Vol. 34, No. 2, 1970

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Vol. 324: 1  2
Vol. 323: 1  2
Vol. 322: 1  2
Online Archive
The Journal
About the journal
Ethics and policies
Peer-review process
Submission guidelines
Submission form
Editorial board
ISSN: 1945-5844 (e-only)
ISSN: 0030-8730 (print)
Special Issues
Author index
To appear
Other MSP journals
Fibrations of analytic varieties

Keith Milo Kendig

Vol. 34 (1970), No. 2, 441–451

The induced continuous, differentiable, or analytic fibering about any point of a continuous, differentiable, or analytic group A, by a subgroup B is well known, as are generalizations to various spaces with operators. One may ask about analogous results for varieties per se. For instance, if C is any arc in E2 and p C, then there is always a homeomorphism φ from a neighborhood U of p to I × I(I = (0,1)), so that φ(U C) = I ×{1
2}. But there are arcs in Es which are so wildly embedded that at no point of the arc is there an analogous fibering. This paper considers a general fibration problem for complexanalytic varieties, and extends a result on fibering hypersurfaces due to Hassler Whitney.

Mathematical Subject Classification
Primary: 32.44
Received: 4 June 1969
Published: 1 August 1970
Keith Milo Kendig