
Pacific Journal of
Mathematics

A DENSITY WHICH COUNTS MULTIPLICITY

ROBERT E. DRESSLER

Vol. 34, No. 2 June 1970



PACIFIC JOURNAL OF MATHEMATICS
Vol. 34, No. 2, 1970

A DENSITY WHICH COUNTS MULTIPLICITY

ROBERT E. DRESSLER

P. Erdδs, using analytic theorems, has proven the follow-
ing results: Let f(x) be the number of integers m such that
φ(m) ^ x, where φ is the Euler function, and let g(x) be the
number of integers n such that σ(n) ̂  x, where a is the
usual sum of divisors function. Then there are positive (but
undetermined) constants C\ and c% such that f(x) — C\X + o(x)
and g(x) — c2(x) + o(x). The constants d and c2 can be cal-
culated using complex analysis including the Wiener-Ikehara
Theorem. A major purpose of this paper is to give an ele-
mentary proof that lim*-** f(x)lx exists and, in the process,
calculate the value of the limit. These considerations of
multiplicity motivate a generalization of natural density which
counts multiplicity. This paper contains an investigation of
this generalization.

Let A = {αJΓ=i be a sequence of positive real numbers Ξ> 1. For
a positive integer j , define #(A, j) to be the number of integers i
such that at <£ j (that is, the number of elements of A counting
multiplicity which are <£ j). If lim inf ,,_*«> #(-4, j)/j = a (we allow
a = oo) we say A has J-asymptotic density a and we define A(A) — a.
We also define Δ(A) = lim sup^c* #(A, i)/i If J(A) = Δ(A) we say 4
has J-natural density a and we define A{A) — a. It is clear that a
reordering of A does not affect Δ(A) or J(A). It is also clear that
4(A) = ̂ ({[αjfci) and J(A) - J({[αd}Γ-i) where [αj is the greatest
integer which does not exceed a{. Unless otherwise specified all
sequences in this paper will be of positive real numbers.

Throughout this paper d will denote natural density, i.e., the
classical analog of Δ where multiplicity is not counted; Z+ will denote
the set of positive integers; Q+ will denote the positive rational num-
bers; R+ will denote the set of positive real numbers; p will always
Tbe a prime; and P — {Pi}T=i will be the sequence, in the natural order,
of primes.

If T: Z+~>R+ then to 7 there corresponds the unique sequence
7(1), 7(2), •••. We will write 7 in place of this sequence. Thus, for
example, in the notation of this paper Δ(φ) and Δ(σ) exist and are
positive [5]. If for instance 7 = r, where τ(n) = the number of posi-
tive integer divisors of the positive integer n, then it is clear that

If A = {αjf=i and B = {bj}^ are sequences then define A + B to
be the sequence, in the natural order, of positive real numbers x such
that there exist i and j e Z+ with α* + bά = x, and x appears in this
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372 ROBERT E. DRESSLER

sequence the precise number of distinct ways we can write x =
ah + bh. Note that it is possible to have x = ah + bh and yet for x
not to be a member of A + B. This happens precisely when some
positive number y < x is representable infinitely often in the form
y = at + bj. Finally if A and 5 are sets of positive reals then define
A\B to be the complement of B in A.

1* Number theoretic functions. In this section we investigate
the densities of certain sequences related to the φ function and other
functions.

We first prove some lemmas which we will use to calculate A{φ)+

DEFINITION 1.1. For each neZ+ and keZ+ define

cf. [8, p. 56].

LEMMA 1.1.1. A{φk) = Up^k (1 + (Vv(P - 1))) for each keZ+.

Proof. Pick keZ+ and define Pk = {ply p2, , pk). To each subset
Pk (j = 1, 2, , 2*) of P^ there corresponds the sequence of positive
integers which are divisible by each member of P1- and by no member
of Pk\Pk. These sequences are pairwise disjoint and their union is Z+.

For a subset Pk of Pk say {njti}?=1 is the corresponding sequence-
It is clear that

2k

( * ) %(Φk> w) = Σ #({̂ ife(%,*)}Π=i> ^) for each w e Z + .

Now for a fixed P* the density of {%,JΓ=i is clearly

i π ϋ^A.

Also for each integer m in this sequence we have

φk(m) = m Π ^ - ^
P6P^ P

Therefore

in the sequence defined by jψ

π ^ ^ ) = Π-^-Γ- π
^ P J kP 1
\ V J

 PePk. P — 1 P S P M P
ί 3 3
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So by (*) we have

1

(P - I)2

ήP-

π
2fc pεpk\pk. P

" S Π \v - l) ~ IT (P - i) ^ ,
pzpR peP*

and the lemma is proved.

Note. Urn A{φk) = Π ( l + , X ,,) < - .

LEMMA 1.1.2. Choose ne Z+, n > 1, and say reZ+ satisfies
Ί>ιVz Vr^n. Then #(0r, ̂ ) ^ n(J(^r) + 1) In fact if

#(^r, w) £ n{A(φr) + Ijt).

Proof. Say n = tp, - - - pr (t^l). Then if

def

we have Rj>r = the number of integers m such that ^r(m) ^ ^ and
ft ff. I m and none of the members of Pr\Pj divide m = the number
of integers m ^ n{qjqι — !)••• (qs/qs — 1) which are divisible by
#! qs and divisible by no member of PrIPj. Say T3 ,r is the smallest
integer ^ t(qjqί — 1) (qs/qs — 1). Then clearly Rjir ^ the number
of integers m which do not exceed pγ prTjtr and which are divisible
l>y Qi "Λ Qs and divisible by no member of Pr\Pj. But since Ti>r is
an integer we have

Λ i, r<£(p1...p r5r,, r) ϊ Π * > 1

p

+ i V - j — π

M v ^ V π

i.r. So

- Π
P

ΠΣ ( π Γ Π
= 1 \ePr-P — lpeP"\Pr. P

- Π
P
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and the lemma is proved.

LEMMA 1.1.3. Choose neZ+, n > 1, and say reZ+ is defined by
pL pr <J n < pL '' Pr+ι Then we have

φ(m) ^n=- φr{m) £ — P r + 1 V2rλλ n .
Pr + ί 1 P2r + l 1

Thus

I Γ Pr
$(φ, n) ^ §1 φr1 I —-— •

V Lp r + 1 - 1
zr+i *•

Proof. Suppose m has more than r + 1 distinct prime divisors.
Then φ(m) ^ (pr+2 ~ l)(pr+1 - 1) (p, - 1) ^ pι p r +i > w, a con-
tradiction. So m has at most r + 1 distinct prime divisors.

Now

φr(m) = φ(m) Π —~— ^ n II — - — = n— —^r±1—
p\m p J_ p\m p J_ Pr + l -*- ί^2r + l -*-
V>Vγ P>Pr

since m has at most r + 1 distinct prime divisors and the lemma is
proved.

THEOREM 1.1.

+ )
p(p — 1)/

where ζ denotes the Riemann Zeta function.

Proof. It is well known [7, p. 246] that ζ(s) - Π ^ P (1/1 - P~s)
for 8 > 1. Thus it follows that ILeP (1 + (l/p(p - 1))) = (C(2) ζ(3)/ζ(6)).
So it only remains to show that Δ(φ) = ΐ[pep (1 + (VP(P ~ 1)))

For r e 2 + let gr - (pr+jpr+i - 1) (p2r+i/P2r+i - 1). It follows
from Mertens' Theorem and Tchebychef's Theorem [7, pp. 351 and
9] that limr_oogr = 1. Choose neZ+, n > 1, and say r e Z + is defined
by ί>χ Pr ^ W = *ί>l Pr < P1P2 Pr + l, WhβΓβ ί ^ 1.

Now, #(0r> n) - # ( ^ r ^ , w) + (#(^ r, n) - # ^ r _ 1 ? n)). But

#(^ r, n) - #(Φr-i, n)

is the number of integers m such that pr \ m and

>

This number is the sum (over j* = 1, 2, •••, 2r"1) of the number of
integers less than or equal to
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and greater than

' π
which are divisible by pτ and each pePj"1 and not divisible by any

'-^Pj-1. It then follows that

#(Φr, n) - UΦr-v n)
P ) £( Π P

j - 1 P ~

x Π - Π
" ό

So jfryφγ, n) :== !ff(^r_i, n) -

By Lemma 1.1.2 we have

1 \
i) + — I = nΔ(φr) + o(n).

pΨl

So #(^ r, n) ^ nΔ(φr) + o(ri). By Lemma 1.1.3 we have %{φ, n) ^ #(^r[^r^]).
So %{φ, n) 5Ξ; [grn]Δ(φr) + o([^rr^]) = nΔ(φr) + o(w). Divide by n and
let %—>-oo to get limw_»oo #(0, %)/% ^ limr_oo Δ{φr).

Finally J(^) ^ lim^̂ oo ̂ (^*) because if we choose keZ+ then for n
large we have #(0, n) ^ #(0*, w) ^ n(Δ(φk) — 1/k) and so

lim infw_»oo $(̂ > n)/n ^ zf(^) — 1/&

for each fc e Z+. Thus J(^) = lim^co Δ(ψr) = Π^p (1 + (l/3>(p -1)) and
the theorem is proved.

A related result due to P. Erdδs may be found in [4, pp. 211-
213].

DEFINITION 1.2. For t ^ 1, t a real number, a positive integer n
is said to be ^-abundant if σ(n) ^ tn.

H. Davenport [3] has shown that for t as above, the sequence
of ^-abundant positive integers has a natural density.

THEOREM 1.2. For each keZ+ let dk — the natural density of
the k-abundant integers. Then Σ?=i^* ^ A(Φ) = (C(2) ζ(3)/ζ(6)).

Proof. It is known that φ(n)σ(n)/n2 < 1 for each integer n > 1
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[7, p. 267]. So if ne](k - 1)N, kN] and σ(n) ^ kn then 0(ra) ^ N.
Thus for keZ+ and for iV large, depending on k, we have

#(& N)^N+ d2(2N -N) + d3($N - 22SΓ) +

+ ^(fcJNΓ - (A; - 1)ΛΓ) - ^
k

= N(l + d2 + dB + + dk - 1/fc)

+ d2 + + dk - Ilk) .

Now divide by N and let JV—* oo. We then have

Jfa) ^ lim (^ + d2 + + dΛ - 1/fc) =

and the theorem is proved.

2* General theorems* We begin this section by stating some
results whose proofs are not difficult.

1. If A = {αj^i is a sequence such that Δ(A) — °° then there
exists a sequence {ij}~=1 of positive integers with ΣΓ=i ^* -/iy < °°.

2. If A = {αjπ=i is a sequence such that A(A) = 0 then Σ « ^ Λ =
o(r2) and Σα^r l/α< = o (log r).

3. If A = {aJiLx is a sequence such that oo > A(A) > 0 then
and Σ . ^ r l/α4 - 4(Λ) log r.

THEOREM 2.1. Lβί A = {αjji,. δβ α sequence such that A(A) = oo.
ί/̂ erβ eα?isίs α strictly increasing sequence {i^JU o/ positive

integers with d({iy}Γ=i) = 0 α?ιcZ ^({α^}^!) = oo.

Proof. I t suffices to assume lim^o* α* = ©o because otherwise the
proof is immediate.

Case I. αL ̂  α2 ^ α3 ̂  .
First, there is no loss of generality in supposing a±< a2< az <
because if α̂  = α i + 1 = = α«+r-i < ^i+r for some ί then define

_ . / the distance from a{ to the\
6 - m m «̂<+r α<, smallest integer greater than aj

and replace α i + { by α̂  + ίe/r for ί = 0, 1, , r — 1.
We now define a subsequence 2? of A by induction. Let αx e J5.

If each of alf α2, , αfc_i has already been either included in B or
excluded from B, place ak in i? if

1 ^ /tf(A, α.)
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and exclude ak from B if the inequality fails. It then follows that
#(J5, ak)/ak ~ l/#(A, ak)/ak and so A{B) = oo. Also if we write B =

we have d({e;}~=i) = 0 because

, αin)

#(A, αi%) αin

%(,αO αin

which tends to 0.1 = 0 as n-+ oo.

Case II. We make no assumptions about the monotonicity of A
However, without loss of generality, we may still assume α̂  = aά =*
i — j , for we can always order A by size, deal with A as in Case I,
and then apply the inverse of the permutation used to order A to
the new sequence which is derived from A by use of the ε's.

Now order A by size and call this sequence A* = {a*}Z=ι* We have
af < af+1 for all ieZ+. It follows immediately that if any n — X
elements are deleted from A the minimum of the remaining" elements
is ^ α*. It is also clear that if Af = {α2ί_JΓ=1 then A{Af) = oo.

Apply Case I to A* to get a subsequence J5* = {α*.}^ of A*
such that 4(B*) = oo and dίfo-JyU) = 0. Now define tx by α ίχ =
min ({ah, ah+1, ah+2f •••}). It follows that ίx ^ ix and α ίχ ^ αξ. Define
t2 by α ί2 = min ({αi2, α<2+1, α ί2+2, . . }\{αίj). It follows that t2 ^ i2 and

I n general define td by

α .̂ = min ({aij9 aij+1, aij+2, }\{αv αίa, , α^.^J) .

It follows that ίy ^ id and αβ. ^ αξ.+/-!•
Since ty ^ ΐy for all i 6 Z+, it follows that d({tj}γ=1) = 0. Also

Λ(R*}r=i) = °° so AKsJΐ-d - - so //({αf.+^J LO - oo. It then
follows that A({at.}J=1) — c>o and the theorem is proved.

To emphasize that care must be taken in the choice of {i, }Γ=i in
the above theorem we note the following result.

THEOREM 2.2. Suppose {iy}yU is a sequence of positive integers
such that d^ij}^) = 0. Then there exists a strictly increasing
sequence A = {αjjlj. such that lim^β α< = oo, J(A) = oo, α^d J({αi.}"=1) = 0.

THEOREM 2.3. For each number a such that O g α ^ o o there
exist two sequences A and B such that A(A) = A(B) = 0 and
A{A + B) = a.

Proof. If a = 0 choose A = J5 to be the sequence of factorials.
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If a = oo choose A = B = P. Then by the Prime Number Theorem

Suppose 0 < a < ©o. Choose /3 and 7 e R+ so that {Ij4)πβy = α:.
Let A = K/W = 1 and 5 - (w7ή;B l, Clearly Δ{A) = 0 = Δ(B). Also,
the number of elements in A + B which are < n is the number of
lattice points (&, m) in the positive quadrant of the ellipse

k2/β2 + m2/τ2 ^ w .

This number is (l/4)πβyn + O(i/¥). Thus Δ(A + B) = {Ij4)πβy = α
and the theorem is proved.

I wish to thank the referee for his helpful comments and in
particular for his proof of Theorem 2.3 which is shorter than mine.
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