ON THE EXISTENCE QUESTION FOR A FAMILY OF PRODUCTS

GARY ALLEN GISLASON
ON THE EXISTENCE QUESTION FOR A FAMILY OF PRODUCTS

GARY A. GISLASON

Let X be a topological space and let P and Q be finite dimensional linear subspaces of $C(X)$. Since the set $PQ = \{pq: p \in P, q \in Q\}$ is a subset of a finite dimensional linear subspace of $C(X)$, existence of best approximations from PQ is assured if and only if PQ is closed. If $p \in P$, $q \in Q$, and $pq = 0$ imply that $p = 0$ or $q = 0$, then PQ is shown to be closed. An example shows that PQ is not closed in general.

In an important paper by B. Boehm, [1], the problem of existence of best approximations from certain nonlinear families is discussed. One of these families is formed by taking products of elements of two finite dimensional linear subspaces of $C(X)$, where X is a topological space. In a seminar Professor H. Loeb pointed out an error in Boehm's existence proof for this family. Professor Loeb then posed the question whether the result was correct and if it was not to develop reasonable hypotheses to insure existence.

In this paper we consider these questions and show that Boehm's hypotheses have to be modified.

Throughout this paper X will denote a topological space and $C(X)$ the vector space of all bounded, continuous, real-valued functions defined on X. The symbol $\| \cdots \|$ will represent the uniform norm defined on $C(X)$ by $\|f\| = \sup \{|f(x)|: x \in X\}$.

One question under consideration is that of existence of best approximations from the set

$$PQ = \{pq: p \in P \text{ and } q \in Q\}$$

where P and Q are finite dimensional linear subspaces of $C(X)$. (Here $(pq)(x) = p(x) \cdot q(x)$.) First of all it is easy to see that PQ is a subset of a finite dimensional linear subspace of $C(X)$. In fact, if $\{g_1, \cdots, g_m\}$ is a basis of P and $\{h_1, \cdots, h_n\}$ is a basis of Q then it is clear that PQ is contained in the linear space generated by the set of products of functions $\{g_i h_j: i = 1, \cdots, m \text{ and } j = 1, \cdots, n\}$. The dimension of this linear space is at most equal to mn. Now, it is known that best approximations exist from a subset of a finite dimensional linear subspace if and only if the subset is closed. But, as the following example shows, the set PQ is not closed in general.

Example 1. Let $P = \{ag_1 + bg_2: a, b \text{ real}\}$ and $Q = \{ch_1 + dh_2: c, d \text{ real}\}$ be finite dimensional linear subspaces of $C[0, 5]$ with basis functions described by the graphs in Figure 1.
Observe that

(1) \(g_1 h_1 = h_1, g_2 h_1 = 0 \), and \(g_2 h_2 = g_2 \) and that

(2) \(h_1, g_2 h_2 \text{ and } g_2 \) are linearly independent.

Now, consider the sequence \(\{p_n q_n\}_{n=1}^{\infty} \) in \(PQ \) in which

\[p_n = g_1 + n g_2 \]

and

\[q_n = h_1 + \frac{1}{n} h_2 \]

for each \(n \). By (1) it follows that

\[
\begin{align*}
p_n q_n &= (g_1 + n g_2) \left(h_1 + \frac{1}{n} h_2 \right) \\
&= g_1 h_1 + \frac{1}{n} g_1 h_2 + n g_2 h_1 + g_2 h_2 \\
&= h_1 + \frac{1}{n} g_1 h_2 + g_2
\end{align*}
\]

for each \(n \). Thus

\[p_n q_n \longrightarrow h_1 + g_2 \]

as \(n \to \infty \) so \(h_1 + g_2 \) is in the closure of \(PQ \). If \(h_1 + g_2 \) is contained in \(PQ \) then there exist real coefficients \(a, b, c \) and \(d \) such that

\[
(a g_1 + b g_2)(c h_1 + d h_2) = h_1 + g_2 .
\]

By (1) the above equation reduces to

\[ach_1 + ad g_1 h_2 + bd g_2 = h_1 + g_2 \]

and by (2) to the system
which has no solution. Thus $h_1 + g_2$ is not in PQ and PQ is not closed.

The above result shown that Boehm’s Theorem 4, [1], is incorrect. The fact that $g_2h_1 = 0$ even though $g_2 \neq 0$ and $h_1 \neq 0$ plays an important role in Example 1, as is apparent from (*). As it turns out, one modification to Boehm’s hypotheses which implies that PQ is closed is to rule out the possibility of a product in PQ being zero when neither of the factors is zero.

Theorem 1. Let P and Q be finite dimensional linear subspaces of $C(X)$. If $p \in P$, $q \in Q$, and $pq = 0$ imply that $p = 0$ or $q = 0$ then PQ is closed.

Proof. Let g be a function in the closure of PQ, and let \(\{p_n q_n\}_{n=1}^{\infty} \) be a sequence in PQ such that

\[
\|g - p_n q_n\| \to 0
\]

as $n \to \infty$. If $g = 0$ then certainly $g \in PQ$ since $0 \in P$ and $0 \in Q$. So, assume that $g \neq 0$. Then with no loss of generality it may be assumed that $p_n q_n \neq 0$ and that $\|p_n\| = 1$ for each n. Since closed and bounded subsets of finite dimensional linear spaces are compact, it suffices to show that a subsequence of the sequence $\{q_n\}_{n=1}^{\infty}$ is bounded. Assume the contrary. Then by going to subsequences, if necessary, and letting $n \to \infty$ it follows that

\[
\frac{p_n q_n}{\|q_n\|} \to 0.
\]

By the preceding remark on compactness there exist nonzero functions $p \in P$ and $q \in Q$ such that

\[
\frac{p_n q_n}{\|q_n\|} \to pq
\]

by going to further subsequences, if necessary, and letting $n \to \infty$. But (4) implies that $pq = 0$ which is a contradiction.

Clearly, in Theorem 1, $C(X)$ can be replaced by any real or complex normed algebra.

A counter example to Boehm’s Theorem 5, [1], exists using ordinary polynomials and corresponding rational functions.
In a forthcoming paper we will discuss further the existence problem and also the characterization question for this setting.

BIBLIOGRAPHY

Received October 30, 1969. Supported in part by NSF Grant 8686.

University of Oregon
PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. SAMELSON
Stanford University
Stanford, California 94305

J. DUGUNDJI
Department of Mathematics
University of Southern California
Los Angeles, California 90007

RICHARD PIERCE
University of Washington
Seattle, Washington 98105

RICHARD ARENS
University of California
Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH
B. H. NEUMANN
F. WOLE
K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON
OSAKA UNIVERSITY
UNIVERSITY OF SOUTHERN CALIFORNIA

STANFORD UNIVERSITY
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON
AMERICAN MATHEMATICAL SOCIETY
CHEVRON RESEARCH CORPORATION
TRW SYSTEMS
NAVAL WEAPONS CENTER

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. The editorial “we” must not be used in the synopsis, and items of the bibliography should not be cited there unless absolutely necessary, in which case they must be identified by author and Journal, rather than by item number. Manuscripts, in duplicate if possible, may be sent to any one of the four editors. Please classify according to the scheme of Math. Rev. Index to Vol. 39. All other communications to the editors should be addressed to the managing editor, Richard Arens, University of California, Los Angeles, California, 90024.

50 reprints are provided free for each article; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published monthly. Effective with Volume 16 the price per volume (3 numbers) is $8.00; single issues, $3.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $4.00 per volume; single issues $1.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 108 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 7-17, Fujimi 2-chome, Chiyoda-ku, Tokyo, Japan.
Shair Ahmad, *On the oscillation of solutions of a class of linear fourth order differential equations* ... 289

Leonard Asimow and Alan John Ellis, *Facial decomposition of linearly compact simplexes and separation of functions on cones* 301

Kirby Alan Baker and Albert Robert Stralka, *Compact, distributive lattices of finite breadth* ... 311

James W. Cannon, *Sets which can be missed by side approximations to spheres* ... 321

Prem Chandra, *Absolute summability by Riesz means* 335

Francis T. Christoph, *Free topological semigroups and embedding topological semigroups in topological groups* 343

Henry Bruce Cohen and Francis E. Sullivan, *Projecting onto cycles in smooth, reflexive Banach spaces* ... 355

John Dauns, *Power series semigroup rings* 365

Robert E. Dressler, *A density which counts multiplicity* 371

Kent Ralph Fuller, *Primary rings and double centralizers* 379

Gary Allen Gislason, *On the existence question for a family of products* 385

Alan Stuart Gleit, *On the structure topology of simplex spaces* 389

Gerald William Johnson and David Lee Skoug, *Operator-valued Feynman integrals of finite-dimensional functionals* 415

(Harold) David Kahn, *Covering semigroups* 427

Keith Milo Kendig, *Fibrations of analytic varieties* 441

Norman Yeomans Luther, *Weak denseness of nonatomic measures on perfect, locally compact spaces* ... 453

Guillermo Owen, *The four-person constant-sum games; Discriminatory solutions on the main diagonal* 461

Stephen Parrott, *Unitary dilations for commuting contractions* 481

Roy Martin Rakestraw, *Extremal elements of the convex cone A_n of functions* ... 491

Peter Lewis Renz, *Intersection representations of graphs by arcs* 501

William Henry Ruckel, *Representation and series summability of complete biorthogonal sequences* ... 511

F. Dennis Sentilles, *The strict topology on bounded sets* 529

Saharon Shelah, *A note on Hanf numbers* 541

Harold Simmons, *The solution of a decision problem for several classes of rings* ... 547

Kenneth S. Williams, *Finite transformation formulae involving the Legendre symbol* ... 559