(X \), i.e., those \(x \) for which \(\{x\}^- = \{x\} \). If \(X = X_i \), then \(X \) is said to be \(T_1 \).

The following construction is due to J. M. G. Fell [13]. Let \(\mathcal{C}(X) \) denote the collection of all closed subsets of \(X \). The function \(\lambda : X \to \mathcal{C}(X) : x \mapsto \{x\}^- \) is one-to-one. If \(C \) is a compact subset of \(X \) and if \(\mathcal{F} \) is a (possibly empty) finite collection of open subsets of \(X \), then \(\mathcal{U}(C; \mathcal{F}) \) will denote the collection of all those \(F \in \mathcal{C}(X) \) such that \(F \cap C = \emptyset \) and \(F \cap G \neq \emptyset \) for each \(G \in \mathcal{F} \). The sets \(\mathcal{U}(C; \mathcal{F}) \) form a basis for a compact Hausdorff topology on \(\mathcal{C}(X) \) [13]. It is readily verified that a net \((F_n)\) in \(\mathcal{C}(X) \) will converge to an element \(F \) in \(\mathcal{C}(X) \) if and only if (1) for each \(x \) in \(F \) and neighborhood \(N \) of \(x \), eventually \(F_n \cap N \neq \emptyset \), and (2) if \(P \) is the complement of a compact set with \(F \subset P \), then eventually \(F_n \subset P \). This topology is metrizable whenever \(X \) is second countable [6; Lemma 2] (see Corollary 2.7 for a partial converse). A simple argu-
LEMMA 2.1. (1) \(\lambda \) is open onto its image, and (2) \(X \) is Hausdorff if and only if \(\lambda : X \to \lambda(X) \) is a homeomorphism.

The first object is to find sets on which \(\lambda \) restricts to a homeomorphism. A set \(\mathcal{I} \subset \mathcal{C}(X) \) will be called dilated if \(x \in F \) for some \(F \in \mathcal{I} \) implies that \(\lambda(x) \in \mathcal{I} \). In particular, if \(F \in \mathcal{C}(X) \), the set \(F^\perp = \{ E \in \mathcal{C}(X) : E \subseteq F \} \) is compact and dilated.

LEMMA 2.2. If \(\mathcal{I} \) is a compact and dilated subset of \(\mathcal{C}(X) \), then \(\lambda^{-1}(\mathcal{I}) \) is closed.

Proof. Suppose that \(x_0 \in X \) and \(x_0 \notin \lambda^{-1}(\mathcal{I}) \). Say \(F \in \mathcal{I} \). As \(\mathcal{I} \) is dilated, \(x_0 \notin F \), and so there is a compact neighborhood \(C(F) \) of \(x_0 \) which is disjoint from \(F \). The sets \(\mathcal{U}(C(F); \varnothing) \), \(F \in \mathcal{I} \), form an open covering for \(\mathcal{I} \); hence there are sets \(F_1, \ldots, F_n \in \mathcal{I} \) such that

\[
\mathcal{I} \subset \bigcup_{i=1}^n \mathcal{U}(C(F_i); \varnothing).
\]

Suppose \(x \in C = \bigcap_{i=1}^n C(F_i) \) and \(\lambda(x) \in \mathcal{I} \). Then \(\lambda(x) \cap C(F_i) = \varnothing \) for some \(i \), hence \(x \notin C(F_i) \), a contradiction. This shows that \(C \) is a neighborhood of \(x_0 \) which is disjoint from \(\lambda^{-1}(\mathcal{I}) \).

If \(T \) is a subset of \(X \), then \(\lambda(T) \) is dilated; hence

COROLLARY 2.3. If \(T \) is a subset of \(X \) for which \(\lambda(T) \) is compact, then \(\lambda \) restricts to a homeomorphism of \(T \) onto \(\lambda(T) \).

The following shows that convergence in \(X \) is closely related to that in \(\mathcal{C}(X) \). The trick employed in the proof of (ii) was used by both Gleit [14] and Taylor [17].

THEOREM 2.4. (i) Let \((x_a) \) be a net in \(X \) such that \(\lambda(x_a) \to F \) for some \(F \in \mathcal{C}(X) \). Then \(x_a \to x \) for any \(x \in F \).

(ii) Let \((x_n) \) be a sequence in \(X \) such that \(\lambda(x_n) \to F \) for some \(F \in \mathcal{C}(X) \). Then the limit points of the set \(\{ x_n : n \geq 1 \} \) lie in \(F \).

Proof. (i) Say \(x \in F \), and let \(G \) be an open set containing \(x \). Then since \(F \cap G \neq \varnothing \), eventually \(\lambda(x_a) \cap G \neq \varnothing \), hence \(x_a \in G \).

(ii) For each \(m \) the set \(\{ \lambda(x_n) : n \geq m \} \cup F^\perp \) is both closed and dilated, hence its inverse image \(F_m = \{ x_n : n \geq m \} \cup F \) is closed. If \(x \)
is a limit point of \(\{x_n : n \geq 1\} \), it must lie in each of the sets \(F_m \), and thus is an element of \(F \).

Corollary 2.5. Suppose that \(X \) is second countable. If \(\emptyset \in \lambda(X)^{-} \), then neither \(X \) nor \(X \) can be compact.

Proof. \(\mathcal{E}(X) \) is metrizable, hence there is a sequence \((x_n)\) in \(X \) with \(\lambda(x_n) \to \emptyset \). It follows from Theorem 2.4 (ii) that no subsequence of \((x_n)\) can converge to a point in \(X \).

Corollary 2.6. Suppose that \(\lambda(X)^{-} \) is first countable (this is the case if \(X \) is second countable), and that \(T \) is a compact subset of \(X \). If \(F \in \mathcal{E}(X) \) and \(T \cap F = \emptyset \), then \(\lambda(T)^{-} \cap F^\perp = \emptyset \).

Proof. If \(E \in \lambda(T)^{-} \cap F^\perp \), there is a sequence \((x_n)\) in \(T \) with \(\lambda(x_n) \to E \). Since \(T \) is compact, the set \(\{x_n : n \geq 1\} \) has a limit point \(x \) in \(T \). Then \(x \in E \) from Theorem 2.4 (ii), and since \(E \in F^\perp \), \(x \in F \). But this is a contradiction.

Corollary 2.7. Suppose that \(X \) is locally compact and \(T \). If \(\lambda(X)^{-} \) is second countable, then so is \(X \).

Proof. Let \(\mathcal{T}, \mathcal{T}, \ldots \) be a basis of open sets for the topology of \(\lambda(X)^{-} \); with no loss in generality, the sets \(\mathcal{T}_n \) may be assumed to be closed under finite unions. Suppose that an \(x \in X \) and an \(F \in \mathcal{E}(X) \) with \(x \in F \) are given. It is sufficient to show that for some \(n, \lambda^{-1}(\mathcal{T}_n) \) contains \(x \) in its interior and is disjoint from \(F \). Using the local compactness of \(X \), choose a compact neighborhood \(C \) of \(x \) disjoint from \(F \). Corollary 2.6 and the fact that \(F^\perp \) is closed give

\[
\lambda(C)^- \subset \lambda(X)^- \cap F^\perp = \bigcup_k \mathcal{T}_{n_k}
\]

for suitable integers \(n_k \). As \(\lambda(C)^- \) is compact and as the \(\mathcal{T}_n \) are closed under finite unions, there is an \(n \) for which \(\mathcal{T}_n \cap F^\perp = \emptyset \) and \(\lambda(C) \subset \mathcal{T}_n \). This completes the proof.

The following will be useful in § 3.

Corollary 2.8. Suppose that \(X \) is second countable and that \(f: \mathcal{E}(X) \to [0, \infty) \) is continuous and monotone in the sense that \(E, F \in \mathcal{E}(X) \) and \(E \subseteq F \) imply \(f(E) \leq f(F) \). Suppose further that \(f(\lambda(x)) > 0 \) for all \(x \) in some compact subset \(T \) of \(X \). Then there is an \(\alpha > 0 \) such that \(f(\lambda(x)) \geq \alpha \) for all \(x \in T \).
Proof. If there is no such \(a \), choose a sequence \((x_n) \) in \(T \) such that \(f(\lambda(x_n)) \to 0 \). Using first the compactness of \(S(X) \) and then that of \(T \), it may be assumed that \(\lambda(x_n) \to F \) for some \(F \in S(X) \) and that \(x_n \to x \) for some \(x \in T \). From Lemma 2.4 (ii), it follows that \(x \in F \). Consequently, \(0 < f(\lambda(x)) \leq f(F) \) and \(f(F) = 0 \), a contradiction.

For simplex spaces, the following result is due to P. D. Taylor.

Corollary 2.9. Suppose that \(X \) is second countable and that \(f \) is a continuous complex-valued function on \(\lambda(X)^{-} \). For each \(x \in X \), let \(c(x) \) denote the set of all those \(F \in \lambda(X)^{-} \) which contain \(x \). Then \(f \circ \lambda \) is continuous on \(X \), if and only if \(f \) is constant on the sets \(c(x), x \in X \).

Proof. Notice that \(\lambda(x) \in c(x) \) for each \(x \in X \). Suppose that \(f \circ \lambda \) is continuous on \(X \). Say \(x \in X \) and \(F \in c(x) \). Then there is a sequence \((x_n) \) in \(X \) such that \(\lambda(x_n) \to F \). From Theorem 2.4 (i), \(x_n \to x \), and

\[
 f(F) = \lim_{n \to \infty} f(\lambda(x_n)) = f(\lambda(x)) .
\]

Conversely, suppose that \(f \) is constant on the \(c(x), x \in X \). Let \((x_n) \) be a sequence in \(X \) converging to an \(x \in X \). To show that

\[
 f(\lambda(x_n)) \to f(\lambda(x)) ,
\]

it is sufficient (since \(f(\lambda(x)) \) lies in the compact set \(f(\lambda(X)) \)) to show that every convergent subsequence of \(f(\lambda(x_n)) \) converges to \(f(\lambda(x)) \). Passing to a subsequence, suppose that \(f(\lambda(x_n)) \to \alpha \) for some complex number \(\alpha \). Using the fact that \(S(X) \) is a compact metric space and passing to a further subsequence, it may even be assumed that \(\lambda(x_n) \to F \) for some \(F \in \lambda(X)^{-} \). Then from Theorem 2.4, (ii), \(x \in F \), i.e., \(F \in c(x) \), and therefore

\[
 f(\lambda(x)) = f(F) = \lim_{n \to \infty} f(\lambda(x_n)) = \alpha .
\]

If \(G \) is a nonempty open subset of \(X \), then \(G \) is locally compact and \(T_0 \) in its relative topology. Let \(\rho_G \) be the map \(F \to F \cap G \) of \(S(X) \) onto \(S(G) \), and let \(\sigma_G \) be its restriction to \(\lambda_x(G) \). Then \(\sigma_G \circ \lambda_x = \lambda_G \) and \(\sigma_G \) is a bijection of \(\lambda_x(G) \) onto \(\lambda_G(G) \). Using the fact that \(G \) is open in \(X \), it is easily checked that \(\rho_G \) is continuous; however, \(\sigma_G \) is in general not a homeomorphism.

Lemma 2.10. Let \(G \) be a nonempty open subset of \(X \), and suppose that \(\lambda(X)^{\perp} \subset \lambda(X) \cup (X - G)^\perp \). If \(\mathcal{T} \) is a subset of \(\lambda_x(G) \) and if \(\sigma_G(\mathcal{T}) \) is compact, then so is \(\mathcal{T} \).
Proof. As ρ_σ is continuous,
\[\rho_\sigma(\mathcal{T}^-) \subset [\rho_\sigma(\mathcal{T})]^- = [\sigma_\sigma(\mathcal{T})]^- = \sigma_\sigma(\mathcal{T}) \subset \lambda_\sigma(G), \]
and since $\emptyset \notin \lambda_\sigma(G)$, $\mathcal{T}^- \cap (X - G) = \emptyset$. But
\[\mathcal{T}^- \subset \lambda(X)^- \subset \lambda(X) \cup (X - G)^- \subset \lambda_x(G) \cup (X - G)^-, \]
so that \mathcal{T}^- is contained in $\lambda_x(G)$, the domain of σ_σ. Since
\[\sigma_\sigma(\mathcal{T}^-) = \rho_\sigma(\mathcal{T}^-) \subset \sigma_\sigma(\mathcal{T}) \]
and σ_σ is one-to-one, \mathcal{T} must be closed in $\mathcal{E}(X)$.

A point x in X will be said to be strongly separated in X if for each $y \neq x$, there are disjoint neighborhoods of x and y (i.e., x is closed, and separated in the sense of [3; §1]). A nonempty subset Y of X will be called strongly separated in X provided each of its points is strongly separated in X. Finally, X will be called almost strongly separated if each nonempty closed subset F of X contains a nonempty relatively open subset G which is strongly separated in F (equivalently, every open subset U of X distinct from X is properly contained in an open subset V such that $V - U$ is strongly separated in $X - U$).

Proposition 2.11. A nonempty open subset G of X is strongly separated in X if and only if $\lambda(X)^- \subset \lambda(X) \cup (X - G)^-$.

Proof. Assume first that G is strongly separated in X. Suppose that there is a net (x_a) in X and an $F \in \lambda(X) \cup (X - G)^-$ such that $\lambda(x_a)$ converges to F. Then F must contain two distinct points, at least one of which is in G, which is impossible by Theorem 2.4 (i). Conversely, suppose that $\lambda(X)^- \subset \lambda(X) \cup (X - G)^-$. From this inclusion it is immediate that $G \subset X_1$. As $\rho_\sigma(\lambda(X)^-)$ is compact and contains $\lambda_\sigma(G)$,
\[\lambda_\sigma(G)^- \subset \rho_\sigma(\lambda(X)^-) \subset \lambda_\sigma(G) \cup \{\emptyset\}, \]
and therefore $\lambda_\sigma(G) \cup \{\emptyset\}$ is compact. For any relatively closed subset \mathcal{T} of $\lambda_\sigma(G)$, $\mathcal{T} \cup \{\emptyset\}$ is compact and dilated, hence $\lambda_\sigma^{-1}(\mathcal{T})$ is a closed subset of G in the relative topology (Lemma 2.2). This shows that λ_σ is continuous; since it is always open onto its image, λ_σ is a homeomorphism and G is Hausdorff. To show that G is strongly separated, suppose $x \in G$ and $y \in G$ are given. Let $U \subset G$ be a compact neighborhood of x; it will suffice to show that U is closed in X. As $\lambda_\sigma(U)$ is compact and as $\lambda_\sigma(U) = \sigma_\sigma(\lambda_x(U))$, $\lambda_x(U)$ is compact (Lemma 2.10). $\lambda_x(U)$ is dilated since $U \subset X_1$, and so $U =$
\(\lambda_x^{-1}(\lambda_x(U))\) is closed, by Lemma 2.2.

A topological space which is a countable union of compact sets will be called a \(K_\sigma\).

Lemma 2.12. If \(X\) is second countable and if \(G\) is an open nonempty strongly separated subset of \(X\), then \(\lambda_x(G)\) is \(K_\sigma\).

Proof. Since \(G\) is Hausdorff, \(\lambda_\sigma(G) \subset \lambda_\sigma(G) \cup \{\emptyset\}\) by Proposition 2.11, and \(\lambda_\sigma(G)\) is locally compact. Now \(\mathcal{E}(G)\) is second countable, for as \(G\) is second countable, \(\mathcal{E}(G)\) is a compact metric space [6; Lemma 2]. Therefore \(\lambda_\sigma(G)\) is \(K_\sigma\). The equality \(\lambda_\sigma(G) = \sigma_\sigma(\lambda_x(G))\), Lemma 2.10 and Proposition 2.11 now imply that \(\lambda_x(G)\) is \(K_\sigma\).

Lemma 2.13. Let \(E\) be a nonempty closed subset of \(X\). Then the map \(\theta: E^\perp \rightarrow \mathcal{E}(E)\) defined by \(\theta(F) = F\) for all \(F \in E^\perp\) is a homeomorphism onto, where \(E^\perp\) has the relative topology from \(\mathcal{E}(X)\).

Proof. That \(\theta\) is a bijection is clear. Since \(E^\perp\) is compact Hausdorff, it is enough to show that \(\theta\) is continuous. But this follows from the definition of the topologies and the fact that \(E\) is closed.

Lemma 2.14. If \(X\) is almost strongly separated, so is any nonempty subset of \(X\) which is either open or closed.

Proof. See [11; §3].

Theorem 2.15. Suppose that \(X\) is second countable, locally compact, and \(T_\sigma\). Then \(X\) is almost strongly separated if and only if

1. \(X\) is \(T_1\),
2. \(\lambda(X)\) is \(K_\sigma\), and
3. every nonempty closed subset of \(X\) is second category in itself.

Proof. Say that (1)-(3) hold. Let \(F\) be a nonempty closed subset of \(X\). Then \(F\) is \(T_1\) and second category, and \(\lambda_F(F)\) is \(K_\sigma\) by Lemma 2.13. Replacing \(F\) by \(X\), it is therefore sufficient to show that if \(X\) satisfies (1) and (2) and is second category, then \(X\) contains a nonempty open strongly separated set. Write \(\lambda(X) = \bigcup_{n=1}^\infty \mathcal{T}_n\), where each \(\mathcal{T}_n\) is compact. Since the \(\mathcal{T}_n\) are dilated, the \(\lambda^{-1}(\mathcal{T}_n)\) are closed by Lemma 2.2. \(X\) is second category, hence for some \(n\), \(\lambda^{-1}(\mathcal{T}_n)\) contains a nonempty set \(G\) which is open in \(X\). As \(\lambda^{-1}(\mathcal{T}_n)\) is closed in \(X\) and is Hausdorff in the relative topology (Corollary
2.3), G is strongly separated in X.

Conversely, suppose that X is almost strongly separated. By a transfinite induction (see [11; Proposition 3.1]), there is an ordinal α_0 and a family (G_α) of open subsets of X, indexed by those ordinals α with $0 \leq \alpha \leq \alpha_0$, such that: (i) $G_0 = \emptyset$, $G_{\alpha_0} = X$; (ii) if $\alpha \leq \alpha_0$ is a limit ordinal, then $G_\alpha = \bigcup_{\beta < \alpha} G_\beta$; and (iii) if $\alpha < \alpha_0$, then $G_\alpha \subset G_{\alpha+1}$ and $G_{\alpha+1} - G_\alpha$ is a nonempty strongly separated subset of $X - G_\alpha$.

To see that (1) holds, say $x \in X$. Let β be the least ordinal such that $x \in G_\beta$. By (ii), β cannot be a limit ordinal; let $\alpha + 1 = \beta$. Then $x \in G_{\alpha+1} - G_\alpha$, so that $\{x\}$ is closed in $X - G_\alpha$, and therefore in X.

The natural map θ_α of $(X - G_\alpha)$ onto $\mathcal{C}(X - G_\alpha)$ is a homeomorphism, where $(X - G_\alpha)$ has the relative topology from $\mathcal{C}(X)$ (Lemma 2.13). Since θ_α carries $\lambda_x(G_{\alpha+1} - G_\alpha)$ onto $\lambda_{x-G_\alpha}(G_{\alpha+1} - G_\alpha)$ and since the latter is K_σ by (iii) and Lemma 2.12, $\lambda_x(G_{\alpha+1} - G_\alpha)$ must be K_σ. Now

$$X = \bigcup_{\alpha < \alpha_0}(G_{\alpha+1} - G_\alpha)$$

by the above and α_0 is countable (see [16; §19, II]), so (2) holds. If F_1, F_2, \ldots are closed and nowhere dense subsets of X, then $F_1 \cap G_1, F_2 \cap G_1, \ldots$ are closed and nowhere dense in the relative topology of G_1. Being locally compact and Hausdorff, G_1 is Baire, so the $F_\alpha \cap G_1$ do not cover G_1. Thus X is second category. By Lemma 2.14, this is enough to show that (3) holds.

Corollary 2.16. If X is second countable and almost strongly separated, then all nonempty closed and all nonempty open subsets of X are Baire.

Proof. This follows from Lemma 2.14 and Theorem 2.15.

Suppose that X is second countable. If all nonempty closed subsets of X are Baire, then $\lambda(X)$ is G_δ [6; Th. 7]; in view of [16; §30, VI], this fact may be useful in deciding whether X satisfies (2) of Theorem 2.15. As examples in §4 will show, (1) and (2) are independent of one another even if all nonempty closed subsets of X are Baire. The set of integers with the Zariski (or cofinite) topology is second countable, locally compact, T_σ, and satisfies conditions (1) and (2), but not (3), of Theorem 2.15.

3. **C*-Algebras.** Let A be a C^*-algebra. Throughout this section and the next, an ideal in A will always mean a closed two-sided ideal. Let $Z(A)$ be the center of A, and let $\text{Id}(A)$ [resp.,
Prim \((A) \), Max \((A) \), and Mod \((A) \) denote the set of all ideals [primitive ideals, maximal ideals, and modular ideals] in \(A \). For \(a \in A \) and \(I \in \text{Id} \((A) \) \), define \(a(I) \) as the canonical image of \(a \) in \(A/I \) and \(I^\perp \) as the set of all those ideals \(J \) in \(A \) which contain \(I \). Prim \((A) \) with the hull-kernel topology (sometimes called the structure, or Jacobson, topology) is the structure space of \(A \). The following facts about the structure space (see [4]) will be used frequently without explicit mention: its closed points are the elements of Max \((A) \); it is locally compact and \(T_0 \); it is second countable whenever \(A \) is separable; and \(I \to \text{Prim} \((A) \cap I^\perp \) \) is a one-to-one correspondence between Id \((A) \) and the closed subsets of Prim \((A) \). The weakest topology on Id \((A) \) making each of the maps \(I \to ||a(I)|| \), \(a \in A \), continuous will be called the weak* topology on Id \((A) \). It is not hard to show that \(I \to \text{Prim} \((A) \cap I^\perp \) \) is a homeomorphism of Id \((A) \) onto \(\scr{C}(\text{Prim} \((A) \)) \) which restricts to \(\lambda \) on Prim \((A) \) and carries \(I^\perp \) onto (Prim \((A) \cap I^\perp \))^\perp \) (where the second \(\perp \) is taken in the sense of §2) [12, Th. 2.2]. In what follows, Id \((A) \) and \(\scr{C}(\text{Prim} \((A) \)) \) will be identified. Recall that if \(A \) is separable, Id \((A) \) and Prim \((A) \) with the weak* topology may be identified with the spaces \(N(A) \) and \(EN(A)-\{0\} \) of §1.

In view of the above, the results of §2 may be applied to \(C^* \)-algebras. Save for one, these will not be explicitly mentioned. For any \(a \in A \), \(I \to ||a(I)|| \) is a function of the type described in Corollary 2.8. This has the following amusing consequence: If \(A \) is separable and if \(T \) is a structurally compact subset of Max \((A) \), then \(\bigcup \{P; P \in T\} \) is a norm-closed subset of \(A \).

A nonzero ideal \(I \) in \(A \) will be called an \(M \)-ideal in \(A \) if \(\text{Prim} \((A) \cap I^\perp \) \) is a strongly separated subset of the structure space of \(A \), and \(A \) will be called an \(M \)-algebra [resp., a GM-algebra] if the structure space of \(A \) is Hausdorff [almost strongly separated]. Clearly \(A \) is an \(M \)-algebra if and only if \(A \) is an \(M \)-ideal in itself. Using [4; §3.2], it is easily verified that \(A \) is a GM-algebra if and only if every nonzero quotient of \(A \) contains a nonzero \(M \)-ideal.

Proposition 3.1. The following are equivalent for a nonzero ideal \(I \) in a \(C^* \)-algebra \(A \):

1. \(I \) is an \(M \)-ideal
2. \(\text{Prim} \((A) \cap I^\perp \subseteq \text{Max} \((A) \cup I^\perp \), where \(\text{Prim} \((A) \cap I^\perp \) is the weak* closure of \(\text{Prim} \((A) \) in \(\text{Id} \((A) \) \n
3. for each \(a \in I \), \(P \to ||a(P)|| \) is continuous on \(\text{Prim} \((A) \) in the structure topology.

Proof. (1) \(\Rightarrow \) (2): This is Proposition 2.11.

(1), (2) \(\Rightarrow \) (3): Suppose that an \(a \in I \) and an \(\alpha > 0 \) are given. The map \(p \to ||a(P)|| \) is lower semi-continuous on Prim \((A) \) with the
structure topology, so it is enough to show that $T = \{ P \in \text{Prim}(A) : \| a(P) \| \geq \alpha \}$ is structurally closed. Now T is a structurally compact subset of $\text{Prim}(A) - I^\perp$, and as I is an M-ideal in A, $\text{Prim}(A) - I^\perp$ is Hausdorff in the relative structure topology. The map σ which sends P into $P \cap I$ is a homeomorphism of $\text{Prim}(A) - I^\perp$ onto $\text{Prim}(I)$ for the structure topologies, hence the structure space of I is Hausdorff. From Lemma 2.1, this means that the structure and weak* topologies coincide on $\text{Prim}(I)$. Then $\sigma(T)$ is a weak* compact subset of $\text{Prim}(I)$, and T is a weak* compact subset of $\text{Prim}(A)$ (Lemma 2.10). Since T is contained in $\text{Max}(A)$, it is dilated and therefore structurally closed by Lemma 2.2.

(3) \Rightarrow (1): Say $P \in \text{Prim}(A) - I^\perp$ and $Q \in \text{Prim}(A)$ are distinct. If $Q \in I^\perp$, choose an $a \in I$ with $\| a(P) \| = 2$. Then $\{ R \in \text{Prim}(A) : \| a(R) \| > 1 \}$ and $\{ R \in \text{Prim}(A) : \| a(R) \| < 1 \}$ are disjoint structurally open sets containing P and Q, resp. Now suppose that $Q \not\in I^\perp$. For $R \in \text{Prim}(A) - I^\perp$ and $a \in I$, $R \cap I \in \text{Prim}(I)$ and

$$\| a(R \cap I) \| = \max \{ \| a(R) \| , \| a(I) \| \} = \| a(R) \| .$$

This equality together with the homeomorphism σ of the previous paragraph implies that the structure and weak* topologies on $\text{Prim}(I)$ coincide, and therefore that $\text{Prim}(A) - I^\perp$ is Hausdorff in the relative structure topology. As $\text{Prim}(A) - I^\perp$ is a structurally open subset of $\text{Prim}(A)$, there are disjoint structure neighborhoods of P and Q.

Theorem 3.2. If A is a separable C*-algebra, then $\text{Prim}(A)$ is a G_δ in the weak* topology, and A is a GM-algebra if and only if

1. $\text{Max}(A) = \text{Prim}(A)$, i.e., the structure space of A is T_1, and
2. $\text{Prim}(A)$ is K_σ in the weak* topology.

Proof. This is an immediate consequence of Theorem 2.15, [6; Th. 7], and the fact that all nonempty closed subsets of the structure space are Baire [4; Corollaire 3.4.13].

Section 4 contains examples which show that neither (1) nor (2) is a consequence of the other, even for separable C*-algebras. This completes the analogy between GM-simplex spaces and GM-C*-algebras. In studying the second class of C*-algebras, the following two lemmas will be useful.

Lemma 3.3. For any ideal I in a C*-algebra A, $Z(I) = I \cap Z(A)$.

Proof. See [1; Lemma 6].

Lemma 3.4. The following are equivalent for a C*-algebra A:
(i) \(Z(A) \not\subseteq P \) for each \(P \in \text{Prim}(A) \) and the structure space of \(A \) is Hausdorff, and
(ii) \(P \to P \cap Z(A) \) is a one-to-one map from \(\text{Prim}(A) \) into \(\text{Prim}(Z(A)) \).

If these conditions are satisfied, then the map in (ii) is a homeomorphism of \(\text{Prim}(A) \) onto \(\text{Prim}(Z(A)) \) for the structure topologies.

Proof. For the equivalence of (i) and (ii), see [1; Proposition 3] or [18; Corollary 3.1.2]. The last statement is contained in [15; Th. 9.1].

A \(C^* \)-algebra satisfying one of the equivalent conditions of the last lemma is called central; for other equivalent definitions, see [1; Proposition 3].

Several results from [7; §4] will now be recalled. Consider an \(a \in Z(A) \) and a primitive ideal \(P \) in \(A \). Choose an irreducible representation \(\pi \) of \(A \) with kernel \(P \). As \(\pi(a) \) is in the center of \(\pi(A) \), it must be a multiple \(\alpha \) of the identity operator on the space of \(\pi \). Then \(\pi(a)\pi(b) = \alpha \pi(b) \), i.e., \(ab - \alpha b \in P \), for all \(b \in A \). This last condition determines \(\alpha \) uniquely, and shows that it depends only on \(P \) (and not on \(\pi \)). Set \(f_\alpha(P) = \alpha \). The function \(f_\alpha \) is clearly bounded on \(\text{Prim}(A) \). It is easy to show that \(\varphi(a) = f_\alpha(P) \) for any \(\varphi \in \theta^{-1}(P) \), where \(\theta \) is the natural mapping of \(P(A) \), the pure states on \(A \), onto \(\text{Prim}(A) \).

Because \(\theta \) is an open map,

\[
\theta^{-1}(U) = \{P \in \text{Prim}(A): f_\alpha(P) \in U\}
= \theta(\{\varphi \in P(A): f_\alpha(\varphi) \in U\})
= \theta(\{\varphi \in P(A): \varphi(a) \in U\})
\]

is structurally open for any open set \(U \) of complex numbers. This shows that \(f_\alpha \) is structurally continuous. If \(A \) is central, then \(P \in \text{Prim}(A) \) implies \(P \cap Z(A) \in \text{Max}(Z(A)) = \text{Prim}(Z(A)) \), and regarding \(a \in Z(A) \) as a function on \(\text{Max}(Z(A)) \), \(f_\alpha(P) = a(P \cap Z(A)) \). Since \(Z(A) \cong C_0(\text{Max} Z(A)) \), we may identify the functions \(f_\alpha \) with \(C_0(\text{Prim}(A)) \).

A \(C^* \)-algebra \(A \) will be said to have local identities if given \(P_0 \in \text{Prim}(A) \), there is an \(a \in A \) such that \(a(P) \) is an identity in \(A/P \) for all \(P \) in some structure neighbourhood of \(P_0 \). A nonzero ideal \(I \) in \(A \) will be called a \(C \)-ideal in \(A \) if \(I \) is a central \(C^* \)-algebra. \(A \) will be called a \(C \)-algebra if it is a \(C \)-ideal in itself (i.e., is central), and a \(GC \)-algebra if every nonzero quotient of \(A \) contains a nonzero \(C \)-ideal.

PROPOSITION 3.5. A nonzero ideal \(I \) in \(A \) is a \(C \)-ideal if and
only if it is an M-ideal with local identities.

Proof. Suppose that \(I \) is a C-ideal. Let \(P \) and \(Q \) be distinct primitive ideals in \(A \) with \(P \notin I \). If \(Q \notin I \), then since \(I \) is central, \(P \cap Z(I) \) and \(Q \cap Z(I) \) are distinct maximal ideals in \(Z(I) \) hence there is an \(a \in Z(I) \subset Z(A) \) with \(f_a(P) \neq 0 \) and \(f_a(Q) = 0 \). If \(Q \in I \), let \(a \) be any element of \(Z(I) \) with \(a(P) \neq 0 \). Then \(f_a \) will provide disjoint neighborhoods for \(P \) and \(Q \), and \(A \) is an M-ideal.

Thus it suffices to show that a C*-algebra \(A \) is a C-algebra if and only if it is an M-algebra with local identities. If \(A \) is a C-algebra, \(Z(A) \) may be identified with \(C_0(\text{Prim}(A)) \), hence it is trivial that \(A \) has local identities. Conversely, suppose that \(A \) is an M-algebra with local identities. Say \(P_0 \in \text{Prim}(A) \), and choose an \(a \in A \) such that \(a(P) \) is an identity in \(A/P \) for all \(P \) in some neighborhood \(T \) of \(P_0 \). Consider a continuous bounded complex-valued function \(f \) on \(\text{Prim}(A) \) with \(f(P_0) = 1 \) and whose support is contained in \(T \). From the Dauns-Hofmann theorem (see [7; §7]), there is a \(b \in A \) such that \(b(P) = f(P)a(P) \) for all \(P \in \text{Prim}(A) \). Then \((bc - cb)(P) = 0 \) if \(c \in A \) and \(P \in \text{Prim}(A) \), so that \(b \in Z(A) \). Since \(b \in P_0 \), \(A \) must be a C-algebra.

Lemma 3.6. For a nonzero C-ideal \(I \) in \(A \),
1. \(P \mapsto ||a(P)|| \) is structurally continuous on \(\text{Prim}(A) - I \) for each \(a \in A \), and
2. \(\text{Prim}(A)^- \subset [\text{Max}(A) \cap \text{Mod}(A)] \cup I \).

Proof. To prove (1), fix \(a \in A \), and suppose \(P_0 \in \text{Prim}(A) - I \) is given. It is sufficient to show that \(P \mapsto ||a(P)|| \) is structurally continuous on some structure neighborhood of \(P_0 \). From the structure homeomorphism of \(\text{Prim}(A) - I \) onto \(\text{Prim}(I) \) and the fact that \(I \) has local identities, there is a structure neighborhood \(T \) of \(P_0 \) contained in \(\text{Prim}(A) - I \) and a \(b \in I \) such that \(b(P \cap I) \) is an identity in \(I/(P \cap I) \) for each \(P \in T \). As \(I \) is an M-ideal in \(A \), each \(P \in T \) is a structurally closed point in \(\text{Prim}(A) \), and so is a maximal ideal. Therefore \(P + I = A \) and there is an *-isomorphism of \(A/P \) onto \(I/(I \cap P) \) which carries \(c(P) \) into \(c(I \cap P) \), \(c \in I \) [4; Corollaire 1.8.4]. Hence \(b(P) \) is an identity in \(A/P \) for each \(P \in T \), and since \(ab \in I \), Proposition 3.1 implies that \(P \mapsto ||(ab)(P)|| = ||a(P)|| \) is structurally continuous on \(T \). Turning to (2), suppose \(P \in \text{Prim}(A)^- \), \(P \notin I \).

Since \(I \) is an M-ideal in \(A \), Proposition 3.1 gives \(P \in \text{Max}(A) \). As \(I \) is central, there is an \(a \in Z(I) \subset Z(A) \) with \(a \notin P \). Since \(a(P) \) is a nonzero central element of \(A/P \), \(P \) must be modular.

In the case of simplex spaces, the analogues of (1) and (2) of the previous lemma are each equivalent to \(I \) being a C-ideal. This is not
the case for C^*-algebras. In fact, there is an example of a noncentral C^*-algebra A which satisfies (1) and (2) with I replaced by A, viz, the algebra of all functions a from $\{1, 2, \cdots\}$ into the two-by-two matrices with complex entries such that $\lim_{n \to \infty} a_{ij}(n)$ exists and is equal to zero unless $i = j = 1$ (this example was also used by Delaroche in [2; § 6]).

The following result is due to Delaroche [2, Proposition, 14].

Theorem 3.7. A separable C^*-algebra A is a GC-algebra if and only if

1. A is a GM-algebra, and
2. every primitive ideal in A is modular.

Proof. Suppose that A is a GC-algebra. Then by Proposition 3.5, A is a GM-algebra. If $P \in \text{Prim}(A)$, then since P is a maximal ideal in A (Theorem 3.2), A/P must be central. But then A/P is primitive and has a nontrivial center, implying that P is modular.

Conversely, suppose that (1) and (2) hold, and let $I \neq A$ be an ideal in A. From Lemma 2.14, A/I is a GM-algebra. Since any primitive ideal in A/I is of the form P/I for some $P \in \text{Prim}(A) \cap I$ [4; Proposition 2.11.5 (i)], and since $(A/I)/(P/I) \cong A/P$ for such P, every primitive ideal in A/I is modular. So to show that A is a GC-algebra, it is only necessary to show that A possesses a nonzero C-ideal. Let I be a nonzero M-ideal in A. The structure space of I, being homeomorphic to $\text{Prim}(A) - I^\circ$ with the relative structure topology [4; Proposition 3.2.1], is Hausdorff. Since any $P \in \text{Prim}(A) - I^\circ$ is a maximal ideal in A, $P + I = A$ and $I/(P \cap I) \cong (P + I)/P = A/P$ [4; Corollaire 1.8.4]. So any primitive ideal in I, being of the form $P \cap I$ for some $P \in \text{Prim}(A) - I^\circ$, must be modular. This and [4; Proposition 1.8.5] show that it is sufficient to establish the following: If A is a separable C^*-algebra all of whose primitive ideals are modular and whose structure space is Hausdorff, then A has a nonzero C-ideal.

For such a C^*-algebra A, the structure and weak* topologies coincide on $\text{Prim}(A)$ (Lemma 2.1). Let 1_P be the identity in A/P, $P \in \text{Prim}(A)$. Let (u_n) be an approximate identity in A indexed on the positive integers, and set

$$T_n = \{P \in \text{Prim}(A) : \|u_n(P) - 1_P\| \leq 1/2\},$$

$n = 1, 2, \cdots$. Since $u_n(P) \to 1_P$ as $n \to \infty$ for each P, $\text{Prim}(A) = \bigcup_{n=1}^{\infty} T_n$. Let A' be the C^*-algebra obtained by adjoining an identity 1 to A. Then $\text{Prim}(A') \cong \text{Prim}(A) \cup \{A\}$ and $A^1 = \{A\}$. Fix a $P' \in \text{Prim}(A') - A^1$, and set $P = P' \cap A$. Then $a(P) \to a(P')$, $a \in A$, is an isomorphism of A/P onto $(A + P')/P'$. Choose a $b \in A$ such that
\(b(P) = 1_p \). Then \(b(P') \) must be an identity in \((A + P')/P' \). The latter is an ideal in \(A'/P' \), and from Lemma 3.3, \(b(P') \) is a central idempotent in \(A'/P' \). Since \(A'/P' \) is primitive, \(b(P') = 1(P') \). Consequently,
\[
\| (u_n - 1)(P') \| = \| (u_n - b)(P') \| = \| (u_n - b)(P) \| = \| u_n(P) - 1_P \|.
\]
Therefore
\[
T_n = \{ P' \cap A : P' \in \text{Prim}(A') \text{ and } \| (u_n - 1)(P') \| \leq 1/2 \},
\]
and \(T_n \) is a closed subset of \(\text{Prim}(A) \). Since the structure space of \(A \) is Baire [4; Corollaire 3.4.13], some \(T_n \) contains a nonempty open set \(T \). Because \(u_n \geq 0 \) and \(\| u_n \| \leq 1 \), \(\text{Sp } u_n(P) \subset [1/2, 1] \) for each \(P \in T \). Choosing a continuous real-valued function \(f \) on \([0, 1] \) with \(f(0) = 0 \) and \(f = 1 \) on \([1/2, 1] \) and setting \(a = f(u_n), a(P) = 1_p \) for each \(P \in T \) [4; Proposition 1.5.3]. Let \(I \) be the ideal in \(A \) with \(\text{Prim}(A) - I = T \). Say \(P \in T \). Since \(\text{Prim}(A) \) is locally compact and Hausdorff, there is a continuous bounded function \(g \) on \(\text{Prim}(A) \) such that \(g(P) = 1 \) and \(g \) vanishes off \(T \). From the Dauns-Hofmann theorem (see [7; §7]), there is a \(b \in A \) with \(b(Q) = g(Q)a(Q) \) for all \(Q \in \text{Prim}(A) \). Then \(b(Q) = 0 \) if \(I \subseteq Q \subseteq \text{Prim}(A) \) and \((bc - cb)(Q) = 0 \) if \(c \in A \) and \(Q \in \text{Prim}(A) \), which imply (by [4; Th. 2.9.7 (ii)]) that \(b \in Z(I) \). Therefore \(I \) satisfies condition (i) of Lemma 3.4, and so is a \(C \)-ideal in \(A \). This completes the proof of Theorem 3.7.

It is not known whether the conclusion of Theorem 3.7 is true for nonseparable \(C^* \)-algebras.

4. Concluding remarks. Let \(A \) be a \(C^* \)-algebra. Recall that \(A \) is a \(CCR \)-algebra ("liminaire") if the image of \(A \) by any irreducible representation is contained in the algebra of compact operators on the representing Hilbert space. A nonzero ideal \(I \) in \(A \) is a \(CCR \)-ideal in \(A \) if it is a \(CCR \)-algebra, and \(A \) is a \(GCR \)-algebra ("post-liminaire") if every nonzero quotient of \(A \) contains a nonzero \(CCR \)-ideal.

The spectrum of \(A \) is the set \(\hat{A} \) of all equivalence classes of irreducible representations of \(A \) provided with the inverse image topology by the natural map \(\pi \to \text{Ker } \pi \) of \(\hat{A} \) onto the structure space of \(A \). Dixmier [4; § 4.5] has shown that the closure \(J(A) \) of the finite linear combinations of those \(a \in A^+ \) for which \(\pi \to \text{Tr } \pi(a) \) is finite and continuous on \(\hat{A} \) is an ideal in \(A \). A nonzero ideal \(I \) in \(A \) will be called a \(CTC \)-ideal in \(A \) if \(I \subseteq J(A) \), and \(A \) will be called a \(CTC \)-algebra [resp., \(GTC \)-algebra] if \(A \) is a \(CTC \)-ideal in itself [every
nonzero quotient of A contains a nonzero CTC-ideal]. These algebras have been studied in the literature, where they are sometimes called "C^*-algèbre à trace continue" ["C^*-algèbre à trace continue généralisée"]). Recall that a CTC-algebra has Hausdorff structure space and that a GTC-algebra is CCR ([4; §4]).

A CCR-algebra A with a Hausdorff structure space will be said to satisfy the Fell condition if the canonical field of C^*-algebras defined by A satisfies the Fell condition of Dixmier [4; §10.5]. This amounts to saying that given $P_0 \in \text{Prim}(A)$, there is an $a \in A$ such that $\alpha(P)$ is a one-dimensional projection in A/P for all P in some structure neighborhood of P_0. The following are some of the relations between the various classes of C^*-algebras:

1. if A is separable, then it is both GM and GCR if and only if it is GTC ([5; Proposition 4.2]),
2. if A is separable, then it is both GC and GCR if and only if it is GTC and all its irreducible representations are finite-dimensional ((1) and Theorem 3.7),
3. A is GCR and M and satisfies the Fell condition if and only if it is CTC ([4; Propositions 4.5.3 and 10.5.8]; recall that A is CCR if it is GCR and M),
4. A is a central GCR-algebra and satisfies the Fell condition if and only if it is a CTC-algebra with local identities ((3) and Proposition 3.7), and
5. if A is separable, then it is GM if either it is a CCR-algebra with compact structure space or its irreducible representations are all finite-dimensional ([3; §1]).

Let H be a separable infinite-dimensional Hilbert space. Let B denote the C^*-algebra obtained by adjoining an identity to $CC(H)$, the compact operators on H. The structure space of B (see [4; Exercise 4.7.14 (a)]) fails to be T_1, and therefore is not almost strongly separated. Yet $\text{Prim}(B)$ is K_σ in the weak* topology.

In [3; §2], Dixmier has constructed a separable CCR-algebra D whose structure space contains no nonempty strongly separated subset. In particular, D is not GM. Nevertheless, there is an open subset of the structure space of D which is homeomorphic to $[0, 1]$, and D contains an ideal C isomorphic to the C^*-algebra of continuous maps of $[0, 1]$ into $CC(H)$. So C is an M-algebra, yet no nonzero ideal in C is an M-ideal in D. Since D is a CCR-algebra, $\text{Prim}(D)$ is T_1 in the structure topology, so that $\text{Prim}(D)$ cannot be K_σ in the weak* topology (Theorem 3.2). These two examples are the ones promised after Theorems 2.15 and 3.2.

Finally, one further point of contact between C^*-algebras and simplex spaces will be mentioned. Fell has shown that a C^*-algebra
A can be described (to within isomorphism) as the set of all functions on $\text{Prim}(A)^{-}$ satisfying certain conditions, the value of such a function at an $I \in \text{Prim}(A)^{-}$ being an element of A/I [12]. Moreover, the Dauns-Hofmann theorem (see [7; §7]) may be deduced from this representation theorem [Fell, unpublished]. There is an analogous representation theorem for simplex spaces, due to Effros [10; Corollary 2.5]. The analogue of the Dauns-Hofmann theorem for simplex spaces can be deduced from this representation theorem (however, this is not the manner in which it is proven in the literature; cf. [10; Th. 2.1]).

We are indebted to Alan Gleit for a correction in the proof of Corollary 2.7. The third-named author worked on this paper during his visit to the University of Pennsylvania; he would like to thank Professor R. V. Kadison and the University for their hospitality during his visit.

References

Received September 11, 1969. The second author was supported in part by NSF contract GP-8915. The third author was supported by a National Research Council of Canada Postdoctorate Fellowship.

University of Pennsylvania
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Johan Aarnes, Edward George Effros and Ole A. Nielsen, Locally compact spaces and two classes of C-algebras*</td>
<td>1</td>
</tr>
<tr>
<td>Allan C. Cochran, R. Keown and C. R. Williams, On a class of topological algebras</td>
<td>17</td>
</tr>
<tr>
<td>John Dauns, Integral domains that are not embeddable in division rings</td>
<td>27</td>
</tr>
<tr>
<td>Robert Jay Daverman, On the number of nonpiercing points in certain crumpled cubes</td>
<td>33</td>
</tr>
<tr>
<td>Bryce L. Elkins, Characterization of separable ideals</td>
<td>45</td>
</tr>
<tr>
<td>Zbigniew Fiedorowicz, A comparison of two naturally arising uniformities on a class of pseudo-PM spaces</td>
<td>51</td>
</tr>
<tr>
<td>Henry Charles Finlayson, Approximation of Wiener integrals of functionals continuous in the uniform topology</td>
<td>61</td>
</tr>
<tr>
<td>Theodore William Gamelin, Localization of the corona problem</td>
<td>73</td>
</tr>
<tr>
<td>Alfred Gray and Paul Stephen Green, Sphere transitive structures and the triality automorphism</td>
<td>83</td>
</tr>
<tr>
<td>Charles Lemuel Hagopian, On generalized forms of aposyndesis</td>
<td>97</td>
</tr>
<tr>
<td>J. Jakubík, On subgroups of a pseudo lattice ordered group</td>
<td>109</td>
</tr>
<tr>
<td>Cornelius W. Onneweer, On uniform convergence for Walsh-Fourier series</td>
<td>117</td>
</tr>
<tr>
<td>Stanley Joel Osher, On certain Toeplitz operators in two variables</td>
<td>123</td>
</tr>
<tr>
<td>Washek (Vaclav) Frantisek Pfeffer and John Benson Wilbur, On the measurability of Perron integrable functions</td>
<td>131</td>
</tr>
<tr>
<td>Frank J. Polansky, On the conformal mapping of variable regions</td>
<td>145</td>
</tr>
<tr>
<td>Kouei Sekigawa and Shūkichi Tanno, Sufficient conditions for a Riemannian manifold to be locally symmetric</td>
<td>157</td>
</tr>
<tr>
<td>James Wilson Stepp, Locally compact Clifford semigroups</td>
<td>163</td>
</tr>
<tr>
<td>Ernest Lester Stitzinger, Frattini subalgebras of a class of solvable Lie algebras</td>
<td>177</td>
</tr>
<tr>
<td>George Szeto, The group character and split group algebras</td>
<td>183</td>
</tr>
<tr>
<td>Mark Lawrence Teply, Homological dimension and splitting torsion theories</td>
<td>193</td>
</tr>
<tr>
<td>David Bertram Wales, Finite linear groups of degree seven, II</td>
<td>207</td>
</tr>
<tr>
<td>Robert Breckenridge Warfield, Jr., An isomorphic refinement theorem for Abelian groups</td>
<td>237</td>
</tr>
<tr>
<td>James Edward West, The ambient homeomorphy of an incomplete subspace of infinite-dimensional Hilbert spaces</td>
<td>257</td>
</tr>
<tr>
<td>Peter Wilker, Adjoint product and hom functors in general topology</td>
<td>269</td>
</tr>
</tbody>
</table>