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Let K denote the closure of the interior of a 2-sphere S
topologically embedded in Euclidean 3-space E®, If K — S is
an open 3-cell, McMillan has proved that K has at most one
nonpiercing point. In this paper we use a more general con-
dition restricting the complications of K — S to describe the
number of nonpiercing points, The condition is this: for some
fixed integer » K — S is the monotone union of cubes with n
holes. Under this hypothesis we find that K has at most =
nonpiercing points (Theorem 5), In addition, the complications
of K — S are induced just by these nonpiercing points. Gener-
ally, at least two such points are required, for otherwise n = 0
(Theorem 3),

A space K as described above is called a crumpled cube. The
boundary of K, denoted Bd K, is defined by Bd K = S, and the in-
terior of K, denoted Int K, is defined by Int K = K — Bd K. We also
use the symbol Bd in another sense: if M is a manifold with boundary,
then Bd M denotes the boundary of M. This should not produce any
confusion.

Let K be a crumpled cube and p a point in Bd K. Then p is a
piercing point of K if there exists an embedding f of K in the 3-
sphere S® such that f(Bd K) can be pierced with a tame arc at f(p).

Let U be an open subset of S®. The limiting genus of U, denoted
LG(U), is the least nonnegative integer n such that there exists a
sequence H,, H,, ... of compact 3-manifolds with boundary satisfying
1) U= UH, 2 H,cIntH,,,,and 3)genus BdH; =n (1 =1,2, ---).
If no such integer exists, LG (U) is said to be infinite. Throughout
this paper the manifolds H; described above can be obtained with con-
nected boundary, in which case H; is called a cube with n holes.

Applications of the finite limiting genus condition are investigated
in [6] and [14]. For any crumpled cube K such that LG(Int K) is
finite and Bd K is locally peripherally collared from Int K, it is shown
that Bd K is locally tame (from Int K) except at a finite set of points.
Under the hypothesis of this paper, Bd K may be wild at every point;
nevertheless, with a collapsing (in the sense of Whitehead [15]) argu-
ment comparable to [13, Th. 1], the problem of counting the nonpiere-
ing points of K is reduced to one in which the results of [6] and [14]
apply.

A subset X of the boundary of a ecrumpled cube K is said to be
semi-cellular in K if for each open set U containing X there exists
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34 ROBERT J. DAVERMAN

an open set V such that Xc Vc U and loops in V — X are null
homotopic in U — X. In the last section of this paper semi-cellular
sets are discussed in order to characterize those sewings of two
crumpled cubes which yield S° in case the limiting genus of one of
the crumpled cubes is finite.

A simple closed curve J is essential in an annulus A if J lies
in A and bounds no disk in A.

If X is a set in a topological space, then Cl X denotes the closure
of X.

2. A cellularity criterion.

LEMMA 1. Let H be a sphere with n handles. Then there exists
an integer k(n) such that if J,, ««+, Jpm are mutually exclusive simple
closed curves in H, no one of which bounds a disk in H, then some
pair {J,, J.} bounds an annulus in H.

Proof. The number k(n) = 2 is known to work if # = 1. Other-
wise, the proof proceeds by induction, using k(n) = 3n — 2 when-
ever n= 2.

THEOREM 2. Let C be a crumpled cube such that LG(IntC) =
n < co. Then there exists a finite set Q of points in Bd C such that
Sfor each open set U D BdA C, each point of BAC — Q has a neighbor-
hood V such that any loop in V — Bd C is null-homotopic in U —
Bd C.

Proof. Assume m > 0. Using Lemma 1 we associate with a
sphere with » handles an integer k(n). Let k = max {3, k(n)}. Sup-
DPOSE D1y Doy **+, Do are points in Bd C and U is an open set containing
Bd C. It suffices to show that one of these points has a neighborhood
V such that each loop in ¥V — Bd C is nullhomotopic in U — Bd C.

Step 1. Preliminary constructions. There exists a collection of

mutually exclusive disks D,, ---, D,, on Bd C with p;eInt D; (2 = 1,

«+, 2k). Furthermore, Bd C contains another collection of mutually
exclusive disks F,, ---, F/, such that for ¢ =1, ---, k

D, ,UD,cIntE,.

We consider C to be embedded in S°® so that the closure of S®* — C
is a 3-cell [8, 10]. We select a point b of Int C and construct arcs
B, ---, By, such that (1) distinct arcs B; and B; intersect only at the
point b, (2) the endpoints of B; are b and p;, and (3) B; is locally
tame mod p; (i=1, ---, 2k).
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By Theorem 1 of [3] there exist pairwise disjoint annuli
D;.:’DZ*""y zﬁnEiksE;:"”E;ck

in S® such that

(4) BdDyf>BdD,; and Bd Ef DBd E,,

(5) DfNnBdCcD,

(5") ErnBdCcCE; — (D,_, UD,y),

(6) (U@®BdDf —BdD,)U(U@BdEF — Bd E;) cIntC,

(7) Di(E¥) is locally polyhedral mod Bd D, (Bd E;), and

(8) (UD})U(UEY)N(UB) = .

If a surface approximating Bd C is to intersect the D}’s and E}’s
properly, we must force it to lie very close to BdC. To do this,
first we thicken certain subsets of Bd C, thereby obtaining mutually
exclusive open sets W,, W,, ---, W,, such that

B,

BdC

FIGURE 1
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(9) W.nCcU— ((UBd Dy) U (UBd EY)),

(10) W, BdC — ((UDy) U (U E)),

1) wW,oIntD;, (1=1, ---, 2k),

(12) Wzkﬂ’:)]:nt E; — (Dzi—~1 U DZ@) (7/ =1, .., k)r

13y (UW)nB,=wW,NnB; t=1, .-+, 2k).
In addition, we require that Bd D, NCl W, % @ only if s =2k + ¢
ors=1 and BAE;NCIlW, = @ only if s=0 or s =2k + 7. Then
we construct a neighborhood ¥ of BAC — U W, such that YNCc U
and any arc in IntC N (Y U (U W,;)) from a point of W, to a point of
W; intersects all the annuli in between. For example, if A is an
arc from W, to W,, then A intersects both E} and D}.

By hypothesis Int C contains a cube with % holes M such that
C— (YU (UW,)cInt M. Without loss of generality, we assume that
Bd M is polyhedral and in general position with respect to

(UInt E%) U (UInt D) .

Step 2. A special disk im Bd M. Let G denote the collection of
those components of Bd M N (U E¥) U (U Dj)) which are essential simple
closed curves in any annulus EF or Df. Each annulus E}(D}) contains
a curve in the collection G, because Bd M separates the components.
of Bd E#(Bd D}).

In the next paragraphs we show that at least one of the curves
in G bounds a disk in Bd M. Suppose the contrary. From Lemma 1
we find that Bd M contains an annulus A such that Bd4 = J, U J,,
where J, and J, are essential curves on E} and E¥, respectively, and
7 # 8. This reduces to the case in which each component of
Int AN (UEF) bounds a disk in UE}. Assume r # 1 # s.

Case A. No component of AN (UK?Y) separates the components
of Bd A. Let L be a simple closed curve in S*® — (E} U E7) such that
LNC = B,UB,,. It follows from the constructions of Step 1 that
each point of L N A is separated (in 4) from J, by a component of
Int AN (EF U E}); thus, by trading certain disks in Int A for disks
in Ef¥ UE¥ we see that J, and J, are homotopic in S® — L. But
this is impossible, since J, links L and J, does not.

Case B. Some component of AN (UE}) separates the components
of Bd A. By considering all components of A N (U E¥) U (UD})), we:
find that A contains an annulus A’ such that no curve in

Int A’ N ((UEY) U (D}))

is essential in A’ and J, cBd A’. Let J’ denote the other component.
of Bd 4/, and without loss of generality assume that J' N D). = @.
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Let L' be a simple closed curve in S* — ((UE}) U (UDj)) such that
L'nNC = B,U B,,. Each point of L' N A’ is separated in A’ from either
J. or J' by Int A'((UE%) U (UDj})), and each curve of this intersection
bounds disks in both 4’ and (UE}) U (UDj?). Hence, by the usual
disk trading, we see that J,. is homotopic to J’ in S®* — L’. Again
this leads to a contradiction, for .J, links L’; on the other hand, J’
either is contained in Dj_, or is an inessential curve in some E7¥, which
implies that J’ does not link L/.

Neither of the two cases can occur. Consequently, some simple
closed curve J in the collection G bounds a disk in Bd M.

Step 8. A meighborhood V of one of the points p;. Correspond-
ing to one of the points, say p,, there exists a disk D cBd M such
that Bd D is an essential curve in D}, but each component of Int
D N (U Djf) bounds a disk in UD}. Repeating this process, it follows
that for one of the p;’s, say p, again, and for each open set U’ con-
taining Bd C, there exists a polyhedral disk £ in U’ N Int C such that
Bd E is an essential simple closed curve on D but each component
of (Int £ N (UDj})) bounds a disk in UD}.

To find the desired open set in C, let V' be a spherical neighbor-
hood of p, such that VVNCc W, and define V= V"NC. For any
loop L in V — Bd C, another linking argument shows that L is separated
from Bd C (in V) by some disk £ U as described above. Since L
is contractible in V7, it follows from [5, Lemma 1] that L is con-
tractible in U — Bd C. This completes the proof.

THEOREM 3. Suppose C is a crumpled cube such that LG(Int C) <
oo and C contains at most one nonpiercing point. Then Int C is an
open 3-cell.

Proof. Assume C is embedded in S® so that the closure of S* — C
is a 3-cell K [8, 10]. Equivalently, we show that K is a cellular
subset of S°.

Let @ denote the finite set of points of Bd C given by Theorem
2, p the nonpiercing point of C (the argument when C has no non-
piercing point is essentially the same), and U an open set containing
K. There exists an open set V containing K such that loops in
V — K are null-homotopic in U — (Int K U p). Let f be a map of a
disk 4 into U — (Int KU p) such that f(Bd4)cV — K. It follows
from [12, Th. 2] and techniques of [2, Th. 4.2] that f can be adjusted
slightly at points of Int4 so that f(4) N BdC is 0-dimensional and
S NQ = @. Finally, there exists a finite number of mutually ex-
clusive simple closed curves S, ---S, in 4 whose union separates
Bd 4 from f=(f(4)) N BdC) and such that f|S; is null homotopic in
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U—-—K @#=1,.--,k). This implies that f|Bd 4 extends to a map
of 4 into U — K. According to McMillan’s Cellularity Criterion [11,
Th. 1], K is a cellular subset of S°

3. Topological collapsing. The following result generalizes
Theorem 1 of [13]. The argument below necessarily differs from
McMillan’s, since we have no mapping criterion to determine the finite
limiting genus condition.

THEOREM 4. Suppose K is a finite connected simplicial complex,
L a subcomplex of K such that K collapses to L, and h a homeomor-
phism of K into S° such that LG(S® — h(K)) = n. Then

LG(S® — m(L)) = n .

Proof. It is sufficient to show that the result holds if L is
obtained from K by a single elementary collapse. Suppose that ¢ is
a principal simplex of K, 7 is a proper face of ¢ such that = is a
proper face of no other simplex in K, and

L=K-—1Intc —Intz.

We consider the case when ¢ is a 3-simplex, because the applications
of Theorem 4 in this paper can be viewed as involving collapses of
this type only; for the remaining cases a similar argument applies.

Let U be an open subset of S* containing A(L). There exists a
neighborhood U* of h(L) in U such that some component Z of h(c) — U*
contains h(c) — U. Using [4, Th. 4] we find a tame disk D in
U* — h(L) such that Bd DN w(K) = @ and exactly one of the com-
ponents of D N k(o) separates Z from h(L N o) in k(o).

There exists a neighborhood W of h(K) such that WNBd D = @
and W can be deformed to A(K) in S*-Bd D by a homotopy keeping
h(K) pointwise fixed. For each point « in U N h(K) define an open
set N, as

N, = {yeS|o@, v) <o, Bd U UBd W)}
and for each point % in h(6) — U define N, as

N, = {ye 8o, v) < o(x, DUBd W)} .
Then let V = U.csx) No-

Claim. DN V separates Z from h(L) in V, and U contains the
component Y of V — D that contains h(L).

Suppose there exists an arc & in V — D from a point of Z to a
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point of A(L). Then a is homotopic in S®* — Bd D (with endpoints
fixed) to a path «’ in A(K), and &’ is homotopic in A(K) (with end-
points fixed) to a path a* such that a* N D consists of a finite set
of points at which a* pierces D. But then the number of such points
must be even, contradicting the separation properties of D in A(K).

To establish the other part of the claim, suppose there exists a
point ¥ in Y — U. Then ye N, for some & in k(o) — U. Let A be
the straight line segment from ¥y to x in N,, and let B denote an arc
from y to A(L) in Y. Since A U B does not intersect D, deforming
AUB to a path in h(K) leads to a contradiction as before. This
completes the proof of the claim.

By hypothesis S° — h(K) contains a polyhedral cube with # holes
H such that Int HoS* — V. We adjust H slightly so that B H N D
consists of a finite number of simple closed curves. Note that D U
(Bd HN U) separates (L) from k(o) — U (in S®*). Thus, the unicoher-
ence of S°® — D implies that some component F' of Bd H — D, where
F c U, separates h(L) from h(o) — U in S* — D.

We observe that Cl F' is a disk with & (¢ < ») handles and (possi-
bly) some holes. By attaching disks to Bd F' near D, we see that F
is contained in a sphere with % handles S, in C1(S® — A(L)) and that
S, bounds a cube with % holes M satisfying

S—UcCcMcS*—h).
This implies that LG(S* — k(L)) < n.

4. The number of nonpiercing points.

THEOREM 5. If C is a crumpled cube such that LG(IntC) =n
1 = n < ), then C has at most n nonpiercing points.

Proof. Suppose to the contrary that C contains at least n + 1
nonpiercing points p,, ***, Pnt:. AS before we assume C is embedded
in S® so that the closure of S® of S* — C is a 3-cell H [8, 10]. Let
h denote a homeomorphism of a 3-simplex 4 onto H.

Some triangulation K of 4 collapses to a subcomplex L such
that A(L) is a 38-cell locally tame except at p,, .-, p;.,; thus, each
point p; is a nonpiercing point of CL(S® — h(L)). Theorem 4 gives
that LG(S® — h(L)) <n. This leads to a contradiction, however, for
either [6, Th. 2] or [14, Th. 1] implies that C1(S* — k(L)) has at most
7 nonpiercing points.

COROLLARY. If C is a crumpled cube such that LG(IntC) <1,
then Int C is an open 3-cell.
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The techniques used to prove Theorem 5 can be reapplied to obtain
the following result.

THEOREM 6. If H is a cube with k handles in S® and
LG(S* —H)y=nl =n< ),

then Bd H is pierced by a tame arc at all but (at most) n — k of its
poInts.

To describe the number of nonpiercing points precisely requires
some additional definitions. Let A be an are in S® locally tame modulo
an endpoint p. The local enveloping genus of A at », denoted LEG
(4, p), is the smallest nonnegative integer » (if there is no such in-
teger », LEG(A4, p) = o) such that there exist arbitrarily small neigh-
borhoods of p, each of which is bounded by a surface of genus r (a
sphere with » handles) that intersects 4 at exactly one point. Chapter
4 of [14] gives illustrations of arcs A,, each locally tame mod an
endpoint p,, such that LEG(4,, p,) =1 (n =1, 2, +-+, ),

Let B={(x,y,2)eE’la*+ y*+ 2 <1}. Let f be a homeomor-
phism of B onto a 3-cell C in S and p a point of Bd C. The local
enveloping genus of C at p, denoted LEG(C, p), is defined by

LEG(C, p) = LEG(f(®), p) ,
where « is the line segment in B from the origin to f~(p).
THEOREM 7. If C s a 3-cell in S® such that LG(S* — C) =n

2=n< ) and p, +++, P, are the nonpiercing points of S* — Int C,
then

n = 3\ LEG(C, p) -
Proof. As in the proof of Theorem 5, let % be a homeomorphism
of a 3-simplex £ onto C. Some triangulation of 4 collapses to a
subcomplex L such that k(L) is a 3-cell locally tame modulo Up;. It

follows from the definition of local enveloping genus that the subcom-
plex L can be chosen to satisfy

LEG(C, p) = LEG(M(L), p) G=1, k).
Since LG(S® — k(L)) < n, Theorem 6 of [14] implies
n = ¥ LEG(h(L), p;)) = £ LEG(C, p,) .

Let U be an open set containing C. To establish the inequality
in the other direction, we shall find pairwise disjoint disks with handles
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G, -+, G, in U — Up; subject to the following conditions: the number
of handles on G; is bounded by LEG(C, p;), Bd G; bounds an annulus
A; in G; such that G} = Cl(G; — 4,) is contained in U — C, Int A, N Bd C
is contained both in a null sequence of pairwise disjoint disks in
Bd C — Up; and in a null sequence of such disks in Int 4;, and UBd G;
bounds a disk with (¢ — 1) holes in BdC — Up;. Furthermore, G,
can be obtained arbitrarily close to p;. Thus, in the next two par-
agraphs we describe how to find one such surface G, near p,.

In Bd C there exists a Sierpinski curve X locally tame mod p, and
containing p, in its inaccessible part. By removing a null sequence
of nice 3-cells from C we obtain a 3-cell C* such that C*NBdC = X
and C* is locally tame mod p,. It follows from the definition of local
enveloping genus that arbitrarily close to p, is a surface H such that
HnNC* is a disk D, with DN BdC* = Bd D, and p, lies interior to
the small disk on Bd C* bounded by Bd D. Adjust H near Bd C* so
that Bd D lies in the inaccessible part of X. Without moving any point
of D adjust H further so that the nondegenerate components of
(H— D)NBdC comprise a null sequence of simple closed curves
and that (H — D)N C* = © [4, Th. 4]. Hence,

H-DnX=09.

Now consider the component K of H — C whose closure contains
Bd D. Associate with each simple closed curve S; of (Bd K — Bd D)
a disk F'; in C — C* such that

(1) F;NnBdC=BdF; =S8,

(3) lim;..diam F; = 0.
Define G, = (UF;) UCL K. Then G, is a disk with handles, and the
number of handles is bounded by LEG(C, p,). Note that Bd G, = Bd D.
Since components of (G, — Bd G,) U C are either arcs or points, we can
readily obtain an annulus 4, in G, such that Bd 4, contains Bd G, and
Int A, contains (G, — BdG)) N C, and now the remaining requirements
on G, must be satisfied.

Applying Theorem 2 and techniques from the proof of Theorem
3, we find a map f of a disk with (¥ — 1) holes E into U — C such
that

AE)NG; = f(BAdE)NG; =BdG; G=1, -,k

and f has no singularities near Bd E. According to [9, Lemma 1]
there exists a homeomorphism f’ of E into U — C such that

FEYNG = f'BAE)NG:=BdG;, (@E=1,-:--k).
Thus, if S denotes f'(F)U (UG, S is a sphere with handles, and
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the number of handles is bounded by ¥ LEG(C, p;). Moreover, S can
be obtained so as to separate S® — U from C. Finally, since U is an
arbitrary open set, we have that

n < 3, LEG(C, p)) .
5. Semi-cellular subsets.

THEOREM 8. Suppose C is a crumpled cube such that
2<LGIntC) < o,

and X is a nonseparating subcontinuum of Bd C containing only
piercing points of C. Then X is semi-cellular in C.

Proof. Let p, +-+, p, denote the nonpiercing points of C, and D
a disk in Bd C — Up; whose interior contains X. If C is embedded
in S® so that CI(S® — C) is a 3-cell K, then K collapses to a 3-cell K’
which is locally tame mod (D U p,), with p, a nonpiercing point of
St — Int K’ = C'. According to Theorem 4, LG(IntC’) < . Since
each point of D is a piercing point of C’, it follows from Theorem 3
that Int C’ is an open 3-cell. Then X is semi-cellular in C’ [7, Lemma
2.7]; clearly X must also be semi-cellular in C.

Theorem 8 can be applied to characterize those sewings of two
crumpled cubes which yield S? when one of the crumpled cubes has
finite limiting genus. With minor changes, such as in the references
to the number of nonpiercing points, we can use the proof of [7, Th.
5.7] to prove Theorem 9.

THEOREM 9. Suppose C, and C, are crumpled cubes, h s a
homeomorphism of Bd C, to Bd C,, and LG(Int C,) < . Then C,U,C,=
S? if and only if each wmonpiercing point of C, is identified by h
with a piercing point of C..
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