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LOCALIZATION OF THE CORONA PROBLEM

T. W. GAMELIN

The corona problem for planar open sets D and the fibers
of the maximal ideal space of H=(D) are discussed and shown
to depend only on the local behavior of D.

Let D be an open subset of the Riemann sphere C*, and let H>(D)
be the uniform algebra of bounded analytic functions on D. We will
assume always that H>=(D) contains a nonconstant function, that is,
that C*\D has positive analytic capacity. Our object is to study the
maximal ideal space _Z (D) of H=(D), and the “fibers” _#(D) of
# (D) over points ne€dD. The basis for our investigation is the
observation that the fiber _#(D) depends only on the behavior of D
near L. This localization principle is used to obtain information re-
lated to the corona problem.

The corona of D is the part of _# (D) which does not lie in the
closure of D. Our main positive results are that D has no corona
under either of the following assumptions:

(1) that the diameters of the components of C*\D (in the spherical
metric, if D is unbounded) be bounded away from zero; or

(2) that for some fixed m = 0, the complement of each com-
ponent of D has <m components.

The proofs rest on the localization principle, and on Carleson’s
solution of the corona problem for the open unit dise [2]. Each of
the above conditions includes the extension of Carleson’s theorem to
finitely connected planar domains due to Stout [9].

In the negative direction, we present an example, due to E. Bishop,
of a connected one-dimensional analytic variety W which is not dense
in the maximal space of H=(W). The construction is similar to that
of Rosay [8].

1. Two basic lemmas. The localization process depends on the
following two lemmas.

LEMMA 1.1. Let N€dD, and let U be an open neighborhood of
N If fe H(DNU), there is F e H*(D) such that F — f extends to
be analytic at N, and (F — f)(\) = 0. Moreover, F can be chosen so
that || F'||, < 33| fllpno-

Indication of proof. Suppose U = 4(n;9d) is the disc of radius
J, centered at . Let g be a smooth function supported on U, such
that g = 1 on 4(\; 6/2), and [09/0Z| < 4/6. Define f = 0 off D, and set
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_ 1({f©) — f) o
(Tyf)(C) = ;“CTEE—dxdy .

For a description of the properties of T,f, see II.1 or VIIL.10 of [3].
The desired function is obtained by adjusting 7,f by a constant:

_ _1{{_f) o9

LEMMA 1.2. Let N€oD, and let fe H*(D). Then there is a
bounded sequence f,c H=(D) such that f, extends to be analytic at
N, and fo(2) — f(z) uniformly on any subset of D at a positive distance
from \. Moreover, if f extends continwously to DU{\}, then the f,
converge uniformly to f on D.

Proof. This is VIII.10.8 of [3]. The proof is the same as that
of 1.1, except that one uses a sequence of g, whose supports shrink
to {\].

2. The fibers. In order to define the fibers, we prove the fol-
lowing lemma.

LEMMA 2.1. If pe _# (D), then there is a wunique point A€ D
such that o(f) = f(\) for all functions fe H=(D) which are analytic
at \.

Proof. If D is bounded, then the coordinate function z belongs
to H=(D), and the point A = @(2) is easily seen to have the desired
properties. Since D may be unbounded, we must be more circumspect.

For convenience, we rotate the sphere so that « ¢ D, and so that
@ is not “evaluation at «”. Choose he H*(D) such that h(c) =0
while @(h) = 1. Then zhec H*(D). We will show that M = ¢(zh) has
the desired properties. Note that ¢((z — \)h) = 0.

Suppose fe H=(D) extends to be analytic in a neighborhood of .
Then (f — f(\)/(z — \) € H=(D), so that o(f — f(A)) = @(h(f — f(N)) =
P((z — MWP((f — f\)/(z — N) = 0, and o(f) = f(A).

For the uniqueness, suppose that A = A belongs to D. We must
find F e H*(D) which is analytic at A and at )\, and which satisfies
F(\) # F(\'). Using 1.2, we see that there is fe H=(D) such that f
is analytic at A and at A, f(e) = 0, and f is not identically zero on
D. If z,eD is such that f(z,) # 0, then one of the three functions
£ 2f, (f — f(2)/(z — z)) e H*(D) will separate » and \’. That does it.

The fiber _#(D) of _# (D) over ne D consists of all p e _# (D)
such that o(f) = f(\) for all fe H*(D) which extend to be analytic
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in a neighborhood of A. From the definition of _#;(D), and 2.1, we
conclude that the _#;(D) form a partition of _#Z (D) into disjoint
closed subsets. If A e D, then _#(D) consists of the single homomor-
phism “evaluation at \.” If ¢, is a net in _#Z(D) converging to
@ e #,(D), and if @, lies in the fiber over \,, then the )\, converge
to .

By 1.2, the functions in H=(D) which extend analytically across
A edD are dense in the functions in H*(D) which extend continuously
to . We conclude the following.

LEMMA 2.2. If fe H*(D) extends continuously to DU{\}, then
o(f) = f(\) for oll pe #.

The next theorem shows that the fibers and fiber algebras depend
only on the behavior of D near \.

THEOREM 2.3. Let nedD, and let U be an open neighborhood of
N. The fibers _#(D) and _#(DNU) are homeomorphic. The re-
striction of H=(D) to _#(D) coincides (modulo this identification)
with the restriction of H*(DNU) to _.2Z(DNU).

Proof. Since H*(D)cH=(DNU), every homomorphism in
A (DN U) determines a homomorphism in _# (D) by restricting it to
H=(D). The restrictions of the homomorphisms in _Z;(DN U) belong
to the fiber _#(D). This determines a continuous map of _Z(DNU)
into _#;(D), which we must show is one-to-one and onto.

For this, let pe _#(D), and fe H*(DNU). Choose F as in 1.1,
and define ¢(f) = @(F'). By the definition of the fiber, $(f) is inde-
pendent of the function F, subject to the conditions of 1.1. Using
2.2 one sees that & is multiplicative on H=(DNU). Moreover, if ¢
is already the restriction of some v e _Z(DNU) to H=(D), then the
definition of & shows that & coincides with +. It follows that the
correspondence @ <« $ is a homeomorphism, as was required. On ac-
count of 1.1, again, the fiber algebras are isomorphic.

COROLLARY 2.4. With the above identification of _#(D) and
A(DNU), the adherence of D in _#;(D) coincides with the adherence
of DNU in .#4(DNU).

Proof. A net in DN U will converge to pe _#(D) in _#Z (D) if
and only if it converges to e _Z(DNU) in . Z(DNU).

As another consequence of 2.3, we have the following extension
of a result in [10].



76 T. W. GAMELIN

THEOREM 2.5. The cluster set of fe H*(D) at Ane€dD coincides
with the range (of the Gelfand transform) of f on _#i(D).

Proof. Every point in the cluster set of f at A is assumed by f
on _#(D). On the other hand, suppose that w does not belong to
the cluster set of f at ». Then there is an open neighborhood U of
A such that |f — w| = ¢ >0o0n DNU. Consequently f — w is inverti-
ble in H*(DNU), and f cannot assume the value w on _Z(DNU) =
(D).

COROLLARY 2.6. If nedD and fe H=(D), then

sup |p(f)| = lim sup | ()] -

THEOREM 2.7. The restriction A, of H=(D) to _#(D) is a closed
subalgebra of C(_#;(D)) whose maximal ideal space is _#(D).

Proof. This follows readily from the following assertion: If
hec A,;, then there is F'e H*(D) such that FF =% on _#;, and ||F|| <
66||k]]. In order to establish this assertion, choose fe H>(D) such
that f = h on _#. By 2.6, there is an open neighborhood U of A
such that |f| < 2||h|] on DN U. The desired function F' is now the
extension of fl,ny given by 1.1.

3. The corona problem. The open set D is dense in _#(D)
if and only if whenever f,, «--, f, € H*(D) satisfy |f,| + - + |ful =
d > 0 on D, then there exist g,, + -+, g, € H*(D) such that fig, + -+ +
fu9. = 1. We wish to consider open sets D with the following property,
which is (at least formally) stronger than the assertion that D be
dense in _Z (D). '

Property (*). For each integer n = 1 and each § > 0, there are
constants C(n, ) such that whenever f,, ---, f, € H*(D) satisfy |f;| <
1,1<j<mn, and > |f;| = 0 on D, then there exist g,, ---, g, € H*(D)
such that > f;9, =1 and |g;| < C(n,9),1 <7 < n.

LEMMA 3.1. An open set D has the property (*) if and only if
wherever E is a union of disjoint open sets, each ome of which s
conformally equivalent to D, then E is dense in _# (K).

Proof. Suppose D has property (*), and suppose that f, ---,
fa€c H=(E) satisfy >} |f;| =0 > 0. We can assume that |[f;|<1,1<
j = n. Using property (*), we can solve the relation > f;9; =1 on
each subset of E conformally equivalent to D. The uniform estimate



LOCALIZATION OF THE CORONA PROBLEM 7

on the g,’s guarantees that the resulting solutions belong to H=(E).
So E is dense in .#Z(E). On the other hand, if D does not have
property (*), one easily constructs f,, .-, f, € H*(¥) such that 3 | f;|=
0 > 0, while 3 f;9; = 1 has no analytic solutions g,, ---, g, which are
bounded on all of E.

Now Carleson [2] has shown that the open unit disc has the
property (*). From this, and localization, we can use a simple topol-
ogical argument, as in [5], to deduce the following.

THEOREM 3.2. If the diameters (in the spherical metric) of the
components of the complement of D are bounded away from zero,
then D 1is dense in _# (D).

Proof. By rotating the sphere, we can assume that « € D. Sup-
pose the diameters of the components oD are bounded below by & > 0.
If X € oD, then DN 4(\; ¢/2) is simply connected, that is, each component
of DN4(n;e/2) is conformally equivalent to a disc. By 3.1 and
Carleson’s theorem, DN 4(\; €/2) is dense in _Z (DN 4(\; €/2)). By 2.4,
A#(D) belongs to the closure of D in _# (D). Since this is true for
all xedoD, D is dense in _# (D).

The work of Behrens [1] shows that, under the hypotheses of
3.2, each fiber algebra A, is a logmodular algebra (on its Shilov
boundary). In particular, the Gleason parts of A, are one point parts
and analytic dises. Using a Melnikov ecriterion (cf. [4]), it can be
seen that each _#; is a peak set of H=(D), so that _#; contains every
part which it meets. Hence the Gleason parts of H=(D), under the
assumptions of 8.2, are the distinet components of D, together with
one-point parts and analytic discs.

Concerning the existence of the constants C(n, ) for multiply
connected domains, one can say the following.

THEOREM 3.3. For each choice of integers m,n =1, and each
0 > 0, there exist constants C,(n, 6) such that property (*) s walid,
with the constants C,(n, d), for all domains D which have =m
boundary components.

Proof. Proceeding by induction, we can assume that the theorem
is true, with m replaced by m — 1, so that the required constants
C,._i(n, 0) exist. We also assume that for some % and ¢, the constant
C.(n, 6) fails to exist. From this we will obtain a contradiction.

By hypothesis, there are domains D,, 1 £ k < o, which have m
boundary components, such that property (*) fails for D,, with con-
stant C(n, §) = k. We can assume that D, is a circle domain, obtained
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from the open unit disc 4 by excising m — 1 disjoint closed subdiscs,
one of which is centered at 0. Let 7, be the smallest number such
that the annulus {r, < |z| < 1} is contained in D,. There will be two
cases to consider: limsup r, < 1 and lim sup », = 1.

First, suppose that limsup r, = 1. By passing to a subsequence,
we can assume that », converges to 1 sufficiently rapidly, so that D,
is conformally equivalent to a domain E, obtained from the rectangle
{27! < Im (2) < 27%, —1 < Re () < 1} by excising m — 1 holes, so that
at least one of the excised holes meets {Re (z) < —1/2}, and at least
one meets {Re (2) > 1/2}. If E = UE,, then the proof of 3.1 shows
that E cannot be dense in _# (E). Now the open sets E, = {ze E:
Re () > —1/2} and E_ = {ze E:Re (2) < 1/2} are unions of domains,
each of which has a complement with <m — 1 components. In view
of the induction assumption, £, and E_ are dense in 2 (¥.) and _Z (E_)
respectively. If ) e E satisfies Re (\) > —1/2, then _Z(E) = _#(E.,)
while if \ € £ satisfies Re (\) < 1/2, then _Z(F) = _#(E.). In any
event, every _#;(E) is adherent to E, so that E is dense in 27 (&).
This contradiction allows us to reject the case limsupr, = 1.

Hence we can assume that there is an » < 1 such that each D,
contains the annulus {r < |x| < 1}. Let D be the disjoint union of
the sets D,, and let H=(D) be the algebra of bounded functions on
D which are analytic on each D,. Again the proof of 3.1 shows that
D cannot be dense in the maximal ideal space _Z (D) of H=(D).

Let N be the set of positive integers, and let 4 be the open unit
disc. It will be convenient to regard D as a subset of 4 x N, so that
H=(4 x N) becomes a subalgebra of H=(D). Our argument at this point
is motivated by Behrens’ discussion of _Z (4 x N) in [1]. As Behrens
notes, Carleson’s theorem shows that 4 x N is dense in _Z(4 x N).

Let pe #Z (D), and let Z be the function in H*=(D) defined by
Z(\, m) = n. We will find a net in D converging to @, and for this
we congider two cases.

First, suppose that |@(Z| > r. The restriction  of ¢ to H*(4 x N)
belongs to _#Z (4 x N), so there is a net (A, k,) in 4 X N such that
Nay ko) =P in #Z(4 X N). In other words, f(\,, k,)— @(f) for all
fe H=(D) which extend to be analytic on each slice 4 x {k}, k = 1.
In particular, n, = Z(\., k) — @(Z), so that » <|\,| <1 and (\,, k,) € D
eventually, If F e H*(D) is arbitrary, we expand F in a Laurent
series, writing F' = F, + F',, where F(\, k) is analytic on 4 x {k}, F\(\, k)
is analytic on F, = D,U{|x| =1}, and F\(co, k) = 0. Note that F,
and F, belong to H=(D), because the annuli we are splitting across
have the same widths. In fact, Fye H*(4 x N). Now F,(\, k) =
Fi(p(Z), k) + v — p(Z))H(\, k), where H(-, k) is analytic on E,. Since
the distance from the boundaries of the E, to ¢(Z) always exceeds
|@(Z)| — r, we find that He H*(D). Hence
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F=G+(Z-92)H,

where Ge H*(4 x N), and He H*(D). Now F(\, k) = G\, ko) +
N — P(Z))H(Nyy k) converges to @(G) = o(F). So (A k) — @ in
A (D), and ¢ is in the closure of D in _#Z (D).

Next, suppose that [p(Z)| < r. The E, defined above are circle
domains with <m — 1 holes. The induction assumption shows that
if E is the disjoint union of the E,, then E is dense in _#Z(¥). Hence
there is a net (\,, k.) € E,, x {k,} such that f(\., k) — o(f) for all
fe H*(D) which extend to be analytic on E. The Laurent series
argument again shows that eventually (\,, k.) € D, and (\., k.) — @ in
A (D). Again ¢ lies in the closure of D.

It follows that D is dense in _# (D), contradicting our previous
assertion. That completes the proof of the theorem.

Now for m, n =1 and 6 > 0, let C,(n, 6) denote the best possible
constant for which property (*) is valid for domains whose complements
have <m components. The C, (%, 0) increase with m. If sup,, C,.(n, )=
C(n, d) is finite for all » = 1 and 6 > 0, then every open subset D of
the complex plane has property (*), with constants C(n, 6). This can
be seen by approximating each component of D by finitely connected
domains, and using a normal families argument. If this is the case,
then D is dense in .# (D) for every planar open set D. On the other
hand, we have the following.

THEOREM 3.4. If there exist m>1 and 0 >0 such that
sup,, C,.(n, ) = oo, then there is a domain (=connected open set) D
such that D is not dense in _# (D).

Proof. Suppose that for some integer n =1 and some 6 > 0,
there is a finitely connected domain D, such that property (*) fails,
with constant C(n, 0) = k. We can assume that D, is contained in
the rectangle {—1 < Re(2) <1, 27! < Im (z) < 2%}, and that oD,
meets both vertical sides of the rectangle. As in 3.1, UD, is not
dense in _#(UD,). Hence there is a point ned(UD,) such that
A (UD,) is not contained in the closure of UD,. We can assume
that Re(\) = 0. Let E be the union of UD, and the rectangle
{—=1<Re(?) < —1/2, 0 <Im () < 1}. Then E is connected, and _Z;(F) =
#(UD,). By 2.4, FE is not dense in _# (F). That proves the theorem.

4. An example of Bishop. Here we present an example of a
one-dimensional analytic variety W which is not dense in _Z(W).
The example has been in circulation for some time, being originally
discovered by E. Bishop some years ago, but the example has never
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appeared in print.

To construct the example, let S be the shell {(z, w): 1/2 < max (||,
lw|) < 1} in €% For each integer m, let V, be the set of (z, w)eS
such that either 27z or 2"w is a Gaussian integer. The V, form an
increasing sequence of connected one-dimensional analytic subvarieties
of S, whose union is dense in S.

Suppose f is a bounded function on UV, which is analytic on
each V,. From Schwarz’s lemma it is easy to see that f is uniform-
ly continuous, so that f extends to be continuous and analytic on S.
By Hartogs’ theorem, f extends to be analytic on the unit polydise
in C2

LEMMA 4.1. There fails to exist a constant C > 0 with the fol-
lowing property: For each mn, there are f,, g,€ H=(V,) satisfying
2fn + wg, =1 and [fo] = C, |g.] = C.

Proof. Suppose there is such a constant. A normal families argu-
ment produces bounded functions f and ¢ on UV, such that zf +
wg = 1, and f and g are analytic on each V,. By the remarks preced-
ing the lemma, f and g extend analytically to the unit polydise, and the
extensions satisfy zf + wg = 1. Substituting z = w = 0, we obtain a.
contradiction, thereby establishing the lemma.

THEOREM 4.2. There is a connected one-dimensional analytic
variety W such that H=(W) separates the points of W, while W is
not dense in the maximal ideal space of H=(W).

Proof. Let W be the variety obtained from the disjoint (!) union
of the V,, n = 2, by identifying some prescribed point p, of V, to
the point of V,., with the same z and w coordinates, so that distinet
identified pairs have distinct coordinates. Then W is a connected
variety, the coordinate functions z and w remain defined on W, and
they satisfy [z| + |w| > 1/2 on W. By 4.1, there fail to exist func-
tions f, g € H=(W) satisfying zf + wg = 1, so that W is not dense in
A (W).

5. Extension to Riemann surfaces. It is easy to extend Lemmas
1.1 and 1.2, which allow one to localize the fibers and fiber algebras,
to domains on a finite bordered Riemann surface. More specifically,
we can easily handle the following situation. :

Let D be an open set on a Riemann surface S, let A eoD, and
let U be an open coordinate disc centered at . Suppose there is a.
function » meromorphic on DU U such that A(\) = 0, A~*(R(U)) = U,
and H is a one-to-one covering of U over w(U). If feH=(DNU),
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then foh='e H*((D)NA(U)). By 1.1, there is a function G € H>(h(D))
such that G — foh™ is analytic at 0 and vanishes there. Then Goh =
Fe H=(D), and F — f is analytic at A and vanishes there. So Lemma
1.1 is valid. Also, Lemma 1.2 is valid. If the fiber _#(D) is defined
as in §2, then 2.2 and the localization Theorem 2.3 are true.

Now suppose D is a domain on a finite bordered Riemann surface.
It is easy to see, using meromorphic functions, that 2.1 is valid, that
is, that _#Z (D) can be partitioned into disjoint closed “fibers” _#;(D)
over points A e D. In this case, the required function % always exists,
for any point \ edD, so that the fibers are local. In particular, if D
is a finite bordered Riemann surface, then D is dense in _# (D), and
the fibers and fiber algebras associated with points of 0D are identical
to those associated with the disc algebra H=(4). This latter theorem
has been proved in a variety of ways in the literature. For one of
the simplest proofs, see [7].

If D is an open set lying on a compact Riemann surface, such
that H>(D) contains a nonconstant analytic function, and if the fibers
_#(D) are defined as in §2, then again the _#(D), re D, form a
partition of _#Z (D) into disjoint closed subsets, and the localization
Theorem 2.3 is valid. The details of the proofs are left.
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