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In this paper we ensure the absolute Riesz summability
of Lebesgue-Fourier series under more liberal conditions im-
posed upon the generating function of Lebesgue-Fourier series
and by taking more general type of Riesz means than what-
ever the present author has previously taken in proving the
corresponding result. Also we give a refinement over the
criterion previously proved by author himself.

l Definitions and notations. Let Σ~= o α» be a given infinite
series with the sequence of partial sums {sn}. Throughout the paper
we suppose that

) λΛ = μ0 + μ, + μ2 + + μn > c

The sequence-to-sequence transformation

as n

defines the Riesz means of sequence {sn} (or the series Σ ~ = O G U of the
type {λn_i} and order unity.1 If tn—>s, as n—> ©o, the sequence {sn} is
said to be summable (R, Xn_u 1) to the sum s and if, in addition,
{tn}eBV,2 then it is said to be absolutely summable (Ry Xn_ly 1), or
summable \R, Xn_u 1| and symbolically we write Σ " = 0 ^ e \R, Xn_lf 1|.

The series Σun=ιdne\Ry Xn_ly 1|, if

Let f(t) be a periodic function with period 2π and integrable in
the sense of Lebesgue over (—π,π). Without any loss of generality
the constant term of the Lebesgue-Fourier series of f(t) can be taken
to be zero, so that

and

f{t)

f(t)dt - 0 ,

K cos nt + 6Λ sin nt) =

1 It is some-times called (N, μn) mean, or (R, μn) mean, or Riesz's discrete mean of
'type' λn—i and Order' unity and is, in fact, equivalent to the usually known (B, λn—u 1)
mean. An explicit proof of it is contained in Iyer [6]. Also see Dikshit [3],

2 '{trάeBV means Σn | J t n | < °°, when Δtn = tn - tn+1.
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We use the following notations:

(1.3) φ(t) = hf(x + t) + f(x - t)} .

(1.4) Λ(t) = —[
t Jo

(1.5) K(n, t) = Σ - ^ - ^ sin (i; + l)ί .

2* Introduction* Recently the present author [2] has estab-
lished the following theorem concerning the absolute Riesz summa-
bility of Lebesgue-Fourier series of the type exp (na)(0 < a < 1) and
order unity.

THEOREM A. If (i) φ(t) e 57(0, π) and (ii) Λ(t)(\og k/t)1+ε e BV(0, π)r

where ε > 0 and k ^ τrβ2, then Σ?-i .̂»(a?) G l̂ > e χ P (̂ α)» 11(0 < α < 1)*

By using the technique, which Mohanty [7] used in establishing
the criterion for the absolute convergence of a Lebesgue-Fourier series
at a point, which is the analogue for absolute convergence of the
classical Hardy-Littlewood convergence criterion [4, 5], we have re-
cently established the following:

THEOREM B. // (i) φ(t)eBV(0,π), (ii) Λ(t)(logk/t)1+εeBV(0, π)r

where ε > 0, k ^ πe2 and (iii) {naAn(x)} eBV, for 0 < a < 1, then

The purpose of this paper is to ensure the absolute Riesz sum-
mability of Lebesgue-Fourier series under more liberal condition im-
posed upon the generating function of Lebesgue-Fourier series and
taking more general type of Riesz means.

We first prove the following general theorem.

THEOREM 1. Let, for 0 < a < 1, the strictly increasing sequences-
{λj and {gin)}, of nonnegative terms, tending to infinity with n,.
satisfy the following conditions:

(2.1) log — - 0{g(k/t)}; as t — 0 ,

(2.2) {K/(n + I)}/" with n^n0 ,

(2.3) rΐ-'Jλ* = 0{Xn+1}; as n~* oo ,



(2.4)

(2.5)
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( ( i ) {%/g(%)}f with X ,

( 11 j X—z [ 77T~T" / / WΊtlh X ,

(iίί) M w i t h x •

=0{n/g(n)},
g(k/t)

(ii) Σ (wfl-(w))-1 < - .

/!(%(ic/ί) e SF(0, π), ίAe series
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where k is a suitable positive constant such that g(k/t) > 0 /or ί > 0.

3. We shall use the following order-estimates, uniformly in
0 < t ^ π.

(3.1)

(3.2)

(3.3)

K(n, t) = 0{i-~X/(% + 1)} .

f' si
Jo

sin (n
ug(k/u)

Γsin(
Jo

n + ,)(!« = O(l/ί(» + 1» .
du\g(k/uj.

Proof of 3.1. By using AbeΓs Lemma and (2.2), the proof follows.

Proof of 3.2. Case (I). When (n + I)" 1 g ί, we have

Jo ug(k/u) =(Γ"' + S' ,.)-
\Jo Jίίi+i)-"1/

ug(k/u)
du

say

Now, since | sin (w + 1)^ \ ̂  (n + l)u, we have

{n + l)\ ~rτdu\ - 0{l/g(n + 1)} .

Jo g(fc/u) )

And, by the second mean value theorem and (2.4)(i) we have

J2 = 0{l/g(n + 1)} .

Case (II). When (n + I)- 1 > ί, we have
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ΐ*auι(n + l)udu = /t + l ϊ " 1 _ f ^ Λ s i
Jo ug(k/u) Vo Jt /

d u ^

ug(k/u) Vo Jt / ug(kjn)

= Jx - I2', say .

Proceeding as in IΊ, for I2', we obtain

Jί - 0{l/flr(n + 1)} .

This completes the proof.

Proof of (3.3). In view of (2.4)(ii), (2.4)(iii) and (2.5)(i), the proof
runs parallel to that of (3.2).

4* We require the following lemmas, for the proof of the theorems.

LEMMA 1. If F(x)eBV(a,b), then it can be expressed as
(Fί(x) — F2(x)) where F^x) and F2(x) are positive, bounded and mono-
tonic increasing functions in (a, b) (see Carslaw [1], p. 83).

LEMMA 2 (Pati [8]). If (i) Σ?=iα»e |B, λ#, fc|(fc>0), (ii) {λjλ.+1} e BV
and (iii) {a%\J(K - λ J } e B 7 , then Σ?=i I ^ K °°

5. Proof of Theorem 1* We have

2 [π

An(x) — — \ Φ(t) cos ntdt
π Jo

7ΐL n Jo 7ΓJo

π Jo

7ΓL n Jo 7rJo at \ nt

= —I Λ(t)g(kt) (
7Γ Jo ί^(λ/ί) 3ί V nt

integrating by parts.
In view of Lemma 1 and second mean value theorem, the series

V —
XnXn+1 v=o (v + 1) )og(k/u) duK u

uniformly in 0 < t fg π. And, now



hg(k/u)
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. __ sin (v + l)t
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u g(k/t)
f*sin(y
Jo ua(ug(k/u)

du

g(k/u)

Therefore

1 °° -2—k(n, t)

+ Σ
sin (y +

λκλ»+i -=° (v + 1) Jo ug(k/u)
f*sr
Jo

Σ 2-ι
κ λ B + 1 *=o (y +

= Σ + Σ + Σ. say .
1 2 3

Now, we write, for T = [r 1 / ( 1-α )]

d ( 1 \
/ I V

du V a(k/u))
du

Σ = Σ + Σ = Σ + Σ> say .
1 n=0 n-T 1,1 1,2

Since sin (v + l)t = 0(1), we have

\ y
I flr(Jfc/ί) ά i

'» NT1

— 2 J •1}

Iσίfei

Γ - 1 r-i / I

Σ
g(k/t) ί=ί y + 1

= 0(1) ,

by (2.1), uniformly in 0 < t ^ π. And, by (3.1),

- o f
I

Σ = 0- Σf
I g(kjt) ^

(n + l)λ. 4

(by (2.3))

= o\
I ff(Λ/ί)

- 0(1) ,

uniformly in 0 < t ^ π And, by (3.2), we have

= O{Σ
lκ=0

1}
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=A ( y

-o (y +

by (2.5)(ii), uniformly in 0 < t ΞS π. Also, by using (3.3), we get

Σ = 0(1) ,
3

uniformly in 0 < t ^ π.
This terminates the proof of Theorem 1.

6* In this section we give a criterion for the absolute convergence
of Lebesgue-Fourier series at a point. First we consider the following
corollary of Theorem 1.

COROLLARY. If (i) φ(t) e J3F(0, π) and (ii) Λ{t)g{klt)eBV(O,π),
then Σ"=ι Άnfc) e |/2, exp (na), 11(0 < a < 1), whenever g(kft) stands:
for any one of the following functions:

** I Γ ' 1OS τ( l 0 f c τ)'*' ••los I los: T K I)'*'
where logp k/t = log log 2)_1 fc/ί, logi fc/ί = log k/t, c > 0, α^d & is
suitable positive constant such that g(k/π) > 0.

THEOREM 2. // (i) φ(t) e 5F(0, π), (ii) Λ(t)g(k/t) e 5F(0, TΓ) and (iii)
{ ^ - a i ^ ) } e S F /or 0 < a < 1, έfeβ̂  ΣϊU l^»(»)l < °°̂  w/̂ βre g(k/t) is
as defined as in the above corollary.

Proof of Theorem 2. Mohanty (7) observed that for Xn — e%a

sequences (i) {XjXn+i}eBV and (ii) {na~ιXn\(Xn — λ ^ J e ΰ F and hence
the conditions (ii) and (iii) of Lemma 2 are satisfied. Thus, in view
of the above corollary, the proof follows by Lemma 2.

I feel greatly indebted to the referee for his valuable comments*
and suggestions.
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