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Necessary and sufficient conditions for a linearly compact
simplex K to be uniquely decomposable at a face are given.
If P is a cone having the Riesz decomposition property and
if —f, ¢ are subadditive homogeneous functions on P with
f=g then it is shown that there is an additive homogeneous
function & on P with f=h=g. If Pis a lattice cone for the
dual space of an ordered Banach space X and if —f, g are
also w*-continuous then, under certain conditions, it is possible
to choose % € X; a consequence of this result is Ando’s theorem,
that an ordered Banach space has the Riesz decomposition
property if its dual space is a lattice, A nonmeasure theoretic
proof of Edwards’ separation theorem for compact simplexes is
also deduced from these results,

Let K be a linearly compact simplex in a real vector space B. With-
out loss of generality we will agsume that K is contained in a hyper-
plane ¢~*(1) and that E = lin K, where lin K denotes the linear hull
of K. Then it is well known that E is a vector lattice relative to
the cone with base K, and that co (KU —K) is the closed unit ball
for a norm making E a pre-AL-space. In fact if K is compact for a
locally convex Hausdorff topology on E then E is the Banach dual
space of A(K), the space of all affine continuous functions on K with
supremum norm (cf. [5]). (We refer to [10] as a general reference
for the lattice theory and terminology that is used.)

The set K is said to be decomposable at a face F' if there exists
a complementary face F'’ of K such that F N F’' = ¢ while co (¥ U F”)
=K. If a complementary face to F' exists then it is evident that it
is uniquely determined; moreover, in this case, Alfsen [1] has shown
that the decomposition is unigque in the sense that each ke K has a
unique decomposition k=xx+ (1 —-N)y witheeF, ye F'and 0 <A <1,
Alfsen has also given a necessary and sufficient condition for K to be
decomposable at F; we give here other necessary and sufficient con-
ditions which are perhaps more closely tied to the order and norm
structure of F.

THEOREM 1. Let K be a linearly compact simplex and F, F'
disjoint faces of K. Then F and F' are complementary faces for a
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(necessarily unique) decomposition of K if and only if E s the
order-direct sum of lin F and lin F'. Consequently, if E is complete
wm 1ts norm then K is uniquely decomposable at F if and only if F
1s norm-closed.

Proof. Since F is a face of K it is easily verified that lin F' is
a lattice ideal in K and that (lin F)n K = F. If E is the order-
direct sum of lin F' and lin F” then each x¢ K has a unique decom-
position x =y + 2 with y,2=0, yelin F, zelin F’; hence K =
co(F U F'), and the decomposition is unique.

Suppose conversely that K = co (FUF’). Then, since F =lin F
+lin F”, it will follow that £ is the order-direct sum of lin F' and
lin F” if we prove that lin F’ = (lin F)' ={yek: |z|AN|y| =0,
vz eclin F'} (cf. [10, p.38]). Since (lin F)* is a lattice ideal the set
G =Kn (lin F)* is a face of K disjoint from F, and hence G< F".
However if x e F'\G then there exists a y € F such that « Ay=2-0;
but, since F' and F' are faces of K and v =z + (x—2), y =2+ (y—z),
this implies that z/||z||e FF'N F’' which is impossible. Therefore we
have (lin F)* = lin G = lin F".

If E is complete in its norm then it is an AL-space. If F'is
norm-cloged then the continuity of the lattice operations in £ shows that
lin F is also norm-closed, and hence is a band. Therefore, by a
theorem of Riesz (cf. [10, p. 39]), lin F" has an order-direct complement
in E, and so K is uniquely decomposable at F. If, conversely, K is
uniquely decomposable at F' then there exists a natural affine function
f on K such that F'= f'(0), F' = f~*(1). The function f has an
obvious extension to a continuous linear funectional ¢ on £ and, since
F=Kng(0), it follows that F' is norm-closed.

If K is a compact simplex then £ is certainly a Banach space,
and so the following result is immediate.

COROLLARY. If K is a compact simplex and F a face of K, then
K 1is uniquely decomposable at F if and only if F is norm-closed.

The corollary generalizes Alfsen’s result that a compact simplex
is uniquely decomposable at each closed (i.e., compact) face. When K
is an arbitrary compact convex set Alfsen and Andersen [2] charact-
erize the decomposable faces of K. However it is not true that every
linearly compact simplex is decomposable at every norm-closed face,
as the following example shows.

Example. Let K denote the continuous nonnegative functions f
on



FACIAL DECOMPOSITION OF LINEARLY COMPACT SIMPLEXES 303

[0, 1] such that S:f(t)dt =1, and let F = {feK: S:/Zf(t)dt =0}.

Then K is a base for the lattice cone in C [0, 1], and hence is a
linearly compact simplex, and it is clear that F is a face of K. The
norm in C [0, 1] associated with K is the L, [0, 1]-norm, and hence
F is norm-closed. Suppose that there exists a face F’ complementary
to F in K. Then, since f(1/2) = 0 for all fe F, there exists a ue F”
such that u(1/2) >0. However it is easy to decompose % nontrivially
w=xg+ A=\ with geF, heF’ and 0<x<1l. Since F' is a
face of K it follows that ge F'nNF’, which is a contradiction. There-
fore K is not decomposable at the norm-closed face F.

It has been shown by Asimow [4] that the state space of a
function algebra is decomposable at every extreme point, and so such
a property does not characterize simplexes among compact convex
sets ; this property does however characterize simplexes among finite-
dimensional compact convex sets as the following slightly more general
result shows.

ProOPOSITION. If K 1s a compact convex set which is decomposable
at each extreme point x, and such that each complementary face {x}
1s closed, then K is a finite-dimensional simplex.

Proof. If the set K, of extreme points of K is infinite then there
exists an accumulation point we€ K. For each z¢ K, the set K, con-
sists of x together with the extreme points of the closed set {x}'.
Consequently e {z}' for all xe K,. Therefore the intersection of the
faces {x} forms a closed face F' of K which is not empty, since wc F.
However if y is an extreme point of F' then y ¢ K,, and also e {y}’
which is impossible. Hence K, is finite.

If K, has m points and K has dimension # then, for each z¢ K,,
it is clear that {x}’ has m—1 extreme points and has dimension n—1,
and {x} has a similar decomposition property to K. Reducing in this
way we see eventually that m = + 1, that is K is an n-dimensional
simplex.

If K is a compact simplex then the above result shows that not
all faces {#}’ can be closed. For example, for the simplex {xel:
220, [|2]]| < 1} all but one of the faces {x}’ are closed, while for the
simplex of probability measures on [0, 1] none of the faces {x}' are
closed.

2. We prove an analogue for linearly compact simplexes of
Edwards’ separation theorem [6], which characterizes compact simple-
xes ; this is a corollary of the following result.
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THEOREM 2. Let P be a cone possessing the Riesz decomposition
property, and let —f, g be subadditive homogeneous functionals on P
with f=g. Then there exists an additive homogeneous functional h
on P such that f=h=g.

Proof. If we define h on P by
h(z) = inf {if(xi) S W xieP}

then it is clear that f= h>g, and hence & is finite-valued. Moreover,
h is positive-homogeneous and subadditive. If x=9+4 2 with
2, y,2eP, and if €>0 choose z;¢ P such that =z = >, 2, and

i f(x) < h(x) + e. Then there exist a;;€ P such that > a, =
Yy D@y =2, Ay + = a; for 1=1,2, -+, n. We have

) 2 3 Fe) — e 2 3 f () + 3 (@) — e = h(y) + ha) — <.,
so that A is additive and homogeneous.

In the corollary below K will denote a linearly compact subset of
E, again contained in a hyperplane ¢~ ‘(1) and such that lin K = E.
By A*(K) we will denote the Banach space of all bounded real-valued
affine functions on K with the supremum norm. If co(KX U—K) is
linearly bounded then its Minkowski funectional is a norm in E and
AYK) is simply the Banach dual space of E for this norm. In the
particular case when K is compact for some locally convex Hausdorff
topology on K, A*(K) is the second dual space of A(K).

COROLLARY. The following statements are equivalent.

(i) K s a linearly compact simplex.

(ii) eo(K U —K) is linearly compact and, if —f, g are bounded.
convex fumctions on K with f=g, there exists an he A'(K) such that
f=zhzg.

Proof. (i)—(ii). That co (KU —K) is linearly compact was
proved in [5, Th. 2]. If P is the cone generated by K as a base then
P is a lattice-cone. If f and g are extended homogeneously to the
rest of P then the existence of the required he A*K) follows from
the theorem.

(i) —(i). If w, uy, v, v,€ AYK) and u,, u, < v, v, then, putting:
g(x) = max [u,(x), uy(®)], f(x) = min [v,(z), v,(x)] for all x€ K, we ob-
tain a function he A*K) such that w, u, < h < v, v,. The w*-com-
pactness of order intervals in A°(K) now shows that A(K) is a vector
lattice, in fact an AM-space. Therefore E is an AL-space and, in
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particular, each »€ E has a unique decomposition % = n, — 7, with
7:2 0 and [[7{|=[/7([+|[7:1l, namely for » = %*, 5, =75". Since, by
hypothesis, co (KU —K) is the closed unit ball of E it follows that
FE is a sublattice of E. Therefore K is a linearly compact simplex.

It is perhaps surprising that the linear compactness condition on
co (K U —K) cannot be dropped, as the following two simple examples
show.

Examples. (i) Let E be the linear subspace of [, spanned by
those elements with only finitely many nonzero coordinates, together
with the two elements {2-"}, {(—8)~"}, and let K={xcE:2=0,
fel,<1}. If S={xecE: ||z|, <1} then it is obvious that for each
e>0 wehaveco (KU~K)SSS (1 +¢&co(KU—K). If 2 ={(—3"}
then zt¢ E, so that 2rxeS but 2x¢co (KU —K). Therefore co
(K U —K) is not linearly closed; in other terminology E has a (1+¢)-
generating cone for all ¢ >0 but not a 1-generating cone. However,
a straightforward verification shows that £ has the Riesz decomposi-
tion property and hence, by Theorem 2, K has the separation property
stated in part (ii) of the Corollary. However K is not a simplex.

(ii) Let K denote the polynomials p nonnegative on [0, 1] and

such that Slp(w) de = 1. It is clear that co (K U —K) is not linearly
4]

compact because the polynomials do not constitute a sublattice of

L,[0,1]. It is true, but less obvious, that lin K has the Riesz decom-

position property (of. [7]). We are grateful to Professor W. A. J.
Luxemburg for bringing this fact and reference to our notice.

By an ordered Banach space we shall mean a partially ordered
Banach space which has a closed, normal, generating cone. If X is
an ordered Banach space then so is X* (cf. [8]). The following lemma
now follows from a result of Kadison ([9, Lemma 4.3]).

LEMMA 1. Let X be an ordered Banach space and let
K={feX* fz0, |IflI=1},

equipped with the w*-topology. Then X is order and topologically

isomorphie to
A(K) = {fe A(K) : f(0) =0}.

LemMMmA 2. Let C be a cone in a vector space V, let p be a func-
tion homogeneous on C and let f be a function affine on V such that
f(@) =p(x) for all x€ C. Then the linear function g=f— f(0) satis-
fies g(x) < p(x) for all xeC.
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Proof. It is simple to check that ¢ is linear on V. Suppose that
there is a point 2€ C such that g(x) > p(®). Then if ¢ =-—f(0) and
0 = f(z)—p{x) we have e >0 and g(x) — p(x) =0 + £€>0. Hence there
exists an =1 such that (6 + ¢) > ¢, and we have

f@) =r"flre) + @ —r)f0) .
Therefore
Sflre) — pire) = r(f(@) — p@) + (r —De =70 +¢ —e>0,

which gives a contradiction.

The following theorem is the main result of this section and is a
topoclogical vergion of Theorem 2.

THEOREM 3. Let X be an ordered Banach space such that the dual
cone P* is a lattice cone in X*, and let —f, g be w*-continuous sub-
additive homogeneous functionals on P* with f=g. If either (i)
f=u Ay g =0, V0, where u,, u, v, v,€ X, or (ii) the dual cone
in X ** possesses an interior point, then there exists an he X such
that f=h=g.

Proof. If K ={xeP*: ||z]|£1} then Lemma 1 shows that we
can assume that X = A,(K), and it is sufficient to find an 2 e X such
that f(z) = h(z) = g(x) for all z ¢ K.

Let G denote the w*-closed convex hull of the graph of fin KxR
and define f(x)=sup {u(x): ue AK), w<f} forall xe K. A straight-
forward calculation shows that f(x) <inf {r: (z, 7)€ G} for each ze K.
If p<inf {r : (x, r)€ G} then by separating (x, 1) from G we obtain
a ve A(K) such that v<f while v(x)>p ; therefore F(@) = inf
{r:( r)eG}). Given ¢>0, for each e K let N, be a w*-compact
convex neighbourhood of 2 such that | f(x) — f(y)| <e for each y e N,,
and let K< UJ?, N,,. For each x¢ K we therefore have

~

(& F@) S eo U N, x [F(@) — & f(2) + ¢}

and so we can write x = >\ v, f(x) = 2N with y;e N, and
7, €[ f(x;) — & f(x;) + €] for each 7. If we now define for each x e P*

F@ = int{$ /@) : we P, 310, = af
then, for each xz¢ K,

F@) s Znf@) S Snf@) + ¢S hr + 26 = F (o) + 2.
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Therefore f(z) < f(x) for each zeK. If a>0 and if fa(x) = sup
{u(x) : we A(@K), u < f} then the argument shows that f(z) < f.(x)
for all zeaK ; in particular £,(0) = 0 = 7(0).

If condition (i) holds then we have

f_(x) = inf {u,(®@,) + ua(®s) : ¢ =@, + @, ;€ P},

Since P* is a normal cone we can choose «a >0 such that
o, Il + |2 |l £ allx|| whenever & = %, + x, with x, e P*.

If condition (ii) holds and if { is an interior point of the dual
cone in X** then the order interval [—(, {] is the unit ball for an
equivalent norm in X**, and hence X* has an equivalent norm which

is additive on P*. Therefore there exists an «a >0 such that
S @]l £ af| i x; || whenever x; € P*,
Now let = >, x; 0, where x, ¢ P*, and with n =2 if (1)

holds. If A= 3. ||z, and if y, =0 when =, =0, ¥, = Me;/|| 2; ]|
when x; # 0, then y,€aK for each 4. Since f, is convex on aK we
have

H il 5 H 2l

<3 fw) = 3w

=1

a - ai=1 %

u[_\/_ls

2. f (@) .

In case (ii) this inequality gives Fu) < F (x) for each x e K, while in
case (i) we have f.(x) < u,(x,) + ;) which again gives f.(x) < F(x);
in either case therefore we have proved that f(x) = f. (x) for each
ze K. If we define ||f] =sup {|f®)| :2xc K}, and || f]|| similarly,
then we have |[f(@)| < S || fll ll@:l| S a || fll ||x]| for each x¢ K, so
that || Fll S @[l fIl- _

By Theorem 2 f is additive on P* and the above argument shows
that f is w*-l.s.c. on BK for each 8 > 0. The set {xe P*: f(x) <7}
is convex and its intersection with each multiple of the unit ball of
X* is w*-closed ; hence f is w*-l.s.c. on P*. If we write § for
-(-g) then g is w*-u.s.c. on P* and is additive, homogeneous and
satisfies g <g<f<f. If e>0 and r >« then, by separating the
sets {(&, t)e P* X R;t> f(x)} and {(y,s—¢/r)e K x R:s < g(y)} and
applying Lemma 2, we obtain a w,eX such that w.<f and
w.(x) > g(x) — ¢/r for all xe€ K. Hence if 2z, = (g — w.)\V0, 2, is homo-
geneous, subadditive and w*-continuous on P* with ||z,|| < e&/r. The
above argument shows that z. is w*-u.s.c. on P* and that
|Z.]| £ a]|z.|| <e. Since the set K x {¢/r} is disjoint from the w*-
closed cone {(z,t) : x€ P* t <Z.(x)} the separation theorem gives a
p.€ X such that p.=2%2. =29 — w., 0 and ||p.|| < e.

Using the procedure of the preceding paragraph choose f,, g.€ X
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such that /i< f, g.=0, g <f, + g, and || g,]| < 1/2, in particular we
have fA (fi + g9) =9V fi. By induction there exist sequences {f,}
and {g,} in X such that (a) ¢, =0, |[g.]| <27 (b) gV fu=ForitGuso
(©) fart =F A (futg.). Properties (b) and (¢) give -9, = frn—fu = ¢
so that ||f,.. — f.ll <27 Therefore {f,} converges to he X such
that » < f by (¢), and 2 = g by (b).

COROLLARY 1 (Ando [3]). If X is an ordered Banach space such
that X* 1s a lattice for the dual ordering them X has the Riesz
decomposition property.

COROLLARY 2 (Edwards [6]). If K is a compact simplex and if
-f, 9 are wu.s.c. convex functions on K with f= g then there exists
an he A(K) such that f=h=g.

Proof. By truncating if necessary we may assume that f and ¢
are bounded, say | f(x)|, |g(®)| =N for all xe K. First suppose that
the strict inequality f > ¢ holds ; then the set G={(z,f) : A < ¢ < g(z)}
is compact in K x R and is a subset of the convex set H={(y,s):s<f(y)}
which is relatively open in K x R. Therefore, taking the convex hull
of a finite covering of G by compact convex neighbourhoods in H, we
see that H contains the closed convex hull of G. Hence for each
xe K there is an f,e A(K) and a neighbourhood U, of 2z such that
g < f. while f(y) < f(y) for all ye U,. If K<U~ U, and if f'=
fe, N ooo A f,, then f’ is continuous and concave on K with g < f'<f.
Similarly we can construct a continuous convex function ¢’ on K such
that g < ¢’ <f' < f. The functions —f’, ¢’ have natural extensions
to w*-continuous subadditive homogeneous functions on the positive cone
P* of A(K)* such that ¢’ < f’, and so Theorem 3 gives an h'e A(K)
such that g < ¢’ < W S f' < f.

In the general case f=g there exists an h,e A(K) such that
f+1>h >g—1. By considering the functions (f A k) + 1/2 and
(9 V h)—1/2 we similarly obtain an &, A(K) such that
S+ 1/2>h,>g — 1/2 while || h, — h,|| <1/2. Proceeding in this way
we cbtain a sequence {%,} which converges in A(K) to & such that
g=h=/f.
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