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Let X be a topological space and let P and Q be finite
dimensional linear subspaces of C(X). Since the set PQ —
{pq:p e P, qeQ} is a subset of a finite dimensional linear sub-
space of C(X), existence of best approximations from PQ is
assured if and only if PQ is closed. If peP,qeQ, and pq=0
imply that p=0 or q=0, then PQ is shown to be closed. An
example shows that PQ is not closed in general.

In an important paper by B. Boehm, [1], the problem of existence
of best approximations from certain nonlinear families is discussed.
One of these families is formed by taking products of elements of
two finite dimensional linear subspaces of C(X), where X is a top-
ological space. In a seminar Professor H. Loeb pointed out an error
in Boehm's existence proof for this family. Professor Loeb then posed
the question whether the result was correct and if it was not to
develop reasonable hypotheses to insure existence.

In this paper we consider these questions and show that Boehm's
hypotheses have to be modified.

Throughout this paper X will denote a topological space and C(X)
the vector space of all bounded, continuous, real-valued functions
defined on X. The symbol || || will represent the uniform norm
defined on C(X) by | |/ | | = sup {\f(x)\:xeX}.

One question under consideration is that of existence of best ap-
proximations from the set

PQ = {Pq: peP and qeQ}

where P and Q are finite dimensional linear subspaces of C{X). (Here
(pq)(x) — p(x) q(x).) First of all it is easy to see that PQ is a subset
of a finite dimensional linear subspace of C(X). In fact, if {gιy , gm)
is a basis of P and {hlf , hn} is a basis of Q then it is clear that
PQ is contained in the linear space generated by the set of products
of functions {gih/. i — 1, , m and j — 1, , n}. The dimension of
this linear space is at most equal to mn. Now, it is known that
best approximations exist from a subset of a finite dimensional linear
subspace if and only if the subset is closed. But, as the following
example shows, the set PQ is not closed in general.

EXAMPLE 1. Let P = {agx + bg2: a, b real} and Q = {ch^ + dh2: c, d
real} be finite dimensional linear subspaces of C[0, 5] with basis func-
tions described by the graphs in Figure 1.
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FIGURE 1.

Observe that

(1) gjfix — h19 g^ = 0, and gjι2 = g2 and that
( 2 ) /&„ gxh2 and #2 are linearly independent.

.Now, consider the sequence {pnqn}n~i in PQ in which

and

n = K + —h2

n

for each n. By (1) it follows that

VnQn = (01

< * ) = gji

λi
n

1_( 1 + 02^2

= Λl + —01^2 + 02

for each w. Thus

l + 02

as w —> co so /̂ i + g2 is in the closure of PQ. If /̂ ! + g2 is contained
in PQ then there exist real coefficients α, 6, c and d such that

g2

By (1) the above equation reduces to

and by (2) to the system
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ac = 1

ad = 0

-which has no solution. Thus ht + g2 is not in PQ and PQ is not
^closed.

The above result shown that Boehm's Theorem 4, [1], is incorrect.
The fact that g2h1 = 0 even though gz Φ 0 and hγ Φ 0 plays an important
τole in Example 1, as is apparent from (*). As it turns out, one
modification to Boehm's hypotheses which implies that PQ is closed
is to rule out the possibility of a product in PQ being zero when
:neither of the factors is zero.

THEOREM 1. Let P and Q be finite dimensional linear subspaces
<of C(X). If peP, qeQ, and pq = 0 imply that p = 0 or q — 0 then
PQ is closed.

Proof. Let g be a function in the closure of PQ, and let {p^q^n^
be a sequence in PQ such that

'(3) Ilflr-P.ί.ll >0

as n —* co. If g = 0 then certainly g e PQ since 0 e P and 0 e Q. So,
assume that g Φ 0. Then with no loss of generality it may be assumed
that pnqn Φ 0 and that \\pn\\ = 1 for each n. Since closed and bounded
.subsets of finite dimensional linear spaces are compact, it suffices to
show that a subsequence of the sequence {ĝ }?=i *s bounded. Assume
i he contrary. Then by going to subsequences, if necessary, and lett-
ing n —•> oo it follows that

.(4,

By the preceding remark on compactness there exist nonzero functions
peP and qeQ such that

( 5 ,

by going to further subsequences, if necessary, and letting n—»°o.
But (4) implies that pq — 0 which is a contradiction.

Clearly, in Theorem 1, C{X) can be replaced by any real or com-
plex normed algebra.

A counter example to Boehm's Theorem 5, [1], exists using ordi-
nary polynomials and corresponding rational functions.
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In a forthcoming paper we will discuss further the existence
problem and also the characterization question for this setting.
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