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The purpose of this paper is to study the oscillation pro-
perties of the solutions of the differential equation

(1) Yy = p(tyy

on (—oo, c0), where p(t) is positive and continuous for all ¢.
Three different types of oscillation are considered, and neces-
sary and sufficient conditions are given for the existence of
solutions of each type.

Oscillatory behavior of solutions of (1) has been studied by a
number of people (see [5]). Leighton and Nehari [3] have studied a
slightly more general class of self-adjoint linear differential equations
of fourth order and have given a number of results concerning oscil-
lation of solutions of (1). Hastings and Lazer [2] have shown that
under the additional assumptions PeC’ [a, o), p(t) > 0 and p'(¥) = 0,
(1) has two linearly independent oscillatory solutions which are bounded
on [a, o). If further, lim, . p(f) = «, then all oscillatory solutions
of (1) tend to zero.

We shall distinguish between oscillation in the positive sense and
that in the negative sense. A nontrivial solution of (1) is called
positively (negatively) oscillatory if its set of zeros is not bounded
above (below). It is called fully oscillatory if its set of zeros is neither
bounded above nor below. It is called positively (negatively) (fully)
nonosecillatory if it is not positively (negatively) (fully) oscillatory.

In order to gain some motivation, we consider the simple example

@) Y=y,

whose solutions are of the form y = ce” + c,e™™ + ¢, sina + ¢, coS 2.
We note that y = ¢ + sin # is a positively oscillatory solution of (2)
which is not negatively oscillatory. Similarly, y = e* + sinx is a
negatively oscillatory solution which is not positively oscillatory. Fur-
ther, y = sin «# and y = cos« are fully oscillatory.

We shall show that corresponding to the solutions ¥ = e® and
y = ¢ * of (2) there are solutions w and z of (1), respectively, such
that w(t), w'(t), w”({), w"({¢) >0 for all ¢t e(—oo, =) and z(f) >0,
Z(t) <0, 27(t) >0, and 2"'(t) <0 for ¢ & (— oo, 0). Under an ad-
ditional assumption it is shown that any other solutions w, and 2z,
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with these properties must be constant multiples of w and z, respect-
ively. The main theorem concerning positive oscillation states that
(1) has a positively oscillatory solution if and only if every positively
nonoscillatory solution ¥ of (1) has the property that either there
exists a number ¢, such that sgn y =sgn ¥, =1, 2, 3, for all ¢t > ¢,
or sgn ¥ £ sgn y¥+Y, =0, 1, 2, for all ¢ € (— o, ). It then follows
that if (1) has one positively oscillatory solution, it has three linearly
independent positively oscillatory solutions. Two of these have the
property that every solution which is a nontrivial linear combination
of these two is also positively oscillatory. However, as suggested by
the solutions of (2), given any three linearly independent solutions of
(1), some linear combination of them is positively nonoscillatory. It is
also shown that duals of the theorems concerning positively oscillatory
solutions of (1) hold for the negatively oscillatory solutions. Finally, a
necessary and sufficient condition is given for the existence of a fully
oscillatory solution of (1) and it is shown that if (1) has one fully
oscillatory solution, then it has two linearly independent fully oscil-
latory solutions such that the zeros of any two independent linear
combinations of these solutions separate on (—co, ). Further, any
nontrivial linear combination of these two solutions is also fully oscil-
latory. As suggested by the solutions of (2), if ¥, and ¥, are any two
independent linear combinations of these two solutions, then y,*’ and
¥,'? cannot have common zeros, 7 = 0, 1, 2, 3.

2. Positive oscillation. First we state two lemmas. See [2]
and [3] for proofs.

LEmMMA 1. If y(t) is a montrivial solution of (1) and a is a
number such that y(a), ¥'(a), ¥ (@), ¥"(a) =0, then y(t), ¥'(t), v"(t),
¥y () >0 for all t> a.

LEMMA 2. If y(t) s a nontrival solution of (1) and a is number
such that y(a) =0, ¥ (@)=0,y"(a) =0 and y"(a) <0, then y(t) >0,
Y (t)<0, y"(t) >0 and y"'({t) <0 for all t < a.

We note if y is a solution of (1), then sois —y. Hence it follows
from Lemma 1 that y(a), ¥'(a), ¥'(@), ¥'"(a) £ 0 (but not all zero)
implies y(t), ¥'(¢), ¥"'(t), ¥ (t) <0 for all ¢t > a. Similarly, it follows
from Lemma 2 that if y is a nontrivial solution such that w(a) <0,
Y'(a@)=0,y"(a) <0 and y"’(a) = 0, then y(t) <0, ¥'(t) >0, ¥”(t) <0 and
y"(t) > 0 for all t < a.

Throughout the remainder of this paper we let z, z, 2, and z,
denote solutions of (1) defined on (— oo, o) by the initial conditions
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2,9(0) = d;; = {g’ : :;

for 7,7 =0,1, 2, 3.

THEOREM 1. There exists a solution w of (1) such that w(t), w'(t),
w"(), w' ) >0 for all t.

Proof. For each natural number =, let ¢, ¢, ¢, and ¢, be
numbers satisfying

Cono (—M) + €12 (=) + Cou?y (— 1) + C3u2s (—m) =0,
Con®y (—M) + €20 (—7) + €2 (—1) + cu2s (—m) =0,
€ (— 1) + 6,2 (— 1) + 6,2 (— 1) + ezt (—m) =0,
co,,,Z(')"(——n) + €2 (—n) + ¢,2"(—n) + csnz;’,(""n) >0,
Con + €l + €3 + €3, = 1.

Let ¥, = €2y + Cia2y + Con?e + €12, The existence of numbers ¢,,, €.,
Cony and ¢, satisfying the above conditions, is easy to verify. For
.one can choose such numbers satisfying the first three equations and
the last equation. Since z,, 2,2, and 2, are linearly independent, v,
is a nontrivial solution of (1). It follows from the Uniqueness Theorem
that y)/'(—n)=#0. If y)(—n) <0, then —c¢y,; —Ciny —Csyy, and —e;,
satisfy the required conditions.

Since for each natural number =, ¢, + ¢, + ¢, + ¢&, = 1, there
exists a sequence m, of natural numbers such that the sequences
{Cony}s {Cin,)s {C2n,} and {ci,,} converge to numbers ¢, ¢, ¢, and ¢, res-
pectively, satisfying

G+t +ei=1.

Let w = ¢, + ¢2, + €2, + ¢2,.  Now, suppose that w'(¢) <0 for
some j =0, 1, 2, 3, and for some number ¢, Then, since {y:’(t,)} con-
verges to wi(t,), there exists a natural number N such that ¥ (¢)<0
for all m, > N. But this leads to a contradiction since for —=n, <,
yi)(t,) >0 by Lemma 1, as y%(—mn;) 20 for all j =0,1,2,8. This
shows that w”(t) =0 for all j =0, 1, 2, 8, 4, and all ¢. Further, since
w is a nontrivial solution, there is no number = such that w"' (z) =0
forall 7 =0,1, 2, 8. Therefore, it follows that w satisfies the require-
ments of the theorem.

THEOREM 2. There exists a solution z(t) of (1) such that z(t)> 0,
Zt)<0,2"'t) >0 and 2"'(t) <0 for all t.

Proof. The proof is similar to that of Theorem 1. We modify
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each y, to satisfy the conditions y,(n)=y,(n)=y"(n)=0 and y,’(n) <0,
and use Lemma 2.

Throughout this paper, w and 2z represent the solutions of (1)
given in Theorems (1) and (2), respectively.

LeMMA 3. If y 1s a positively nonoscillatory solution of (1) which
has a zero in common with some positively oscillatory solution of (1),
then there exists a number t, such that y, y', ¥y’ and y'" have the same
constant sign on [t, o).

Proof. Since y is a positively nonoscillatory solution of (1), there
exists a number ¢, such that v, ¥, ¥” and "' are each of constant
sign on [, «). Let u be a positively oscillatory solution and = a
number such that u(z) = y(r) = 0. An application of Rolle’s Theorem
to the function %/y shows that there exists a number s > ¢, such that

w'()y(s) — u(s)y'(s) = 0.
Hence there exist nonzero constants ¢, and ¢, satisfying

e (s) + ey (s) =0,
cau'(s) + ey'(s) = 0.

Let Y(t) be the solution of (1) given by
Y () = cult) + cy(d) -

Since w is positively oscillatory and % is not, Y 2 0. Thus we can not.
have Y"(s) = Y'"(s) = 0. Further, sgn Y"(s) = sgn Y""’(s). For, other-
wise, Y would be of constant sign to the left of s, by Lemma 2, con-
tradicting Y(r) = 0. Hence, sgn Y (¢) = sgn Y(¢), j = 1, 2, 3, for all
t>s, by Lemma 1. In order to complete the proof of this lemma,
it is sufficient to show that sgn ¥”(t) = sgn¥’”(t) on [t, o). Suppose
sgn ¥ (t) = sgn ¥ (t) on [t,, o). Then ¥ is bounded on [¢, o). But.
this is impossible since « is positively oscillatory and sgn Y''() =sgn
Y“(t) for t > s implies that lim,..| Y"(f)| = c=. This completes the.
proof.

THEOREM 3. The following two conditions are equivalent :

(A) There exists a positively oscillatory solution of (1).

(B) If y is any positively nonoscillatory solution of (1), then
either there exists a number t, such that

sgny(t) = sgny'(t), 7 =1,2,3,

Jor all t = t, or
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segn ¥y () #=sgny (), 1=0,1,2,
Jor all t € (— oo, o).

Proof. Assume (A) holds, and let ¥ be a positively nonoscillatory
solution. Then there exists a number ¢, such that ¥, %', ¥ and %"
are each of constant sign on [¢, o). We note that if sgny'/'(f) + sgn
Y9, 5 =0,1,2,for all ¢ & (L, o], then sgny“(f) = sgn y“+2(¢),
7=0,1,2 for all ¢t € (— oo, ), by Lemma 2. Let w be a positively
oscillatory solution and s > ¢, with u(s) = 0. Let ¢ be a nonzero con-
stant such that

y(s) + cz(s) = 0.

Let Y=v-+cz. If Y=0, then y satisfies condition (B). Suppose Yx0.
Assume, without loss of generality that y > 0 on [¢, ). It is easy
to verify that if y does not satisfy condition (B), then we must have
¥, ¥, ¥ >0 and ¥’ <0 on [t, ). Thus, lim,,. y(t) = -, and con-
sequently, Y is positively nonoscillatory since z is bounded on [t o).
Hence by Lemma 3, there exists a number ¢, such that sgn Y =sgn Y9,
7=1,2 8, for t >t. It follows that lim,. .| Y" ()| = c sincesgn Y’ =
sgn Y for t>t¢,. But this is a contradiction since y” and z” are
both bounded on [¢,, <), as ¥’ ¥ <0 and 2” 2"’ < 0. This completes
the proof of the first half of Theorem 3.

In order to prove that (B) implies (A), we construct two linearly
independent positively oscillatory solutions #* and »* similar to what
was done in [2]. Some of the details have to be modified since we
do not require p(f) to satisfy the same hypothesis as in [2]. For the
sake of completeness we go through the construction of u* and 2.

For each natural number #u, let b,, b, ¢. and ¢, be numbers
satisfying

3) b5, + b3, =3 + €5 =1,
(4) btmzo(n) + bsnzs('n) =0,
(5) Con?e(M) + C3u2(n) = 0 .

Define u,(t) and v,(f) to be the solutions of (1) given by

Un(t) = boa?o(t) + bsn2sl?)

/Un(t) = Cznzz(t) + anzs(t) .
By (3) there exists a sequence {n,} of natural numbers and numbers
by, b;, ¢, ¢; such that the sequences {by,,}, {b:,}, {c.s,}, and {c;,,} con-

verge to b, b;, ¢, and ¢, respectively, where b} + b =¢t + ¢t =1. Let
%+ and v+ be the solutions of (1) given by
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wt(t) = byzo(t) + byzy(t) ,
VT (t) = cu2.(t) + cszs(t)

Suppose ut is positively nonoscillatory. Since (B) holds and
(u*)'(0) = 0, there exists a number ¢, such that for all ¢ > ¢,

sgnu*(¢) = sgn (u?)'(t), 5 =1,2,3.

Let = be any number greater than ¢. Since {u, (7)}, {u} (2)}, w} (7).
and u,(7) converge to u*(z), u(*)'(t), (u*)"(c), and (u*)""(z), respectively,
there exists a natural number N such that

sgn u,,(v) = sgnu{i(z), 1 =1,2,3,
for all n, > N. Hence, by Lemma 1,
sgn u,, () = sgnw,, “'(t), 1 =1,2,8,

for all t >z and n, > N. But this is a contradiction since w, (n;) =0
for all natural numbers n,. Therefore, u+ is positively oscillatory.
Simillarly, »* is also positively oscillatory (note: v*+(0) = 0). This.
completes the proof of Theorem 3.

COROLLARY. If (1) has a positively oscillatory solution and y is:
any positively nonoscillatory solution, then either lim,..|y(t)| = o
or lim,,_..|y(t) | = co.

REMARK. An argument, similar to the one given to show that
ut is positively oscillatory, can be given to show that any nontrivial
linear combination of #+ and v* is positively oscillatory.

We note that #* and »* are linearly independent since, otherwise,
we would have ut = kz,, k= 0; contradicting the fact that «* is
positively oscillatory.

THEOREM 4. If (1) has one positively oscillatory solution, then it
has three linearly independent positively oscillatory solutions.

Proof. The existence of one positively oscillatory solution implies.
condition (B) of Theorem 3 and hence the existence of two linearly
independent positively oscillatory solutions %+ and »*, as constructed
in the proof of Theorem 3. In order to find a third positively oscil-
latory solution, let ¢ be a nonzero constant satisfying

ut(0) + c2(0) = 0.
Let y*(t) = u*(f) + cz(t). Suppose y* is positively nonoscillatory. Since



ON THE OSCILLATION OF SOLUTIONS 295

condition (B) holds and y*(0) = 0, there exists a number ¢, such that
for all ¢ > ¢,

sgn y*(t) = sgn (¥)¥'(¥), 1 =1,2,3.

Therefore, lim,.. |¥7(f)| = <, which is a contradiction since u* is
positively oscillatory and z is bounded on [t,, ). That y*, u*, and »*
are linearly independent follows. For, otherwise, 2z would be a linear
combination of u* and v+ and hence positively oscillatory.

REMARK. We note that in view of Theorems (3) and (4), condition
(B) is equivalent to the existence of three linearly independent
positively oscillatory solutions.

The following theorem gives a necessary condition for the essential
uniqueness of the solution z(t).

THEOREM 5. Suppose that (1) has no positively oscillatory solution.
If y is any solution satisfying

sgn y(t) == sgny¥*tI(@t), 5 =0,1,2.

Jor all t, then y = ¢ z for some constant c.

Proof. Suppose that y and z are linearly independent. Let ¢ be
a constant such that 2(0) + cy(0) =0. Let Y =2+ cy. Since Y is
positively nonoscillatory, there exists a number ¢, such that none of
Y,Y', Y” and Y’ change sign on [t, ). Assume, without loss of
generality that Y and, hence, Y® are positive on [t, ). We note
that Y is bounded on this interval since y and z are both bounded.
Therefore, we must have Y <0, Y”" >0 and Y’ <0 for all ¢t =i,
But this contradicts the fact that Y (0) = 0, thus proving the theorem.

THEOREM 6. Let v, ¥, and y, be any three linearly independent
solutions of (1). If (1) has a positively oscillatory solution, then some
linear combination of ¥, Y. and y, is positively nonoscillatory.

Proof. It is easy to verify that w, z, v* and »* form a basis
for the solutions of (1), where w* and »* are the positively oscillatory
solutions of Theorem 3. For, z is bounded on [0, ) and lim,...
w(t) = oo; while, w is bounded on (— o, 0] and lim,._., 2(t) = . Hence
4, ¥, and y, can be written as

Y, = qut + a0t + W + az,
Yy, = but 4+ bvt + bw + bz,
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Ys = U + vt + cw + ¢z .
Let d,, d, and d; be numbers (not all zero) satisfying

da, + db, + dec, =0,
d,a, + db, + dic, =0 .
Then y = dy, + dyy, + dy; is a linear combination of w and 2z and

hence positively nonoscillatory.

3. Negative oscillation. We note that y(¢) is a negatively oscil-
latory solution of (1) if and only if Y (¢) is a positively oscillatory
solution of

1) Y% = PY,
where Y (t) = y(—t) and P(t) = p(—t). Further,
sgny(t) = sgny'(¥), s =1,2,3,
for all ¢ &€ (— o, t,] (and hence for ¢, by Lemma 1) if and only if
sgn YY9(t) == sgn YY¥*+(¢), 7 =10,1,2,
for all ¢ & [—t, ) (and hence for all ¢, by Lemma 2). Similarly,
sgny¥(t) #sgny (@), 7 =0,1,2,
for all ¢ € (— oo, t] if and only if
sgn Y(t) =sgn Y¢), 7=1,2,3,
for all ¢t ¢ [—¢, o).

Thus, one can reduce the study of negatively oscillatory solutions
of (1) to that of positively oscillatory solutions. We now state the
duals of the preceding theorems concerning positively oscillatory
solutions for negatively oscillatory solutions. The proofs follow from
the above observations and the results established in the previous
section.

LeMMA 3. If y is a negatively nonoscillatory solution of (1)
which has a zero in common with some negatively oscillatory solution
of (1), then there exists a number t, such that

sgn Yy (t) = sgn y¥ (L), 1 =0,1,2,
Jor all t ¢ (—oo, t,).

THEOREM 3'. The following two conditions are equivalent :
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(A’) There exists a megatively oscillatory solution of (1).
B If y is a mnegatively mnonoscillatory solution of (1), then
either there exists a nwmber t, such that

sgny“'(¢) # sgny“ (), 7 =0,1,2,
Jor all t € (— oo, t)], or
sgny =sgny?, 7=1,2,3,
Sfor all t € (— oo, ).

THEOREM 4'. If (1) has one megatively oscillatory solution, then
it has three linearly independent negatively oscillatory solutions.

THEOREM 5. Suppose that (1) has mo negatively oscillatory
solution. If y is any solution such that
sgny(t) = sgny' @), j=0,1,2,

for all t, then y = cw for some constant c.

THEOREM 6'. Let y,, y, and y, be any three linearly independent
solutions of (1). If (1) has a mnegatively oscillatory solution, then
some linear combination of vy, Yy, and y, is negatively monoscillatory.

4. Full oscillation.

THEOREM 7. The following two conditions are equivalent :
(A") There exists a fully oscillatory solution of (1).
(B”) Conditions (B) and (B’) both hold.

Prooof. The fact that (A”) implies (B”) follows from Theorems
(3) and (3’). Suppose that (B”) holds. For each natural number =,
let ¢y, ¢, and c,, be numbers satisfying

Cono(N) + €1a%:(1) + Con2a(n) = 0,
c(mzo(_'n) + c1nz1(“n) + Cznzz("n) =0,
Con + Cln + €2 = 1.
Similarly, let b,,, b., and b,, be numbers satisfying
bmzx(n) + bmzz(n) + bSnzs(n) =0,
bmzl(’"n) + banz(—n) + bsnza("n) =0 ’
b, + b, + b, =1.

Define U,(t) and V,(t) to be the solutions of (1) given by
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U.(t) = con?o(t) + Cia2:(t) + €2025(F)
Va(®) = bia2:(8) + b2u2o(t) + bsa2a(?)

There exist subsequences {c,,,}, {c.,,} and {c;,,} of {c.}, {c.,} and {c,.},
respectively, and numbers ¢, ¢, and ¢, such that

lim {¢.,} = ¢, lim {c,,} =¢,, lim {¢;0,} = ¢,

np—roe N oo n =

G+ +ei=1.

Let U(t) = cz(t) + c2.(t) + c2:(t). One can verify, using an argument
similar to the ones used in proofs of Theorems (8) and (8’), that U is
fully oscillatory.

The solutions V,(f) give rise to a solution V' (¢) of the form

V(&) = bz,(t) + byzy(t) + byzy(t)

which is fully oscillatory. Similarly, any linear combination of U and
V is also fully oscillatory.

REMARK. The solutions U and V of Theorem 7 are linearly indepen-
dent. To see this it is sufficient to show that ¢, = 0. Suppose ¢, = 0, so
that U = ¢z, + ¢,2,. Since U(0) = U'’(0) = 0, either sgn U = sgn UY+Y,
i=1,2,8, for all £t>0, or sgn U == sgn UY¥+", 7 =0,1, 2, for all
t < 0. Hence U is not fully oscillatory, a contradiction.

THEOREM 8. Let U and V be the solutions of Theorem 7. If Y,
and Y, are two independent linear combinations of U and V, then
Y,”" and Y cannot have any common zeros, j = 0,1, 2, 3.

Proof. Suppose that Y{'(s) = Y{¥(s) = 0 for some 5 =0, 1, 2, and
some number s. Then there exist nonzero constants ¢, and ¢, satisfying
(6) . Y9(s) + ¢, Y{(s) = 0,

(7) e, YU (s) + ¢, Y it (s) = 0.
Let Y =e¢,Y,+¢,Y,. Then by Lemmas (1) and (2), Y is either positively
or negatively nonoscillatory; contradicting the fact that every linear

combination of U and V is fully oscillatory. If j = 3, the proof is
similar ; we replace (7) by

7 YV (s) + ¢, Y (s)=0.
THEOREM 9. If (1) has one fully oscillatory solution, then it has

two independent fully oscillatory solutions U and V such that every
nontrivial linear combination of U and V is fully oscillatory, and
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the zeros of amy two independent linear combinations of U and V
separate on (—oo, o)., Further, U, V, z and w form a basis for the
solutions of (1).

Proof. We simply prove that the zeros of any two independent
linear combinations Y, and Y, of U and V separate on (— oo, o),
since the remaining assertions are now obvious. Assuming that U
and V are the solutions of Theorem 7, let ¢, and %,(¢, < ¢,) be any two
consecutive zeros of Y,. Suppose that Y, has no zero betwween ¢, and
t,. Then by Theorem 8, Y, does not vanish in the interval [¢, ¢,].
Thus, (Y,/Y,), and hence Y,Y,/—7Y.,Y,, vanishes at some point s bet-
ween t, and f,, Therefore, there exist nonzero constants ¢, and e,
satisfying

6, Y (s) + ¢, Y,(s) = 0,
¢, Y/(s) + ¢, Y (s) = 0.

But this leads to a contradiction, since the solution y = ¢, Y, + ¢, Y,
cannot be fully oscillatory by Lemmas (1) and (2).

REMARK. Since U, V, w and z form a basis for the solutions of
(1), it follows that any fully oscillatory solution of (1) which is bounded
on (—co, o) must be a linear combination of U and V. One might
conjecture that every fully oscillatory solution is a linear combination
of U and V. We note that this is not true for positively or negatively
oscillatory solutions. In fact, ¥ = sinx + e~ is a positively oscillatory
solution of (2) which is not a linear combination of sin« and cos z.
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