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The purpose of this note is to investigate some problems
raised in a recent paper of Conrad and Teller concerning
o-ideals and ̂ -subgroups in an abelian pseudo lattice ordered
group.

The concept of a pseudo lattice ordered group ("p-group") has
been introduced by Conrad [1], In recent papers by Teller [5] and
Conrad and Teller [2] there is developped a systematic theory of
p-groups. Let G be an abelian p-group. In § 3 it is proved that if
M is a subgroup of G such that {a, b} n M Φ 0 for any pair of
p-dis joint elements a, beG, then M contains a prime o-ideal; this
generalizes a result from [2]. In §4 we prove that the intersection
of two ^-subgroups of a p-group G need not be a p-subgroup of G.
Moreover, if A is a partially ordered set and for each δ e A Hδ Φ {0}
is a linearly ordered group, then for the mixed product G — V(A, Hδ)
the following conditions are equivalent: (i) for any two p-subgroups
A, B of G their intersection An B is a p-subgroup of G as well; (ii)
G is an Z-group. If A is an o-ideal of a p-group G and B is a
p-subgroup of G, then A + B is a p-subgroup of G.

2. Preliminaries* Let G be a partially ordered group. G is a
Riesz group (cf. Fuchs [3], [4]) if it is directed and if from aiy

b3-eG, a{^ bά (i, j = 1, 2) it follows that there exists ceG satisfying
di^c^bj (i, j — 1, 2). G is a p-group (cf. [1] and [5]) if it is
Riesz and if each geG has a representation g = a — b such that
a, beG, a ^ 0, 6 ^ 0 and

( * ) xeG, x^a, x^b => nx ^ α, nx ^ b

for any positive integer n.
Throughout the paper G denotes an abelian p-group. Elements

a, beG, a ^ 0, 6 ^ 0 satisfying (*) are called p-disjoint. A subgroup
M of G is a ^-subgroup, if for each meM there are elements a, beM
such that a, b are ^-disjoint in G and m = a — 6. A subgroup C of
G is an o-ideal, if it is directed and if 0 <^ g <^ ceC, geG implies
geC. Let O(G) be the system of all o-ideals of G (partially ordered
by the set inclusion). An o-ideal C of G is called prime, if G/C is
a linearly ordered group. For any pair α, b of p-disjoint elements.
H(a, b) denotes the subgroup of G generated by the set
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Then H(a, 6) e O(G) (cf. [2]).
Let A be a partially ordered set and let Hδ Φ {0} be a linearly-

ordered group for each δ e A. Let V = V(Δ, Hδ) be the set of all
//-vectors v — ( , vδ, •) where v^eHδ, for which the support £(v) =
{δ G J I vδ Φ 0} contains no infinite ascending chain. An element ve V,
v Φ 0 is defined to be positive if vδ > 0 for each maximal element
δeS(v). Then ([2], Th. 5.1) F is a p-group; F is an 1-group if and
only if J is a root system (i.e., {δeA\δ^y} is a chain for each
ye A).

3* Subgroups containing a prime o-ideaL The following asser-
tion has been proved in [2] (Proposition 4.3):

(A) For ikfeO(G), the following are equivalent: (1) M is prime;
(2) the o-ideals of G that contain M form a chain; (3) if a and 6 are
p-disjoint in G, then a e M or b e M.

Further it is remarked in [2] that each subgroup M of G ful-
filling (3) is a p-subgroup and any subgroup containing a prime
o-ideal satisfies (3); then it is asked whether a subgroup I of a
p-group G satisfies (3) if and only if it contains a prime o-ideal (a
similar assertion is known to be valid for lattice ordered groups).
We shall prove that the answer is positive.

We need the following propositions (cf. [2] and [5]):
(B) Let g = a — beG where a and b be p-disjoint. Then g =

x — y, where x and y are p-disjoint, if and only if x = a + m and
y — b + m for some m e H{a, b).

(C) If a and b are p-disjoint, then wα and nb are p-disjoint for
any positive integer n and H(a, b) — H(na1 nb) ([2], Proposition 3.1).

LEMMA 1. Let M be a subgroup of G fulfilling (3) and let α, b
be p-disjoint elements in G. Then H(a, b) c M.

Proof. Let h e H(a, b). According to (3) we may assume without
loss of generality that aeM. Suppose (by way of contradiction) that
h&M. Then a + h g M, hence by (B) b + h e M, and analogously
b — heM, thus 26 e M. Further 2α + h $ M and therefore according
to (C) and (B) 26 + heM, which implies heM.

LEMMA 2. Let M be a subgroup of G satisfying (3) and let
X — {Xi} be the system of all o-ideals of G such that X{ c M. Then
the system X has a largest element.

Proof. Let Y be the subgroup of G generated by the set U -X»
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Then YdM and Y is the supremum of the system {XJ in the
lattice 2^ of all subgroups of G. Since O(G) is a complete sublattice
of gf ([2], Th. 2.1), YeO(G) and thus YeX.

Let H be the subgroup of G generated by the set U H(a, b)
where α, b runs over the system of all p-disjoint pairs of elements
in G. Since each set H(a, b) is an o-ideal ([2]), H=\/ H(a, b) (a and
b p-disjoint in G) where V denotes the supremum in the lattice 0{G).
According to Lemma 1 HaM whenever the subgroup M of G
satisfies (3).

For any u, veG, u ^ v, the interval [uf v] is the set

{x e G u ^ x <; v) .

LEMMA 3. Let M be a subgroup of G satisfying (3) and let N
be the largest o-ideal of G that is contained in M. Let g e G, g > 0.
Then

[0,g]c:M=*geN.

Proof. According to Lemma 2 the largest o-ideal N in M exists.
Assume that g e G, g > 0, [0, g] c M. The set

CO

Z = U [-ng, ng]
n = l

is clearly an o-ideal in G. Let zeZ, hence ze[ — ng, ng] for a posi-
tive integer n. This implies 0 ^ y ^ 2%# where 2/ = z + w#. Since
G is a Riesz group, according to [3, p. 158, Th. 27] there are elements
#1, •--, g2n£G, 0 <: Qi ̂  # such that y = gλ + . . . + #2w. Thus & eilf,
therefore y eM and ZaM. Now we have ZaN and so geN.

LEMMA 4. Lei M be a subgroup of G fulfilling (3) αraZ Zβί N
be the largest o-ideal of G contained in M. Then G/N is a linearly
ordered group.

Proof. Assume (by way of contradiction) than G/N is not linearly
ordered. According to Lemma 1 HaN, hence by [2], Theorem 4.1
G/N is a lattice ordered group. Thus there exist elements X, Ye G/N
such that X A Y =0, X>0, F > 0 ( 0 being the neutral element of
G/N). From [2] (Proposition 2.2, (ii)) it follows that there are elements
xeXj yeY such that x and y are p-άis joint in G and hence x e M
or yeM. Clearly x&N, yiN and thus according to Lemma 3 there
€xist elements xί9 yλeG such that

0 < a?! ̂  x, 0 < yι g y, xxiM, yx$M.
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Then in G/N we have 0 <xL +N ^x +N=X, 0
Y, whence

Thus by using repeateadly [2], Proposition 2.2, we can choose elements
x2 e xι + N, y2 e y± + N such that x2 and ΐ/2 are p-disjoint in (?. There-
fore (without loss of generality) we may assume x2eM and this
implies x1ex1 + N=x2 + NczM, a contradiction. The proof is complete.

THEOREM 1. Let M be a subgroup of a p-group G. Then
(3) => (2) and the condition (3) is equivalent to (1/) M contains a
prime o-ideaL

Proof. According to Lemma 4 (3) => (Γ). By [2] (1') => (3).
Assume that M is a subgroup of G fulfilling (3). Let Kt, K2 be
o-ideals of G such that MczKt Π K2. Let N have the same meaning
as in Lemma 4. Since NczM,

Kx c K2 *==> KJN (Z KJN .

KJN and KJN are o-ideals of G/N and G/N is linearly ordered, hence
KJN c KJN or KJN a KJN; therefore (2) holds.

If M is an o-ideal of G satisfying (3), then by Theorem 1 M
contains a prime o-ideal N; according to [2] (Corollary 1 to the
Induced Homomorphism Theorem) G/M is isomorphic to (G/N)/(M/N)
and hence (G/N being linearly ordered) G/M is a linearly ordered
group and M is prime. Thus it follows from Theorem 1 that (3) => (1)
for MeO(G) (cf. (A)).

Let us remark that if M is a subgroup of G fulfilling (3) then
M need not contain any nonzero o-ideal that is a lattice; further (3)
is not implied by (2).

EXAMPLE 1. Let B be an infinite Boolean algebra that has no
atoms and put Δ = {b e B | b Φ 0}. For each δ e Δ let HB = E where
E is the additive group of all integers with the natural order, G =
V(Δ, Hδ). Let M = {v e G | v1 — 0} (by 1 we denote the greatest element
of B). Then M is a prime o-ideal of G, hence M satisfies (3) and M
contains no lattice ordered o-ideal different from {0).

EXAMPLE 2. Let Δ = {δ19 δ2, <53}, where δt < δs, δ2 < δ3 and δί9 δ2 are
incomparable. Put Hδ. = E(i = 1, 2, 3), G = F(z/, JHS), Λf = (v e G | vh =
vh — 0}. Then the only o-ideal that contains M is G, thus (2) holds.
Let a,beG such that ah = 1, αδ2 = ah = 0, δ,2 = 1, 6δl = δδs = 0.
The elements a and b are ^-disjoint in G and αgilf, δ ί M , hence M
does not fulfil (3).
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4* Intersections and sums of two p-subgroups* Another pro-
blem formulated in [2] is whether the intersection of two ^-subgroups
of a p-group G must be a p-subgroup of G; there is remarked in [2]
that this conjecture seems rather dubious. The answer to this pro-
blem is negative.

2

EXAMPLE 3. Let Δ = {δly <52, δ3}, where dί > δ3, δ2 > δΆ and δ19 δ
are incomparable. Let Hδ. = E(i = 1, 2, 3), G - F(J, fl,). We write
^(δί) instead of vai. Let c< =£ 0 (i = 1, 2) be positive integers, cx ^ c2.
Denote

(i = 1, 2). Let i e {1, 2} be fixed. For proving that A{ is a ^-subgroup
of G we have to verify that to each ve A{ we can choose a, be Aif

a ;> 0, 6 ^ 0 such that (*) holds and v = a ~ b. It is easy to verify
that it suffices to consider the case when 0 and v are uncomparable,
hence we may assume v(dy) > 0, v(δ2) < 0 (the case v(8j) < 0, v(δ2) > 0
being analogous). Let α, b e G,

aiδ,) - viδj, a(δ2) = 0, a(δs) - c.α^) ,

b(δx) - 0, δ(δ2) - -v(δ2), b(δz) = - ^ ( δ 2 ) .

Then α and δ have the desired properties, hence A< is a ^-subgroup
of G. Denote C = Λ Π Λ If v e C, we have

c j ^ ) + v(δ,)] - v(δ3) = φfo) + ̂ (δ2)]

and thus (since cx Φ c2)v(δ3) — 0, v(δ2) = — ̂ (δj). Therefore any element
v G C, v ^ 0 is incomparable with 0 and C is not a p-subgroup of G.

The method used in this example can be employed for proving
the following theorem:

THEOREM 2. Let A be a partially ordered set and for each
δ e Δ let Hδ Φ {0} be a linearly ordered group, V = V(Δ, H5). If V
is not lattice ordered, then V contains infinitely many pairs of
p-subgroups Alf A2 such that AL Π A2 is not a p-subgroup of V.

Proof. Assume that V is not lattice ordered. Then Δ is no
root system, hence there exist elements δ,, δ2, <53 such that δλ > δ3,
δ2 > δ3 and δ19 δ2 are incomparable. Choose et e Hδ., et > 0 and let
c15 c2 be positive integers, c1 Φ C2. Let Vι — {v e V \ vδ — 0 for each
δ<£{δ19δt,δ9}},

1 v(δt) = nteL1 v(δ2) = n2e21 v(δs) = c^n, + n2)e3}

where nt and n2 run over the set of all integers (i = 1, 2). Analo-
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gously as in Example 3 we can verify that A1 and A2 are p-subgroups
of V. Let v e C = Ax n A2. Then c^ + n2) = c2(% + w2), thus w2 =
— %! and v(δ3) = 0. Therefore no element of C is strictly positive
and C is no p-subgroup of G. Since the positive integers ct Φ C2 are
arbitrary there exist enίinitely many such pairs Aly A2.

As a corollary, we obtain:

PROPOSITION 1. Let V — V(Δ, Hδ), where each Hδ is linearly
ordered. Then the following conditions are equivalent: (i) V is
lattice ordered; (ii) if A and B are p-subgroups of V, then Af] B
is a p-subgroup of V as well.

Proof. By Theorem 2 (ii) implies (i). Let V be lattice ordered.
Then a subgroup A of V is a p-subgroup of V if and only if it is
an 1-subgroup of V; since the intersection of two 1-subgroups is an
1-subgroup, (ii) is valid.

PROPOSITION 2. Let J be a partially ordered set and for any
δ 6 Δ let Hδ Φ {0} be a linearly ordered group. Assume that there
exist δ19 δ2, δ3e Δ such that δλ < δ8, δ2 < δ5 and δ19 δ2 are incomparable,
V = V{Δ, Hδ). Then there are infinitely many p-subgroups A, B of
V such that A + B is not a p-subgroup of V.

Proof. Denote V, = {v e V \ v(δ) = 0 for each δ $ {δly δ2, δz}} and
let c be a fixed positive integer, e< e H9., et > 0 (i — 1, 2, 3). Put

A = {v e Fi I t;(δx) = ^ , v(δa) = — c^β2, i?(δ3) = ne3} ,

J t ί i j - t;(δ2) = 0, v(δ.) - we3}

where n runs over the set of all integers. A and B are linearly
ordered subgroups of V, hence they are p-subgroups of V. The set
C — A + B is the system of all elements t; 6 Vt such that

where n19 n2 are arbitrary integers. Hence there is g e C satisfying

= -ce2 , g(δ3) = 0 .

If £ = α - 6, a e C, 6 G C, α ̂  0, δ ̂  0, then α ̂  0 Φ b (since ^ > 0,
^ < 0), thus a(δ5) = δ(δ3) ̂  e3. There exists veV, such that ι;(δ3) =
a(δz), v(δ,) < α(δx) and 6^), v(δ2) < a(δ2) and b(δ2). Thus v < α, v < &,
but 2v < α, 2v < 6. Therefore α and 6 are not p-disjoint in (? and
€ is no p-subgroup of G.

One of the problems raised in [2] is affirmatively solved by
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THEOREM 3. Let A be an o-ideal of G and let B be a p-subgroup
Of G. Then A + B is a p-subgroup of G.

Proof. Let us denote G/A — G and for any t e G write ί + A=t.
Let A + B = X, xeX. There are elements α e i , beB such that
x = a + b and since B is a p-subgroup there exist bί9 b2eB such that
b = bλ — b2 and blf b2 are p-disjoint in G. Further x = u — v, u,
v e G, where u and v are p-disjoίnt in G. According to [2] G is a
i?-group and by [2], Proposition 2.2, 6X and δ2 (% and v) are p-disjoint
in G. Further we have

lience if we apply (B) (§ 3) to the p-group G it follows that there
exists m 6 H(ΰ, v) fulfilling

bλ = ΰ + in , b2 — v + in .

Again, by Proposition 2.2 of [2], there is mx e m such that m1 e H{u, v).
Thus according to (B) the elements ux = u + m1 and vx — v + m1 are
^-disjoint in G and x = ut — vλ. Since

and analogously vx e X, the set X is a p-subgroup of G.
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