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This paper studies the hull-kernel topology of the maximal
ideal space of separable simplex spaces, We show that the
properties of local compactness, first countability, and second
countability are equivalent.

A simplex space is an ordered Banach space V with closed posi-
tive cone whose dual is an L-space [4, 5, 6]. Let P(V) be the
positive linear functionals on V with norm less than or equal to one.
‘The pure states are the extreme points of P(V) and are denoted by
EP,(V). We shall write E~ for the nonzero extreme points of P(V),
i.e.,

E+ = EP(V) — {0} .

‘We let Z be the closure, in the weak* topology, of E-.

We let max V be the set of closed maximal ideals of V equipped
with the hull-kernel topology. The closed ideals of V are in a one-to-
one order inverting correspondence with the closed faces of P(V)
containing zero. Thus, max V may be identified with E+ as point
sets. By this identification we can transfer the hull-kernel topology
to E* and define a new topology, called the structure topology, on
E*. Its closed sets are the nonzero extreme points of a closed face
containing zero. Hence, the structure topology is weaker than the
weak™* topology.

In this paper we shall consider various topological properties of
max V. In particular, we consider compactness, local compactness,
first countability, second countability, and standard Borel structure.
It was conjectured in [5] that for separable simplex spaces the latter
four properties are equivalent. This is very nearly correct, as we
see in Theorem 3.3 and Proposition 3.6.

In section 1, we study the structure topology and introduce
several new maps. We give several criteria for determining whether
a set in E+ is structure closed. In section 2 we consider the property
of first countability for max V.

Finally, in section 3, we state and prove the main theorems.
‘We show that if V is separable, then max V is compact if and only
if 0 does not belong to Z. We also show, for V separable, that the
properties of first countability, second countability, and local com-
pactness are equivalent for max V.
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0. Conventions. The notation and definitions are those used
in [4, 5, 6]. We shall use results freely from these papers. Through-
out, we assume that vector spaces have nonzero elements. In normed
spaces, the subscript A on a subset indicates the subset intersected
with the closed ball of radius \.

For any set A < P(V), A will denote the weak* closure of A
and A" will denote A — {0}.

For any net, Greek subscripts, e.g., a, £, denote arbitrary index
sets while Latin subscripts, e.g., %, j, %, denote the natural numbers
as an index set, i.e., {x,} is a sequence.

For the entire paper, V will always denote a separable simplex:
space.

Throughout, propositions are stated in terms of the hull-kernel
topology of max V and proven for the structure topology of E-.
Hopefully, this will cause no confusion.

1. The structure topology and several maps. In this section,
we prove some preliminary results concerning the structure topology.

As V is separable, V* is weak* metrizable and, thus, so is P(V).
As P(V) is a simplex, Choquet’s Theorem asserts that for each
ge P(V) there is a unique maximal probability measure 7=, which
represents ¢ and for which

T(P(V) — EP(V)) = 0.

[10, p. 70]. We shall always denote this measure by =,.

Let S[q] be the smallest weak* closed face of P(V) containing
0 and g, for qe P(V). As S[q] is compact, metrizable, and convex,
the Choquet Theorem applies equally as well to it. Hence, there is
a maximal probability measure p which represents ¢ and for which

1(S[q] — extreme points of S[q]) =0.
As S[q] is a face, its extreme points are extreme in P(V) and so
#(Slal — EP(V)) = 0.
Since P,(V) is a simplex, ¢ = m,. Hence

supp 7, < S[q] -
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For qge P(V), we let supp* 7, = {y € P(V)¥|each neighborhood
N < P(V) of y satisfies 7,(N) > 0}. Then, supp® =, = supp 7, — {0},
consistent with our convention. The first proposition gives some
relations between the structure and weak* topologies. Recall that
for A < P(V), the weak* closure of A is denoted by A.

ProrosiTioN 1.1. (A) Let qeP(V)*. Then supp™n, s the
closure in P(V)T of supp*™ 7, N E*. Further,
E+ n Slg] = structure closure (supp” 7, N E¥) .

(B) Let D< P(V). Suppose for each qe D we have supp 7, < D.
If D is weak* closed, then the weak* closed convex hull of D is a
face of P(V) and DN E+ is structurally closed.
(C) Let D<= E+*. Then the following are equivalent:
(1) D s structure-closed.
(2) For each nonzero ge D, S[g] N E+ < D.
(8) For each monzero q< D, supp* =, E* < D.
4) (a) D 1is weak™ closed relative to E-.
(b) For each qe D — EP(V), supp* 7, E* = D.

Proof. (A) Since P(V)* is a locally compact metric space,
T (P(V)* —supp™ ) =0.
Since 7, is a maximal measure, |
T(P(V)" —E")=0.

Suppose y is not in the closure in P(V)* of supp* 7, N E*. Then
there is a relatively open set N & P(V)* about y such that

Na@supprn,NEY) =@ .
But then N is open in P,(V) and obviously
T (N) = T(P(V)" — (supp* 7, N E¥)) = 0.

Thus v ¢ supp* 7,. The other inclusion is trivial.
For the second conclusion, from the discussion preceeding the
proposition,

suppt 7, N E* = Sl N E~*.
As the latter is structurally closed,
structure closure (supp* 7, N E*) < S[g] N E+.

For the other inclusion, let K be the closed face containing zero
which satisfies
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K N E* = gtructure closure (supp™ 7, N E¥),

which exists by the definition of the structure topology. As K is
closed and contains zero, the first part implies that suppz, & K. As
K is convex, ge K. But then S[¢g] £ K and so S[¢] N E* =< KN E-.

(B) The first conclusion is [5, Th. 3.3] while the second follows
easily from the definition of the structure topology and the Milman
Theorem [10, p. 9].

(C) (1)=(2). Let q be a nonzero element of D. Then there
is a sequence {p,} & D such that p, —q. Then {p,} tends structurally
to each element of S[g] N E* [6, Lemma 2.3] and so S[q] N E* < D.

(2) = (3). Trivial.

(8)= (4). Let {g,) =D and qeE* satisfy ¢,—q. Then qeD
and so supp* 7, N E* = {¢} & D. Therefore D is weak* closed relative
to E*.

4= @). Let F=DU{0}. If geF — {0}, then supp* 7, E+= D
and so supp*n, & D by part (A). Hence supprn, S F and so (B)
implies that F'N E* is structurally closed. Since D is weak* closed
in Et, FNnE+=DnE* = D.

We must now define certain maps. Let @: Z — structure closed
subsets of E+ by
d(q) = Slgl N E* .

If 0eZ, then

0) = o .
We let : E+* — subsets of Z by

() ={gcZ|ped(q)}.

Hence, for each pec E*,

0¢y(p) .
We extend these maps to set functions by letting

o(4) = U ()

for every set A < Z, and, for any B < E-,

WB) = UF0) = {geZ| 5@ N B * 2} .

For each qe Z, we shall write @(q) to mean @({g}). Similarly, for
each pe E+, we write (p) to mean +({p}). Then, obviously, for
9¢Z,
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P(q) = P(g)
and for pe ET,
¥(p) = ¥(p) .

We may, alternately, describe the maps @ and + in terms of the
relation R in E+ x Z defined by

pRq if and only if peS[q]ln E*.
‘We have, for any A € Z,
O(A) = {p | pRq, some q e A}
and for any B € E-,
w(B) = {q| pRq, some pe B} .
Elementary relations for these maps are contained in the next lemma.
LeEMMA 1.2. (1) For AS Z*, v0(4) 2 A.
(2) For B E*, oy(B) 2 B.
() Let pecE* and ge Z. Then gey(p), pe @(q), and pRq are
equivalent.

4) For B E*, E* N ¢(B) = B.
(5) Let gqeZ. Then @(q) = structure closure (supp* w, N E*).

Proof. They are all obvious.
If A and B are any topological spaces, a map I": A — subsets of
B is called lower semi-continuous if whenever U = B is open then

e A\M@)N U+ @}
is open in A [2, Th. 1, p. 115].
ProprosITION 1.3. @ s lower semi-continuous when E* is given

the structure topology. In fact, +f U< E*, then U s structurally
open if and only if (U) is weak™® open in Z.

Proof. Let U < E+*. Then

Z—y(U) = g Z10@ 0 U = 2}
={qeZ|9(q) S E* - U}.

Let us first suppose that U is structurally open. Then E+ — U
is structurally closed. Hence, there is a closed face K containing
zero so that KNE+=E+— U. Let geKnZ. Then S[q] S K.
Thus @(q) S E*— U and so geZ — y(U). If gqeZ — +(U), then
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supp7, S {0} U D(g) S {0 U(KNE)S K and so ge K. Therefore,
Z—y(U)=KnNZ and so Z — y(U) is weak* closed.

Second, let us suppose that v(U) is open. Then (Z — v(U))NE+ =
E+ — U is weak* closed in E+*. In order to show that E- — U is
structure closed, we let ¢ be any nonzero element of £+ — U. Since
Ev—-U<cZ—vO)nE+=2Z—y(U), we have that S[¢ln E* =
&(q) < E* — U. Hence, E~ — U is structurally closed [Proposition
1.1 (O)].

The main reason we introduced the map @ is the following.

PROPOSITION 1.4. Suppose {p,} S E* and ge Z. If p,— q, then

Q) F = {p,} UO(q) is structurally closed.

(2) Let p,,e¢ F — @(q). Then {p,} is structurally open relative
to F.

(8) {p.} converges structurally to each element of @(q).

Proof. The conclusions are all trivial if ¢ = py = pyy, = -+ S0
we may assume that {p,} is not eventually the constant sequence
{g}. For (1), we let D = {p,} US[g]. We claim that for each ze D
we have suppzw, & D. Indeed, if z = p,, supp Ty = (o} € D. I
z€ S[q], then suppx, & S[2] < S[g]. Since S[q] is closed and {p,} U {q}
is closed, D= D. Therefore, D N E* = {p,} U (S[g] N E*) = {p,} UD(q) =
F is structurally closed [Proposition 1.1 (B)]. To show (2), we let
I = {i| p;# Da). Askrunsoverl, p,—q. Bypart(l), {p,|kecl}Ud(g)
is structurally closed, i.e., {p,} is structurally open relative to F.
Part (8) is contained in [6, Lemma 2.3].

COROLLARY 1.5. Suppose {p,} & E* and qeZ. If p,— q, then
the set of structure convergence points of {p.}, the set of structure
cluster points of {p,}, and @(q) are the same set.

Proof. We need only show that if xe E+ is a structure cluster
point of {p,} then ze€®(q). Let F = {p,} U®(q). As F is structure-
closed, = a cluster point implies x € F. Part (2) of the above shows
that such an 2 is not in F — &(q). Hence, xc @(g).

2. Preliminary results. We study in this section the property
of first countability for max V. We shall derive several equivalent
properties. Given that max V is first countable, we can find structure
open sets by the following.

LEMMA 2.1. Let xc E+ and W be any w*-open set containing
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¥ @). If © has a countable structure base, then E+* N W has struc-
ture interior and, further, x is in the structure interior of (E+ N W).

Proof. The proof will be by contradiction. Let U DU, D---
be a structure base at x. Suppose that there isanx,c U, — (E*N W).
Then {z,} converges structurally to ». Since Z is compact metric,
there is a subsequence {z,} of {x,} and a point yeZ such that
z,, — Y. Therefore ye(r) and so ye W. But

@, € (U, — (BN W) 0 E*

and so x, ¢ W for each m,. This contradicts the assumption that
W is a w*-neighborhood of y.

LEMMA 2.2. Let xcE+. Let U. = E+ {z]|dist (2, v(x)) < &} and
let U. be the structure interior of U.. Assume +(x) is compact and
that xe€ U, for each & > 0.

Then, if U is a structure neighborhood of xz, there exists an
e>0 such that xcU. < U. < U. In particular, (U} form «
countable structure base at x.

Proof. Let U be a structure neighborhood of x. First note
that +(U) is a neighborhood of +(x) [Proposition 1.3]. As () is
compact, there is an ¢ > 0 such that

¥(x) S {2 | dist (2, ¥(x)) < e} S ¥(U).
Intersecting with E+, we have se U. s wWU)NE* = U.

LEMMA 2.3. Let xe E* and suppose that 2 has a countable
structure base. Then (x) is compact.

Proof. Since Z is compact, it suffices to show that «(x) is
closed. Let {g,} C+(x) and g€ Z satisfy ¢,—¢q. Let 0,200,D .-
be a w*-base at ¢. We may assume that ¢,€0,. Let GDOG,D-.--
be a structure base at x. As (@) C4(G;) and +(G,;) is open
j=1,2, -, %G, N O, is a w*-open neighborhood of q,, n =1, 2, - +-.
Hence, there is a p,<€ E+* N ¥(G,) N 0,. Consequently, p,c @, and so
{p.} converges structurally to z. As p,€0,, -p,—¢. But then
x € @(q), i.e., ge ¥(x) and so +(x) is indeed compact.

Putting these three lemmas together yields the following.

COROLLARY 2.4. Let xe E* and suppose that x has a countable
structure base. Let U, = E+ N {z]|dist (2, ¥(x)) < &} and let U. be the
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structure interior of U. Let U be any structure neighborhood of w.
Then there exists an € > 0 such that xe U, = U, = U. In particular,
{U,..} form a countable structure base at x.

If C and D are topological spaces, a map I': C — subsets of D
has a closed graph (at ¢) if whenever {c,} & C converges to ceC,
{d.} & D converges to de D, and d,€'(c,), then deI'(c).

We can now state and prove the main theorem in this section.

THEOREM 2.5. The following statements are equivalent:
1) @ has a closed graph.
2) (a) A (x) is compact for each xe E*.
(b) Let xec E+ and U(e) = {z| dist (2, v(x)) < &} N E+.
Then & s in the structure interior of E*+ N Ule).
(3) max V is first countable.
(4) max V 1s second countable.

Proof. We shall show (1) = (2) = (3) = (1) and (3) = (4).

(1) = (2). Let xc E* and U(e) = {z|dist (z, ¥(x)) < &} N E+. We
first show that « is in the structure interior of U(¢). Indeed, suppose
that there is a net {2, < E+ — U(e) such that {x,} converges struc-
turally to . Since Z is compact, there is a subnet {waﬁ} and a point
y € Z such that x,,—v. Since ., = O(%,,), the closed graph condi-
tion implies that x e @(y), i.e., ¥y € Y (). Thus, dist (xa , ¥(x)) — 0 and
80 Wag€ {2 | dist (2, ¥(x)) < ¢} eventually. It follows that o € U(e)
eventually and so x,€ U(e) frequently. This contradicts the choice
of {x,} and so the claim is proven. Next, we must demonstrate that
Jr(x) is compact. In fact, we must only show that +(x) is closed
since Z is compact. Let {y., be a net in v(x) and yeZ satisfy
yY.— Y. The closed graph condition then implies that x e @(y), i.e.,
Y€ y(@).

(2) = (8) is Lemma 2.2.

(8) = (1). Suppose {z,} S E*, vxcE*, {y S Z and yecZ. Let
Yo — Y, {®} converges structurally to », and x,€P(y,). We must
show that e @(y). Let U, = E*n {z]|dist (2, v()) < 1/n} and U, be
the structure interior of U,. Then {U,} forms a structure base at
2« [Corollary 2.4]. Let {O,} be a w*-base at y. Since {x,} converges
structurally to «, there is an a} such that for each a = ai, x,c U,.
Similarly, there is an «ai such that for each a = &)}, y,€0,. Choose
«, larger than a;, «}), and «, ,. Taking ¥, = ¥., 2. = 2., clearly
Y. — Y, {x,} converges structurally to z, x,€®(y,) N U,. Recall that
we must prove that x e @(y).

Let
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O, m) = E* 0 {z| dist (z, ¥(x.)) < ¢} .

Since 2,€ U, and U, is a structure neighborhood about w,, there is.
an &(n) > 0 such that x, e U(e(n), n) S U, [Corollary 2.4]. Let (n) =
min (¢(n), 1/n). Then x,<c U@B(n), n) < U,. Since E+ is dense in Z,
we can find z, € E* such that dist (z,, ¥,) < 6(n) < 1/n. Since y, — ¥, we
have z,—y. Because y,€(z,), we have z, ¢ E* N {z]|dist (z, ¥(x,)) <
é(n)} = UO(n), n). As U@BR), n) < U,, we have z,e U,. Hence {z,}
structurally converges to x. Thus, z¢ @(y) [Corollary 1.5].

3)=(4). Let & = {S;} be a countable base for Z. Let xz¢ E*
and U be an arbitrary structure neighborhood of xz. Then «(U) is
a w*-open neighborhood of each y e (x). For each ye(x), choose
S,e.&” such that yeS, & v(U). The neighborhoods {S,]|w e ¥ (x)}
cover r(x). As 4r(x) is compact [Lemma 2.3}, a finite number of
these neighborhoods cover +(x). Thus,

N
V@) S US,, S %(U) -
But Lemma 2.1 implies that x is in the structure interior of
N
(E+ nu Sui) .
Since E* N UL, S,, & E* N y(U) = U, sets of the form

{structure interior of £+ N A | A is a finite union of sets from .57}

form a countable structure base.

The proofs of Lemma 2.1 and (3) = (4) are adapted from [12,
Lemma 1 and Lemma 3, § 4]

3. The main theorems. The preceeding section has thrown
light on several of the topological properties which we wanted to
discuss. We will now discuss the others.

Though usually compactness and seguential compactness are not
comparable for nonfirst-countable spaces, we have the following
result:

PROPOSITION 3.1 Let K< max V. Then the following are
equivalent:

(1) K 1is compact.

(2) K s sequentially compact.

Proof. (1)=(2). Let K & E* be structurally compact and let
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{x,} be a sequence in K. Since Z is compact metric, there is a
subsequence {v,} and a point yeZ such that z, —y. As K is
structure-compact, the net {x,} S K has a cluster point ze¢ K. But
then ze @(y) [Corollary 1.5] and so {x,} converges structurally to
z€ K [Proposition 1.4]. Thus, K is sequentially compact.

(2) = (1). Let K & E* be structurally sequentially compact and
let {x,} be a net in K. Since Z is compact, there is a subnet EW
and a point y € Z such that %.,—Y. As y has a countable neighbor-
hood base, we may find a sequence {x,} & E*+ such that =, —y and
{x,} & {xaﬁ. Then {x,} is a sequence in K and so there is a sub-
sequence {x,,} and a point ze K such that {z, } converges structurally
to z. Then ze@(y) and so {m”ﬁ} tends structurally to z [6, Lemma
2.3] and so K is compact.

We can now completely characterize those separable simplex
spaces for which max V is compact.

THEOREM 3.2. The following are equivalent:
(1) max V 18 compact.

(2) max V is sequentially compact.

3) 0¢Z.

Proof. (1)= (2) is a special case of Proposition 3.1.

(2) = (3). Suppose 0€Z. Then there is a sequence {p,} & E*
such that p, — 0. Since max V is sequentially compact, there is a
subsequence {p,,} and a point pe E* such that {p,,} tends structurally
to p. But then Corollary 1.5 implies that pe @(0). However ©(0) =
@ and we have a contradiction.

(8)=(1). Let {U,} be a structure-open cover of E~-. Then
U.U.= E* and so v(U. U.) = U.v(U,) = v(E*) = Z*. Since 0¢ Z,
Z* =2 and so {y(U,} is an open cover of the compact set Z.
Hence, there exists a finite subcover, i.e., there are sets U,, -+, U,,
such that U, v(U.) = Z. Then, intersecting both sides with E*
yields

N N
B =U @ nv(U.) =UU,
[Lemma 1.2(4)]. Hence, E* is structurally compact.

REMARK. The proof of (3)= (1) establishes the fact that for a
set K S max V, if 4(K) is compact, then K is compact.

We now come to the major result of this paper.
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THEOREM 3.3. Let V be a separable simplex space. Then the
Jollowing are equivalent:

(1) @ has a closed graph.

(2) max V s first countable.

(8) max V s second countable.

(4) max V 1s locally compact.

Proof. Using Theorem 2.5, we must only show that (4) is
equivalent to the others. We show first that first countability at
one point implies local compactness at that point. Let pe E* and
suppose » has a countable structure neighborhood base. Let U be
a structure open set containing p. We must find a structure-
compact neighborhood K of p within U. Let FF=FE*— U. It is
structurally closed and, hence, there is a closed face @ of P(V),
containing zero, such that Q N E* = F. Since p¢F, v(») NQ = O.

At this point, we shall specify the metric which we are using
for P(V). If {¢,} is dense in V,, then we take

dist (v, y) = 227" [2(5) — w(E) | .
Since @ and +(p) are compact [Lemma. 2.3],

dist (@, ¥(p)) =0 > 0.

Let

_ - 5
D= {z e Z| dist (¢(p), 2) < —2-}

and

T:{zeZ]dist(Q, z)g_g.}.

‘Then, clearly, T is compact, TNQ = @, and D < T.

We first claim that E+ N T is a structure neighborhood of »
within U. Indeed, pe E*ND S E*NT and E+ND is a structure
neighborhood of » [Lemma 2.1]. Obviously, E* N T < U.

We next claim that B+ N T is structure-compact. Let {p,} be a
net in E*N T. Since T is weak® compact, there is a subnet {p,}
and a point g€ T such that Dag — 4. Then {p,,ﬂ} tends structurally to
€ach point of @(q) [6, Lemma 2.3]. Hence it is sufficient to show
DO NENT)+~ @. For ze P(V), let
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flz) =dist (2, Q) .

Obviously f is weak* continuous, f(0) =0 and f(q9) = ¢/2. We next
claim that f is convex. Indeed, let #, ye P(V) and 0 <A <1. We
must demonstrate that

SO 4+ (1 =Ny = M) + 1 —Nf(Y) .
Choose ¢, and ¢, in @ such that

Sf(@) = dist (z, q.)
and

fly) = dist (y, q,) -
Then

SO+ (1 =Ny =dist w + 1 — Ny, @
=dist W + 1 — My, M. + 1 — N)g,)
since Aq, + (1 — N)g, € @ by convexity

= Z 27 [ aw(6,) + (1 — Ny — M(&) — (L — Mg, (S |
= % 27 w(6,) — 98 |+ X =N [y — a(E) D)

= Nin] 27w — ¢S [+ XL =) ; 27" [ y(&a) — 4u(E) |
= ndist (x, ¢,) + (1 — N) dist (y, ¢,)

=M@ + 1 = MNf(Y) .

Since S]q] is convex and weak* compact, f restricted to S[q] achieves.
its maximum at an extreme point of S[q] [1, Satz 2]. As S[q] is a.
face and ¢ e S[q], there is a pe EP(V) N S[q] such that f(p) = f(q) =
0/2. Since f(0) = 0, there is a pe E* N S[q] = @(q) with f(p) = /2.
But this means that there is a pe®@(q) N T. Thus, E* N T is struc-
turally compact.

Next, we shall show that if max V is locally compact at a point,
then that point has a countable neighborhood base. Let xze€ E* and
assume that E* is structurally locally compact at x. Let U(e) =
{ze Z|dist (2, Y(®)) < e N E* and U(e) be the structure-interior of
U(s). We claim that « e U(e). Indeed, suppose not. Then there is
a net {#,) S E+ — U(e) such that {x,} tends structurally to x. Since
Z is compact, there is a subnet {@agh and a point y e Z such that
Cop— Yo Suppose x ¢ D(y). Let U= E*— O(y). Itisa structure open
set containing . By local compactness, there is a structure-compact
neighborhood K of « in U. Therefore, ,,c structure-interior (K)
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for all a; = @;. Then {x,,ﬁ |as = a;} still converges to y. Since Z
is metrizable, we may select a sequence {x,} & E* such that z,—y
and 2,€{x,,|a; = @}. Then ({z,} & structure-interior (K) is a
sequence in K. As K is sequentially compact [Proposition 3.1], there
is a subsequence {x,} and a point z€ K such that {x,} tends
structurally to ze K. As w, —y, we have zc®@(y) [Corollary 1.5].
Thus z¢ @(y) N K, which contradicts the choice of K. Hence, x < @(y),
ie., yey(x). As x,—y, dist(@,, ¥()—0. Therefore z,,¢ U(e)
eventually and so x,¢ U(e) frequently. This contradicts the choice
of the net {x,} and so we have shown that xe U(e).

In order to conclude that x has a countable structure neighbor-
hood base, we need only show that ¢(x) is compact [Lemma 2.2]. As
Z is compact, we need only show that +(x) is closed. Let ¥y (x).
Suppose y ey (x). Let U= E* — @(y). It is a structure neighbor-
hood of z and so by hypothesis there is a compact neighborhood K
of z in U. Let G = structure interior (K). Then ¥(G) is a weak*
neighborhood of +(x). Since y € ¥(G), we may choose {x,} S E* N (G)
such that z, —y. Since {x,} S G S K, and K is sequentially struc-
turally compact [Proposition 3.1], there is a subsequence {z,;} and
there is a point ze K such that {,} tends structurally to z. As
T, — Y, wWe have ze¢ @(y) [Corollary 1.5]. Thus, ze®(y) N K, con-
tradicting the choice of K. Hence y <+ (x) and so +(x) is compact.

REMARK. The proof of Theorem 3.3 established a stronger
equivalence than that stated. Namely, we showed that first
countability at a point is equivalent to local compactness at that
point.

Specializing Theorem 3.3. to the case when cardinality (Z—E*)< o,
we get the following.

COROLLARY 3.4 Let V be a separable simplex space. Suppose
cardinality (Z — EY) < . Then max V 4s locally compact and
second countable. Further, suppose {p.} is a met in E* converging
weak* to q and pe E*. Then the following are equivalent:

(1) ped(g).

(2) {p.} converges structurally to p.

Proof. We first note that +(p), for each pe E*, is a finite set
and so is trivially compact. Fix pe E* and let U, be the structure-
interior of {ze E*|dist (2, ¥v(p)) < ¢}. If we show that pe U,, then
Theorem 2.5 allows us to conclude the first statement. Let

A=U{00q)|qe Z—- E*, pe¢ d@q)}
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and
F={zeE"|dist(z, v(p) =t UA.

Let # be a nonzero element of F. Suppose

rxe{ze BT |dist (z, v(p) = ¢ .

Then dist (x, v(p)) = e. If xc E*, then {&}=0@)SF. If xeZ— E,
then, since, ® ¢ 4 (p), we have @(x) < A. On the other hand, suppose
xecA. As each @(g) is structurally-closed and cardinality (Z — E*) < <o,
we have that A is structurally closed. Thus, @(x) & A [Proposition
1.1 (C)]. Hence, we see that F' is structurally closed [Proposition 1.1
(C)] and so X — F S U.. As p¢F, we conclude that pe U..

To show the second statement, we merely note that (1) = (2) is
[6, Lemma 2.3] and that (2) = (1) is implied by @ having a closed
graph.

Specializing Theorem 3.3 to the case of M-spaces, we have the
following.

THEOREM 3.5. Let V be a separable M-space. Then the following
are equivalent:

1) Suppose {p,} & E* and {\,p.) & Z. If {p.} converges and if
\,p,— 0, then p,— 0.

(2) @ has a closed graph.

(3) max V is first countable.

(4) max V s second countable.

(5) max V is locally compact.

(6) max V is metrizable.

Proof. Since max V for a separable M-space is normal [5, Th.
3.8], the equivalence of (2) through (6) follows from Theorem 3.3 and
Urysohn’s metrization theorem.

(2) = (1). Since @(0) = ¢, (1) is merely the statement that @
has a closed graph at 0, and so the implication is clear. In more
detail, suppose p,—w and y = 0. Let ze®(y). Then {p,} tends
strueturally to z [Proposition 1.4]. The closed graph condition
implies that ze¢ @(0) = @, which is a contradiction.

(1) = (5). The map @: Z" — E* by

Ap— P

is the factor map of Z+, with the weak* topology, onto E*, with the
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structure topology [5, Formula 3.2 and .Th. 3.6]. Let K be any
«compact set in Z+. If 0~'@(K) is compact for all such K, then E*
is locally compact [3, Proposition 9, Ch. I, §10]. To show that
@-'@(K) is compact, we note that

o~ d(K) = pweZ|0< N1, zecK}.

As Z is compact, it suffices to show that ¢—'@(K) is closed in Z. To
.show this, let {q,} < 0'@(K) and g€ Z satisfy ¢, — ¢. By definition,
q, = N2, for some z,€ K and 0 <\, <1. Since K and [0, 1] are
-compact metric, there is a subsequence {g,}, an € K, and a 1€ [0, 1]
such that «, — and \,,—\. Hence, ¢ = M. Since z€ K, if we
.show that )\ == 0 then we have that qe @'9(K). However, if » =0,
then ¢ =0 and so ¢,,—0. By (1), @,;,—0. Since K & Z*, this is
.impossible.

The results (3) = (4) = (6) = (5) are contained (tacitly, if not
«explicitly) in [5, Corollary 3.9; 12, Th. 3].

We may now answer a question posed in [5]. Poulsen [11] has
<constructed a metrizable compact simplex K for which E+ is dense
in K, i.e., Z = K. Taking V to be the affine functions on K vanish-
ing at 0, we have a separable simplex space. Then max V cannot
‘be locally compact. In fact, if pe E*+, then vpeZ for 0 <X <1 and
so 0 e closure (y(p)). Hence, +(p) is not compact and so max V is not
locally compact at M, [Th. 3.3 and Th. 2.5]. More careful analysis
.shows that max V cannot contain even one compact set with interior.

It was conjectured in [5] that local compactness, first countability,
:second countability, and standard Borel structure were equivalent
for separable simplex spaces. We have shown that the first three
are indeed equivalent. As for the latter, we say that a Borel space
has a standard Borel structure whenever it is Borel isomorphic to
the Borel space associated with a Borel subset of a complete metric
space [9, p. 138]. Since the extreme points of a metrizable compact
convex set in a topological vector space form a G,-set [10, Proposi-
tion 1.3], EP(V) may be metrized by a complete separable metric
[8, §29, VI]. As E-* is a Borel subset of EP(V), E+ is standard.
‘'The map M: p,, — M is one-to-one, onto and continuous. Clearly, if
M~ is a Borel function then max V is standard.

PROPOSITION 3.6. If max V has a countable base, then max V is
standard. Further, there is a separable M-space V for which max V
18 standard dut max V is not locally compact.

Proof. The first statement follows immediately from [9, Th.
3.2]. As for the second, let
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V= {feC[o, 1] [f(%) - %f(l), n=2, } .

V is a separable M-space for which max V is not locally compact
[5, Th. 4.3]. By [5, Proposition 4.1},

E‘:{51,60<y§1 and y:é—l— for «
| n

v
[\
(i

and

Therefore Z — K~ is a closed set. Hence, K~ is an open set in a
compact metric space and so can be written as the countable union
of compact sets, i.e., there are compact sets K, & Z such that

EJ'A - UKL .

For any set A & K7, let
M(A) = U {M(p) |pe A} .

Then M(A) = (M")"'(A). Let F be any closed set in E°. Hence
M(F)=U; M(K;NF). Since K;NF is a compact set in £, M(K;NF)
is closed [5, Corollary 3.5]. Thus, M(F') is a countable union of
closed sets in max V and so is Borel. Therefore, M maps Borel sets
to Borel sets, i.e., M~ is a Borel map. From above, this implies
that max V is standard.
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