ABSOLUTE SUMMABILITY BY RIESZ MEANS

Prem Chandra
ABSOLUTE SUMMABILITY BY RIESZ MEANS

PREM CHANDRA

In this paper we ensure the absolute Riesz summability of Lebesgue-Fourier series under more liberal conditions imposed upon the generating function of Lebesgue-Fourier series and by taking more general type of Riesz means than whatever the present author has previously taken in proving the corresponding result. Also we give a refinement over the criterion previously proved by author himself.

1. Definitions and notations. Let \(\sum_{n=0}^{\infty} a_n \) be a given infinite series with the sequence of partial sums \(\{s_n\} \). Throughout the paper we suppose that
\[
\lambda_n = \mu_0 + \mu_1 + \mu_2 + \cdots + \mu_n \to \infty, \text{ as } n \to \infty .
\]
The sequence-to-sequence transformation
\[
t_n = \frac{1}{\lambda_n} \sum_{\nu=0}^{n} \mu_\nu s_\nu ,
\]
defines the Riesz means of sequence \(\{s_n\} \) (or the series \(\sum_{n=0}^{\infty} a_n \)) of the type \(\{\lambda_{n-1}\} \) and order unity.\(^1\) If \(t_n \to s \), as \(n \to \infty \), the sequence \(\{s_n\} \) is said to be summable \((R, \lambda_{n-1}, 1) \) to the sum \(s \) and if, in addition, \(\{t_n\} \in BV \),\(^2\) then it is said to be absolutely summable \((R, \lambda_{n-1}, 1) \), or summable \(|R, \lambda_{n-1}, 1| \) and symbolically we write \(\sum_{n=0}^{\infty} a_n \in |R, \lambda_{n-1}, 1| \).

The series \(\sum_{n=1}^{\infty} a_n \in |R, \lambda_{n-1}, 1| \), if
\[
\sum_{m=0}^{\infty} \left| \frac{\Delta \lambda_m}{\lambda_n \lambda_{n+1}} \sum_{\nu=0}^{n} \lambda_\nu a_{\nu+1} \right| < \infty .
\]

Let \(f(t) \) be a periodic function with period \(2\pi \) and integrable in the sense of Lebesgue over \((-\pi, \pi) \). Without any loss of generality the constant term of the Lebesgue-Fourier series of \(f(t) \) can be taken to be zero, so that
\[
\int_{-\pi}^{\pi} f(t)dt = 0 ,
\]
and
\[
f(t) \sim \sum_{n=1}^{\infty} (a_n \cos nt + b_n \sin nt) = \sum_{n=1}^{\infty} A_n(t) .
\]

\(^1\) It is some-times called \((N, \mu_n)\) mean, or \((R, \mu_n)\) mean, or Riesz's discrete mean of 'type' \(\lambda_{n-1} \) and 'order' unity and is, in fact, equivalent to the usually known \((R, \lambda_{n-1}, 1)\) mean. An explicit proof of it is contained in Iyer [6]. Also see Dikshit [3].

\(^2\) \{'t_n\} \in BV\' means \(\sum_{n} |\Delta t_n| < \infty \), when \(\Delta t_n = t_n - t_{n+1} \).
We use the following notations:

\[(1.3) \quad \phi(t) = \frac{1}{2} \{f(x + t) + f(x - t)\} .\]

\[(1.4) \quad \Lambda(t) = \frac{1}{t} \int_0^t u d\phi(u) .\]

\[(1.5) \quad K(n, t) = \sum_{\nu=0}^n \frac{\lambda_\nu}{(\nu + 1)} \sin (\nu + 1)t .\]

2. Introduction. Recently the present author [2] has established the following theorem concerning the absolute Riesz summability of Lebesgue-Fourier series of the type \(\exp (n^\alpha)(0 < \alpha < 1)\) and order unity.

Theorem A. If (i) \(\phi(t) \in BV(0, \pi)\) and (ii) \(\Lambda(t)(\log k/t)^{1+\varepsilon} \in BV(0, \pi)\), where \(\varepsilon > 0\) and \(k \geq \pi e^2\), then \(\sum_{n=1}^\infty A_n(x) \in |R, \exp (n^\alpha), 1|(0 < \alpha < 1)\).

By using the technique, which Mohanty [7] used in establishing the criterion for the absolute convergence of a Lebesgue-Fourier series at a point, which is the analogue for absolute convergence of the classical Hardy-Littlewood convergence criterion [4, 5], we have recently established the following:

Theorem B. If (i) \(\phi(t) \in BV(0, \pi)\), (ii) \(\Lambda(t)(\log k/t)^{1+\varepsilon} \in BV(0, \pi)\), where \(\varepsilon > 0\), \(k \geq \pi e^2\) and (iii) \(\{n^\alpha A_n(x)\} \in BV\), for \(0 < \alpha < 1\), then \(\sum_{n=1}^\infty |A_n(x)| < \infty\).

The purpose of this paper is to ensure the absolute Riesz summability of Lebesgue-Fourier series under more liberal condition imposed upon the generating function of Lebesgue-Fourier series and taking more general type of Riesz means.

We first prove the following general theorem.

Theorem 1. Let, for \(0 < \alpha < 1\), the strictly increasing sequences \(\{\lambda_n\}\) and \(\{g(n)\}\), of nonnegative terms, tending to infinity with \(n\), satisfy the following conditions:

\[(2.1) \quad \log \frac{\pi}{t} = O[g(k/t)]; \text{ as } t \to 0 ,\]

\[(2.2) \quad \{\lambda_n/(n + 1)\}/ with n \geq n_0 ,\]

\[(2.3) \quad n^{1-\alpha} A_{\lambda_n} = O[\lambda_{n+1}]; \text{ as } n \to \infty ,\]
(2.4) \[
\begin{align*}
(\text{i}) & \quad \{\frac{x}{g(x)}\} \to \text{with } x, \\
(\text{ii}) & \quad x \frac{d}{dx} \left(\frac{1}{g(k/x)} \right) \to \text{with } x, \\
(\text{iii}) & \quad \frac{d}{dx} \left(\frac{1}{g(k/x)} \right) \to \text{with } x.
\end{align*}
\]

(2.5) \[
\begin{align*}
(\text{i}) & \quad \left[\frac{d}{dt} \left(\frac{1}{g(k/t)} \right) \right]_{t=1/n} = O\{n/g(n)\}, \\
(\text{ii}) & \quad \sum_{n=1}^{\infty} (ng(n))^{-1} < \infty.
\end{align*}
\]

Then, if \(\phi(t) \in BV(0, \pi) \) and \(\Lambda(t)g(k/t) \in BV(0, \pi) \), the series
\[
\sum_{n=1}^{\infty} A_n(x) \in |R, \lambda_{n-1}, 1|,
\]
where \(k \) is a suitable positive constant such that \(g(k/t) > 0 \) for \(t > 0 \).

3. We shall use the following order-estimates, uniformly in \(0 < t \leq \pi \).

(3.1) \[
K(n, t) = O\{t^{-1}\lambda_n/(n + 1)\}.
\]

(3.2) \[
\int_0^t \frac{\sin (n + 1)u}{ug(k/u)} du = O\{1/g(n + 1)\}.
\]

(3.3) \[
\int_0^t \sin (n + 1)u \frac{d}{du} \left(\frac{1}{g(k/u)} \right) du = O\{1/g(n + 1)\}.
\]

Proof of 3.1. By using Abel’s Lemma and (2.2), the proof follows.

Proof of 3.2. Case (I). When \((n + 1)^{-1} \leq t\), we have
\[
\int_0^t \frac{\sin (n + 1)u}{ug(k/u)} du = \left(\int_0^{(n+1)^{-1}} + \int_{(n+1)^{-1}}^t \right) \frac{\sin (n + 1)u}{ug(k/u)} du
\]
\[
= I_1 + I_2, \text{ say}.
\]

Now, since \(|\sin (n + 1)u| \leq (n + 1)u\), we have
\[
I_1 = O\{(n + 1) \int_0^{(n+1)^{-1}} \frac{1}{g(k/u)} du\} = O\{1/g(n + 1)\}.
\]

And, by the second mean value theorem and (2.4)(i) we have
\[
I_2 = O\{1/g(n + 1)\}.
\]

Case (II). When \((n + 1)^{-1} > t\), we have
\[\int_0^t \sin(n + 1)u \, du = \left((n + 1)^{-1} - \int_0^{(n + 1)^{-1}} \right) \sin(n + 1)u \, du = I_1 - I_2', \text{ say.} \]

Proceeding as in \(I_i \), for \(I_i' \), we obtain

\[I_i' = O\{1/g(n + 1)\}. \]

This completes the proof.

Proof of (3.3). In view of (2.4)(ii), (2.4)(iii) and (2.5)(i), the proof runs parallel to that of (3.2).

4. We require the following lemmas, for the proof of the theorems.

Lemma 1. If \(F(x) \in BV(a, b) \), then it can be expressed as \((F_1(x) - F_2(x))\) where \(F_1(x) \) and \(F_2(x) \) are positive, bounded and monotonic increasing functions in \((a, b)\) (see Carslaw [1], p. 83).

Lemma 2 (Pati [8]). If (i) \(\sum_{n=1}^{\infty} a_n \in |R, \lambda_n, k| (k > 0) \), (ii) \(\{\lambda_n/\lambda_{n+1}\} \in BV \) and (iii) \(\{a_n/\lambda_n - \lambda_{n-1}\} \in BV \), then \(\sum_{n=1}^{\infty} |a_n| < \infty \).

5. **Proof of Theorem 1.** We have

\[A_n(x) = \frac{2}{\pi} \int_0^\pi \phi(t) \cos nt \, dt \]
\[= \frac{2}{\pi} \left[\sin nt \phi(t) \right]_0^\pi - \frac{2}{\pi} \int_0^\pi \sin nt \, d\phi(t) \]
\[= -\frac{2}{\pi} \int_0^\pi \frac{\sin nt}{n} d\phi(t) \]
\[= -\frac{2}{\pi} \int_0^\pi \sin nt \, A(t) \, dt + \frac{2}{\pi} \int_0^\pi A(t) t \frac{\sigma}{\partial t} \left(\frac{\sin nt}{nt} \right) \, dt \]
\[= \frac{2}{\pi} \int_0^\pi A(t) g(k/t) \frac{t}{g(k/t)} \frac{\sigma}{\partial t} \left(\frac{\sin nt}{nt} \right) \, dt, \]

integrating by parts.

In view of Lemma 1 and second mean value theorem, the series \(\sum_{n=1}^{\infty} A_n(x) \in |R, \lambda_{n-1}, 1| \), if

\[\sum = \sum_{n=0}^{\infty} \left| \frac{\Delta \lambda_n}{\lambda_n \lambda_{n+1}} \sum_{v=0}^{n} \frac{\lambda_v}{(\nu + 1)} \int_{0}^{t} u \frac{\partial}{\partial u} \left(\frac{\sin (\nu + 1)u}{u} \right) du \right| = O(1), \]

uniformly in \(0 < t \leq \pi \). And, now
\[
\int_0^t \frac{u}{g(k/u)} \frac{\partial}{\partial u} \left(\frac{\sin (\nu + 1)u}{u} \right) \, du = \frac{\sin (\nu + 1)t}{g(k/t)} - \int_0^t \frac{\sin (\nu + 1)u}{ug(k/u)} \, du.
\]

Therefore
\[
\sum \leq \frac{1}{g(k/t)} \sum_{\nu=0}^{\infty} \left\{ \frac{\Delta \lambda_n}{\lambda_n \lambda_{n+1}} k(n, t) \right\} + \sum_{\nu=0}^{\infty} \sum_{\nu=0}^{n} \frac{\lambda_n}{(\nu + 1)} \int_0^t \frac{\sin (\nu + 1)u}{ug(k/u)} \, du \leq \sum_1 + \sum_2 + \sum_3, \text{ say.}
\]

Now, we write, for \(T = [t^{-1/(1-\alpha)}] \)
\[
\sum_1 = \sum_{n=0}^{T-1} + \sum_{n=T}^{\infty} = \sum_{1,1} + \sum_{1,2}, \text{ say.}
\]

Since \(\sin (\nu + 1) = O(1) \), we have
\[
\sum_{1,1} = O\left\{ \frac{1}{g(k/t)} \sum_{n=0}^{T-1} \left\{ \frac{\Delta \lambda_n}{\lambda_n \lambda_{n+1}} \sum_{\nu=0}^{n} \frac{\lambda_n}{(\nu + 1)} \right\} \right\}
\]
\[
= O\left\{ \frac{1}{g(k/t)} \sum_{n=0}^{T-1} \left\{ \frac{\lambda_n}{(\nu + 1)} \sum_{n=0}^{T-1} \left\{ \frac{1}{\lambda_n} - \frac{1}{\lambda_{n+1}} \right\} \right\} \right\}
\]
\[
= O\left\{ \frac{1}{g(k/t)} \sum_{n=0}^{T-1} \left\{ \frac{1}{\nu + 1} \right\} \right\}
= O(1),
\]
by (2.1), uniformly in \(0 < t \leq \pi \). And, by (3.1),
\[
\sum_{1,2} = O\left\{ \frac{t^{-1}}{g(k/t)} \sum_{n=T}^{\infty} \left\{ \frac{\Delta \lambda_n}{(n + 1)\lambda_{n+1}} \right\} \right\}
\]
\[
= O\left\{ \frac{t^{-1}}{g(k/t)} \sum_{n=T}^{\infty} \left\{ (n + 1)\lambda_{n+1} \right\} \right\}
\]
\[
= O\left\{ \frac{t^{-1}}{g(k/t)} T^{\alpha - 1} \right\}
\]
\[
= O(1),
\]
uniformly in \(0 < t \leq \pi \). And, by (3.2), we have
\[
\sum_2 = O\left\{ \sum_{n=0}^{\infty} \left\{ \frac{\Delta \lambda_n}{\lambda_n \lambda_{n+1}} \sum_{\nu=0}^{n} \frac{\lambda_n}{(\nu + 1)g(\nu + 1)} \right\} \right\}
\]
= O\left\{ \sum_{\nu=0}^{\infty} \frac{\lambda_{\nu}}{(\nu + 1)g(\nu + 1)} \sum_{n=\nu}^{\infty} \left(\frac{1}{\lambda_{n}} - \frac{1}{\lambda_{n+1}} \right) \right\} \\
= O\left\{ \sum_{\nu=0}^{\infty} \frac{1}{(\nu + 1)g(\nu + 1)} \right\} \\
= O(1) ,

by (2.5)(ii), uniformly in 0 < t \leq \pi. Also, by using (3.3), we get \\
\sum_{g} = O(1) ,

uniformly in 0 < t \leq \pi.

This terminates the proof of Theorem 1.

6. In this section we give a criterion for the absolute convergence of Lebesgue-Fourier series at a point. First we consider the following corollary of Theorem 1.

COROLLARY. If (i) \(\phi(t) \in BV(0, \pi) \) and (ii) \(\Lambda(t)g(k/t) \in BV(0, \pi) \), then \\
\(\sum_{n=1}^{\infty} A_n(x) \in \mathbb{R}, \exp(n^\alpha) \cdot 1(0 < \alpha < 1) \), whenever \(g(k/t) \) stands for any one of the following functions:

\[
\left(\log \frac{k}{t} \right)^{1+\epsilon}, \log \frac{k}{t} \left(\log_{2} \frac{k}{t} \right)^{1+\epsilon}, \ldots, \log \frac{k}{t} \log \frac{k}{t} \ldots \left(\log_{p} \frac{k}{t} \right)^{1+\epsilon}
\]

where \(\log_{r} k/t = \log \log_{r-1} k/t, \log_{1} k/t = \log k/t, c > 0 \), and \(k \) is any suitable positive constant such that \(g(k/\pi) > 0 \).

THEOREM 2. If (i) \(\phi(t) \in BV(0, \pi) \), (ii) \(\Lambda(t)g(k/t) \in BV(0, \pi) \) and (iii) \(\{n^{1-\alpha}A_n(x)\} \in BV \) for \(0 < \alpha < 1 \), then \\
\(\sum_{n=1}^{\infty} |A_n(x)| < \infty \), where \(g(k/t) \) is as defined as in the above corollary.

Proof of Theorem 2. Mohanty (7) observed that for \(\lambda_n = e^{n^\alpha} \) sequences (i) \(\{\lambda_n/\lambda_{n+1}\} \in BV \) and (ii) \(\{n^{\alpha-1}\lambda_n\} \in BV \) and hence the conditions (ii) and (iii) of Lemma 2 are satisfied. Thus, in view of the above corollary, the proof follows by Lemma 2.

I feel greatly indebted to the referee for his valuable comments and suggestions.

REFERENCES

Math. 7 (1965), 73–82.
5. ———, Some new convergence criteria for Fourier series, Annals Scuola Norm Sup. di Pisa (2) 3 (1934), 43–62.

Received November 21, 1969, and in revised form January 27, 1970.

GOVT. SCIENCE COLLEGE
JABALPUR, M.P., INDIA
Shair Ahmad, *On the oscillation of solutions of a class of linear fourth order differential equations* ... 289

Leonard Asimow and Alan John Ellis, *Facial decomposition of linearly compact simplexes and separation of functions on cones* 301

Kirby Alan Baker and Albert Robert Stralka, *Compact, distributive lattices of finite breadth* .. 311

James W. Cannon, *Sets which can be missed by side approximations to spheres* .. 321

Prem Chandra, *Absolute summability by Riesz means* 335

Francis T. Christoph, *Free topological semigroups and embedding topological semigroups in topological groups* 343

Henry Bruce Cohen and Francis E. Sullivan, *Projecting onto cycles in smooth, reflexive Banach spaces* 355

John Dauns, *Power series semigroup rings* 365

Robert E. Dressler, *A density which counts multiplicity* 371

Kent Ralph Fuller, *Primary rings and double centralizers* 379

Gary Allen Gislason, *On the existence question for a family of products* 385

Alan Stuart Gleit, *On the structure topology of simplex spaces* 389

Gerald William Johnson and David Lee Skoug, *Operator-valued Feynman integrals of finite-dimensional functionals* 415

(Harold) David Kahn, *Covering semigroups* 427

Keith Milo Kendig, *Fibrations of analytic varieties* 441

Norman Yeomans Luther, *Weak denseness of nonatomic measures on perfect, locally compact spaces* .. 453

Guillermo Owen, *The four-person constant-sum games; Discriminatory solutions on the main diagonal* 461

Stephen Parrott, *Unitary dilations for commuting contractions* 481

Roy Martin Rakestraw, *Extremal elements of the convex cone \(A_n \) of functions* ... 491

Peter Lewis Renz, *Intersection representations of graphs by arcs* 501

William Henry Ruckle, *Representation and series summability of complete biorthogonal sequences* ... 511

F. Dennis Sentilles, *The strict topology on bounded sets* 529

Saharon Shelah, *A note on Hanf numbers* 541

Harold Simmons, *The solution of a decision problem for several classes of rings* ... 547

Kenneth S. Williams, *Finite transformation formulae involving the Legendre symbol* ... 559