SUFFICIENT CONDITIONS FOR A RIEMANNIAN MANIFOLD TO BE LOCALLY SYMMETRIC

Kouei Sekigawa and Shûkichi Tanno
SUFFICIENT CONDITIONS FOR A RIEMANNIAN MANIFOLD TO BE LOCALLY SYMMETRIC

KOUEI SEKIGAWA AND SHŪKICHI TANNO

In a locally symmetric Riemannian manifold the scalar curvature is constant and each k-th covariant derivative of the Riemannian curvature tensor vanishes. In this note, we show that if the covariant derivatives of the Riemannian curvature tensor satisfy some algebraic conditions at each point, then the Riemannian manifold is locally symmetric.

Let R be the Riemannian curvature tensor of a Riemannian manifold M^m with a positive-definite metric tensor g. Manifolds and tensors are assumed to be of class C^∞ unless otherwise stated. We denote by ∇ the Riemannian connection defined by g. For tangent vectors X and Y, we consider $R(X, Y)$ as a derivation of the tensor algebra at each point. A conjecture by K. Nomizu [4] is that $R(X, Y)\cdot R = 0$ on a complete and irreducible manifold $M^m(m \geq 3)$ implies $\nabla R = 0$, that is, M^m is locally symmetric. Here we consider some additional conditions.

For an integer k and tangent vectors V_k, \ldots, V_i at a point p of M^m, we adopt a notation:

$$\left(\nabla^k R\right) = (V_k, V_{k-1}, \ldots, V_i; \nabla^k R) = (V_i V_{k-i} \cdots V_i \nabla_i \nabla_s \cdots \nabla_r R^e_{bde}),$$

where V_i, etc., are components of V_k, etc., and $\nabla_i \nabla_s \cdots \nabla_r R^e_{bde}$ are components of the k-th covariant derivative $\nabla^k R$ of R in local coordinates.

Proposition 1. Let $M^m(m \geq 3)$ be a real analytic Riemannian manifold. Assume that

(1.0) the restricted holonomy group is irreducible,
(1.1) $R(X, Y)\cdot R = 0$,
(1.2) $R(X, Y)\cdot (\nabla^k R) = 0$ for $k = 1, 2, \ldots$.

Then M^m is locally symmetric.

Here we note that condition (1.0) means that it holds at some, hence every, point and condition (1.1), and (1.2), mean that for any point p and for any tangent vectors X, Y, V_s, \ldots, V_i at p, they hold.

Proposition 2. Let $M^m(m \geq 3)$ be a Riemannian manifold. Assume (1.1) and (1.2) and that
(1.0)' the infinitesimal holonomy group is irreducible at every point. Then \(M^m \) is locally symmetric.

Propositions 1 and 2 are essentially related to the following results.

Proposition 3. Let \(M^m (m \geq 3) \) be a Riemannian manifold. Assume that the restricted holonomy group \(H^\circ \) (the infinitesimal holonomy group \(H' \), resp.) is irreducible, and \(R \) is invariant by \(H^\circ \) (\(H' \), resp.). Then \(M^m \) is locally symmetric.

Proposition 3'. (J. Simons [5], p. 233) Let \(M^m (m \geq 3) \) be an irreducible Riemannian manifold. Assume that \(R \) is invariant by the holonomy group \(H \). Then \(M^m \) is locally symmetric.

Proposition 3 is a generalization of a result by A. Lichnerowicz ([2], p. 11), which contains an assumption of compactness. We remark here that condition (1.2) is equivalent to

\[
(1.2)' \quad R(X, Y) \cdot (\nabla_{V_k} \nabla_{V_{k-1}} \cdots \nabla_{V_1} R) = 0 \quad \text{for} \quad k = 1, 2, \cdots ,
\]

where \(X, Y, V_k, \ldots, V_1 \) are vector fields on \(M^m \).

With respect to Nomizu's conjecture and the above propositions we have

Theorem 4. Let \(M^m (m \geq 3) \) be a Riemannian manifold. Assume that

(i) the scalar curvature \(S \) is constant,
(ii) \(R(X, Y) \cdot R = 0 \),
(iii) \(R(X, Y) \cdot \nabla_r R = 0 \),
(iv) \(R(X, Y) \cdot (X, V; \nabla^2 R) = 0 \),
(or \(iv' \) \(R(X, Y) \cdot \nabla_X \nabla_R = 0 \) for vector fields).

Then \(M^m \) is locally symmetric.

Theorem 5. Let \(M^m (m \geq 3) \) be a Riemannian manifold. Assume that

(i) the Ricci curvature tensor \(R_i \) is parallel; \(\nabla R_i = 0 \),
(ii) \(R(X, Y) \cdot R = 0 \),
(iii) \(R(X, Y) \cdot \nabla_r R = 0 \).

Then \(M^m \) is locally symmetric.

In Theorems 4 and 5, if \(m = 2 \), then \(\nabla R_i = 0 \) implies \(\nabla R = 0 \).
In Theorem 5, if \(M^m \) is compact, (iii) can be dropped (A. Lichnerowicz [2], or K. Yano [6], p. 222).

In §2 we reduce proofs of Propositions 1 and 2 to that of Proposi-
tion 3, and next we reduce proofs of Propositions 3 and 3' to that of Theorem 4. In §3 we prove Theorems 4 and 5.

2. Holonomy algebras. Conditions (1.1) and (1.2) imply that

\[(R(X, Y), (\nabla^a R)(A, B)] = (\nabla^a R)(R(X, Y)A, B) + (\nabla^a R)(A, (\nabla^a R)(X, Y)B)
\]

for \(k = 0, 1, \ldots\), where \(\nabla^a R\) means \(R\), and \([T, T']\) for linear transformations \(T, T'\) means \(TT' - T'T\).

Now we show

Lemma 2.1. The condition (2.1) implies

\[(\nabla^a R)(X, Y), (\nabla^a R)(A, B)] = (\nabla^a R)((\nabla^a R)(X, Y)A, B) + (\nabla^a R)(A, (\nabla^a R)(X, Y)B)
\]

for \(j, k = 0, 1, 2, \ldots\). And (2.1) is equivalent to

\]

for \(j = 0, 1, 2, \ldots\).

Proof. We prove (2.2) by induction in \(j\) and by tensor calculus in local coordinates. By (2.1), (2.2) holds for \((j, k) = (0, k), k = 0, 1, 2, \ldots\). Assume that (2.2) holds for \((j - 1, k), (j - 2, k), \ldots, (0, k), k = 0, 1, 2, \ldots\). Then, denoting by \(\nabla_1 \nabla_2 \cdots \nabla_j R_{xyz}\) the \(j\)-th covariant derivative of \(R\) and by \(\nabla_f \cdots \nabla_x R_{qab}\) the \(k\)-th covariant derivative of \(R\), we show

\[\nabla_1 \nabla_2 \cdots \nabla_j R_{xyz} = \nabla_1 \nabla_2 \cdots \nabla_f R_{xyz} - \nabla_1 \nabla_2 \cdots \nabla_x R_{qab} \nabla_1 \nabla_2 \cdots \nabla_j R_{qxy} \]

In fact, we have

\[
\begin{align*}
\nabla_1 \nabla_2 \cdots \nabla_j R_{xyz} & = \nabla_1(\nabla_2 \cdots \nabla_j R_{xyz}) \\
& \quad - \nabla_1 \nabla_2 \cdots \nabla_j R_{xyz} \\
& \quad - \nabla_1(\nabla_2 \cdots \nabla_j R_{xyz}) \\
& \quad + \nabla_1 \nabla_2 \cdots \nabla_j R_{xyz} \\
& = \nabla_1(\nabla_2 \cdots \nabla_j R_{xyz}) \\
& \quad - \nabla_1 \nabla_2 \cdots \nabla_j R_{xyz} \\
& \quad - \nabla_1(\nabla_2 \cdots \nabla_j R_{xyz}) \\
& \quad + \nabla_1 \nabla_2 \cdots \nabla_j R_{xyz} \\
& \quad \text{(by (2.2) for } (j - 1, k) \text{)} \\
& \quad + \nabla_1 \nabla_2 \cdots \nabla_j R_{xyz} \\
& = \nabla_1(\nabla_2 \cdots \nabla_j R_{xyz}) \\
& \quad - \nabla_1 \nabla_2 \cdots \nabla_j R_{xyz} \\
& \quad - \nabla_1(\nabla_2 \cdots \nabla_j R_{xyz}) \\
& \quad + \nabla_1 \nabla_2 \cdots \nabla_j R_{xyz} \\
& \quad \text{(by (2.2) for } (j - 1, k) \text{)} \\
& \quad + \nabla_1 \nabla_2 \cdots \nabla_j R_{xyz} \\
& = \nabla_1 \nabla_2 \cdots \nabla_j R_{xyz}
\end{align*}
\]
The second and third terms vanish by (2.2) for \((j - 1, k + 1)\). Therefore we have (2.4).

Similarly we can show that (2.3) implies (2.2), including (2.1).

By the theory of holonomy groups (cf. A. Nijenhuis [3]), the set of linear transformations
\[
R(X, Y), (\nabla_y R)(X, Y), \ldots
\]
for \(X, Y, W \in M_p\), the tangent space to \(M\) at \(p\) of \(M\), spans a Lie algebra \(h'_p\) called the infinitesimal holonomy algebra at \(p\). \(h'_p\) generates the infinitesimal holonomy group \(H'_p\) which is a subgroup of the local holonomy group \(H^\sharp_p = H^\sharp_p(U)\). Clearly \(H^\sharp_p\) is a subgroup of the restricted holonomy group \(H^\flat_p\). If a Riemannian manifold is real analytic we have \(H^\flat = H^\sharp = H^\flat\).

The condition (2.3) implies that
\[
[T, R(A, B)] = R(TA, B) + R(A, TB)
\]
for any \(T \in h'_p\). This says that \(R\) is invariant by \(T\). Therefore, for any element \(\alpha \in H'_p\) we have
\[
\alpha R(A, B)C = R(\alpha A, \alpha B)\alpha C \quad \text{for} \ A, B, C \in M_p.
\]
Thus, we have reduced proofs of Propositions 1 and 2 to proof of Proposition 3.

Since (2.7) or (2.6) is equivalent to (2.1), condition (2.7) implies conditions (ii), (iii) and (iv) of Theorem 4. Consequently, if we show that, under the conditions in Proposition 3 (3', resp.), the scalar curvature \(S\) is constant, then Proposition 3 (3', resp.) will follow from Theorem 4.

Let \(E_i, 1 \leq i \leq m\), be an orthonormal basis at \(p\). Then the Ricci curvature tensor \(\mathcal{R}\) is given by
\[
\mathcal{R}(X, Y) = \sum_i g(R(X, E_i)Y, E_i).
\]
Since \(R\) is invariant by \(H'_p\) or \(H^\flat\) or \(H\), we have \(\mathcal{R}(X, Y) = R(\alpha X, \alpha Y)\) for any \(\alpha \in H'_p\) or \(H^\flat\) or \(H\). Since \(H'_p\) or \(H^\flat\) or \(H\) is irreducible, we have some real number \(\lambda\) so that \(\mathcal{R} = \lambda g\) at \(p\). Because \(p\) is an arbitrary point of \(M\) and \(m \geq 3\), \(\lambda\) is constant on \(M\), and hence \(S = m\lambda\) is constant.

3. Proofs of Theorems 4 and 5. To prove theorems it suffices to show two propositions below.
PROPOSITION 3.1. On M^m ($m \geq 3$) assume that

(i) the scalar curvature S is constant,
(ii) $(R(X, Y) \cdot R)(X, V) = 0$,
(iii) $(R(X, Y) \cdot \nabla_{R}) (X, Y) V = 0$,
(iv) $(R(X, Y) \cdot \nabla_{R}) (V, X) = 0$,
(v) $(R(X, Y) \cdot (X, V) ; \nabla R)(V, Y) = 0$,
(or (v) $'(R(X, Y) \cdot \nabla_{X} R) (V, Y) = 0$ for vector fields).

Then we have $\nabla R = 0$.

Proof. Let $\{E_i\}$ be an orthonormal basis at p of M. Put $X = E_x$, $Y = E_y$, $V = E_v$ in (iii) and take a sum on x, y, v. Then we have

$$R^{xyz}_{\sigma \tau} \nabla_{x} R^{\sigma}_{yz} - R^{xyz}_{\sigma \tau} \nabla_{y} R^{\sigma}_{zx} - R^{xyz}_{\sigma \tau} \nabla_{z} R^{\sigma}_{xy} = 0 .$$

The third and fourth terms vanish. We apply the second Bianchi identity to the first two terms;

$$R^{xyz}_{\sigma \tau}(-\nabla_{x} R^{\sigma}_{yz} - \nabla_{y} R^{\sigma}_{zx}) = -2R^{xyz}_{\sigma \tau} \nabla_{y} R^{\sigma}_{zx} ,$$

$$-R^{xyz}_{\sigma \tau}(-\nabla_{v} R^{\sigma}_{zy} - \nabla_{z} R^{\sigma}_{xy}) = R^{xyz}_{\sigma \tau} \nabla_{y} R^{\sigma}_{zy} + R^{xyz}_{\sigma \tau} \nabla_{z} R^{\sigma}_{xy}$$

$$= R^{xyz}_{\sigma \tau} \nabla_{y} R^{\sigma}_{zy} + R^{xyz}_{\sigma \tau} \nabla_{z} R^{\sigma}_{xy} .$$

Therefore, we have

(3.1) $-4R^{xyz}_{\sigma \tau} \nabla_{y} R^{\sigma}_{zx} + R^{xyz}_{\sigma \tau} \nabla_{y} R^{\sigma}_{zy} = 0 .$

Likewise, (iv) implies that

(3.2) $R^{xyz}_{\sigma \tau} \nabla_{y} R^{\sigma}_{zx} + R^{xyz}_{\sigma \tau} \nabla_{z} R^{\sigma}_{xy} = 0 .$

And (v) implies that

(3.3) $R^{xyz}_{\sigma \tau} \nabla_{y} R^{\sigma}_{zy} + R^{xyz}_{\sigma \tau} \nabla_{z} R^{\sigma}_{xy} = 0 .$

For (v)' we assume that E_i are local vector fields such that $(\nabla R)_{p} = 0$ and $\{E_i\}$ forms an orthonormal basis at p. Then we have the same (3.3).

Since $\nabla_{y} R^{\sigma}_{xy} = (1/2) \nabla_{y} S = 0$, by (3.1), (3.2) and (3.3), we have

$$R^{xyz}_{\sigma \tau} \nabla_{y} R^{\sigma}_{zx} = 0 ,$$

$$R^{xyz}_{\sigma \tau} \nabla_{y} R^{\sigma}_{zy} = 0 .$$

On the other hand, in a Riemannian manifold generally we have

(3.4) $\nabla^{h} \nabla_{h} (R_{ijkl} R^{ijkl}) = 2(\nabla_{h} R_{ijkl} \nabla^{h} R^{ijkl})$

$$+ 8R^{ijkl}_{\sigma \tau} \nabla_{h} R^{\sigma}_{ij} + 4R^{ijkl}_{\sigma \tau} B^{h}_{ijkl} ,$$

where B_{ijkl}^{h} are components of $R(X, Y) \cdot R$ (A. Lichnerowicz [2], p. 10). Since (ii) is equivalent to $B_{ijkl}^{h} = 0$, we have $\nabla_{h} R_{ijkl} = 0$.

PROPOSITION 3.2. On M^m ($m \geq 3$) assume that
Then we have \(\nabla R = 0 \).

Proof. We have (3.1) by (iii). Then we have
\[
\nabla_b(R_{ijkl} R^{ijkl}) = 0.
\]
Therefore, (ii) and (3.4) show \(\nabla R = 0 \).

REFERENCES

Received October 6, 1969.

NIIGATA UNIVERSITY
NIIGATA, JAPAN

TOHOKU UNIVERSITY
SENDAI, JAPAN
Johan Aarnes, Edward George Effros and Ole A. Nielsen, Locally compact spaces and two classes of C*-algebras .. 1
Allan C. Cochran, R. Keown and C. R. Williams, On a class of topological algebras .. 17
John Dauns, Integral domains that are not embeddable in division rings 27
Robert Jay Daverman, On the number of nonpiercing points in certain crumpled cubes ... 33
Bryce L. Elkins, Characterization of separable ideals 45
Zbigniew Fiedorowicz, A comparison of two naturally arising uniformities on a class of pseudo-PM spaces .. 51
Henry Charles Finlayson, Approximation of Wiener integrals of functionals continuous in the uniform topology 61
Theodore William Gamelin, Localization of the corona problem 73
Alfred Gray and Paul Stephen Green, Sphere transitive structures and the triality automorphism ... 83
Charles Lemuel Hagopian, On generalized forms of aposyndesis 97
J. Jakubik, On subgroups of a pseudo lattice ordered group 109
Cornelius W. Onneweer, On uniform convergence for Walsh-Fourier series ... 117
Stanley Joel Osher, On certain Toeplitz operators in two variables 123
Washek (Vaclav) Frantisek Pfeffer and John Benson Wilbur, On the measurability of Perron integrable functions 131
Frank J. Polansky, On the conformal mapping of variable regions 145
Kouei Sekigawa and Shûkichi Tanno, Sufficient conditions for a Riemannian manifold to be locally symmetric 157
James Wilson Stepp, Locally compact Clifford semigroups 163
Ernest Lester Stitzinger, Frattini subalgebras of a class of solvable Lie algebras ... 177
George Szeto, The group character and split group algebras 183
Mark Lawrence Teply, Homological dimension and splitting torsion theories ... 193
David Bertram Wales, Finite linear groups of degree seven II 207
Robert Breckenridge Warfield, Jr., An isomorphic refinement theorem for Abelian groups .. 237
James Edward West, The ambient homeomorphy of an incomplete subspace of infinite-dimensional Hilbert spaces 257
Peter Wilker, Adjoint product and hom functors in general topology 269
Daniel Eliot Wulbert, A note on the characterization of conditional expectation operators ... 285